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A Modular SOS for Action Notation ?

Peter D. Mosses1

BRICS and Department of Computer Science,
University of Aarhus, Denmark

Abstract. Modularity is an important pragmatic aspect of semantic
descriptions: good modularity is needed to allow the reuse of existing de-
scriptions when extending or changing the described language. In deno-
tational semantics, the issue of modularity has received much attention,
and appropriate abstractions have been introduced, so that definitions of
semantic functions may be independent of the details of how computa-
tions are modelled. In structural operational semantics (SOS), however,
this issue has largely been neglected, and SOS descriptions of program-
ming languages typically exhibit rather poor modularity; the original
SOS given for Action Notation (the notation for the semantic entities
used in action semantics) suffered from the same problem.

This paper recalls a recent proposal, called MSOS, for obtaining a high
degree of modularity in SOS, and presents an MSOS description of Action
Notation. Due to its modularity, the MSOS description pin-points some
complications in the design of Action Notation, and should facilitate the
design of an improved version of the notation. It also provides a major
example of the applicability of the MSOS framework.

The reader is assumed to be familiar with conventional SOS and with
the basic concepts and constructs of Action Notation. The description
of Action Notation is formulated almost entirely in Casl, the common
algebraic specification language.

1 Background

This section recalls the main features of MSOS [11], Casl [3, 9], and Action
Notation [7]. Subsequent sections introduce and discuss the MSOS of Action
Notation, which is provided in the appendices.

1.1 Modular SOS

Conventional SOS [1, 15] involves abstract syntax, computed values, configura-
tions (some of which may be distinguished as terminal), and inference rules for
(labelled) transitions. An SOS specifies a labelled transition system (Γ ,T ,A,→),
where Γ is the set of configurations, T ⊆ Γ is the set of terminal configurations,
? Full version of [13], reporting research carried out while visiting SRI International
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A is the set of labels, and → ⊆ Γ × A × Γ is the transition relation. For con-
figurations γ, γ′ ∈ Γ and labels α ∈ A, the assertion that (γ, α, γ′) is in the
transition relation is written γ

α−→ γ′.
Modular SOS, abbreviated MSOS [11], is a particularly simple and uniform

discipline of SOS with the following features:

– Configurations γ ∈ Γ are restricted to abstract syntax trees (where nodes
may be replaced by the values that they have computed, as in conventional
SOS).

– Initial configurations are pure syntax, and terminal configurations are simply
computed values.

– All the usual semantic components of configurations (such as environments
and stores) are incorporated in the labels α ∈ A on transitions.

– The labels on transitions are equipped with a partial composition operation,
written α ; α′ (associative whenever the composition is defined), and each
label can always be composed on the left and right with identity labels
ι ∈ I[A]. The labels α ∈ A are considered to be the arrows of a category,
also written A. The objects o ∈ O[A] of the category correspond to the
usual semantic components of configurations; let us refer to them as states.

– Transitions γ1
α1−→ γ′

1 and γ2
α2−→ γ′

2 may be adjacent in a computation
only when γ′

1 = γ2 and moreover the composition α1 ; α2 of their labels is
defined.

– The actual representation of the labels α is abstracted from the rules that
define the transition relations, allowing the former to be changed without
invalidating the latter.

1.2 Label Categories

Label categories are defined succinctly using three standard label transformers,
which correspond to some simple monad transformers. The following three la-
bel transformers, enriching label categories with further labels and states, are
fundamental:

– Context Info adds an extra component of a particular sort both to labels
and to states, and its value is preserved by the pre and post operations.
The composition α; α′ is defined only when the new component has the
same value in both α and α′, and the composition preserves that value. This
transformer is typically used for dealing with environments.

– Mutable Info adds an extra component to states, and a pair of extra
components (of the same sort) to labels, corresponding to the components
of their pre and post states. The composition α; α′ is defined only when this
component has the same value in both post(α) and pre(α′). This transformer
is typically used for dealing with stores.

– Emitted Info adds an extra component only to labels. The composition
α; α′ combines the values of this component in α and α′ using the operations
of a given monoid. This transformer is typically used for dealing with output,
the given monoid then being sequences with their concatenation.
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The notation associated with the above label transformers is specified generi-
cally in Casl in Appendix B. It includes the operations set , for initializing or
overwriting a particular component of a label or state, and get , for returning the
value of a particular component (or a default value, if that component has not
been set). Also the operations get pre and set post are provided in the case of
Mutable Info, to avoid having to deal with pairs explicitly.

1.3 Casl Specifications

For defining abstract syntax, values, configurations, the notation used for labels,
and transition relations, it is convenient to use Casl, the Common Algebraic
Specification Language [3, 9]. Casl is quite expressive, providing direct sup-
port for specifying sort inclusions, partial operations, predicates, definedness
assertions, and first-order axioms. Casl also provides datatype declarations (re-
sembling grammars in BNF) that allow sorts equipped with constructors and
selectors to be specified concisely. For structuring specifications, Casl provides
union, extension, free extension (with initiality as a special case) and generic
specifications. Casl does not allow the specification of inference rules for transi-
tions, but we may write SOS transition rules as implications in Casl; the least
relation satisfying the implications is obtained by letting the specification of
transitions be a free extension.

Action Notation incorporates Data Notation [7, App. E], which provides var-
ious familiar datatypes: truth-values, numbers, characters, strings, lists, trees,
sets, and finite maps, as well as some that are more closely connected with ac-
tions: data tuples, bindings, tokens, stores, cells, and agents. Data Notation is
specified algebraically in the framework of Unified Algebras [5, 6]. Action No-
tation does not depend on the way that data is specified, except that a few
primitive actions and yielders do require sorts of data as arguments (e.g., the
action written ‘choose natural’ gives an arbitrary element of the sort natural),
which is not allowed by Casl . To specify Data Notation in Casl, sorts that
are to be used as arguments have to be represented by ordinary constants (or
terms).

In fact the unified algebra treatment of sorts as values in a universe Univ
can easily be simulated in Casl by distinguishing a subsort of ‘individual’ val-
ues Indiv < Univ , and declaring suitable operations and relations on Univ . The
constant nothing : Univ corresponds to an empty subsort of Univ . The unified
algebra operations of sort union | and intersection & are provided as or-
dinary operations on Univ , whereas the unified algebra subsort inclusion ≤
and individual inclusion :< 1 are simply binary predicates in Casl. The
predicate u :< s holds iff the value u is both in Indiv and in the subsort repre-
sented by the value s . For instance, the unified algebra sort data is represented
in Casl by declaring the subsorts Data < Indiv and DataSort < Univ , and the
constant data : DataSort , with d : Data ⇐⇒ d :< data. The full properties of
the general unified algebra notation are specified in Casl in Appendix C.
1 The unified algebra notation ‘ : ’ cannot be declared as a symbol in Casl.
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Furthermore, Casl specifications of various basic abstract datatypes have
recently been proposed [16], subsuming much of the standard Data Notation.

Therefore we may employ Casl for specifying both Action Notation (op-
erationally, in the MSOS style) and Data Notation (algebraically), and avoid
any direct involvement of the Unified Algebras framework in the foundations of
Action Semantics.

The only feature of Action Notation that cannot be specified directly in (first-
order) Casl is that all data operations are supposed to be implicitly extended
to yielder arguments. Here, we give a schematic specification of this lifting; a
fully formal treatment would involve the use of higher-order Casl [4].

1.4 Action Notation

Action Notation is a rich algebraic notation for expressing actions, which are
used (along with data, and ‘yielders’ of data) to represent the semantics of
constructs of conventional programming languages. Actions are essentially dy-
namic, computational entities. The performance of an action directly represents
information processing behaviour and reflects the gradual, step-wise nature of
computation: each step of an action performance may access and/or change the
current information. Yielders occurring in actions may access, but not change,
the current information. The evaluation of a yielder always results in a data en-
tity (including a special entity used to represent undefinedness). For example, a
yielder might always evaluate to the datum currently stored in a particular cell,
which could change during the performance of an action, and become undefined
when the cell is freed.

A performance of an action either: completes , corresponding to normal ter-
mination; or escapes , corresponding to exceptional termination; or fails , corre-
sponding to abandoning an alternative; or diverges.

Action notation consists of several rather independent parts, corresponding
to the following so-called ‘facets’ of information processing:

Basic: for specifying the flow of control in actions;
Functional: for specifying the flow of the data that are given to and by actions;
Declarative: for specifying the scopes of the bindings that are received and

produced by actions;
Reflective: for specifying procedural abstraction and application;
Imperative: for specifying the allocation of storage for the values of variables;

and
Communicative: for specifying (asynchronous) message passing.

Compound actions are formed from primitive actions and action combina-
tors . Each primitive action is single-faceted, affecting information in only one
facet—although any yielders that it contains may refer to all kinds of informa-
tion. An action combinator determines control and information flow for each
facet of the combined actions, allowing the expression of multi-faceted actions,
such as an action that both (imperatively) reserves a cell of storage and then
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(functionally) gives the identity of the reserved cell. For instance, one combina-
tor determines left-to-right sequencing together with left-to-right transient data
flow, but letting the received bindings flow to its sub-actions; another combina-
tor differs from that only regarding data flow: it concatenates any transients that
the sub-actions give when completing, not passing transients between the actions
at all. Some selections of control and information flow are disallowed, e.g., inter-
leaving together with transient data flow between the interleaved sub-actions. In
particular, imperative and communicative information processing always follows
the flow of control.

Further informal explanation of the design of Action Notation may be found
in the main sources for action semantics [7, 8, 17].

2 Introduction to the MSOS of Action Notation

The intended interpretation of Action Notation was originally defined [7, App. C]
using a rather unorthodox style of SOS, exploiting the novel algebraic specifica-
tion framework of Unified Algebras [5, 6]. The main features of unified algebras
are that operations can be applied to, and return, entire sorts, and that indi-
vidual values are regarded as singleton sorts. Transition relations can thus be
represented as functions that map individual configurations to entire sorts of
configurations (representing the sets of alternative transitions).

Unfortunately, the unorthodox style of the original SOS of Action Nota-
tion, combined with the unfamiliarity of Unified Algebras, made the specifica-
tion somewhat inaccessible. Its lack of modularity also meant that even minor
changes to Action Notation (or extensions of it, such as the proposal to allow
agents to share storage [14]) might require a major reformulation of the given
SOS. Moreover, to decrease the size of the description, the full Action Notation
was reduced to a substantially-smaller kernel notation (by means of algebraic
equations), and only the latter was given a direct operational semantics.

Appendix A of this paper gives an MSOS for all of Action Notation. It is
structured in much the same way as [7, Apps. B and D], describing the various
facets of Action Notation in turn; however, the semantics of each construct is
here specified directly, without resort to an intermediate kernel notation.

Each section of the MSOS specifies the data notation, abstract syntax, com-
puted values, configurations, label notation, and transition rules for the action
notation in the facet concerned. The following explanatory comments apply to
all the sections.

2.1 Data

Data notation is specified by reusing abstract datatypes that are already avail-
able, perhaps with renaming or instantiation of generic specifications and adding
declarations and axioms for new notation. For instance:
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spec Basic Data =
Truth Values

with Truth Value, true value, false value, either
and

sorts Data < Indiv ; DataSort < Univ

The symbols listed above after ‘with’ are assumed to be declared by the Casl

specification of Truth Values (which uses slightly different identifiers than
those in [7, App. E], to avoid confusion with the reserved Casl predicate symbols
true and false). Many of the symbols of Data Notation are not valid Casl

symbols, but generally become so once internal spaces and hyphens have been
replaced by underscores.

As mentioned earlier, it is envisaged that the standard Data Notation used in
Action Semantics may be replaced by a library of Casl specifications, perhaps
incorporating the basic Casl datatype specifications that have recently been
proposed [16].

By the way, only the data notation actually needed for the MSOS of Action
Notation is specified in Appendix C. In particular, the declarations of constants
such as data : DataSort , representing proper sorts in unified algebras, are omit-
ted, since assertions such as d :< data can be expressed equivalently as d ∈ Data,
and ds ≤ data as ds ∈ DataSort .

2.2 Syntax

Abstract syntax is specified in Casl using a datatype declaration, which resem-
bles a BNF-like grammar. Mixfix notation is allowed—for instance, the following
fragment specifies and as an infix operation:

spec Basic Syntax =
Basic Data then

types Action ::= . . . | and (Action;Action) | . . . ;
Yielder ::= . . . | sort DataSort | . . .

The abstract syntax for actions and yielders extends the associated data nota-
tion, and data components are regarded as already evaluated.

It is possible to specify a syntactic congruence by adding axioms to the given
datatype declarations, for instance asserting that A1 and A2 = A2 and A1 ,
thereby reducing the need for various symmetric pairs of inference rules when
specifying the transition relation.

By the way, several of the words used in Action Notation, such as ‘and ’,
are reserved keywords in Casl, and cannot be complete tokens in Casl input
symbols. So-called display annotations (not shown here) allow them to be pro-
duced in the formatted specification (using a distinct font, as in ‘and ’, to avoid
confusion between symbols and keywords).

One might expect the types for the abstract syntax of actions and yielders for
each facet of Action Notation to be specified as ‘free’, to ensure that there can
be no syntactic ‘junk’ (i.e., all syntactic values can be expressed by the declared
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constructors) nor ‘confusion’ (i.e., different terms denote different syntactic val-
ues, up to syntactic congruence) in models of the specification. However, that
would prevent the subsequent combination of facets (as well as the extension of
abstract syntax to configurations, see below). Instead, a free extension is speci-
fied after the facets have been combined.

2.3 Outcomes

The values that may be computed by action performance (and yielder evaluation)
are specified algebraically in Casl, by declaring sorts, operations, and predicates,
and asserting their essential properties. The specifications often use datatype
declarations for conciseness. For instance:

spec Functional Outcomes =
Basic Outcomes and
Functional Data

then
types Terminated ::= sort Completed | . . . ;

Completed ::= completed | gave(Data)
axioms
%[1] gave(none) = completed ;
. . .

2.4 Configurations

The ‘value-added’ syntax used for configurations is specified simply by adding
further alternatives for the datatype declarations which specified abstract syntax:
for each sort of the abstract syntax, the sort of value computed by elements
of that sort is included as a subsort. Auxiliary syntactic constructs for use in
configurations may be added here too.

In fact the configurations for non-distributed action performance are always
the same, as specified by:

spec Basic Configurations =
Basic Syntax and
Basic Outcomes

then
type Action ::= sort Terminated | @ (Action;Action)

The sort Terminated (of values computed by actions) depends on the facet. (The
auxiliary construct A1 @ A2 is used only in the basic facet, in connection with
unfolding.)

The distributed performance of communicative actions by separate agents is
described by embedding Action in an auxiliary sort of configurations, Processing,
which allows collections of agents (with their actions), pending messages, and
contracts all to be composed in parallel.

The datatype declaration for Action above augments the constructors for
this sort, which is left loosely specified in Basic Syntax.

7



2.5 Labels

Each facet of Action Notation generally requires the transformation of the cat-
egory of labels A to include one or more further components. This is specified
concisely in Casl by instantiating one of the generic specifications correspond-
ing to the three fundamental kinds of enrichment described in Section 1.2. For
example, the functional facet specifies:

spec Functional Labels =
Basic Labels and
Functional Data

then
Context Info

[ sort A ] [ op data : Index ]
[ sort Data < ContextInfo op none : Data ]

which defines the operation set(α, data, d) to return a label α′ with data com-
ponent d , and the operation get(α, data) to return the data component of d ,
if defined (otherwise none).2 The values of sort Index (such as data) may be
thought of as selection indices; their only property is that different constants
denote distinct values.

The fitting morphisms from the parameter specifications of Context Info

to the argument specifications above are uniquely determined, and may therefore
be left implicit.

2.6 Transitions

Transition rules are of three main kinds:

– Rules that allow performance of a compound construct to start (or continue)
with a particular sub-construct: a transition for the sub-construct gives rise
to a transition for the enclosing construct, often with the same unrestricted
label α. For instance, the following rules allow interleaved performance of
A1 and A2 :

A1
α−→ A′

1
%% %% ⇒

A1 and A2
α−→ A′

1 and A2 ;

A2
α−→ A′

2
%% %% ⇒

A1 and A2
α−→ A1 and A′

2

(The line between the conditions and the conclusion is not part of Casl

notation, and has to be enclosed in comment signs ‘%%’.)
– Rules that specify the computation of a value by an atomic construct: the

label on the transition is generally well-determined by the current state. For
instance, the following rule lets the value computed by regive depend on
the current state, which is not changed by the identity ι:

2 set(α, data, d) might be written even more suggestively as α[data := d ], and
get(α, data) as α.data.
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d = get(ι, data)
%% %% ⇒

regive
ι−→ gave(d)

– Rules that reduce a compound configuration: once one or more compo-
nents of a compound construct have computed values, the construct may
be ‘silently’ reduced to a single computed value or syntactic component, the
label on the transition being an identity ι. For instance, the following rule
combines the values computed by performing the sub-actions of A1 and A2 :

gave(d1 ) and gave(d2 ) ι−→
gave(concatentation(d1 , d2 ))

An action is regarded as ‘incorrect’ when its performance can get stuck, i.e., lead
to a configuration (other than a computed value) from which there is no further
transition. For example, the action ‘check abstraction of A’ is incorrect, since
transitions are possible for ‘check tv ’ only when tv ∈ Truth Value. The question
of whether or not an arbitrary action is ‘correct’ is undecidable; a static semantics
using type inference for action notation could however provide a useful decidable
safe approximation to this notion.

The mathematical nature of the evaluation of yielders to data (sorts or indi-
viduals) is reflected by the labels on the transitions always being identities ι:

Y
ι−→ ds.

In general, the evaluation of yielders in a primitive action may be done in any
order, and the result is independent of the chosen order. (Primitive actions are
supposed to be indivisible, so a small-step gradual evaluation of yielder argu-
ments would be incorrect.)

The ordinary transitive closure α−→+ of α−→ is used in the rule for indivisible
actions; its inductive definition is standard:

A α−→ A′
%% %% ⇒

A α−→+ A′

A α′−→ A′ ∧ A′ α′′−→+ A′′ ∧ α = α′; α′′
%% %% ⇒

A α−→+ A′′

It is occasionally convenient to abbreviate two rules with the same conclusion
by use of a single rule that has a disjunction of conditions. (Casl requires the
intended grouping of a mixture of conjunctions and disjunctions to be made
explicit, so there can be no doubt about the expansion of such an abbreviated
rule.)
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3 Discussion

The full MSOS of Action Notation is about 25 pages long, which is roughly twice
as long as the original SOS for the kernel of Action Notation. The main reason
for this expansion is not so much the difference in size between the kernel and
full Action Notation, but more that the author went to great pains to achieve
brevity in the original SOS. For instance, various subsorts that corresponded to
restrictions of the original grammar were used—such subsorts are easy to express
with the sort union operation of unified algebras. Auxiliary operations, effecting
internal simplifications of the configuration, were introduced. Each combinator
was classified into subsorts, e.g., according to whether it was sequential or inter-
leaving; this allowed transitions to be specified for many combinators at once,
rather concisely. Although such techniques might also be applicable in the MSOS
of Action Notation, they would tend to undermine its modularity, and make it
more difficult to cut down the description when removing entire facets.

The main hope for reducing the size of the MSOS of Action Notation is by
means of a substantial simplification of Action Notation during the current re-
consideration of its design. For instance, it appears that there is not much use
for actions that simultaneously give some transient data and produce some bind-
ings; eliminating them would allow all the hybrid combinators to be removed,
and reduce the size of the MSOS of Action Notation by about 10%. The high de-
gree of modularity of MSOS facilitates pin-pointing just which Action Notation
constructs are excessively complicated.

It is hoped that the MSOS of Action Notation is much easier to follow than
the original SOS—once one has grasped how dependencies between labels deter-
mine the flow of processed information, that is. (Readers who have difficulty with
this aspect of MSOS might like to contemplate the reduction of MSOS to SOS
[11] by moving the pre and post components of the labels to the configurations.)

Given the good modularity properties of MSOS, one might ask which is
better: to describe the operational semantics of a programming language directly,
using MSOS, or indirectly, using Action Semantics? In the author’s opinion, it
is generally better to use Action Semantics, for the following reasons.

The main advantage of the Action Semantics approach over MSOS is that
the combinators of Action Notation provide concise abbreviations for particu-
lar patterns of MSOS (or SOS) transition rules. For instance, the combinator
for sequential action performance without data-flow (written A1 and then A2 )
abbreviates the pattern of transitions that occurs in many (M)SOS rules for
left-to-right evaluation. A further advantage would show up in connection with
the description of ML-style exceptions: Action Notation provides the escape
primitive for escaping from normal action performance (with a value), and the
combinator A1 trap A2 for trapping such escapes; in (M)SOS, the propaga-
tion of the exception value through all the syntactic constructs—apart from the
exception handler—has to be specified explicitly.

However, MSOS also has some advantages over Action Semantics. Perhaps
the main one is that the only unfamiliar notation provided by MSOS is that
for the label transformers, whereas the full standard Action Notation is quite
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rich, and becoming familiar with it requires a significant initial investment of
effort. Another stems from the very generality of the full Action Notation: its
equational theory is too weak to be of much practical use. With MSOS, one may
be able to prove stronger properties, exploiting awareness of the exact patterns
of transitions and configurations that can arise.

Finally, for practical large-scale use of semantic descriptions, tool support is
just as crucial as good modularity. Various tools have already been developed
for Action Semantics (see other papers in this volume), whereas implementation
of tools for MSOS is only just starting.

Those who have grown attached to the expressiveness provided by the frame-
work of Unified Algebras may regret the switch to the more orthodox algebraic
specification language Casl; indeed, the author himself has somewhat mixed
feelings about abandoning this major application of the Unified Algebras frame-
work, despite the ease with which it can be simulated in Casl . However, the
adoption of Casl should not only increase the accessibility of Action Nota-
tion (by removing the need to learn first about Unified Algebras), but also it
should pave the way for future exploitation of Casl libraries of standard ab-
stract datatypes, and of Casl-based interfaces to existing tools (such as theorem-
provers), in connection with action-semantic descriptions. The author was in any
case happy to discover that Casl, itself originally designed for algebraic speci-
fication and development of software, appears to be quite well-suited also as a
meta-notation for MSOS and for Action Semantics.
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%[Appendix A] library Action Notation

%% The specification Basic Syntax below is formulated schematically,
%% which is not allowed in Casl.

from Label Categories %% Appendix B
get Context Info, Mutable Info, Emitted Info

from Data Notation %% Appendix C
get Tuples, Truth Values, Numbers,

Lists, Sets, Maps, Data Notation

%% A.1 The Basic Facet

spec Basic Data =
Truth Values

with Truth Value, true value, false value, either
and

sorts Data < Indiv ; DataSort < Univ

spec Basic Syntax =
Basic Data then

types Action ::= or (Action;Action) | fail | commit |
and (Action;Action) | complete |

indivisibly (Action) |
and then (Action;Action) |
trap (Action;Action) | escape |

unfolding (Action) | unfold | diverge
Yielder ::= the yielded by (DataSort ;Yielder) |

sort DataSort | data op(Yielder ; . . . ;Yielder)
%% The schematic alternative data op(Yielder ; . . . ;Yielder)
%% stands for a set of alternatives, one for every declared
%% operation data op on DataSort .

spec Basic Outcomes =
Basic Data and

type Terminated ::= completed | escaped | failed
spec Basic Configurations =

Basic Syntax and
Basic Outcomes

then
type Action ::= sort Terminated | @ (Action;Action)
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spec Basic Labels =
Basic Syntax then
Context Info

[ sort A ] [ op unfolding : Index ]
[ sort Action < ContextInfo op fail : Action ]

then
Emitted Info

[ sort A ] [ op commitment : Index ]
[ Truth Values fit default 7→ false value, combine 7→ either ]

spec Basic Transitions =
Basic Configurations and
Basic Labels

then
pred −→ : Action ×A× Action
vars α, α′ : A; ι : I[A];

A,A0 ,A1 ,A2 ,A′,A′
1 ,A′

2 : Action; t : Terminated
axioms
%[1] A1

ι−→ A′
1

%% %% ⇒
A1 or A2

ι−→ A′
1 or A2 ;

%[2] A2
ι−→ A′

2
%% %% ⇒

A1 or A2
ι−→ A1 or A′

2 ;

%[3] fail
ι−→ failed ;

%[4] completed or A2
ι−→ completed ;

%[5] A1 or completed ι−→ completed ;
%[6] escaped or A2

ι−→ escaped ;
%[7] A1 or escaped ι−→ escaped ;
%[8] failed or A2

ι−→ A2 ;
%[9] A1 or failed ι−→ A1 ;

%[10] A1
α−→ A′

1 ∧ get(α, commitment) = true value
%% %% ⇒

A1 or A2
α−→ A′

1 ;

%[11] A2
α−→ A′

2 ∧ get(α, commitment) = true value
%% %% ⇒

A1 or A2
α−→ A′

2 ;
%[12] α = set(ι, commitment , true value)

%% %% ⇒
commit

α−→ completed ;
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%[13] A1
α−→ A′

1
%% %% ⇒

A1 and A2
α−→ A′

1 and A2 ;

%[14] A2
α−→ A′

2
%% %% ⇒

A1 and A2
α−→ A1 and A′

2 ;

%[15] complete
ι−→ completed ;

%[16] completed and completed ι−→ completed ;
%[17] escaped and A2

ι−→ escaped ;
%[18] A1 and escaped ι−→ escaped ;
%[19] failed and A2

ι−→ failed ;
%[20] A1 and failed ι−→ failed ;
%[21] A α−→+ t

%% %% ⇒
indivisibly A α−→ t ;

%[22] A1
α−→ A′

1
%% %% ⇒

A1 and then A2
α−→ A′

1 and then A2 ;

%[23] A2
α−→ A′

2
%% %% ⇒

completed and then A2
α−→ completed and then A′

2 ;

%[24] completed and then completed ι−→ completed ;
%[25] completed and then escaped ι−→ escaped ;
%[26] completed and then failed ι−→ failed ;
%[27] escaped and then A2

ι−→ escaped ;
%[28] failed and then A2

ι−→ failed ;

%[29] A1
α−→ A′

1
%% %% ⇒

A1 trap A2
α−→ A′

1 trap A2 ;

%[30] escape
ι−→ escaped ;

%[31] escaped trap A ι−→ A;
%[32] completed trap A2

ι−→ completed ;
%[33] failed trap A2

ι−→ failed ;

%[34] unfolding A ι−→ A @ A;
%[35] t @ A0

ι−→ t ;

%[36] α′ = set(α, unfolding,A0 ) ∧ A α′−→ A′
%% %% ⇒

A @ A0
α−→ A′ @ A0 ;

%[37] get(ι, unfolding) = A0
%% %% ⇒

unfold
ι−→ A0 ;

%[38] diverge
ι−→ diverge;
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pred −→ : Yielder × I[A] × DataSort
vars Y : Yielder ; d : Data; ds : DataSort
axioms
%[39] Y ι−→ d ∧ d :< ds

%% %% ⇒
the ds yielded by Y ι−→ d ;

%[40] Y ι−→ d ∧ ¬(d :< ds)
%% %% ⇒

the ds yielded by Y ι−→ nothing;

%[41] Y ι−→ nothing
%% %% ⇒

the ds yielded by Y ι−→ nothing;
%[42] %% For each n-ary data op, the rule:

Y1
ι−→ ds1 ∧ · · · ∧ Yn

ι−→ dsn ∧
ds = data op(ds1 , . . . , dsn)

%% %% ⇒
data op(Y1 , . . . ,Yn) ι−→ ds

%% A.2 The Functional Facet

spec Functional Data

Tuples [ sort Datum ]
with Tuple[Datum] 7→ Data,none, concatenation,nth

and
Numbers with Positive

spec Functional Syntax =
Basic Syntax and
Functional Data

then
types Action ::= give (Yielder) | regive |

choose (Yielder) | check (Yielder) |
then (Action;Action) |

escape with (Yielder);
Yielder ::= it | them | given (DataSort) |

given # (DataSort ;Positive)

spec Functional Outcomes =
Basic Outcomes and
Functional Data

then
types Terminated ::= sort Completed | sort Escaped ;

Completed ::= completed | gave(Data);
Escaped ::= escaped | escape gave(Data)

axioms
%[1] gave(none) = completed ;
%[2] ¬(escape gave(none) = escaped)
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spec Functional Labels =
Basic Labels and
Functional Data

then
Context Info

[ sort A ] [ op data : Index ]
[ sort Data < ContextInfo op none : Data ]

spec Functional Transitions =
Basic Transitions and
Functional Syntax and
Functional Outcomes and
Functional Labels

then
vars α, α′ : A; ι : I[A];

A,A1 ,A2 ,A′,A′
1 ,A′

2 : Action; Y : Yielder ;
t1 , t2 : Terminated ; c1 , c2 : Completed ; e1 , e2 : Escaped ;
d , d1 , d2 : Data; ds : DataSort ; p : Positive

axioms
%[1] Y ι−→ d

%% %% ⇒
give Y ι−→ gave(d);

%[2] Y ι−→ nothing
%% %% ⇒

give Y ι−→ failed ;

%[3] d = get(ι, data)
%% %% ⇒

regive
ι−→ gave(d);

%[4] Y ι−→ ds ∧ d :< ds
%% %% ⇒

choose Y ι−→ gave(d);

%[5] Y ι−→ nothing
%% %% ⇒

choose Y ι−→ failed ;

%[6] Y ι−→ true value
%% %% ⇒

check Y ι−→ gave(none);

%[7] Y ι−→ false value ∨ Y ι−→ nothing
%% %% ⇒

check Y ι−→ failed ;
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%[8] c1 or A2
ι−→ c1 ;

%[9] A1 or c2
ι−→ c2 ;

%[10] e1 or A2
ι−→ e1 ;

%[11] A1 or e2
ι−→ e2 ;

%[12] e1 and A2
ι−→ e1 ;

%[13] A1 and e2
ι−→ e2 ;

%[14] e1 and then A2
ι−→ e1 ;

%[15] c1 and then e2
ι−→ e2 ;

%[16] gave(d1 ) and gave(d2 ) ι−→ gave(concatentation(d1 , d2 ));
%[17] gave(d1 ) and then gave(d2 ) ι−→ gave(concatentation(d1 , d2 ));

%[18] A1
α−→ A′

1
%% %% ⇒

A1 then A2
α−→ A′

1 then A2 ;

%[19] α′ = set(α, data, d1 ) ∧ A2
α′−→ A′

2
%% %% ⇒

gave(d1 ) then A2
α−→ A′

2 ;

%[20] gave(d1 ) then c2
ι−→ c2 ;

%[21] c1 then e2
ι−→ e2 ;

%[22] e1 then A2
ι−→ e1 ;

%[23] c1 then failed ι−→ failed ;
%[24] failed then A2

ι−→ failed ;

%[25] Y ι−→ d
%% %% ⇒

escape with Y ι−→ escape gave(d);

%[26] Y ι−→ nothing
%% %% ⇒

escape with Y ι−→ failed ;

%[27] α′ = set(α, data, d1 ) ∧ A2
α′−→ A′

2
%% %% ⇒

escape gave(d1 ) trap A2
α−→ A′

2 ;

%[28] e1 trap t2
ι−→ t2 ;

%[29] c1 trap A2
ι−→ c1 ;

%[30] failed trap A2
ι−→ failed ;

%[31] d = get(ι, data) ∧ d :< datum
%% %% ⇒

it
ι−→ d ;

%[32] d = get(ι, data)
%% %% ⇒

them
ι−→ d ;

%[33] d = get(ι, data) ∧ d :< ds
%% %% ⇒

given ds ι−→ d ;
%[34] d = nth(get(ι, data), p) ∧ d :< ds

%% %% ⇒
given ds#p ι−→ d ;
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%% A.3 The Declarative Facet

spec Declarative Data =
Maps [ sort Token ] [ free type Range ::= sort Bindable | unknown ]

with Map[Token,Range] 7→ Bindings ,
empty map,map of to , at ,
overlay, disjoint union,mapped set

and
Sets [ sort Token ]

with Set [Token], empty set , set of , is in

spec Declarative Syntax =
Basic Syntax and
Declarative Data

then
types Action ::= bind to (Yielder ;Yielder) | rebind |

unbind (Yielder) | produce (Yielder) |
furthermore (Action) |

moreover (Action;Action) |
hence (Action;Action) |
before (Action;Action);

Yielder ::= current bindings |
the bound to (DataSort ;Yielder) |

receiving (Yielder ;Yielder)

spec Declarative Outcomes =
Basic Outcomes and
Declarative Data

then
type Completed ::= produced(Bindings)
axiom
%[1] produced(empty map) = completed

spec Declarative Labels =
Basic Labels and
Declarative Data

then
Context Info

[ sort A ] [ op bindings : Index ]
[ sort Bindings < ContextInfo op empty map : Bindings ]
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spec Declarative Transitions =
Basic Configurations and
Declarative Syntax and
Declarative Outcomes and
Declarative Labels

then
vars α, α′ : A; ι, ι′ : I[A];

A,A1 ,A2 ,A′,A′
1 ,A′

2 : Action; Y ,Y1 ,Y2 : Yielder ;
t2 : Terminated ; c1 , c2 : Completed ; e, e1 , e2 : Escaped ;
d , d ′ : Data; ds : DataSort ;
b, b′, b1 , b2 : Bindings ; k : Token; bv : Bindable

axioms
%[1] Y1

ι−→ k ∧ Y2
ι−→ bv

%% %% ⇒
bind Y1 to Y2

ι−→ produced(map of k to bv);

%[2] Y1
ι−→ nothing ∨ Y2

ι−→ nothing
%% %% ⇒

bind Y1 to Y2
ι−→ failed ;

%[3] b = get(ι, bindings)
%% %% ⇒

rebind
ι−→ produced(b);

%[4] Y ι−→ k ∧ b = map of k to unknown
%% %% ⇒

unbind Y ι−→ produced(b);

%[5] Y ι−→ nothing
%% %% ⇒

unbind Y ι−→ failed ;

%[6] Y ι−→ b
%% %% ⇒

produce Y ι−→ produced(b);

%[7] Y ι−→ nothing
%% %% ⇒

produce Y ι−→ failed ;

%[8] A α−→ A′
%% %% ⇒

furthermore A α−→ furthermore A′;
%[9] b = get(ι, bindings)

%% %% ⇒
furthermore produced(b′) ι−→ produced(overlay(b′ , b));

%[10] furthermore e ι−→ e;
%[11] furthermore failed ι−→ failed ;
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%[12] A1
α−→ A′

1
%% %% ⇒

A1 moreover A2
α−→ A′

1 moreover A2 ;

%[13] A2
α−→ A′

2
%% %% ⇒

A1 moreover A2
α−→ A1 moreover A′

2 ;

%[14] produced(b1 ) moreover produced(b2 ) ι−→
produced(overlay(b2 , b1 ));

%[15] e1 moreover A2
ι−→ e1 ;

%[16] A1 moreover e2
ι−→ e2 ;

%[17] failed moreover A2
ι−→ failed ;

%[18] A1 moreover failed ι−→ failed ;

%[19] b = disjoint union(b1 , b2 )
%% %% ⇒

produced(b1 ) and produced(b2 ) ι−→ produced(b);
%[20] ¬ def disjoint union(b1 , b2 )

%% %% ⇒
produced(b1 ) and produced(b2 ) ι−→ failed ;

%[21] b = disjoint union(b1 , b2 )
%% %% ⇒

produced(b1 ) and then produced(b2 ) ι−→ produced(b);
%[22] ¬ def disjoint union(b1 , b2 )

%% %% ⇒
produced(b1 ) and then produced(b2 ) ι−→ failed ;

%[23] A1
ι−→ A′

1
%% %% ⇒

A1 hence A2
ι−→ A′

1 hence A2 ;

%[24] α′ = set(α, bindings , b1 ) ∧ A2
α′−→ A′

2
%% %% ⇒

produced(b1 ) hence A2
α−→ A′

2 ;

%[25] produced(b) hence t2
ι−→ t2 ;

%[26] e1 hence A2
ι−→ e1 ;

%[27] failed hence A2
ι−→ failed ;

%[28] A1
ι−→ A′

1
%% %% ⇒

A1 before A2
ι−→ A′

1 before A2 ;
%[29] α′ = set(α, bindings , overlay(b1 , get(α, bindings)) ∧

A2
α′−→ A′

2
%% %% ⇒

produced(b1 ) before A2
α−→ A′

2 ;

%[30] produced(b1 ) before produced(b2 ) ι−→
produced(overlay(b2 , b1 ));

%[31] e1 before A2
ι−→ e1 ;

%[32] c1 before e2
ι−→ e2 ;

%[33] failed before A2
ι−→ failed ;

%[34] c1 before failed ι−→ failed ;
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%[35] b = get(ι, bindings)
%% %% ⇒

current bindings
ι−→ b;

%[36] Y ι−→ k ∧ bv = get(ι, bindings) at k ∧ bv :< ds
%% %% ⇒

the ds bound to Y ι−→ bv ;

%[37] Y ι−→ k ∧ bv = get(ι, bindings) at k ∧ ¬(bv :< ds)
%% %% ⇒

the ds bound to Y ι−→ nothing;

%[38] Y ι−→ k ∧ ¬(k is in mapped set(get(ι, bindings))
%% %% ⇒

the ds bound to Y ι−→ nothing;

%[39] Y ι−→ nothing
%% %% ⇒

the ds bound to Y ι−→ nothing;

%[40] Y2
ι−→ b ∧ ι′ = set(ι, bindings , b) ∧ Y1

ι′−→ ds
%% %% ⇒

Y1 receiving Y2
ι−→ ds ;

%[41] Y2
ι−→ nothing

%% %% ⇒
Y1 receiving Y2

ι−→ nothing

%% A.4 The Imperative Facet

spec Imperative Data =
Maps [ sort Cell ] [ free type Range ::= sort Storable | uninitialized ]

with Map[Cell ,Range] 7→ Storage, empty map,map of to , at ,
overlay, omitting,mapped set

and
Sets [ sort Cell ]

with Set [Cell ], empty set , set of , [not in ], is in

spec Imperative Syntax =
Basic Syntax and
Imperative Data

then
types Action ::= store in (Yielder ;Yielder) |

unstore (Yielder) |
reserve (Yielder) | unreserve (Yielder);

Yielder ::= current storage |
the stored in (DataSort ;Yielder)

spec Imperative Labels =
Basic Labels and
Imperative Data

then
Mutable Info

[ sort A ] [ op storage : Index ]
[ sort Storage < MutableInfo op empty map : Storage ]
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spec Imperative Transitions =
Basic Transitions and
Imperative Syntax and
Imperative Labels

then
vars α : A; ι : I[A]; Y ,Y1 ,Y2 : Yielder ;

d , d ′ : Data; ds : DataSort ;
s , s ′ : Storage; c : Cell ; sv : Storable

axioms
%[1] Y1

ι−→ sv ∧ Y2
ι−→ c ∧

s = get(ι, storage) ∧ c is in mapped set(s) ∧
s ′ = overlay(map of c to sv , s) ∧
α = set(set post(ι, storage, s ′),

commitment , true value)
%% %% ⇒

store Y1 in Y2
α−→ completed ;

%[2] Y1
ι−→ sv ∧ Y2

ι−→ c ∧
s = get(ι, storage) ∧ ¬(c is in mapped set(s))

%% %% ⇒
store Y1 in Y2

ι−→ failed ;

%[3] Y1
ι−→ nothing ∨ Y2

ι−→ nothing
%% %% ⇒

store Y1 in Y2
ι−→ failed ;

%[4] Y ι−→ c ∧ s = get(ι, storage) ∧ c is in mapped set(s) ∧
s ′ = overlay(map of c to uninitialized , s) ∧

α = set(set post(ι, storage, s ′),
commitment , true value)

%% %% ⇒
unstore Y α−→ completed ;

%[5] Y ι−→ c ∧ s = get(ι, storage) ∧ ¬(c is in mapped set(s))
%% %% ⇒

unstore Y ι−→ failed ;

%[6] Y ι−→ nothing
%% %% ⇒

unstore Y ι−→ failed ;

%[7] Y ι−→ ds ∧ s = get(ι, storage) ∧
¬(c is in mapped set(s)) ∧ c :< ds ∧

s ′ = overlay(map of c to uninitialized , s) ∧
α = set(set post(ι, storage, s ′),

commitment , true value)
%% %% ⇒

reserve Y α−→ completed ;

%[8] Y ι−→ ds ∧ s = get(ι, storage) ∧
(ds & (cell [not in mapped set(s)])) = nothing

%% %% ⇒
reserve Y ι−→ failed ;

%[9] Y ι−→ nothing
%% %% ⇒

reserve Y ι−→ failed ;
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%[10] Y ι−→ c ∧ s = get(ι, storage) ∧ c is in mapped set(s) ∧
s ′ = omitting(c, s) ∧

α = set(set post(ι, storage, s ′),
commitment , true value)

%% %% ⇒
unreserve Y α−→ completed ;

%[11] Y ι−→ c ∧ s = get(ι, storage) ∧ ¬(c is in mapped set(s))
%% %% ⇒

unreserve Y ι−→ failed ;

%[12] Y ι−→ nothing
%% %% ⇒

unreserve Y ι−→ failed ;

%[13] s = get(ι, storage)
%% %% ⇒

current storage
ι−→ s ;

%[14] Y ι−→ c ∧ sv = get(ι, storage) at c ∧ sv :< ds
%% %% ⇒

the ds stored in Y ι−→ sv ;

%[15] Y ι−→ c ∧ sv = get(ι, storage) at c ∧ ¬(sv :< ds)
%% %% ⇒

the ds stored in Y ι−→ nothing;

%[16] Y ι−→ c ∧ ¬(c is in mapped set(get(ι, storage))
%% %% ⇒

the ds stored in Y ι−→ nothing;

%[17] Y ι−→ nothing
%% %% ⇒

the ds stored in Y ι−→ nothing

%% A.5 The Reflective Facet

spec Reflective Data =
Basic Syntax

then
type Abstraction ::= abstraction of (Action)
sort Abstraction < Data

spec Reflective Syntax =
Basic Syntax and
Functional Syntax and
Declarative Syntax and
Reflective Data

then
types Action ::= enact (Yielder);

Yielder ::= application to (Yielder ;Yielder) |
closure (Yielder)
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spec Reflective Transitions =
Basic Transitions and
Functional Transitions and
Declarative Transitions and
Reflective Syntax

then
vars α : A; ι : I[A];

A : Action; Y ,Y1 ,Y2 : Yielder ; d : Data; b : Bindings
axioms
%[1] Y ι−→ abstraction of (A)

%% %% ⇒
enact Y ι−→

gave(none) then (produced(empty map) hence A);

%[2] Y ι−→ nothing
%% %% ⇒

enact Y ι−→ failed ;

%[3] Y1
ι−→ abstraction of (A) ∧ Y2

ι−→ d
%% %% ⇒

application Y1 to Y2
ι−→

abstraction of (gave(d) then A);

%[4] Y1
ι−→ nothing ∨ Y2

ι−→ nothing
%% %% ⇒

application Y1 to Y2
ι−→ nothing;

%[5] Y ι−→ abstraction of (A) ∧ b = get(ι, bindings)
%% %% ⇒

closure Y ι−→
abstraction of (produced(b) hence A);

%[6] Y ι−→ nothing
%% %% ⇒

closure Y ι−→ nothing
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%% A.6 The Communicative Facet

spec Communicative Data

Lists [ sort Message ]
with List [Message] 7→ Buffer ,

empty list , concatenation, is in , omitting
and
Numbers with Natural , 0 , successor
then

sorts Agent ,Communication,Sendable < Data;
Message,Contract < Communication;
AgentSort ,MessageSort < DataSort

ops user agent : Agent ;
contents : Message → Sendable;
sender , receiver : Message → Agent ;
serial : Message → Natural ;

[containing ] : MessageSort × DataSort → MessageSort ;
[from ], [to ] : MessageSort × AgentSort → MessageSort ;
[at ] : MessageSort × DataSort → MessageSort ;

axioms %% See [7, App. B.6.3].

spec Communicative Syntax =
Basic Syntax then
Communicative Data then

types Action ::= send (Yielder) | remove (Yielder) |
offer (Yielder) | patiently (Action);

Yielder ::= current buffer |
performing agent | contracting agent

spec Communications =
Communicative Data

then
type Communicating ::= nil | sort Communication |

‖ (Communicating;Communicating)
op ‖ : Communicating × Communicating → Communicating,

assoc, comm , unit nil
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spec Communicative Configurations =
Basic Configurations and
Communicative Syntax and
Communications

then
types Processing ::= performing (Agent ;Action) |

sort Action | sort Communicating |
‖ (Processing;Processing)

op ‖ : Processing × Processing → Processing,
assoc, comm , unit nil

var A : Action
axiom
%[1] A : Processing = user agent performing A;

spec Communicative Labels =
Basic Labels and
Communicative Data

then
Context Info

[ sort A ] [ op performer : Index ]
[ sort Agent < ContextInfo op user agent : Agent ] and

Context Info

[ sort A ] [ op contractor : Index ]
[ sort Agent < ContextInfo op user agent : Agent ] and

Mutable Info

[ sort A ] [ op buffer : Index ]
[ sort Buffer < MutableInfo op empty list : Buffer ] and

Mutable Info

[ sort A ] [ op serial : Index ]
[ sort Natural < MutableInfo op 0 : Natural ]

then
Emitted Info

[ sort A ] [ op communicating : Index ]
[ Communications fit default 7→ nil , combine 7→ ‖ ]

then
Set [ sort O[A] ]
then
Mutable Info

[ sort S ] [ op states : Index ]
[ sort Set [O[A]] < MutableInfo op empty set : Set [O[A]] ] and

Emitted Info

[ sort S ] [ op acting : Index ]
[ Set [ sort Agent ] fit default 7→ empty set , combine 7→ union ]
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spec Communicative Transitions =
Basic Transitions and
Communicative Configurations and
Communicative Labels

then
vars α : A; ι : I[A]; t : Terminated ; Y : Yielder ;

ds : DataSort ; n : Natural ; m : Message;
a : Agent ; c : Contract ; l : Buffer

axioms
%[1] Y ι−→ ds ∧ n = get(ι, serial) ∧

m = ds [from get(ι, performer)][at n] ∧
α = set(set(set post(ι, serial , successor(n)),

communicating, set of (m)),
commitment , true value)

%% %% ⇒
send Y α−→ completed ;

%[2] Y ι−→ ds ∧ n = get(ι, serial) ∧
ds [from get(ι, performer)][at n] = nothing

%% %% ⇒
send Y ι−→ failed ;

%[3] Y ι−→ m ∧ l = get pre(ι, buffer) ∧ m is in items(l) ∧
α = set(set post(ι, buffer , l omitting m),

commitment , true value)
%% %% ⇒

remove Y α−→ completed ;

%[4] Y ι−→ m ∧ l = get pre(ι, buffer) ∧ ¬(m is in items(l))
%% %% ⇒

remove Y ι−→ failed ;

%[5] Y ι−→ nothing
%% %% ⇒

remove Y ι−→ failed ;

%[6] Y ι−→ ds ∧ n = get(ι, serial) ∧
c = ds [from get(ι, performer)][at n] ∧

α = set(set(set post(ι, serial , successor(n)),
communicating, set of (c)),

commitment , true value)
%% %% ⇒

offer Y α−→ completed ;

%[7] Y ι−→ ds ∧ n = get(ι, serial) ∧
ds [from get(ι, performer)][at n] = nothing

%% %% ⇒
offer Y ι−→ failed ;

%[8] A α−→+ t ∧ ¬(t = failed)
%% %% ⇒

patiently A α−→ t ;

%[9] A α−→+ failed
%% %% ⇒

patiently A α−→ patiently A;
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%[10] l = get(ι, buffer)
%% %% ⇒

current buffer
ι−→ l ;

%[11] a = get(ι, performer)
%% %% ⇒

performing agent
ι−→ a;

%[12] a = get(ι, contractor)
%% %% ⇒

contracting agent
ι−→ a

pred −→ : Processing × S× Processing
vars α : A; o, o′ : O[A]; σ, σ1 , σ2 : S; ε : I[S];

P1 ,P2 ,P ′
1 ,P ′

2 : Processing; C : Communicating;
s , s ′ : Set [O[A]]

axioms
%[13] P1

σ−→ P ′
1

%% %% ⇒
P1 ‖ P2

σ−→ P ′
1 ‖ P2 ;

%[14] P1
σ1−→ P ′

1 ∧ P2
σ2−→ P ′

2 ∧
intersection(get(σ1 , acting), get(σ2 , acting)) = empty set ∧

σ = σ1 ; σ2
%% %% ⇒

P1 ‖ P2
σ−→ P ′

1 ‖ P ′
2 ;

%[15] s = get pre(σ, states) ∧ o is in s ∧
a = get(o, performer) ∧
o = pre(α) ∧ A α−→ A′ ∧

C = get(α, communicating) ∧ o′ = post(α) ∧
s ′ = union(difference(s , set of (o)), set of (o′)) ∧
σ = set post(set(ε, acting, set of (a)), states , s ′)

%% %% ⇒
a performing A σ−→ a performing A′ ‖ C ;

%[16] s = get pre(σ, states) ∧ o is in s ∧
receiver(m) = get(o, performer) ∧ l = get(o, buffer) ∧

o′ = set(o, buffer , concatenation(l , list of (m))) ∧
s ′ = union(difference(s , set of (o)), set of (o′)) ∧

σ = set post(ε, states , s ′)
%% %% ⇒

m σ−→ nil ;

%[17] s = get pre(σ, states) ∧ a :< receiver(c) ∧
¬(∃o • o is in s ∧ get(o, performer) = a) ∧

o′ = set(set(void , performer , a), contractor , sender(c)) ∧
s ′ = union(s , set of (o′)) ∧

σ = set post(set(ε, acting, set of (a)), states , s ′) ∧
contents(c) = abstraction of A

%% %% ⇒
c σ−→ a performing A;
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%% A.7 The Directive Facet

spec Directive Data =
Maps [ sort Token ] [ free type Range ::= sort Bindable | unknown ]

with Map[Indirection,Range] 7→ Redirections ,
empty map,map of to , at ,
overlay, disjoint union,mapped set

and
Sets [ sort Indirection ]

with Set [Indirection], empty set , set of , is in

spec Directive Syntax =
Declarative Syntax and
Reflective Syntax then
types Action ::= indirectly bind to (Yielder ;Yielder) |

redirect to (Yielder ;Yielder) |
recursively bind to (Yielder ;Yielder) |
undirect (Yielder) |
indirectly produce (Yielder);

Yielder ::= current redirections |
indirect closure (Yielder)

spec Directive Labels =
Directive Data then
Mutable Info

[ sort A ] [ op redirections : Index ]
[ sort Redirections < MutableInfo op empty map : Redirections ]

spec Directive Transitions =
Basic Configurations and
Declarative Outcomes and
Directive Labels

then
vars α, α′, α′′ : A; ι, ι′, ι′′ : I[A];

Y ,Y1 ,Y2 : Yielder ;
r , r ′ : Redirections ; i : Indirection;
b, b′, b1 , b2 : Bindings ; k : Token; bv : Bindable

axioms
%[1] Y1

ι−→ k ∧ Y2
ι−→ bv ∧

r = get(ι, redirections) ∧ ¬(i is in mapped set(r)) ∧
r ′ = overlay(map of i to bv , r) ∧
α = set(set post(ι, redirections, r ′),

commitment , true value)
%% %% ⇒

indirectly bind Y1 to Y2
α−→ produced(map of k to i);

%[2] Y1
ι−→ nothing ∨ Y2

ι−→ nothing
%% %% ⇒

indirectly bind Y1 to Y2
ι−→ failed ;
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%[3] Y1
ι−→ k ∧ Y2

ι−→ bv ∧
i = get(ι, bindings) at k ∧

r = get(ι, redirections) ∧ i is in mapped set(r) ∧
r ′ = overlay(map of i to bv , r) ∧
α = set(set post(ι, redirections, r ′),

commitment , true value)
%% %% ⇒

redirect Y1 to Y2
α−→ completed ;

%[4] Y1
ι−→ k ∧ Y2

ι−→ bv ∧
¬(k is in mapped set(get(ι, bindings)))

%% %% ⇒
redirect Y1 to Y2

ι−→ failed ;

%[5] Y1
ι−→ k ∧ Y2

ι−→ bv ∧
i = get(ι, bindings) at k ∧

r = get(ι, redirections) ∧ ¬(i is in mapped set(r))
%% %% ⇒

redirect Y1 to Y2
ι−→ failed ;

%[6] Y1
ι−→ nothing ∨ Y2

ι−→ nothing
%% %% ⇒

redirect Y1 to Y2
ι−→ failed ;

%[7] Y ι−→ i ∧
r = get(ι, redirections) ∧ i is in mapped set(r) ∧

r ′ = omitting(i , r) ∧
α = set(set post(ι, redirections, r ′),

commitment , true value)
%% %% ⇒

undirect Y α−→ completed ;

%[8] Y ι−→ i ∧
r = get(ι, redirections) ∧ ¬(i is in mapped set(r))

%% %% ⇒
undirect Y ι−→ failed ;

%[9] Y ι−→ nothing
%% %% ⇒

undirect Y ι−→ failed ;

%[10] Y ι−→ r ∧
α = set(set post(ι, redirections, r),

commitment , true value)
%% %% ⇒

indirectly produce Y α−→ completed ;

%[11] Y ι−→ nothing
%% %% ⇒

indirectly produce Y ι−→ failed ;
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%[12] Y1
ι−→ k ∧

r = get(ι, redirections) ∧ ¬(i is in mapped set(r)) ∧
r ′ = overlay(map of i to unknown, r) ∧

α′ = set post(ι, redirections, r ′) ∧
b = overlay(map of k to i , get(ι, bindings)) ∧

ι′′ = set(ι′, bindings , b) ∧ Y2
ι′′−→ bv ∧

r ′′ = overlay(map of i to bv , r) ∧
α′′ = set post(ι′, redirections, r ′′) ∧

α = set(α′; α′′, commitment , true value)
%% %% ⇒

recursively bind Y1 to Y2
α−→

produced(map of k to i);

%[13] Y1
ι−→ k ∧

r = get(ι, redirections) ∧ ¬(i is in mapped set(r)) ∧
r ′ = overlay(map of i to unknown, r) ∧

α′ = set post(ι, redirections, r ′) ∧
b = overlay(map of k to i , get(ι, bindings)) ∧

ι′′ = set(ι′, bindings , b) ∧ Y2
ι′′−→ nothing

%% %% ⇒
recursively bind Y1 to Y2

ι−→ failed ;

%[14] Y1
ι−→ nothing

%% %% ⇒
recursively bind Y1 to Y2

α−→ failed

%[15] r = get(ι, redirections)
%% %% ⇒

current redirections
ι−→ r ;

%% A.8 Hybrid Facets

spec Hybrid Syntax =
Functional Syntax and
Declarative Syntax and
Reflective Syntax and
Communicative Syntax then
types Action ::= allocate (Yielder) |

receive (Yielder) |
subordinate (Yielder) |

and then moreover (Action;Action) |
then moreover (Action;Action) |
thence (Action;Action) |
then before (Action;Action)
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spec Hybrid Outcomes =
Basic Outcomes and
Functional Outcomes and
Declarative Outcomes and
Communicative Outcomes

then
type Completed ::= gave produced(Data;Bindings)
axioms
%[1] gave produced(none, b) = produced(b);
%[2] gave produced(d , empty map) = gave(d)

spec Hybrid Labels =
Functional Labels and
Declarative Labels and
Imperative Labels and
Communicative Labels

spec Hybrid Transitions =
Basic Configurations and
Hybrid Outcomes and
Hybrid Labels

then
vars α, α′ : A; ι, ι′ : I[A];

A,A1 ,A2 ,A′,A′
1 ,A′

2 : Action; Y ,Y1 ,Y2 : Yielder ;
t2 : Terminated ; c1 , c2 : Completed ; e, e1 , e2 : Escaped ;
d , d ′ : Data; ds : DataSort ;
b, b′, b1 , b2 : Bindings ; k : Token; bv : Bindable;
m : Message; ms : MessageSort ; as : AgentSort

axioms
%[1] Y ι−→ ds ∧

s = get(ι, storage) ∧ ¬(c is in mapped set(s)) ∧ c :< ds ∧
s ′ = overlay(map of c to uninitialized , s) ∧

α = set(set post(ι, storage, s ′), commitment , true value)
%% %% ⇒

allocate Y α−→ gave(c);

%[2] Y ι−→ ds ∧ s = get(ι, storage) ∧
(ds & (cell [not in mapped set(s)])) = nothing

%% %% ⇒
allocate Y ι−→ failed ;
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%[3] Y ι−→ ms ∧ l = get pre(ι, buffer) ∧
m :< ms ∧ m is in items(l) ∧

α = set(set post(ι, buffer , l omitting m),
commitment , true value)

%% %% ⇒
receive Y α−→ gave(m);

%[4] Y ι−→ ms ∧ l = get pre(ι, buffer) ∧
¬(∃m • m :< ms ∧ m is in items(l))

%% %% ⇒
receive Y ι−→ receive Y ;

%[5] Y ι−→ nothing
%% %% ⇒

receive Y ι−→ failed ;

%[6] Y ι−→ as ∧ a = get(ι, performer) ∧
A = send message[to a][containing performing agent ]

then (receive message[from a][containing abstraction]
then enact contents(it)) ∧

A′ = offer contract [to as ][containing abstraction of (A)]
and then (receive message[from as][containing as ]

then give contents(it))
%% %% ⇒

subordinate Y ι−→ A′;

%[7] Y ι−→ nothing
%% %% ⇒

subordinate Y ι−→ failed ;
%[8] b = disjoint union(b1 , b2 )

%% %% ⇒
gave produced(d1 , b1 ) and gave produced(d2 , b2 ) ι−→

gave produced(concatentation(d1 , d2 ), b);
%[9] ¬ def disjoint union(b1 , b2 )

%% %% ⇒
gave produced(d1 , b1 ) and gave produced(d2 , b2 ) ι−→

failed ;

%[10] b = disjoint union(b1 , b2 )
%% %% ⇒

gave produced((d1 , b1 ) and then

gave produced(d2 , b2 ) ι−→
gave produced(concatentation(d1 , d2 ), b);

%[11] ¬ def disjoint union(b1 , b2 )
%% %% ⇒

gave produced(d1 , b1 ) and then

gave produced(d2 , b2 ) ι−→
failed ;

%[12] b = disjoint union(b1 , b2 )
%% %% ⇒

gave produced(d1 , b1 ) then gave produced(d2 , b2 ) ι−→
gave produced(d2 , b);

%[13] ¬ def disjoint union(b1 , b2 )
%% %% ⇒

gave produced(d1 , b1 ) then gave produced(d2 , b2 ) ι−→
failed ;
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%[14] b = get(ι, bindings)
%% %% ⇒

furthermore gave produced(d , b′) ι−→
gave produced(d , overlay(b′ , b));

%[15] gave produced(d1 , b1 ) moreover gave produced(d2 , b2 ) ι−→
gave produced(concatentation(d1 , d2 ), overlay(b2 , b1 ));

%[16] gave produced(d1 , b1 ) hence gave produced(d2 , b2 ) ι−→
gave produced(concatentation(d1 , d2 ), b2 );

%[17] gave produced(d1 , b1 ) before gave produced(d2 , b2 ) ι−→
gave produced(concatentation(d1 , d2 ), overlay(b2 , b1 ));

%[18] A1
α−→ A′

1
%% %% ⇒

A1 and then moreover A2
α−→

A′
1 and then moreover A2 ;

%[19] t1 and then moreover A2
ι−→ t1 moreover A2 ;

%[20] A1
α−→ A′

1
%% %% ⇒

A1 then moreover A2
α−→ A′

1 then moreover A2 ;

%[21] α′ = set(α, data, d1 ) ∧ A2
α′−→ A′

2
%% %% ⇒

gave produced(d1 , b1 ) then moreover A2
α−→

gave produced(d1 , b1 ) then moreover A′
2 ;

%[22] gave produced(d1 , b1 )then moreover

gave produced(d2 , b2 ) ι−→
gave produced(d2 , overlay(b2 , b1 ));

%[23] e1 then moreover A2
ι−→ e1 ;

%[24] c1 then moreover e2
ι−→ e2 ;

%[25] failed then moreover A2
ι−→ failed ;

%[26] c1 then moreover failed ι−→ failed ;

%[27] A1
ι−→ A′

1
%% %% ⇒

A1 thence A2
ι−→ A′

1 thence A2 ;

%[28] α′ = set(set(α, data, d1 ), bindings , b1 ) ∧ A2
α′
−→ A′

2
%% %% ⇒

gave produced(d1 , b1 ) thence A2
α−→

gave produced(d1 , b1 ) thence A′
2 ;

%[29] gave produced(d1 , b1 ) thence t2
ι−→ t2 ;

%[30] e1 thence A2
ι−→ e1 ;

%[31] failed thence A2
ι−→ failed ;
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%[32] A1
ι−→ A′

1
%% %% ⇒

A1 then before A2
ι−→ A′

1 then before A2 ;
%[33] b = overlay(b1 , get(α, bindings)) ∧

α′ = set(set(α, data, d1 ), bindings , b) ∧
A2

α′−→ A′
2

%% %% ⇒
gave produced(d1 , b1 ) then before A2

α−→ A′
2 ;

%[34] gave produced(d1 , b1 ) then before gave produced(d2 , b2 ) ι−→
gave produced(d2 , overlay(b2 , b1 ));

%[35] e1 then before A2
ι−→ e1 ;

%[36] c1 then before e2
ι−→ e2 ;

%[37] failed then before A2
ι−→ failed ;

%[38] c1 then before failed ι−→ failed ;

%% A.9 The Full Action Notation

spec Action Notation =
Basic Transitions and
Functional Transitions and
Declarative Transitions and
Imperative Transitions and
Reflective Transitions and
Directive Transitions and
Communicative Transitions and
Hybrid Transitions
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%[Appendix B] library Label Categories

spec Categories [ sort A ] =
sorts I[A] < A;O[A] = I[A]
ops ; : A×A→? A, assoc;

pre, post : A→ O[A]
vars α, α′ : A; ι : I[A]
axioms
%[1] def (α ; α′) ⇔ post(α) = pre(α′);
%[2] ι ; α = α if def (ι ; α);
%[3] α ; ι = α if def (α ; ι)

spec Indices = sort Index

spec Components =
sorts ContextInfo,MutableInfo,EmittedInfo
type LabelComp ::= sort ContextInfo |

pair(π1 , π2 : MutableInfo) |
sort EmittedInfo

type StateComp ::= sort ContextInfo |
sort MutableInfo

spec Label Categories [ sort A ] =
Categories [ sort A ] and
Indices and
Components then

ops void : O[A];
get : A× Index →? LabelComp;
set : A× Index × LabelComp →? A

vars α : A; i , i ′ : Index ; c, c′ : LabelComp
axioms
%[1] get(set(α, i , c), i ′) = c when i = i ′ else get(α, i ′);
%[2] set(set(α, i , c), i ′, c′) =

set(α, i , c′) when i = i ′ else set(set(α, i ′, c′), i , c)
ops get pre(α : A; i : Index ) :?MutableInfo = π1 (get(α, i));

set post(α : A; i : Index ;m : MutableInfo) :?A =
set(α, i , pair(π1 (get(α, i)),m))

ops get : O[A] × Index →? StateComp;
set : O[A] × Index × StateComp →? O[A]

vars o : O[A]; i , i ′ : Index ; s , s ′ : StateComp
axioms
%[3] get(set(o, i , s), i ′) = s when i = i ′ else get(o, i ′);
%[4] set(set(o, i , s), i ′, s ′) =

set(o, i , s ′) when i = i ′ else set(set(o, i ′, s ′), i , s)
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spec Context Info [ sort A ] [ op i : Index ]
[ sort CI < ContextInfo op default : CI ]
given Label Categories [ sort A ] =
vars α, α1 , α2 : A; c, c′ : CI
axioms
%[1] get(void , i) = default ;
%[2] set(void , i , default) = void ;
%[3] pre(set(α, i , c)) = set(pre(α), i , c);
%[4] post(set(α, i , c)) = set(post(α), i , c);
%[5] set(α1 , i , c) ; set(α2 , i , c) = set(α1 ; α2 , i , c);
%[6] def set(α1 , i , c) ; set(α2 , i , c′) ⇒ c = c′

spec Mutable Info [ sort A ] [ op i : Index ]
[ sort MI < MutableInfo op default : MI ]
given Label Categories [ sort A ] =
vars α, α1 , α2 : A; m,m ′,m1 ,m2 : MI
axioms
%[1] get(void , i) = default ;
%[2] set(void , i , default) = void ;
%[3] pre(set(α, i , pair(m1 ,m2 ))) = set(pre(α), i ,m1 );
%[4] post(set(α, i , pair(m1 ,m2 ))) = set(post(α), i ,m2 );
%[5] set(α1 , i , pair(m1 ,m)) ; set(α2 , i , pair(m,m2 )) =

set(α1 ; α2 , i , pair(m1 ,m2 ));
%[6] def set(α1 , i , pair(m1 ,m) ; set(α2 , i , pair(m ′,m2 )) ⇒ m = m ′

spec Emitted Info [ sort A ] [ op i : Index ]
[ sort EI < EmittedInfo
ops default : EI ; combine : EI × EI → EI , assoc, unit default ]

given Label Categories [ sort A ] =
vars α, α1 , α2 : A; e, e ′ : EI
axioms
%[1] get(ι, i) = default ;
%[2] set(ι, i , default) = ι;
%[3] pre(set(α, i , e)) = pre(α);
%[4] post(set(α, i , e)) = post(α);
%[5] set(α1 , i , e) ; set(α2 , i , e ′) = set(α1 ; α2 , i , f (e, e ′))
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%[Appendix C] library Data Notation

spec Unified Algebras =
sorts Indiv < Univ
pred ≤ : Univ × Univ
vars u, u ′, u ′′ : Univ
axioms
%[1] u ≤ u ′ ∧ u ′ ≤ u ′′ ⇒ u ≤ u ′′

%[2] u ≤ u ′ ∧ u ′ ≤ u ⇒ u = u ′

%[3] u ≤ u
op nothing : Univ
axiom
%[4] nothing ≤ u
pred :< (u, u ′) ⇔ u ∈ Indiv ∧ u ≤ u ′

axiom
%[5] ¬(u :< nothing)
ops | : Univ × Univ → Univ , assoc, comm, idem , unit nothing;

& : Univ × Univ → Univ , assoc, comm , idem ;
axioms
%[6] u & nothing = nothing;
%[7] u ≤ u ′′ ∧ u ′ ≤ u ′′ ⇒ (u | u ′) ≤ u ′′;
%[8] u ≤ (u | u ′);
%[9] u ′′ ≤ u ∧ u ′′ ≤ u ′ ⇒ u ′′ ≤ (u & u ′);
%[10] (u & u ′) ≤ u;
%[11] u & (u ′ | u ′′) = (u & u ′) | (u & u ′′);
%[12] u | (u ′ & u ′′) = (u | u ′) & (u | u ′′)

from [7, App. E]
get Tuples, Truth Values, Numbers, Lists, Sets, Maps

%% with translation to Casl!
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