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Foundations of Modular SOS?

Peter D. Mosses1

BRICS and Department of Computer Science,
University of Aarhus, Denmark

Abstract. A novel form of labelled transition system is proposed, where
the labels are the arrows of a category, and adjacent labels in computa-
tions are required to be composable. Such transition systems provide the
foundations for modular SOS descriptions of programming languages.
Three fundamental ways of transforming label categories, analogous to
monad transformers, are provided, and it is shown that their applications
preserve computations in modular SOS. The approach is illustrated with
fragments taken from a modular SOS for ML concurrency primitives.

1 Introduction

SOS (structural operational semantics) is a widely-used framework for defin-
ing process algebras [17, e.g.] and programming languages [18, e.g.]. Following
Plotkin [30], SOS has often been preferred to the more abstract framework of
denotational semantics. The labelled transition systems that provide the foun-
dations for SOS are themselves well-studied mathematical objects, with major
applications in software (and hardware) engineering.

Modular SOS is a form of SOS that ensures a high degree of modularity: the
transition rules for each construct are completely independent of the presence
or absence of other constructs in the described language. When one extends
or changes the described language, the description can be extended or changed
accordingly, without reformulation—even though new kinds of information pro-
cessing may be required. This is in marked contrast to conventional SOS, where
modularity tends to be quite poor: when extending a pure functional language
with concurrency primitives and/or references, for instance, the original specifi-
cation of the transition rules has to be completely reformulated [4].

In denotational semantics, the problem of obtaining good modularity has
received much attention, and has to a large extent been solved by introducing
so-called monad transformers. Modular SOS provides an analogous solution for
operational semantics.

The basic idea of Modular SOS is to incorporate all semantic entities as
components of labels. Thus configurations are restricted to syntax and com-
puted values. The foundations of Modular SOS involve a novel form of labelled
transition system (LTS), where the labels are the arrows of a category. In contrast
? Full version of [24], reporting research carried out while visiting SRI International

and Stanford University, USA



to other frameworks where labels are equipped with categorical structure (e.g.
Tile Logic [11] and Rewriting Logic [15]), composition here is generally a partial
operation, and computations are restricted to those where all adjacent labels
are composable. Note that the labels are no longer the simple atomic actions
often used in studies of process algebra, but here usually have entities such as
environments and stores as components; so do the objects of the label category,
which correspond to the states of the processed information.

Any arrow-labelled transition system (ALTS) can be reduced to an ordinary
LTS, and the usual notions of derivative and bisimilarity lifted accordingly; a
version of higher-order bisimulation may also be defined directly.

Three fundamental label transformers have been identified; they preserve the
computations specified by a modular SOS, and their order of application is irrel-
evant. The label transformers are analogous to some simple monad transformers.
The one which transforms the label category to incorporate new context informa-
tion (such as the current environment) adds the same sort of component both to
arrows and to objects, and composition preserves the value of that component.
Also the transformer which incorporates mutable information (such as the cur-
rent store) adds a corresponding component to each object, whereas it extends
each arrow with a pair of such components; composition on pairs is as for binary
relations. Finally, the transformer which incorporates emitted information (such
as synchronization signals) adds a corresponding component to each arrow, but
leaves the objects essentially unchanged.

Plan of the Paper: Section 2 starts by recalling the basic notions of SOS and LTS.
Section 3 defines what an ALTS is, and shows how any ALTS can be reduced to a
corresponding ordinary LTS. Section 4 provides some simple illustrations of label
categories. Section 5 defines the three fundamental ways of transforming label
categories to incorporate further kinds of processed information. Section 6 gives
some illustrative excerpts from a modular SOS of ML concurrency primitives.
Section 7 discusses the relationship of Modular SOS to other work. Section 8
concludes by indicating what remains to be done. An extended abstract of this
paper, omitting proofs and some other details, is available [24].

2 Conventional SOS

In the conventional SOS framework [30, 31] programs (and all their constituent
phrases) are generally modelled as labelled transition systems:

Definition 1. A labelled transition system (LTS) is a structure (Γ, T,A,−→),
where Γ is the set of configurations, T ⊆ Γ is the set of terminal configurations,
A is the set of labels, and −→ ⊆ Γ × A × Γ is the transition relation. For
configurations γ, γ′ ∈ Γ and label α ∈ A, the assertion that (γ, α, γ′) is in the
transition relation is written γ

α−→ γ′ (implying γ 6∈ T ).
A computation (from γ) is a sequence of transitions γ

α1−→ γ1
α2−→ . . . , which

is either (countably) infinite or finishes with a configuration γ′ ∈ T .
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The main characteristic feature of SOS is that transitions are specified induc-
tively, according to the syntactic structure of the described language, by rules :

γ1
α1−→ γ′

1 . . . γn
αn−→ γ′

n

γ
α−→ γ′ .

The syntactic components of γ1, . . . , γn are generally sub-phrases of the syn-
tactic component of γ. Other formulae, such as equations, may be used as side-
conditions on rules (often listed together with the premises). The intended tran-
sition relation is the least relation that is closed under the given rules.1

There are two distinct styles of SOS: in so-called small-step SOS, each tran-
sition in a computation generally corresponds to an indivisible item of informa-
tion processing, such as adding two computed numbers, or assigning a computed
number to a variable; in big-step SOS, also known as Natural Semantics [13], a
computation is a single transition leading directly to a terminal configuration,
corresponding to the combination of many items of information processing. The
two styles may be mixed in the same description, e.g., big-step for expression
evaluation and small-step for command execution; alternatively, the transitive
closure of a small-step transition relation can be used to represent a big-step
relation [30].

Intermediate configurations in small-step SOS generally involve an extension
of abstract syntax, allowing any phrase to be replaced by its computed value.
Let us refer to such an extended syntax as value-added. The pure abstract syntax
can be defined as the initial algebra in a class of algebras; the value-added syntax
corresponds to the algebra freely generated by the sets of values, one for each
syntactic category. (In some languages, the computed values can be identified
with canonical terms of the original syntax, so no extension is needed.)

Configurations often involve familiar semantic components, such as stores
that map variables to their assigned values. Environments (mapping identifiers
to their denoted values) are however usually treated as separate arguments of
a relative transition relation ρ ` γ

α−→ γ′ [13, 30]; this complication can be
avoided by using syntactic substitution instead of environments (although it
is quite tedious to define substitution when binding constructs introduce local
scopes for variables). Input, output, and synchronization signals are all generally
recorded in the labels on transitions.

Detailed explanations of the conventional SOS framework are available in
the literature [2, 12, 13, 29–32,35]. The lack of modularity in conventional SOS
is evident in many papers, for instance [4].

3 Modular SOS

Modular SOS (MSOS) is a particularly simple and uniform style of SOS. The
essential idea is to use the labels on transitions to represent general information
1 A more complicated definition is needed when negations of assertions of transitions

are allowed in premises [9].
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processing steps; the configurations merely keep track of the flow of control and
computed values, and are therefore restricted to syntax and computed values
(i.e., value-added syntax, see Sect. 2). The transition relation is required to be
ternary (γ α−→ γ′), so the only place left for the usual semantic components of
transitions (such as environments and stores) is in the labels.

In a transition γ
α−→ γ′, the label α must itself determine the state of the

processed information both before and after the step. Two such transitions can
be adjacent in a computation only when the state after the first and the state
before the second are identical. This intuition is conveniently represented by
regarding the labels as the arrows of a category, with the states as the objects
of the category. The foundations for MSOS are provided by such arrow-labelled
transition systems. (Surprisingly, this appears to be a novel combination of the
familiar notions of LTS and category.)

Note that MSOS does not require any knowledge of Category Theory. All that
is needed is the basic concept of a category, which may here be regarded as a
loosely-specified class of partial algebras, corresponding to an abstract datatype:

Definition 2. A category consists of a set of arrows α ∈ A, a set of objects
o ∈ |A|, together with total operations pre, post : A→ |A|, id : |A| → A, and a
partial composition operation · ; · : A×A→ A, such that:

– α1 ; α2 is defined iff post(α1) = pre(α2), and then pre(α1 ; α2) = pre(α1)
and post(α1 ; α2) = post(α2);

– · ; · is associative, that is α1 ; (α2 ; α3) = (α1 ; α2) ; α3 when defined;
– id(pre(α)) ; α = α = α ; id(post(α));
– pre(id(o)) = o = post(id(o)).

The objects o = pre(α) and o′ = post(α) are called the source and target of the
arrow α, and may be indicated by writing α : o → o′; the arrow id(o) is called
the identity arrow for the object o. The subset of identity arrows of A is written
I
A, or just I when A is evident; we let the variables ι, ι′, ι1, etc., range only

over I.

3.1 Arrow-Labelled Transition Systems

Definition 3. An arrow-labelled transition system (ALTS) is a labelled transi-
tion system (Γ, T,A,−→), where A is a category. The objects o ∈ |A| are called
the states of the ALTS.

A computation in the ALTS (from γ) is a sequence of transitions γ
α1−→

γ1
α2−→ . . . , which is either (countably) infinite or finishes with a configuration

γ′ ∈ T , and moreover such that all adjacent labels αi, αi+1 in it are composable
in the category A (i.e., the labels in a computation trace a path through A).

Identity arrows are regarded as silent or unobservable; they generally label tran-
sitions that merely reduce the configuration without changing the state, e.g.,
computing a new value from already-computed arguments, or propagating an
exception. In an ALTS corresponding to a process algebra such as CCS [16],
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there is only one object in the label category, and its identity arrow corresponds
to the unobservable action (τ).

It is straightforward to generalize the usual inductive definition of the tran-
sitive closure of the transition relation to ALTS:

Definition 4. Let (Γ, T,A,−→) be an ALTS; then (Γ, T,A,−→+) is an ALTS,
where −→+ is the least relation such that:

γ
α1−→+ γ1 γ1

α2−→+ γ2 α = α1 ; α2

γ
α−→+ γ2

γ
α−→ γ′

γ
α−→+ γ′ .

Notice that γ
α−→+ γ′ ∈ T iff there exists a finite computation γ

α1−→ γ1 . . .
αn−→

γn = γ′ such that α = α1 ; · · · ; αn.

3.2 Reduction of ALTS to LTS

It is straightforward to reduce any ALTS to a corresponding LTS: just augment
the configurations γ ∈ Γ with the states o ∈ |A| of the label category A, and
forget the categorical structure of A.

Definition 5. Let (Γ, T,A,−→) be an ALTS. Let the LTS (Γ •, T •,A•,−→•)
be defined by taking Γ • = Γ × |A|, T • = T × |A|, A• = A, and for all γ, γ′ ∈ Γ ,
o, o′ ∈ |A| and α ∈ A, (γ, o) α−→• (γ′, o′) iff γ

α−→ γ′ and α : o → o′.

Proposition 1. There is a 1-1 correspondence between the computations of
(Γ, T,A,−→) and those of (Γ •, T •,A•,−→•).

Proof. For each computation γ
α1−→ γ1

α2−→ . . . of the ALTS there is the compu-
tation (γ, o) α1−→• (γ1, o1)

α2−→• . . . where o = pre(α1) and for i ≥ 1, post(αi) =
oi = pre(αi+1). Conversely, suppose that (γ, o) α1−→• (γ1, o1)

α2−→• . . . is a
computation of the LTS; then for i ≥ 1, post(αi) = oi = pre(αi+1), hence
γ

α1−→ γ1
α2−→ . . . is a computation of the ALTS. ut

Notice that taking A• = A normally gives labels with some redundancy,
since the source and target of the label on any transition are determined by the
configurations before and after the transition. Such redundancy is harmless, but
it could be eliminated if desired.

Any LTS (Γ, T,A,−→) can be made into an ALTS (Γ, T,A′,−→′) by taking
A

′ = A
∗ (the one-object category corresponding to the free monoid on A) and

letting γ1
α−→′ γ2 iff γ1

α−→ γ2 for α ∈ A. The computations of the ALTS corre-
spond exactly to those of the original LTS. The constructed ALTS reduces to an
LTS which, when the (redundant) labels in A∗ \A are removed, is isomorphic
to the original ALTS.
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3.3 Bisimilarity

Let us first recall the usual notion of bisimulation for ordinary LTS [16], adjusted
to take account of terminal configurations:

Definition 6. Let (Γ, T,A,−→) be an LTS. S ⊆ Γ ×Γ is a strong bisimulation
iff (γ1, γ2) ∈ S implies, for all α ∈ A,

– whenever γ1
α−→ γ′

1 then for some γ′
2, γ2

α−→ γ′
2 and (γ′

1, γ
′
2) ∈ S;

– whenever γ2
α−→ γ′

2 then for some γ′
1, γ1

α−→ γ′
1 and (γ′

1, γ
′
2) ∈ S; and

– whenever γ1 ∈ T or γ2 ∈ T then γ1 = γ2.

γ1, γ2 are strongly bisimilar, γ1 ∼ γ2, iff (γ1, γ2) ∈ S for some strong bisim-
ulation S.

Thus ∼ is the largest strong bisimulation.
The reduction from ALTS to LTS given above induces a definition of bisim-

ulation for ALTS:

Definition 7. Let (Γ, T,A,−→) be an ALTS. Then S ⊆ (Γ ×|A|)×(Γ ×|A|) is
a strong arrow-labelled bisimulation for the ALTS iff S is a strong bisimulation
for the corresponding LTS (Γ •, T •,A•,−→•).

Configurations γ1 and γ2 are said to be strongly arrow-labelled bisimilar
when there exists a strong arrow-labelled bisimulation S such that for all o ∈ |A|,
((γ1, o), (γ2, o)) ∈ S.

When |A| is trivial (a singleton), the notion of strong arrow-labelled bisim-
ulation defined for ALTS corresponds exactly to the usual notion. The need to
consider pairs of configurations and states reflects that the labels on adjacent
transitions in computations are required to be composable.

The following generalization of strong arrow-labelled bisimulation for ALTS
corresponds to a notion of higher-order bisimulation, allowing for a subsidiary
relation on labels:

Definition 8. Let (Γ, T,A,−→) be an ALTS. A pair of relations S ⊆ (Γ ×
|A|) × (Γ × |A|), S̃ ⊆ A × A is called a strong higher-order arrow-labelled
bisimulation iff ((γ1, o1), (γ2, o2)) ∈ S implies that:

– whenever γ1
α1−→ γ′

1 with α1 : o1 → o′1, then γ2
α2−→ γ′

2 for some α2, γ
′
2, o

′
2

with α2 : o2 → o′2, ((γ′
1, o

′
1), (γ′

2, o
′
2)) ∈ S, and (α1, α2) ∈ S̃;

– whenever γ2
α2−→ γ′

2 with α2 : o2 → o′2, then γ1
α1−→ γ′

1 for some α1, γ
′
1, o

′
1

with α1 : o1 → o′1, ((γ′
1, o

′
1), (γ

′
2, o

′
2)) ∈ S, and (α1, α2) ∈ S̃; and

– γ1 ∈ T iff γ2 ∈ T .

Notice that terminal configurations are no longer required to be identical, and
that whether they are in a bisimulation relation may also depend on the states
of the ALTS.
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With MSOS, higher-order bisimulation appears to be needed not only for
dealing with equivalence of higher-order concurrent languages, but also for non-
concurrent languages where functions can be computed and assigned to variables
(or, when using environments rather than substitution, bound to variables).

Notions of weak bisimulation for arrow-labelled transition systems can be
defined similarly, exploiting that transitions labelled by identity arrows are in-
herently unobservable.

4 Basic Label Categories

Let us consider some simple examples of label categories. In the next section
they are generalized to generic transformers of label categories.

Definition 9. The category TrivCat is a category with a single object and a
single (identity) arrow.

Taking labels in TrivCat gives an ALTS corresponding to an unlabelled tran-
sition system where the configurations have no semantic components at all: the
transition relation e −→ e′ is essentially pure term rewriting (except that it is
not in general closed with respect to contexts).

Definition 10. Let Env be a set of environments (i.e., finite maps from iden-
tifiers to values). Then Discrete(Env) is the discrete category with the envi-
ronments ρ ∈ Env both as the objects and as the only (identity) arrows. Com-
position of two arrows is defined only when they are the same environment:
ρ1 ; ρ2 = ρ iff ρ1 = ρ2 = ρ.

Taking labels in Discrete(Env) gives an ALTS corresponding to an LTS with
an (unlabelled) relative transition relation ρ ` e −→ e′ (the precise definition of
which was left as an exercise in [30]).

Definition 11. Let Store be a set of stores (i.e., finite maps from addresses to
values). Then Pairs(Store) is the category with stores s ∈ Store as objects,
and with the pairs of stores (s, s′) being the only arrows between the objects s,
s′. Identity arrows are of the form (s, s). Arrow composition (s1, s

′
1) ; (s2, s

′
2) is

defined by (s1, s
′
1) ; (s2, s

′
2) = (s1, s

′
2) iff s′1 = s2.

Taking labels in Pairs(Store) gives an ALTS corresponding to an (unlabelled)
LTS where configurations are of the form (e, s).

Definition 12. Let Act be some set of actions. Then Monoid(Act∗, concat , [ ])
is the category corresponding to the free monoid generated by Act. This cate-
gory has a single object, and the arrows are finite sequences a1 . . . an of elements
ai ∈ Act. Composition is totally defined as sequence concatenation, concat; the
empty sequence [ ] is the identity arrow.

Taking labels in Monoid(Act∗, concat , [ ]) gives an ALTS corresponding to an
LTS where the labels are just single actions a ∈ Act, together with the unob-
servable action τ , as is usual in studies of process algebra [17, e.g.].
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5 Fundamental Label Transformers

The label categories defined in Sect. 4 correspond to fundamentally different ways
of processing information: allowing it to be inspected, or to be both inspected and
changed, or merely to be provided. The fundamental label transformers defined
below add such information processing to arbitrary label categories.

Label categories provide some auxiliary notation that allows the various com-
ponents of the labels to be inspected and changed independently of each other.
To avoid dependence on the order in which transformers are composed, particu-
lar components are referred to via symbolic indices i ∈ Index. All components
of labels are taken from some universe Univ. The operations

get : A× Index → Univ

set : A× Index× Univ → A

are completely undefined when A is TrivCat .

Definition 13. Let B be a category, and i ∈ Index. Then the label transformer
LabTrans(i,B) maps any label category A to A×B, and extends the operations
get and set from A to A×B by defining

get((α, u), j) =
{

u, if i = j
get(α, j), otherwise

set((α, u), j, u′) =
{

(α, u′), if i = j
(set(α, j, u′), u), otherwise.

For any A, B the projection from A × B to A is a functor. Moreover, for any
object b ∈ |B| the embedding that maps objects a ∈ |A| to (a, b) and arrows
α ∈ A to (α, id(b)) is also a functor. Thus a label transformer F : A→ A

′ defined
in terms of LabTrans may always be regarded as as projection functor together
with a family of embedding functors, with embedding followed by projection
being the identity functor on A.

Definition 14. ContextInfo(i, E) is LabTrans(i,Discrete(E)).

Typically, E above is a set of environments, and the use of ContextInfo(i, E)
makes the current environment available in labels at index i.

Definition 15. MutableInfo(i, S) is LabTrans(i,Pairs(S)).

Typically, S above is a set of stores, and the use of MutableInfo(i, S) makes
pairs of stores available in labels. For inspecting the source store and setting the
target store of a label, the following auxiliary operations are convenient: when
get(α, i) = (s, s′), let getpre(α, i) = s and setpost(α, i, s′′) = set(α, i, (s, s′′)).

Definition 16. EmittedInfo(i, A, f, τ) is LabTrans(i,Monoid(A, f, τ)).
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Typically, A above is the free monoid of sequences generated by some set of
signals, with f being sequence concatenation and τ being the empty sequence;
then the use of EmittedInfo(i, A, f, τ) makes sequences of signals available in
labels.

The above label transformers appear to be adequate for constructing appro-
priate label categories for use in MSOS descriptions of constructs of conventional
programming languages (such as those described in conventional SOS in [30]) as
well as for those of less conventional languages such as Concurrent ML [28] and
Action Notation [26]). Notice that they are all concerned with the flow of infor-
mation rather than that of control, the latter being expressed directly through
transition rules in SOS-based frameworks.

A crucial property of the fundamental label transformers is that they pre-
serve the computations specified by a set of transition rules. Thus to extend an
MSOS one may first apply a label transformer—essentially without changing the
semantics of those constructs that have already been described—and then pro-
ceed to exploit the new component of labels in the description of new constructs.
This is different from the conservative extension properties generally found in
the literature on LTS [10, e.g.], where one considers adding new configurations
and rules, leaving the labels on transitions unchanged.

Proposition 2. Let sets of configurations Γ , T be given. Let A, A′ be label
categories related by functors F : A → A

′, G : A′ → A. Let R be a set of
positive transition rules, such that the holding of side-conditions is preserved by
F and G, and let −→, −→′ be the transition relations specified by R with labels
ranging over A, respectively A′.

Then for each computation γ
α1−→ γ1

α2−→ . . . in (Γ, T,A,−→) there is a

corresponding computation γ
α′

1−→′ γ1
α′

2−→′ . . . in (Γ, T,A′,−→′), and vice versa.

Proof. For any γ, γ1 ∈ Γ , α1 ∈ A, there is a transition γ
α1−→ γ1 iff there is a

proof tree for it formed from the rules in R (with axioms as leaves), instantiating
all variables by elements of the sets over which they range, and satisfying all the
side-conditions of the rules. Replacing each element α ∈ A in the tree by F (α)

yields a proof tree for γ
F (α1)−→ ′ γ1, since the holding of side-conditions on rules is

assumed to be preserved by F .
Moreover, if γ

α1−→ γ1
α2−→ γ2, then α1 ; α2 is defined, and the functoriality

of F gives the definedness of F (α1) ; F (α2), hence γ
F (α1)−→ ′ γ1

F (α2)−→ ′ γ2. By
induction, we get that for each (finite or infinite) computation γ

α1−→ γ1
α2−→ . . .

in (Γ, T,A,−→) there is the corresponding computation γ
F (α1)−→ ′ γ1

F (α2)−→ ′ . . . in
(Γ, T,A′,−→′).

The proof of the other direction is analogous, applying G instead of F . ut
The preservation of computations requires that the side-conditions of rules

are unaffected by the label transformation. In practice, disciplined use of the
general functions set(α, i, u), get(α, i) in side-conditions of rules, as illustrated
in the next section, ensures this property. (The definition of a restricted meta-
language that would enforce such a discipline is left to future work.)
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Corollary 1. Let A be a label category constructed by applications of label trans-
formers LabTrans(j,Bj) for arbitrary (non-empty) categories Bj with j ∈ J ⊂
Index. Let Γ and T be given, and let −→) be specified by a set of rules R with
labels ranging over A such that the index arguments of all applications of get and
set in R are restricted to J . Let A′ be the result of applying LabTrans(i,Bi) to
A, where i 6∈ J , and let −→′ be specified by R with labels ranging over A′.

Then for each computation γ
α1−→ γ1

α2−→ . . . in (Γ, T,A,−→) there is a

corresponding computation γ
α′

1−→′ γ1
α′

2−→′ . . . in (Γ, T,A′,−→′), and vice versa.

Proof. The label transformer from A to A × Bi provides a projection functor
G : A×Bi → A, together with an embedding functor F : A→ A×Bi for each
object of Bi. Both F and G preserve the values of terms of the form get(α, j)
when j ∈ J , and commute with the operations set(α, j, u) and α1 ;α2, hence they
preserve the holding of all side-conditions in R. The desired result follows. ut

6 Illustrative Examples

The fragments below are taken from a complete Modular SOS of ML concurrency
primitives [28]. As in [4], we describe first a purely functional fragment, and
extend it both with references and with processes. In the original SOS, each
extension involved a complete reformulation of the rules given for the functional
fragment; with MSOS, no such reformulation is needed, and the extensions below
may be made in any order. For explanation of various details, see [28]

6.1 The Functional Fragment (excerpts)
Abstract Syntax

x ∈ Var variables
c ∈ Const = BConst ∪FConst constants
b ∈ BConst = . . . base constants
f ∈ FConst = . . . function constants
e ∈ Exp expressions
v ∈ Val values

e ::= v value
| x variable
| e1 e2 application
| (e1.e2) pair

v ::= c constant
| (v1.v2) pair value
| λx(e) λ-abstraction

Configurations

γ ::= e arbitrary
τ ::= v terminal

10



Label Transformers No label transformers are required here since we follow
[4, 33, 34] and use syntactic substitution e[x 7→ v] instead of environments and
closures.

Transition Rules

e1
α−→ e′1

e1 e2
α−→ e′1 e2

e2
α−→ e′2

v1 e2
α−→ v1 e′2

(1)

λx(e) v
ι−→ e[x 7→ v] (2)

e1
α−→ e′1

(e1.e2)
α−→ (e′1.e2)

e2
α−→ e′2

(v1.e2)
α−→ (v1.e

′
2)

(3)

6.2 An Imperative Extension (excerpts)

The following extension of Sect. 6.1 provides ML-style references.

Abstract Syntax

f ∈ FConst = {. . . , assign, deref} function constants

Configurations

l ∈ Loc locations

γ ::= e arbitrary
τ ::= v terminal
v ::= . . .

| l location

Label Transformers

MutableInfo(store,Store)

where:
store ∈ Index

s ∈ Store = Loc
fin→ Val

For stores, the notation s[l 7→ v] denotes the store that maps l to v, and otherwise
maps locations l′ to their values s(l′) according to s.

Transition Rules

s = getpre(ι, store) l ∈ dom(s) α = setpost(ι, store, s[l 7→ v])
assign (l.v)

α−→ ()
(4)

s = getpre(ι, store) v = s(l)
deref l

ι−→ v
(5)
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6.3 Concurrent Processes (excerpts)

The following extension of Sect. 6.1 (or of Sect. 6.2) provides CML-style process
spawning and synchronization.

Abstract Syntax

f ∈ FConst = { . . . , receive, transmit} function constants
p ∈ Procs processes

e ::= . . .
| sync e synchronization
| spawn e process creation

p ::= e single process

Configurations

γ ::= e | p arbitrary
τ ::= v terminal

k ∈ Chan channel names
ev ∈ Event event values

v ::= . . .
| k channel name
| ev event value

ev ::= . . .
| k!v channel output
| k? channel input

p ::= . . .
| p1 ‖ p2 concurrent process

Label Transformers

EmittedInfo(acts ,Act∗, concat, [ ])

where:

acts ∈ Index
A ∈ Act∗ action sequences
a ∈ Act = Sync ∪ Spawn actions

(ev, e) ∈ Sync = Event × Exp synchronization possibilities
v ∈ Spawn = Val spawned processes

Act∗ is the set of finite sequences a1 . . . an of elements ai ∈ Act, with concate-
nation concat and the empty sequence [ ] forming a monoid.
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Transition Rules

Expressions

receive k
ι−→ k? transmit (k.v)

ι−→ k!v (6)

α = set(ι, acts , (ev, e))
sync ev

α−→ e

α = set(ι, acts , v)
spawn v

α−→ ()
(7)

Processes

p1
α−→ p′1

p1 ‖ p2
α−→ p′1 ‖ p2

p2
α−→ p′2

p1 ‖ p2
α−→ p1 ‖ p′2

(8)

p1
α1−→ p′1 p2

α2−→ p′2
α1 = set(ι, acts , (ev1, e1)) α2 = set(ι, acts , (ev2, e2))

ev1
k� ev2 with (e1, e2)

p1 ‖ p2
ι−→ p′1 ‖ p′2

(9)

The relation ev1
k� ev2 with (e1, e2) holds when the events ev1 and ev2 match (on

channel k) with respective results e1 and e2, as defined in [33, 34]. For instance,

k!v
k� k? with ((), v) holds.

e
α−→ e′ α = set(ι, acts , v)

e
ι−→ e′ ‖ (v ())

(10)

7 Relation to Other Work

The modular approach to SOS presented here was inspired by the practical real-
ization of Moggi’s monad transformers [19] by Liang and Hudak in their modular
monadic semantics framework [14], and by Wansbrough and Hamer’s recent use
[37] of that framework to give a modular monadic semantics of much of Action
Notation, the original SOS definition of which [20] lacks modularity. Modular
SOS attempts to transfer the practical benefits of monad transformers from de-
notational to operational semantics. However, this has been achieved only for
simple monad transformers concerned with incorporating new components of the
processed information, since the flow of control in Modular SOS is expressed by
the patterns of transitions in the rules (as in conventional SOS) and is not af-
fected by label transformers. Thus there are no label transformers corresponding
to exceptions or continuations.

This paper develops ideas first explored by the author in [22]. The technique
of incorporating all semantic information in labels has previously been proposed
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as a general principle for SOS also by Degano and Priami [6], and exploited
by them to obtain parametricity in the framework of Enhanced Operational
Semantics. However, they did not abstract from the structure of labels (which
is a crucial step for obtaining full modularity and extensibility), nor did they
consider partial composition of labels. The Tile Model framework of Gadducci
and Montanari [11] provides categorical structure on labels, but is otherwise not
closely related to the present approach.

There has been extensive work on various formats of small-step SOS (see a
recent paper by Fokkink and Verhoef [10] for references), but the conservativity
results obtained there concern extensions with new syntax and rules, rather than
changes to labels. An SOS format with terms as labels has been proposed by
Bernstein [3], but modularity was not considered. The recent work of Turi and
Plotkin [36] using coalgebraic techniques in SOS addresses foundational issues,
and appears not to improve the modularity of semantic descriptions; moreover,
the approach does not yet seem to be applicable to the description of conventional
programming languages.

A non-structural but quite succinct approach to operational semantics is to
give an (unlabelled) reduction semantics for applications of evaluation contexts
C[t], following Felleisen et al. [7, 38]. The use of evaluation contexts appears to
provide some inherent modularity, but obtaining full modularity may involve
the introduction of many artificial internal steps [5]. Reppy’s evaluation-context
semantics for ML concurrency primitives [33, 34] has better modularity than the
SOS given in [4]—see [28] for a detailed comparison of it with an MSOS for the
same language. See also [25] for a more general survey of frameworks for logical
specification of operational semantics.

8 Conclusion

The issue of modularity is significant for practical application of formal seman-
tics. The structural approach to operational semantics is particularly popular for
describing both conventional programming languages and process algebras, and
it is widely taught to undergraduates [12, 29, 35]. Its poor modularity was left
as an open problem by Plotkin [30, p.64]. The approach proposed in the present
paper provides modularity in SOS through the use of a more disciplined meta-
notation, while retaining the full generality of Plotkin’s original framework. The
fundamental label transformers of MSOS incorporate the standard techniques
used in SOS, in much the same way as monad transformers in denotational se-
mantics incorporate standard techniques for constructing domains. All this is
obtained through a simple (yet apparently novel) combination of the familiar
notions of labelled transition system and category.

A higher-level approach to obtaining modularity in operational semantics,
called Action Semantics, has previously been proposed by the author, in collab-
oration with Watt [1, 20, 21]. It employs a rich semantic notation called Action
Notation, whose operational semantics was originally defined using SOS [20,
Apps. B–C]. The lack of modularity of that SOS has hindered the definition of
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extensions or variants of Action Notation. An MSOS of Action Notation has
recently been developed [26], and its modularity is greatly facilitating the recon-
sideration of the detailed design of Action Notation [21, Sect. 8].

The full MSOS descriptions of Action Notation [26] and of ML concurrency
primitives [28] should provide sufficient evidence of the benefits of MSOS as
a descriptive framework, and of the way that it scales up smoothly to richer
languages. Some points need further investigation:

– It is claimed that MSOS can be applied just as well to big-step as to small-
step operational semantics. It would be interesting to test this claim by
reformulating the definition of Standard ML [18] using MSOS.

– Label categories may be equipped with further operations for composing la-
bels, such as parallel composition. It seems possible to define a label category
appropriate for a big-step modelling of interleaving (the labels being sets of
sequences of disconnected small steps, with interleaving corresponding to
nondeterministic shuffling of sequences, and indivisibility corresponding to
selecting just those sequences where the steps are connected). However, it is
unclear whether the simple notion of label transformer presented here can
be generalized to construct such label categories.

– The precise relationship between MSOS and Enhanced Operational Seman-
tics [6, 32] is unclear, especially regarding how best to deal with proof terms
in the former, and with the description of imperative features in the latter.

– It appears that bisimulations can be lifted along label transformers. Thus
after applying a label transformer, previously-proved semantic equivalences
based on bisimulation should remain valid.

– It should be checked whether the bisimulation theory obtained using the
MSOS for ML concurrency primitives [28] is comparable to that obtained
for the same language using conventional SOS [8].
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