10113 auQ yum dn-4007 Areuonaiq 10} spunog panoidu] :ysalequaA ® [epold 0S-66-SH SOIYg

BRICS

Basic Research in Computer Science

Improved Bounds for Dictionary Look-up
with One Error

Gerth Stglting Brodal
Srinivasan Venkatesh

BRICS Report Series RS-99-50
ISSN 0909-0878 December 1999

Copyright (© 1999, Gerth Stglting Brodal & Srinivasan Venkatesh.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540
DK-8000 Aarhus C

Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLSs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/99/50/

Improved Bounds for Dictionary Look-up
with One Error

Gerth Stglting Brodal* Srinivasan Venkatesh'

December, 1999

Abstract

Given a dictionary S of n binary strings each of length m,
we consider the problem of designing a data structure for S that
supports d-queries; given a binary query string g of length m, a
d-query reports if there exists a string in S within Hamming dis-
tance d of q. We construct a data structure for the case d = 1, that
requires space O(nlogm) and has query time O(1) in a cell probe
model with word size m. This generalizes and improves the pre-
vious bounds of Yao and Yao for the problem in the bit probe
model.

Keywords: Data Structures, Dictionaries, Hashing, Hamming Distance

1 Introduction

Minsky and Papert in 1969 posed the following problem, that has re-
mained a challenge in data structure design [8].

Let S be a set of n binary strings of length m each. We
want to construct a data structure for S that supports fast
d-queries; that is, given a binary query string ¢, determine if
there is a string in S within Hamming distance d of q.

*BRICS (Basic Research in Computer Science, Center of the Danish National
Research Foundation), Department of Computer Science, University of Aarhus, DK-
8000 Arhus C, Denmark, email: gerth@brics.dk.

fSchool of Technology and Computer Science, Tata Institute of Fundamental Re-
search, Mumbai 400005, India, email: venkat@tcs.tifr.res.in. This work was done while
visiting BRICS at the University of Aarhus.

To date, no efficient solutions are known for this problem for arbitrary
n,m and d. Dolev et al. [2, 3] and Greene, Parnas and Yao [5] made
some progress on the problem for the case when d is large. Manber and
Wu [7] considered applications to password security and spellchecking of
large files.

The theoretical study of the problem for small d was started by Yao
and Yao [11], who considered the case d = 1 and presented a scheme
in the bit probe model that uses space O(mnlogm) bits and queries
requiring O(m loglogn) bit probes. Brodal and Gasieniec [1] considered
the problem for the case d = 1 in the standard unit-cost RAM model
with logarithmic word size, and presented a data structure of size O(mn)
words supporting 1-queries in O(m) memory accesses.

In this paper, we also consider the case d = 1. We give a scheme
proving the following result.

Theorem 1 In a cell probe model with word size m, a data structure
exists that achieves query time O(1) using space O(nlogm).

Translated to the bit probe model, this yields a query time O(m) and
space O(mnlogm) scheme. Our scheme improves the query time of Yao
and Yao by a factor O(loglogn). It is also simpler than the scheme given
by Yao and Yao in [11].

The model of computation we use is the cell probe model with word
size m defined in [10]. In this model, each word is assumed to be m
bits long. The space used by a scheme is measured as the number of
words used by the storing scheme. The query algorithm answers queries
by making adaptive cell probes and time is counted as the number of
cell probes made by the query algorithm. The bit probe model is a cell
probe model with word size 1.

2 The scheme

To describe our scheme, we will make use of the following results of
Fredman, Komlés and Szemeredi [4] and Schmidt and Siegel [9].

Theorem 2 (Fredman, Komlés, and Szemerédi) Given a set S of
n binary strings each of m bits in a cell probe model with word size m,
there exists a data structure using O(n) cells that supports membership
queries of S in time O(1).

In the following we refer to the data structure of Fredman, Komlos,
and Szemerédi as a FKS data structure.

Definition 1 A function h : {0,1,...,¢ — 1} — {0,1,...,k — 1} is
perfect for S C {0,1,...,0 — 1} if h is 1-1 on S. A family H is an
(¢, n, k)-family of perfect hash functions if for all S C{0,1,...,0—1} of
size n, there is an h € H that is perfect for S.

The question of representing efficiently families of perfect hash func-
tions is well studied. Schmidt and Siegel [9] proved the following result
in the standard RAM model augmented with multiplicative arithmetic.
In this model, a memory access of an O(m) bit word takes unit time.

Theorem 3 (Schmidt and Siegel) There is a (2™, n,O(n))-family of
perfect hash functions H such that any h € H can be represented in
O(n + logm) bits and evaluated in O(1) time.

Though we use the result of Schmidt and Siegel, we note that for our
purposes, it suffices to use the simpler scheme of Jacobs and van Emde
Boas [6] which requires O(nloglogn + logm) bits. Our scheme is based
on the following simple idea: If the query string exactly matches with
one of the strings in .5, then a FKS data structure can be used to check
this efficiently. If the query string differs from some string in S by a
single bit, then it is sufficient to find such a bit position. We use the
Schmidt-Siegel scheme to do this. Given the bit position, we can then
flip this bit in the query string and use the FKS data structure for an
exact search to verify that the query is within Hamming distance 1 of a
string in S.

Let N(S) denote the set of all strings at Hamming distance one of
a string in S. Note that |[N(S)| < mn. For any string € N(5), we
denote by index(z), the position of the bit that was flipped in a string
from S to obtain z. If there is more than one choice for indesz(x), we
choose one arbitrarily.

Storing scheme for a set S.

1. Construct a FKS data structure for S.

2. Using the Schmidt-Siegel scheme (Theorem 3), construct a perfect
hash function h for N(S) and store h.

3. Construct a look-up table T" of size O(]N(S)|) where each entry is
[logm] bits. For x € N(S), let T'|h[z]] = index(z).

Query scheme for a query string q.

1.

Check if ¢ € S using the FKS data structure for S. If ¢ € S,
report yes.

Otherwise, evaluate h(q) and let i = T'[h(q)].

. Flip the ith bit of ¢ and report yes if the new string is in S using

the FKS structure for S. Otherwise report no.

That the scheme works correctly follows from the discussion above.
From Theorem 2 and Theorem 3 it follows that in a cell probe model
with word size m, the scheme described above uses O(nlogm) cells, and
answers queries in O(1) cell probes, and Theorem 1 follows.

References

[1]

G. S. Brodal and L. Gasieniec. Approximate dictionary queries. In
Proc. Tth Combinatorial Pattern Matching, volume 1075 of Lecture
Notes in Computer Science, pages 65-74. Springer Verlag, Berlin,
1996.

D. Dolev, Y. Harari, N. Linial, N. Nisan, and M. Parnas. Neigh-
borhood preserving hashing and approximate queries. In Proc.
5th ACM-SIAM Symposium on Discrete Algorithms, pages 251-259,
1994.

D. Dolev, Y. Harari, and M. Parnas. Finding the neighborhood of
a query in a dictionary. In Proc. 2nd Israel Symposium on Theory
of Computing and Systems, pages 33-42, 1993.

M. L. Fredman, J. Komlés, and E. Szemerédi. Storing a sparse
table with O(1) worst case access time. Journal of the Association
for Computing Machinery, 31(3):538-544, 1984.

D. Greene, M. Parnas, and F. Yao. Multi-index hashing for infor-
mation retrieval. In Proceedings of the 35th Annual Symposium on
Foundations of Computer Science, pages 722-731. IEEE Computer
Society Press, 1994.

C. T. M. Jacobs and P. van Emde Boas. Two results on Tables.
Information Processing Letters, 22(1):43-48, 1986.

[7]

[10]

[11]

U. Manber and S. Wu. An algorithm for approximate membership
checking with application to password security. Information Pro-
cessing Letters, 50(4):191-197, 1994.

M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge,
Mass., 1969.

J. P. Schmidt and A. Siegel. The spatial complexity of oblivious k-
probe hash functions. SIAM Journal on Computing, 19(5):775-786,
1990.

A. C. C. Yao. Should tables be sorted? Journal of the ACM,
28(3):615-628, 1981.

A. C. Yao and F. F. Yao. Dictionary look-up with one error. Journal
of Algorithms, 25(1):194-202, 1997.

Recent BRICS Report Series Publications

RS-99-50 Gerth Stglting Brodal and Srinivasan Venkatesh. Improved
Bounds for Dictionary Look-up with One Error December
1999. 5 pp.

RS-99-49 Alexander A. Ageev and Maxim |. Sviridenko An Approxima-
tion Algorithm for Hypergraph Max k-Cut with Given Sizes of
Parts December 1999. 12 pp.

RS-99-48 Rasmus Pagh.Faster Deterministic Dictionaries December
1999. 14 pp. To appear inThe Eleventh Annual ACM-SIAM
Symposium on Discrete AlgorithmsSODA '00 Proceedings,
2000.

RS-99-47 Peter Bro Miltersen and Vinodchandran N. Variyam. Deran-
domizing Arthur-Merlin Games using Hitting Sets December
1999. 21 pp. Appears in Beame, editod40th Annual Sympo-
sium on Foundations of Computer Scienc€OCS '99 Proceed-
ings, 1999, pages 71-80.

RS-99-46 Peter Bro Miltersen, Vinodchandran N. Variyam, and Osamu
Watanabe. Super-Polynomial Versus Half-Exponential Circuit
Size in the Exponential Hierarchy December 1999. 14 pp.
Appears in Asano, Imai, Lee, Nakano and Tokuyama, editors,
Computing and Combinatorics: 5th Annual International Con-
ference COCOON '99 Proceedings, LNCS 1627, 1999, pages
210-220.

RS-99-45 Torben Amtoft. Partial Evaluation for Designing Efficient
Algorithms—A Case StudyDecember 1999.

