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Improved Bounds for Dictionary Look-up
with One Error

Gerth Stglting Brodal* Srinivasan Venkatesh'

December, 1999

Abstract

Given a dictionary S of n binary strings each of length m,
we consider the problem of designing a data structure for S that
supports d-queries; given a binary query string g of length m, a
d-query reports if there exists a string in S within Hamming dis-
tance d of q. We construct a data structure for the case d = 1, that
requires space O(nlogm) and has query time O(1) in a cell probe
model with word size m. This generalizes and improves the pre-
vious bounds of Yao and Yao for the problem in the bit probe
model.

Keywords: Data Structures, Dictionaries, Hashing, Hamming Distance

1 Introduction

Minsky and Papert in 1969 posed the following problem, that has re-
mained a challenge in data structure design [8].

Let S be a set of n binary strings of length m each. We
want to construct a data structure for S that supports fast
d-queries; that is, given a binary query string ¢, determine if
there is a string in S within Hamming distance d of q.
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To date, no efficient solutions are known for this problem for arbitrary
n,m and d. Dolev et al. [2, 3] and Greene, Parnas and Yao [5] made
some progress on the problem for the case when d is large. Manber and
Wu [7] considered applications to password security and spellchecking of
large files.

The theoretical study of the problem for small d was started by Yao
and Yao [11], who considered the case d = 1 and presented a scheme
in the bit probe model that uses space O(mnlogm) bits and queries
requiring O(m loglogn) bit probes. Brodal and Gasieniec [1] considered
the problem for the case d = 1 in the standard unit-cost RAM model
with logarithmic word size, and presented a data structure of size O(mn)
words supporting 1-queries in O(m) memory accesses.

In this paper, we also consider the case d = 1. We give a scheme
proving the following result.

Theorem 1 In a cell probe model with word size m, a data structure
exists that achieves query time O(1) using space O(nlogm).

Translated to the bit probe model, this yields a query time O(m) and
space O(mnlogm) scheme. Our scheme improves the query time of Yao
and Yao by a factor O(loglogn). It is also simpler than the scheme given
by Yao and Yao in [11].

The model of computation we use is the cell probe model with word
size m defined in [10]. In this model, each word is assumed to be m
bits long. The space used by a scheme is measured as the number of
words used by the storing scheme. The query algorithm answers queries
by making adaptive cell probes and time is counted as the number of
cell probes made by the query algorithm. The bit probe model is a cell
probe model with word size 1.

2 The scheme

To describe our scheme, we will make use of the following results of
Fredman, Komlés and Szemeredi [4] and Schmidt and Siegel [9].

Theorem 2 (Fredman, Komlés, and Szemerédi) Given a set S of
n binary strings each of m bits in a cell probe model with word size m,
there exists a data structure using O(n) cells that supports membership
queries of S in time O(1).



In the following we refer to the data structure of Fredman, Komlos,
and Szemerédi as a FKS data structure.

Definition 1 A function h : {0,1,...,¢ — 1} — {0,1,...,k — 1} is
perfect for S C {0,1,...,0 — 1} if h is 1-1 on S. A family H is an
(¢, n, k)-family of perfect hash functions if for all S C{0,1,...,0—1} of
size n, there is an h € H that is perfect for S.

The question of representing efficiently families of perfect hash func-
tions is well studied. Schmidt and Siegel [9] proved the following result
in the standard RAM model augmented with multiplicative arithmetic.
In this model, a memory access of an O(m) bit word takes unit time.

Theorem 3 (Schmidt and Siegel) There is a (2™, n,O(n))-family of
perfect hash functions H such that any h € H can be represented in
O(n + logm) bits and evaluated in O(1) time.

Though we use the result of Schmidt and Siegel, we note that for our
purposes, it suffices to use the simpler scheme of Jacobs and van Emde
Boas [6] which requires O(nloglogn + logm) bits. Our scheme is based
on the following simple idea: If the query string exactly matches with
one of the strings in .5, then a FKS data structure can be used to check
this efficiently. If the query string differs from some string in S by a
single bit, then it is sufficient to find such a bit position. We use the
Schmidt-Siegel scheme to do this. Given the bit position, we can then
flip this bit in the query string and use the FKS data structure for an
exact search to verify that the query is within Hamming distance 1 of a
string in S.

Let N(S) denote the set of all strings at Hamming distance one of
a string in S. Note that |[N(S)| < mn. For any string € N(5), we
denote by index(z), the position of the bit that was flipped in a string
from S to obtain z. If there is more than one choice for indesz(x), we
choose one arbitrarily.

Storing scheme for a set S.

1. Construct a FKS data structure for S.

2. Using the Schmidt-Siegel scheme (Theorem 3), construct a perfect
hash function h for N(S) and store h.

3. Construct a look-up table T" of size O(]N(S)|) where each entry is
[logm] bits. For x € N(S), let T'|h[z]] = index(z).



Query scheme for a query string q.

1.

Check if ¢ € S using the FKS data structure for S. If ¢ € S,
report yes.

Otherwise, evaluate h(q) and let i = T'[h(q)].

. Flip the ith bit of ¢ and report yes if the new string is in S using

the FKS structure for S. Otherwise report no.

That the scheme works correctly follows from the discussion above.
From Theorem 2 and Theorem 3 it follows that in a cell probe model
with word size m, the scheme described above uses O(nlogm) cells, and
answers queries in O(1) cell probes, and Theorem 1 follows.
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