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1 Introduction

Probably most of the recent striking breakthroughs in designing approxima-
tion algorithms with provable performance guarantees are due to using novel
methods of rounding polynomially solvable fractional relaxations. Applica-
bility of the known rounding methods is highly dependent on the type of the
constraints in such relaxations. In [1] the authors presented a new rounding
( pipage) method especially oriented to tackle some NP-hard problems which
can be equivalently reformulated as integer programs with cardinality or a bit
more general constraints. The paper [1] contains four results demonstrating
the strength of the pipage rounding. One of them is an 1/2-approximation
algorithm for Max k-Cut with given sizes of parts. An instance of this prob-
lem consists of an undirected graph G = (V,E), a collection of nonnegative
weights we associated with its edges and k positive integers p1, p2, . . . , pk

such that
∑k

i=1 pi = |V |. It is required to find a partition of V into k parts
V1, V2, . . . , Vk with each part Vi having size pi so as to maximize the total
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weight of edges whose ends lie in different parts of the partition. The Max
Cut and Max k-Cut problems are classical in combinatorial optimization and
have been extensively studied in the absence of cardinality constraints. The
best known approximation algorithm for Max Cut is due to Goemans and
Williamson [8] and has performance guarantee of 0.878. Frieze and Jerrum
[7] extended the technique of Goemans and Williamson to Max k-Cut and
designed a (1−1/k+2 ln k/k2)-approximation algorithm. Few approximation
algorithms are known for some special cases of Max k-Cut with given sizes
of parts. In particular, Frieze and Jerrum [7] present an 0.65-approximation
algorithm for Max Bisection (in this problem k = 2 and p1 = p2 = |V |/2).
Very recently, Ye [9] announced an algorithm with a better performance guar-
antee of 0.699. The best known approximation algorithm for Max k-Section
(in this problem p1 = · · · = pk = |V |/k) is due to Andersson [2] and has
performance guarantee of 1 − 1/k + Θ(1/k3). In this paper we consider a
natural hypergraph generalization of Max k-Cut with given sizes of parts
— Hypergraph Max k-Cut with given sizes of parts (HMkC for short). An
instance of HMkC consists of a hypergraph H = (V,E), a collection of non-
negative weights wS on its edges S, and k positive integers p1, . . . , pk such
that

∑k
i=1 pi = |V |. It is required to partition the vertex set V into k parts

(X1, . . . , Xk) with |Xi| = pi for each i, so as to maximize the total weight
of edges of H not lying wholly in any part of the partition (that is, to max-
imize the total weight of edges S such that S \Xi 6= ∅ for each i). Several
closely related versions of Hypergraph Max k-Cut were studied in the liter-
ature but very few results have been obtained. Andersson and Engebretsen
[3] presented an 0.72-approximation algorithm for the ordinary Hypergraph
Max Cut problem. Arora, Karger and Karpinski [4] designed a PTAS for
dense instances of this problem (i.e. in the case of hypergraphs H having
Θ(|V (H)|d) edges) under the condition that |S| ≤ d for each edge S and
some constant d.

In this paper by applying the pipage rounding method we prove that
HMkC can be approximated within a factor of min{λ|S| : S ∈ E} of the
optimum where λr = 1− (1−1/r)r − (1/r)r. By direct calculations it easy to
get some specific values of λr: λ2 = 1/2, λ3 = 2/3 ≈ 0.666, λ4 = 87/128 ≈
0.679, λ5 = 84/125 = 0.672, λ6 ≈ 0.665 and so on. It is clear that λr tends
to 1 − e−1 ≈ 0.632 as r → ∞. A less trivial fact is that λr > 1 − e−1 for
each r ≥ 3 (Lemma 2 in this paper). Adding up we arrive at the following
conclusions: our algorithm finds a feasible cut of weight within a factor of
1/2 on general hypergraphs (we assume that each edge in a hypergraph has
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size at least 2), and within a factor of 1 − e−1 in the case when each edge
has size at least 3. Note that the first bound coincides with that we obtained
in [1] for the case of graphs. In this paper we also show that in the case
of hypergraphs without two-vertex edges the bound of 1 − e−1 cannot be
improved unless P=NP.

2 Pipage rounding: a general scheme

We begin with a description of the pipage rounding method [1] in the case
of a slightly more general constraints.

Assume that a problem P can be reformulated as the following nonlinear
binary program:

max F (x11, . . . , xnk) (1)

s. t.

n∑
i=1

xit = pt, t = 1, . . . , k, (2)

k∑
t=1

xit = 1, i = 1, . . . , n, (3)

xit ∈ {0, 1}, t = 1, . . . , k, i = 1, . . . , n (4)

where p1, p2, . . . , pk are positive integers such that
∑

t pt = n, F (x) is a
function defined on the rational points x = (xit) of the n × k-dimensional
cube [0, 1]n×k and computable in polynomial time. Assume further that
one can associate with F (x) another function L(x) which is defined and
polynomially computable on the same set, coincides with F (x) on binary x
satisfying (2)–(3), and the program (which we call a nice relaxation)

max L(x) (5)

s. t.

n∑
i=1

xit = pt, t = 1, . . . , k, (6)

k∑
t=1

xit = 1, i = 1, . . . , n, (7)

0 ≤ xit ≤ 1, t = 1, . . . , k, i = 1, . . . , n (8)

is polynomially solvable. Assume next that the following two main conditions
hold. The first — F/L-lowerbound condition — states: there exists C > 0
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such that F (x)/L(x) ≥ C for each x ∈ [0, 1]n×k. To formulate the second —
ε-convexity condition — we need a description of the so-called pipage step.

Let x be a feasible solution to (5)–(8). Define the bipartite graph H with
the bipartition ({1, . . . , n}, {1, . . . , k}) so that jt ∈ E(H) if and only if xjt

is fractional. Note that (6) and (7) imply that each vertex of H is either
isolated or has degree at least 2. Assume that x has fractional components.
Since H is bipartite it follows that H has a cycle C of even length. Let M1

and M2 be the matchings of H whose union is the cycle C. Define a new
solution x(ε) by the following rule: if jt is not an edge of C, then xjt(ε)
coincides with xjt, otherwise, xjt(ε) = xjt + ε if jt ∈M1, and xjt(ε) = xjt − ε
if jt ∈M2.

By definition x(ε) is a feasible solution to the linear relaxation of (5)–(8)
for all ε ∈ [−ε1, ε2] where

ε1 = min{ min
jt∈M1

xjt, min
jt∈M2

(1 − xjt)}

and
ε2 = min{ min

jt∈M1

(1 − xjt), min
jt∈M2

xjt}.
The ε-convexity condition states that for each feasible x and each cycle C

in the graph H , ϕ(ε) = F (x(ε)) is a convex function on the above interval.
Under the above assumptions we claim that there exists a polynomial-

time C-approximation algorithm for solving P. Indeed, since the function
ϕ(ε) = F (x(ε)) is convex,

F (x(ε∗)) ≥ F (x) ≥ CL(x)

for some ε∗ ∈ {−ε1, ε2}. The new solution x(ε∗), being feasible for (5)–(8),
has a smaller number of fractional components. Set x′ = x(ε∗) and, if x′ has
fractional components, apply to x′ the above described pipage step and so
on. Ultimately, after at most nk steps, we arrive at a solution x̃ which is
feasible for (1)–(4) and satisfies

F (x̃) ≥ CL(x) ≥ CF ∗

where F ∗ is an optimal value of (1)–(4) (and of the original problem P ).
Thus we obtain a C-approximation algorithm for P .
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3 Pipage rounding: Hypergraph Max k-Cut

with given sizes of parts

It is easy to see that an instance of HMkC can be reformulated as the fol-
lowing (nonlinear) integer program:

max F (x) =
∑
S∈E

wS

(
1 −

k∑
t=1

∏
i∈S

xit

)
(9)

s. t.
k∑

t=1

xit = 1, for each i, (10)

n∑
i=1

xit = pt , for all t, (11)

xit ∈ {0, 1}, for each i and t. (12)

The equivalence is shown by the one-to-one correspondence between optimal
solutions to the above program and optimal k-cuts {X1, . . . , Xk} of instance
of HMkC defined by the relation “xit = 1 if and only if i ∈ Xt”.

We claim that for each feasible x and each cycle C in the graph H (for
definitions, see Section 2) the function ϕ(ε) = F (x(ε)) is a quadratic polyno-
mial with a nonnegative main coefficient. Indeed, observe that each product∏

i∈S xit(ε) contains at most two modified variables. Assume that a product∏
i∈S xit(ε) contains exactly two such variables xi1t(ε) and xi2t(ε). Then they

may have only one of the following forms: either xi1t+ε and xi2t−ε or xi1t−ε
and xi2t+ε, respectively. In either case ε2 has a nonnegative coefficient in the
term corresponding to the product. Thus the ε-convexity condition holds.

As a nice relaxation we consider the following linear program:
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max
∑
S∈E

wSzS (13)

s. t. zS ≤ |S| −
∑
i∈S

xit for each S ∈ E, (14)

k∑
t=1

xit = 1 for each i, (15)

n∑
i=1

xit = pt for each t, (16)

0 ≤ xit ≤ 1 for each i and each t, (17)

0 ≤ zS ≤ 1 for each S ∈ E. (18)

It is easy to see that, given a feasible matrix x, the optimal values of zS

in the above program can be determined by simple formulas. Using this
observation we can exclude the variables zS and rewrite (13)–(18) in the
following equivalent way:

max L(x) =
∑
S∈E

wS min{1,min
t

(|S| −
∑
i∈S

xit)} (19)

subject to (15)–(17). Note that F (x) = L(x) for each x satisfying (10)–(12).
For any r ≥ 1, set λr = 1 − (1 − 1/r)r − (1/r)r.

Lemma 1. Let x = (xit) be a feasible solution to (19),(15)–(17) and S ∈ E.
Then (

1 −
k∑

t=1

∏
i∈S

xit

) ≥ λ|S| min{1,min
t

(|S| −
∑
i∈S

xit)}.

Proof. Let zS = min{1,mint(|S| −
∑

i∈S xit)}. Define qS and t′ by the equal-
ities

qS = max
t

∑
i∈S

xit =
∑
i∈S

xit′ .

Note that

zS = min{1, |S| − qS}. (20)
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Using the arithmetic-geometric mean inequality and the fact that

k∑
t=1

∑
i∈S

xit = |S|

we obtain that

1 −
k∑

t=1

∏
i∈S

xit = 1 −
∏
i∈S

xit′ −
∑
t6=t′

∏
i∈S

xit

≥ 1 −
(∑

i∈S xit′

|S|
)|S|

−
∑
t6=t′

(∑
i∈S xit

|S|
)|S|

≥ 1 −
( qS
|S|

)|S|
−

(∑
t6=t′

∑
i∈S xit

|S|
)|S|

= 1 −
( qS
|S|

)|S|
−

( |S| − ∑
i∈S xit′

|S|
)|S|

= 1 −
( qS
|S|

)|S|
−

(
1 − qS

|S|
)|S|

. (21)

Let ψ(y) = 1 −
(
1 − y

|S|

)|S|
−

(
y
|S|

)|S|
.

Case 1. |S| − 1 ≤ qS ≤ |S|. Then by (20), zS = |S| − qS and by (21),

1 −
k∑

t=1

∏
i∈S

xit ≥ 1 −
(
1 − zS

|S|
)|S|

−
( zS

|S|
)|S|

.

Since the function ψ is concave and ψ(0) = 0, ψ(1) = λ|S|, it follows that

1 −
k∑

t=1

∏
i∈S

xit ≥ λ|S|zS.

Case 2. 1 ≤ qS ≤ |S| − 1. Here zS = 1. Since ψ(y) is concave and ψ(1) =
ψ(|S| − 1) = λ|S|,

1 −
k∑

t=1

∏
i∈S

xit ≥ λ|S|.
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Case 3. 0 ≤ qS ≤ 1. Again, zS = 1. Let µt =
∑

i∈S xit for each t. Note that,
by the assumption of the case,

0 ≤ µt ≤ 1, (22)

and, moreover,

k∑
t=1

µt = |S|. (23)

By the arithmetic-geometric mean inequality it follows that

k∑
t=1

∏
i∈S

xit ≤
k∑

t=1

( µt

|S|
)|S|

(by (22)) ≤ |S|−|S|
k∑

t=1

µt

(by (23)) = |S|−|S||S|.
Consequently,

1 −
k∑

t=1

∏
i∈S

xit ≥ 1 − |S|
( 1

|S|
)|S|

= 1 −
( 1

|S|
)|S|

− (|S| − 1)
( 1

|S|
)|S|

≥ 1 −
( 1

|S|
)|S|

− (|S| − 1)|S|
( 1

|S|
)|S|

= λ|S|.

Corollary 1. Let x = (xit) be a feasible solution to (19),(15)–(17). Then

F (x) ≥ (min
S∈E

λ|S|)L(x).

The corollary states that the F/L-lowerbound condition holds with C =
minS∈E λ|S| and thus, by applying the pipage rounding we obtain an al-
gorithm which finds a feasible k-cut whose weight is within a factor of
minS∈E λ|S| of the optimum.

Note that λ2 = 1/2.
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Lemma 2. For any r ≥ 3,

λr > 1 − e−1.

Proof. We first deduce it from the following stronger inequality:

(
1 − 1

r

)r

< e−1
(
1 − 1

2r

)
for all r ≥ 1. (24)

Indeed, for any r ≥ 3,

λr = 1 − 1

rr
−

(
1 − 1

r

)r

> 1 − 1

rr
− e−1

(
1 − 1

2r

)

= 1 − e−1 +
1

r

(e−1

2
− 1

rr−1

)
> 1 − e−1.

To prove (24), by taking natural logarithm of both sides of (24) rewrite it in
the following equivalent form:

1 + r ln(1 − 1

r
) < ln(1 − 1

2r
) for all r ≥ 1.

Using the Taylor series expansion

ln(1 − σ) = −
∞∑
i=1

σi

i

we obtain that for each r = 1, 2, . . . ,

1 + r ln
(
1 − 1

r

)
= 1 + r

( − 1

r
− 1

2r2
− 1

3r3
− . . .

)

= − 1

2r
− 1

3r2
− 1

4r3
. . .

< − 1

2r
− 1

2(2r)2
− 1

3(2r)3
. . .

= ln(1 − 1

2r
),

as required.
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We now show that the integrality gap ratio for the relaxation (15)–(18)
can be arbitrarily close to λr in the case of r-uniform hypergraphs. It follows
that there is no chance to get a better bound by applying any rounding
method to this relaxation.

Indeed, consider the following instance: the complete r-uniform hyper-
graph on n = rq vertices, k = 2, wS = 1 for all S ∈ E, p1 = q and p2 = n−q.
It is clear that any feasible cut in this hypergraph has weight

Cr
n − Cr

q − Cr
n−q.

Consider the feasible solution to (15)–(18) in which

xi1 = 1/r and xi2 = 1 − 1/r for each i.

The weight of this solution is equal to Cr
n since for each edge S we have

r −
∑
i∈S

xi1 ≥ r −
∑
i∈S

xi2 = 1

and therefore zS = 1 for all S ∈ E. Thus the integrality gap ratio for this
instance is at most

Cr
n − Cr

q − Cr
n−q

Cr
n

= 1 − q!(n− r)!

(q − r)!n!
− (n− q)!(n− r)!

(n− q − r)!n!

≤ 1 − q!

(q − r)!nr
− (n− q)!

(n− q − r)!nr

≤ 1 − (q − r)r

nr
− (n− q − r)r

nr

= 1 −
(

1

r
− 1

q

)r

−
(

1 − 1

r
− 1

q

)r

,

which tends to λr as q → ∞.
We conclude the paper with a proof that the performance bound of 1−e−1

that our algorithm has on the class of hypergraphs in which each edge has
size at least 3, cannot be improved unless P = NP .

In the Maximum Coverage problem (MC for short), given a family F =
{Sj : j ∈ J} of subsets of a set I = {1, . . . , n} with associated nonnegative
weights wj and a positive integer p, it is required to find a subset X ⊆ I
(coverage) with |X| = p so as to maximize the total weight of the sets in F
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having nonempty intersections with X. It is well known that a simple greedy
algorithm solves MC approximately within a factor of 1−e−1 of the optimum
(Cornuejols, Fisher and Nemhauser [5]). Feige [6] proved that no polynomial
algorithm can have better performance guarantee provided that P 6=NP.

The proof consists in constructing a ratio preserving polynomial-time
reduction from MC to HMkC. Let a set I, a collection S1, . . . , Sm ⊆ I,
nonnegative weights (wj), and a positive number p form an instance A of
MC. Construct an instance B of HMkC as follows: I ′ = I ∪ {u1, . . . , um}
(assuming that I∩{u1, . . . , um} = ∅), (S ′

1 = S1∪{u1}, . . . , S ′
m = Sm∪{um}),

the same weights wj, and p1 = p, p2 = |I ′|−p. Let (X, I ′\X) be a maximum
weight cut in B with the sizes of parts p1 and p2. It is clear that its weight
is at least the weight of a maximum coverage in A. Thus it remains to
transform (X, I ′ \X) into a coverage of A with the same weight. If X ⊆ I,
we are done. Assume that X contains uj for some j. Then successively, for
each such j, replace uj in X by an arbitrary element in Sj which is not a
member of X, or if Sj ⊆ X, by an arbitrary element of I, which is not a
member of X. After this transformation and possibly including a few more
elements from I to get exactly p, we arrive at a coverage Y ⊆ I in A whose
weight is at least the weight of the cut (X, I ′ \X) in B, as required.

References

[1] A. A. Ageev and M. I. Sviridenko, Approximation algorithms for Maxi-
mum Coverage and Max Cut with given sizes of parts. Lecture Notes in
Computer Science (Proceedings of IPCO’99) 1610 (1999) 17–30.

[2] G. Andersson, An approximation algorithm for Max p-Section. Lecture
Notes in Computer Science (Proceedings of STACS’99) 1563 (1999) 237–
247

[3] G. Andersson and L. Engebretsen, Better approximation algorithms for
Set splitting and Not-All-Equal SAT. Inform. Process. Letters 65 (1998)
305–311.

[4] S. Arora, D. Karger, and M. Karpinski, Polynomial Time Approximation
Schemes for Dense Instances of NP-Hard Problems. Journal of Computer
and System Science 58 (1999) 193–210.

11



[5] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser, Location of bank
accounts to optimize float: an analytic study exact and approximate
algorithms. Management Science 23 (1977) 789–810.

[6] U. Feige, A threshold of lnn for approximating set cover. J. of ACM 45
(1998) 634–652.

[7] A. Frieze and M. Jerrum, Improved approximation algorithms for MAX
k-CUT and MAX BISECTION. Algorithmica 18 (1997) 67–81.

[8] M. X. Goemans and D. P. Williamson, Improved Approximation Algo-
rithms for Maximum Cut and Satisfiability Problems Using Semidefinite
Programming. J. of ACM (1995) 42, 1115–1145.

[9] Y. Ye, A 0.699-approximation algorithm for Max-Bisection, (1999)
manuscript.

12



Recent BRICS Report Series Publications

RS-99-49 Alexander A. Ageev and Maxim I. Sviridenko.An Approxima-
tion Algorithm for Hypergraph Maxk-Cut with Given Sizes of
Parts. December 1999. 12 pp.

RS-99-48 Rasmus Pagh.Faster Deterministic Dictionaries. December
1999. 14 pp. To appear inThe Eleventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’00 Proceedings,
2000.

RS-99-47 Peter Bro Miltersen and Vinodchandran N. Variyam. Deran-
domizing Arthur-Merlin Games using Hitting Sets. December
1999. 21 pp. Appears in Beame, editor,40th Annual Sympo-
sium on Foundations of Computer Science, FOCS ’99 Proceed-
ings, 1999, pages 71–80.

RS-99-46 Peter Bro Miltersen, Vinodchandran N. Variyam, and Osamu
Watanabe. Super-Polynomial Versus Half-Exponential Circuit
Size in the Exponential Hierarchy. December 1999. 14 pp.
Appears in Asano, Imai, Lee, Nakano and Tokuyama, editors,
Computing and Combinatorics: 5th Annual International Con-
ference, COCOON ’99 Proceedings, LNCS 1627, 1999, pages
210–220.

RS-99-45 Torben Amtoft. Partial Evaluation for Designing Efficient
Algorithms—A Case Study. December 1999.
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