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Abstract
We prove that AM (and hence Graph Nonisomorphism) is in NP

if for some ε > 0, some language in NE ∩ coNE requires nondeter-
ministic circuits of size 2εn. This improves recent results of Arvind
and Köbler and of Klivans and Van Melkebeek who proved the same
conclusion, but under stronger hardness assumptions, namely, either
the existence of a language in NE ∩ coNE which cannot be approxi-
mated by nondeterministic circuits of size less than 2εn or the existence
of a language in NE ∩ coNE which requires oracle circuits of size 2εn

with oracle gates for SAT (satisfiability).
The previous results on derandomizing AM were based on pseudo-

random generators. In contrast, our approach is based on a strength-
ening of Andreev, Clementi and Rolim’s hitting set approach to deran-
domization. As a spin-off, we show that this approach is strong enough
to give an easy (if the existence of explicit dispersers can be assumed
known) proof of the following implication: For some ε > 0, if there is
a language in E which requires nondeterministic circuits of size 2εn,
then P=BPP. This differs from Impagliazzo and Wigderson’s theo-
rem “only” by replacing deterministic circuits with nondeterministic
ones.

∗Basic Research in Computer Science,
Centre of the Danish National Research Foundation.



1 Introduction

Using hardness for simulating randomness has been a fundamental idea in
complexity theory. The main objective is to find nontrivial deterministic
simulations of an entire class of randomized algorithms (rather than just a
specific one) under certain complexity theoretic hardness assumptions. Typi-
cally the assumptions are in the form of the existence of functions in a uniform
complexity class (for example EXP) that cannot be computed or approxi-
mated by a certain non-uniform class (for example polynomial size circuits).
An early seminal result is the following result of Nisan and Wigderson that
was proved by constructing a pseudorandom generator.

Theorem 1 (Nisan-Wigderson) Let ε > 0 be any constant. If a language
L in E exists, so that any circuit of size 2εn agrees with the characteristic
function of L ∩ {0, 1}n on at most a 1

2
+ 2−εn fraction of {0, 1}n, for all

sufficiently large n, then P = BPP.

The hardness assumption in Theorem 1 is “average-case” rather than
worst case. Substantial research has been done in order to remedy this and
arguably the most remarkable result is a theorem due to Impagliazzo and
Wigderson [IW97]. They showed in 1996 the following improvement of The-
orem 1.

Theorem 2 (Impagliazzo-Wigderson) Let ε > 0 be any constant. If a
language L in E exists so that L ∩ {0, 1}n has circuit complexity at least 2εn

for all sufficiently large n, then P=BPP.

The proof of this theorem is technical and is built on the results of many
earlier papers, including [BM84, Yao82, NW94, GL89, BFNW93, Imp95].

Although much research has gone into derandomizing BPP and RP, de-
randomization of classes like AM has received attention only recently. The
class AM was defined, by Babai and Babai and Moran in [Bab85, BM88],
as a natural randomized (and interactive) version of the class NP. A num-
ber of natural computational problems have been shown to be in AM but
are not known to be in NP [Bab85, BM88, GMW91, GS89, Bab92]. Most
have a group theoretic flavor. The most celebrated one among them is the
Graph Nonisomorphism problem. A complete derandomization of AM (that
is, a proof of the statement AM=NP) would immediately give polynomial
size membership proofs for positive instances of Graph Nonisomorphism. In
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contrast, the lengths of the shortest proofs known, without any assumptions,
are exponential in the sizes of the graphs [BL83, BKL83].

In [AK97], Arvind and Köbler showed that the construction of [NW94]
can be extended to the nondeterministic setting to get pseudorandom gen-
erators which can be used to completely derandomize AM. As in the case
of [NW94], they needed an average-case hardness assumption in order to
construct the generator. To be precise, Arvind and Köbler show

Theorem 3 (Arvind-Köbler) Let ε > 0 be any constant. If a language
L in NE ∩ coNE exists1, so that any nondeterministic circuit of size 2εn

agrees with the characteristic function of L ∩ {0, 1}n on at most a 1
2

+ 2−εn

fraction of {0, 1}n, for all sufficiently large n, then AM = NP.

Recently, Klivans and Van Melkebeek [KvM99] constructed generators
for derandomizing AM under a worst-case hardness assumption. The main
observation they make is that the proof of Impagliazzo and Wigderson rela-
tivizes. This leads to the following theorem.

Theorem 4 (Klivans-Van Melkebeek) Let ε > 0 be any constant. If
a language L in NE ∩ coNE exists so that L ∩ {0, 1}n has oracle circuit
complexity at least 2εn for all sufficiently large n with oracle gates for SAT,
then AM=NP.

Here, oracle circuits are Boolean circuits which contain special gates
called oracle gates. These oracle gates are of unbounded fanin (but a gate of
fan-in r contributes size r to the circuit) and can be used for oracle access
to a language, in this case SAT. The output of the gate on a string x is 1 if
x ∈ SAT. Otherwise the output is 0.

Arvind and Köbler [AK97] and Van Melkebeek [vM98] asked whether
AM=NP follows from the existence of a language in NE∩coNE which
does not have subexponential nondeterministic circuit complexity. In this
paper, we answer this question affirmatively, proving the following theorem
which improves Theorem 3 as well as Theorem 4.

Theorem 5 Let ε > 0 be any constant. If a language L in NE ∩ coNE
exists so that L∩ {0, 1}n has SV-nondeterministic circuit complexity at least
2εn for all sufficiently large n, then AM=NP.

1Arvind and Köbler only state the theorem under the assumption L ∈ E, but their
proof easily generalizes.
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Here, an SV (single valued) nondeterministic circuit is a restriction of the
notion of a nondeterministic circuit: In an SV-nondeterministic circuit, there
are two output bits, the real output bit, and a flag, indicating whether the
computation has been correctly performed. On both positive and negative
instances, if the flag is on, the output bit should be correct, and for all
instances, there should be some setting of the nondeterministic choice bits
that make the flag turn on.

To see the difference between our result and the result of Klivans and
Van Melkebeek, we can informally say that SV-nondeterministic circuits of
the stated size form a non-uniform and exponential analogue of NP∩coNP,
while oracle circuits with SAT as oracle form a non-uniform and exponential
analogue of PNP.

Our approach to proving Theorem 5 is completely different from the tech-
niques of Arvind and Köbler and of Klivans and Van Melkebeek. Instead of
using pseudorandom generators, we use a strengthened version of the hitting
set generator approach to derandomization, due to Andreev, Clementi and
Rolim [ACR97]. They gave, independently and almost simultaneously to
Impagliazzo and Wigderson’s work, two different conditions, each implying
P=BPP. The conditions were much stronger than the hardness assumption
in the Impagliazzo-Wigderson theorem; one of them essentially stating that
there should be an algorithm operating in time polynomial in the size of its
output, which on input n, m outputs the truth table of a Boolean function f
from {0, 1}n to {0, 1}m with circuit complexity within a certain additive low
order term of the maximum possible.

Their proof had two parts. First it is shown that the stated condition
implies the existence of a certain hitting set generator (for definition of hitting
set, see Section 2). Then it is shown that the existence of such a generator
implies P=BPP (it is easy to show that it implies P=RP). The latter part
of the proof, i.e., the fact that the existence of the hitting set generator
is enough to show P=BPP was proved already by Andreev, Clementi and
Rolim in 1995 [ACR96b, ACR98]. Since then, the proof of this implication
was simplified enormously [ACRT97, BF99].

It was (and is still not) clear if the Andreev-Clementi-Rolim approach to
derandomization can be pushed to yield the Impagliazzo-Wigderson theorem.
However, in this paper, we show, by strengthening the first part of their proof,
that it can be pushed to yield the following statement.
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Theorem 6 Let ε > 0 be any constant. If there is a language L in E so
that L ∩ {0, 1}n has SV-nondeterministic circuit complexity at least 2εn for
all sufficiently large n then P= BPP.

Note that this differs from the Impagliazzo-Wigderson theorem “only” in
the assumption being about SV-nondeterministic circuits, rather than about
deterministic ones. But our proof is simpler than any known proof of the
Impagliazzo-Wigderson theorem [IW97, STV99].

Our main technical result is the following theorem, describing a procedure
for turning the truth table of a Boolean function with big circuit complexity
into a hitting set for circuits with very high acceptance probability (for precise
definitions of the terms in the theorem, we refer the reader to Section 2).

Theorem 7 For any constants ε > 0 and k ≥ q ≥ 2, there is a polynomial
time procedure with the following properties. Given as input the truth table of
a function f : {0, 1}m → {0, 1}, so that k divides m, it outputs a subset Hf of
{0, 1}n, where n = (2m/k)22m/k, so that for all f , if f cannot be computed by
SV-nondeterministic circuits of size less than 23(ε+q/k)m, then Hf is a hitting
set in {0, 1}n with threshold 1 − 2−n+nε

for co-nondeterministic circuits of
size nq.

The main ingredient we add to the techniques of Andreev, Clementi and
Rolim to prove Theorem 7 is to first replace f by its low degree exten-
sion [BFLS91]. An intuitive reason why this turns out to be useful is as
follows: The technique of Andreev, Clementi and Rolim is based on com-
pression in the form of hashing. As was previously noted by the first author
[Mil98], hashing becomes a much easier and cleaner operation when applied
to data, encoded in an error-correcting code. The low degree extension per-
forms such an encoding for us. This essentially enables us to compress a
multidimensional object along all dimensions, rather than just compressing
a two-dimensional object along one dimension, as done by Andreev, Clementi
and Rolim. It is interesting to note that making a low degree extension is
also the first step in the Impagliazzo-Wigderson generator. However, the
central fact about the extension they use (and which is used in general in
the constructions of pseudorandom generators) is that it yields a locally de-
codable error correcting code. Essentially, we only use that it yields an error
correcting code and need not concern ourselves with decoding.
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While the above intuition was useful for coming up with the proof of
Theorem 7, the self-contained proof we present in Section 3 is quite short
and the above intuition should not be necessary for understanding it.

Having proven Theorem 7, we combine it with a variation of a lemma
from [ACR96a] (Lemma 12 of the present paper), and prove

Corollary 8 For any constant τ > 0, there is a constant γ > 0 so that the
following holds. There is a deterministic polynomial time procedure which,
given as input the truth table of a Boolean function f : {0, 1}m → {0, 1} (i.e.,
2m bits) with SV-nondeterministic circuit complexity at least 2τm, outputs a
hitting set in {0, 1}n with threshold 1

2
for co-nondeterministic circuits of size

n, where n = d2γme.
This corollary then immediately implies Theorem 5. To prove Theorem 6,
we use the result of [ACR98] as simplified by [ACRT97, BF99], stating that
the hitting set generator of Corollary 8 derandomizes BPP.

The proof of the lemma of [ACR96a] uses the existence of explicit dis-
persers. The first construction of explicit dispersers with the necessary pa-
rameters were by Saks, Srinivasan and Zhou [SSZ95]. The simplest to date
is by Trevisan [Tre99]; so to get the simplest possible self-contained proof of
Theorem 5 and 6 one should use Trevisan’s construction. His construction
actually yields an extractor, a stronger notion than a disperser. However, we
would like to emphasise that explicit dispersers are sufficient for our proof,
as it is conceivable that the future will bring (even) simpler constructions of
explicit dispersers which may not be extractors.

The existence of explicit dispersers is the only moderately heavy tool we
have to bring in to prove Theorems 5 and 6. But, we would like to point
out that any relativizable proof of Corollary 8 (such as ours) has to use the
existence of explicit dispersers. Indeed, any algorithm with the property of
Corollary 8 itself defines a disperser. In short: Any relativizable worst case
hardness-based hitting set generator defines a disperser. The truth of this
statement can be seen by arguing along the lines of [Tre99], where the anal-
ogous statement Any relativizable worst case hardness-based pseudorandom
generator defines an extractor is implicitly established. We make the formal
statement of the hitting set/disperser correspondence with a self-contained
proof as Theorem 17 in Section 5.

The fact that relativizable hitting set generators are dispersers gives an
alternate way of viewing Theorem 7: It is a shell we can put before any
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disperser. It will preserve the disperser property (with slightly weaker pa-
rameters) but also strengthen the disperser so that it obtains the properties
of a relativizable hitting set generator. Thus, while Theorem 17 tells us that
every relativizable hitting set generator is an explicit disperser, Theorem 7
tells us that every explicit disperser can be easily converted into a relativiz-
able hitting set generator.

2 Terminology and Preliminary Results

Lower case Greek letters denote rational constants between 0 and 1. The
symbol log denotes log2.

Complexity classes

We assume standard textbook [BDG90, Pap94] complexity theoretic notation
and definitions, such as the definitions of standard complexity classes like P,
NP, E, NE, and BPP. Here we only give the definition of the class AM.

A language L is defined2 to be in AM if there is a language L′ ∈ P and
a polynomial p, so that for all x ∈ {0, 1}n,

x ∈ L ⇒ Pr
y∈{0,1}p(n)

(∃z ∈ {0, 1}p(n) (x, y, z) ∈ L′) = 1

x 6∈ L ⇒ Pr
y∈{0,1}p(n)

(∃z ∈ {0, 1}p(n) (x, y, z) ∈ L′) ≤ 1

2

An SVNP-procedure (SV meaning Single Valued [Sel96]) computing a
function f is a polynomial time nondeterministic procedure, so that every
computation path on input x either produces f(x) or rejects. Furthermore,
at least one computation path must produce f(x).

Circuits

A nondeterministic Boolean circuit C contains, in addition to AND, OR and
NOT gates, choice-gates of fan-in 0. The circuit evaluates to 1 on an input
x, and we say that C(x) = 1, if there is some assignment of truth values to

2The original definition in [Bab85] of AM is a two-sided error version. But it is shown
in [FGM+89] that this definition is equivalent to the one-sided error version, which we
give here.
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the choice-gates that makes the circuit evaluate to 1. Otherwise C(x) = 0. A
co-nondeterministic circuit C is defined similarly: The circuit evaluates to 0
on an input x, and we say that C(x) = 0, if there is some assignment of truth
values to the choice-gates that makes the circuit evaluate to 0. Otherwise
C(x) = 1.

Similarly, an SV-nondeterministic circuit C computing a function f has,
in addition to its usual output, an extra output bit, called the flag. For
any input x, and any setting of the choice-gates, if the flag is on, the circuit
should output the correct value of f(x). Furthermore, for any x, there should
be some setting of the choice-gates that turn the flag on. It is easy to see
that a Boolean function f has an SV-nondeterministic circuit of size O(s(n))
if and only if f has a nondeterministic circuit of size O(s(n)) and a co-
nondeterministic circuit of size O(s(n)).

Oracle circuits [Wil85] are Boolean circuits with special gates called oracle
gates. These oracle gates can be of arbitrary fanin, though a gate of fan-in r
contributes size r to the circuit, and can be used for oracle access to a fixed
language, say L. The output of the gate on a string x is 1 if x ∈ L, otherwise
the output is 0. Nondeterministic and SV-nondeterministic oracle circuits
are defined by combining the above definitions in the obvious way.

Dispersers

For the purposes of this paper (there are more parameters in the general
definition), a disperser with threshold t is a bipartite graph G = (U, V, E)
such that, for any subset S ⊆ U with |S| ≥ t, more than half the vertices of
V are adjacent to S.

Also, for the purposes of this paper, for constants ε, δ > 0 and k ≥ 1, an
explicit (ε, δ)-disperser is a family of dispersers Gn = (Un, Vn, En), n = 1, 2, . . .
with |Un| = {0, 1}n, |Vn| = {0, 1}dnδe, and threshold tn = 2nε

so that there is a
deterministic polynomial time algorithm which on input x ∈ Un enumerates
the vertices in Vn adjacent to x (in particular, the outdegree of every x ∈ Un

must be polynomial).
The first construction of explicit dispersers was given by Saks, Srinivasan

and Zhou in [SSZ95]. A construction with better parameters was given by
Ta-Shma [TS98] and a simpler one was given by Trevisan in [Tre99]. For
the theorem below, the original result by Saks, Srinivasan and Zhou suffices,
though the proof by Trevisan is easier.
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Theorem 9 (Saks-Srinivasan-Zhou) For any ε > 0, there is a δ > 0, so
that an explicit (ε, δ)-disperser exists.

Hitting sets

A hitting set in {0, 1}n with threshold δ(n) for co-nondeterministic circuits of
size s(n) is a subset H of {0, 1}n so that for any co-nondeterministic circuit C
of size s(n), taking n inputs and producing one output, the following holds:
If Prx∈{0,1}n [C(x) = 1] ≥ δ(n), then ∃x ∈ H, C(x) = 1. (The more usual
definition of hitting sets for deterministic circuits is analogous).

With this definition, the following proposition is easy to prove.

Proposition 10 If there is an SVNP-procedure which on input 1n outputs a
hitting set in {0, 1}n with threshold 1

2
for co-nondeterministic circuits of size

n then AM = NP.

Now we state a lemma from [ACR96a]3. Actually, the lemma is implicit
already in [Sip88]. It shows that in fact it is sufficient to construct hitting
sets with much bigger threshold than 1

2
. This lemma is a consequence of the

existence of explicit dispersers. Indeed, in [Sip88], it was Sipser’s motivation
for defining the notion of a disperser.

Lemma 11 (Sipser, Andreev-Clementi-Rolim) For any constant ε >
0, there are constants q ≥ 1 and δ > 0 so that the following holds. There is
a polynomial time procedure which, on input H where H is a hitting set in
{0, 1}n with threshold 1− 2−n+nε

for circuits of size nq, outputs a hitting set
in {0, 1}n′

with threshold 1
2

for circuits of size n′, where n′ = dnδe.
What we actually need, is the analogous Lemma for co-nondeterministic

circuits. This lemma is proved exactly as Lemma 11, using explicit dispersers.
To make the paper self-contained, we give the proof. In the proof, for a circuit
C, let Z(C) denote the set of instances for which C evaluates to 0.

Lemma 12 For any constant ε > 0, there are constants q ≥ 1 and δ > 0
so that the following holds. There is a polynomial time procedure which, on
input H where H is a hitting set in {0, 1}n with threshold 1 − 2−n+nε

for
co-nondeterministic circuits of size nq, outputs a hitting set in {0, 1}n′

with
threshold 1

2
for co-nondeterministic circuits of size n′, where n′ = dnδe.

3The reader should note that the lemma can only be found in the revised version of the
cited ECCC technical report.
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Proof Let ε > 0 be fixed. According to Theorem 9, there is a δ, so that an
explicit (ε, δ)-disperser exists. Let Gn = (Un, Vn, En) be this disperser, i.e.,
with n′ = dnδe, Un = {0, 1}n, Vn = {0, 1}n′

, and for all subsets S of Un of
size at least 2nε

, more than half the vertices of V are adjacent to S.
Let H ⊆ {0, 1}n be a hitting set with threshold 1 − 2−n+nε

for co-
nondeterministic circuits of size nq, where the constant q will be determined
below.

Note that H is a subset of Un. Let H ′ be the set of vertices in Vn adja-
cent to H . As the disperser is explicit, H ′ can be generated in polynomial
time from H . We claim that it is a hitting set with threshold 1

2
for co-

nondeterministic circuits of size n′. Once we show this claim, we are done.
Indeed, take any co-nondeterministic circuit C ′ of size n′ with n′ inputs so

that |Z(C ′)| ≤ 2n′

2
. We must show that H ′ is not a subset of Z(C ′). For this,

construct a co-nondeterministic circuit C with n inputs as follows: C(x) = 1
iff ∃y, (x, y) ∈ En ∧C ′(y). As the disperser is explicit, the size of this circuit
can be made polynomial. We fix the constant q, so that nq is an upper
bound on its size. We claim |Z(C)| < 2nε

: Otherwise, as Gn is a disperser,
the neighbors in Vn of Z(C) is more than half of Vn and thus the neighbors
must intersect Vn − Z(C ′), i.e., for some y adjacent to x ∈ Z(C), C ′(y) is 1.
But this implies C(x) = 1, contradicting x ∈ Z(C). As |Z(C)| < 2nε

, the
acceptance probability of C is at least 1 − 2−n+nε

. Thus, as H is a hitting
set, for some value x ∈ H , C(x) = 1. This means that for some y ∈ Vn,
adjacent to some x ∈ H , C ′(y) = 1. But such a y is by definition in H ′, i.e.,
H ′ hits C ′ as was to be shown. 2

3 Proof of the main theorem

Recall our main theorem.

Theorem 7 For any ε > 0 and k ≥ q ≥ 2, there is a polynomial time
procedure with the following properties. Given as input the truth table of a
function f : {0, 1}m → {0, 1}, so that k divides m, it outputs a subset Hf of
{0, 1}n, where n = (2m/k)22m/k, so that for all f , if f cannot be computed by
SV-nondeterministic circuits of size less than 23(ε+q/k)m, then Hf is a hitting
set for co-nondeterministic circuits of size nq with threshold 1 − 2−n+nε

10



Proof We first show how to efficiently generate the set Hf from the truth
table for f and then we argue that it has the right property. We assume,
without loss of generality, that m is sufficiently large.

We can view f as a map f : ({0, 1}m/k)k → {0, 1}. Now let F be the
finite field with 22m/k elements. Identify F with {0, 1}2m/k in any way that
makes arithmetic efficient and embed {0, 1}m/k in F = {0, 1}2m/k by padding
with zeros.

Let the low degree extension [BFLS91] f̃ : Fk → F of f be the unique
polynomial with individual degree in each variable at most 2m/k−1, agreeing
with f on ({0, 1}m/k)k.

Now we define the set Hf . Informally speaking, Hf is the set of tabula-
tions of the restrictions of f̃ to every axis-parallel line in Fk,

More precisely, for i ∈ {1, . . . , k} and a1, a2, . . . , ai−1, ai+1, . . . , ak ∈ F,

let vi(a1, a2, . . . , ai−1, ai+1, . . . , ak) be the vector (wj)j∈F in F22m/k
, with wj =

f̃(a1, a2, . . . , ai−1, j, ai+1, . . . , ak). As we have identified F with {0, 1}2m/k, we

can also view vi(a1, a2, . . . , ai−1, ai+1, . . . , ak) as a bit string in {0, 1}(2m/k)22m/k

= {0, 1}n.
With this in mind, we define Hi ⊆ {0, 1}n as

Hi = {vi(a1, a2, . . . , ai−1, ai+1, . . . , ak)|a1, . . . , ak ∈ F}
and

Hf =
k⋃

i=1

Hi.

First note that generating Hf from the truth table of f is a polynomial
time procedure (as the size of the input is 2m).

We should now show that Hf is a hitting set for co-nondeterministic
circuits of size nq with threshold 1 − 2−n+nε

. We first informally outline the
proof. We will suppose to the contrary that Hf is not such a hitting set, i.e.,
that it does not hit some circuit C. We will then show that f has smaller
circuits than it is assumed to have. This will be done by making a compressed
representation of f̃ which can be used as non-uniform advice to efficiently
evaluate f̃ (and hence f) at any given point. The compressed representation
is a table of the restriction of f̃ to Sk, for a small subset S of F. Using the
circuit C, we will be able to reconstruct f̃ on any desired point in Fk from
its values in Sk.

Now the proof. Assume Hf is not the desired hitting set. Let C be a
co-nondeterministic circuit establishing this, i.e., C maps {0, 1}n to {0, 1},
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it has size nq, and if we by Z denote {x ∈ {0, 1}n|Ci(x) = 0}, i.e., those x
for which there is some setting of the nondeterministic choice gates making
C evaluate to 0 on x, then |Z| ≤ 2nε

and Hf ⊆ Z.

Let L ⊆ {0, 1}n = {0, 1}(2m/k)22m/k
= F22m/k

be the vectors of the form
(p(i))i∈F for some univariate polynomial of degree less than 2m/k. By con-
struction, Hf ⊆ L.

Viewed as vectors in F22m/k
, any two distinct elements x, y of L are the

same on less than 2m/k indices. For sufficiently large m, this is less than
a 1

4
fraction of all the indices. We will argue that there is a subset S ⊆

{1, . . . , 22m/k} of indices of size |S| ≤ nε so that the projection πS : F22m/k →
F|S| to the indices of S is 1-1 when restricted to Z ∩ L.

Indeed we can construct S in a greedy way as follows. Let s = |Z ∩ L|.
We choose indices x1, x2, . . . , xr in {1, . . . , 22m/k}, with r = dlog se, so that if

Si := {x1, . . . , xi}, the projection πSi
makes at most

(
s
2

)
/4i unordered pairs

from Z ∩ L collide. Since
(

s
2

)
/4r < 1, we can let S = Sr. To construct xi+1,

having already constructed x1, . . . , xi, we argue as follows: For a fixed pair
of vectors which collide under πSi

, a random choice of xi+1 will separate the
pair with probability at least 3

4
. Thus, there is a fixed choice of xi+1 which

will leave at most 1
4

of the pairs unseparated.
We will now construct a small SV-nondeterministic circuit for f . In fact,

we will exhibit an efficient SV-nondeterministic procedure computing f̃ (and
hence f) with the following non-uniform advice:

• The circuit C,

• the set S, and

• a table of the restriction of f̃ to Sk.

On input (a1, a2, . . . , ak), to compute f̃(a1, a2, . . . , ak) the procedure does
as follows. For every element u ∈ Sk−1 it guesses the vector v = (f̃(j, u))j∈F.
It checks that its guess is correct by

• Checking that v is the table of a low degree polynomial (i.e., checking
that v ∈ L)

• Checking that C(v) = 0, by guessing a setting of the choice bits of C
making the circuit evaluate to 0 on v (i.e, checking that v ∈ Z).
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• Checking that the entries of v corresponding to indices in S are correct,
by consulting the table for f̃ , restricted to Sk. (i.e. checking that πS(v)
has the right value.)

By construction, the value v = (f̃(j, u))j∈F is the only value with these
properties.

After having ensured that v is the correct value, it keeps the value f̃(a1, u)
and throws away the rest of the vector v.

Having done this for every possible u, the procedure has now built a table
of f̃ , restricted to {a1} × Sk−1.

Now, for every element u ∈ Sk−2 it guesses the vector v = (f̃(a1, j, u))j∈F.
It checks that each guess is correct by checking that v is the table of a low
degree polynomial, checking that C(v) = 0 and checking that the entries of
v corresponding to indices in S are correct, by consulting the table for f̃ ,
restricted to {a1}×Sk−1. After having ensured that v is the correct value, it
keeps the value f̃(a1, a2, u) and throws away the rest of the vector v. Having
done this for every possible u, the procedure has now built a table of f̃ ,
restricted to {a1} × {a2} × Sk−2.

Now it goes through a similar loop for every element u ∈ Sk−3, building
a table of f̃ , restricted to {a1} × {a2} × {a3} × Sk−3, and so on, until in the
end it has the value of f̃(a1, a2, . . . , ak) which was the value we wanted.

The time complexity of the above procedure is bounded by the time
required to do less than k|S|k−1 verifications of a v-value, each of these ver-
ifications taking the time of evaluating a circuit of size nq (plus the time
required to check that a table of size n is a low degree polynomial, which is
bounded by n2). Thus, converting the procedure into a circuit, building in
the advice, we get an SV-nondeterministic circuit of size at most

O((nε)knq) < 23(ε+q/k)m

for sufficiently large m. As a circuit for f̃ can also be used as a circuit for f ,
this contradicts the assumption on f . 2

Combining with Lemma 12, we get

Corollary 8 For any constant τ > 0, there is a constant γ > 0 so that the
following holds. There is a deterministic polynomial time procedure which,
given as input the truth table of a Boolean function f : {0, 1}m → {0, 1} (i.e.,
2m bits) with SV-nondeterministic circuit complexity at least 2τm, outputs a
hitting set in {0, 1}n with threshold 1

2
for co-nondeterministic circuits of size

n, where n = d2γme.
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Proof Let τ > 0 be given. Let ε = τ/12. Let q, δ be the constants of Lemma
12, guaranteed to exist for this ε. Let k = 12τ−1q. Let γ = δ/k.

Assume m is sufficiently large. Given a truth table on m inputs with
SV-nondeterministic circuit complexity at least 2τm, pad this truth table
with zeros to obtain a truth table on m′ inputs so that m′ is divisible by
k. The circuit complexity of the new truth table is at least 2(τ/2)m′

, as m is
sufficiently large.

Applying Theorem 5 with the parameters ε, q, k and noticing that τ/2 ≥
3(ε + q/k), we have an efficient procedure transforming this truth table into
a hitting set in {0, 1}n with threshold 1 − 2−n+nε

for co-nondeterministic
circuits of size (n′)q, where n′ = (2m′/k)22m′/k.

Now apply Lemma 12 and deterministically convert this hitting set into
a hitting set in {0, 1}n′′

with threshold 1
2

for co-nondeterministic circuits of
size n′′ with

n′′ = d((2m′/k)22m′/k)δe ≥ 22mδ/k ≥ d2γme.
Take this hitting set and remove the last n′′ − n bits in each string in it.

This is the desired hitting set in {0, 1}n. 2

4 Implications

We derandomize AM.

Corollary 13 For any constant τ > 0, the following holds. If some language
L in NE ∩ coNE exists, so that L ∩ {0, 1}n requires SV-nondeterministic
circuits of size 2τn for all sufficiently large n, then there is an SVNP-procedure
which on input 1n generates a hitting set H ⊆ {0, 1}n with threshold 1

2
for

co-nondeterministic circuits of size n.

Proof Given τ , let γ be the corresponding constant of Corollary 8. On input
1n, with n sufficiently large, the SVNP-procedure computes m = dγ−1 log ne
and enumerates the truth table of the characteristic function of L on {0, 1}m.
Having found the truth table, it applies the procedure of Corollary 8 to it,
yielding a hitting set in {0, 1}n′

, where n′ = d2γme = d2γdγ−1 log nee. Take this
hitting set and remove the last n′ − n bits in each string in it. This is the
desired hitting set in {0, 1}n. 2

From Proposition 10 and Corollary 13 we have the derandomization result
for AM.
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Theorem 5 Let ε > 0 be any constant. If a language L in NE ∩ coNE
exists so that L∩ {0, 1}n has SV-nondeterministic circuit complexity at least
2εn for all sufficiently large n, then AM=NP.

As graph non-isomorphism is in AM [GMW91] (and trivially in coNP),
we have in particular the following corollary.

Corollary 14 If for some ε > 0, there is a language L ∈ NE∩coNE so that
L∩{0, 1}n requires SV-nondeterministic circuits of size 2εn for all sufficiently
large n, then Graph Isomorphism is in NP ∩ coNP.

By a proof completely analogous to the proof of Corollary 13 (and thus
omitted), we have

Corollary 15 For any constant τ > 0, the following holds. If there is a
language L in E so that the SV-nondeterministic circuit complexity of L ∩
{0, 1}n is at least 2τn for all sufficiently large n, then there is a polynomial
time procedure which on input 1n generates a hitting set H ⊆ {0, 1}n with
threshold 1

2
for circuits of size n.

Combining Corollary 15 with the fact that the hitting sets produced in
this corollary are sufficient to derandomize BPP [ACR98, ACRT97, BF99],
we obtain Theorem 6.

5 Relativizable hitting set generators are dis-

persers

Corollary 8 was proved by combining our main theorem with Lemma 12; the
latter using the existence of explicit dispersers. Corollary 8 and its proof
relativizes, i.e., the following statement has been proved.

Corollary 16 For any ε > 0, there is a δ > 0 so that the following holds.
There is a deterministic polynomial time procedure which, for any oracle
A, has the following property. Given as input the truth table of a Boolean
function f : {0, 1}m → {0, 1} (i.e., 2m bits) with SV-nondeterministic oracle
circuit complexity with oracle gates for A at least 2εm, outputs a hitting set
in {0, 1}n with threshold 1

2
for co-nondeterministic oracle circuits of size n,

with oracle gates for A, where n = d2δme.
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The hardest part of a self-contained proof of Corollary 16 is the existence
of explicit dispersers. We now note that any proof of Corollary 16 has to
appeal to the existence of explicit dispersers or itself provide such dispersers.

Theorem 17 Let a procedure with the property of Corollary 16 be given.
Let n = 2m be sufficiently large. Define the bipartite graph Gn = (Un, Vn, En)
with Un = {0, 1}n, Vn = {0, 1}dnδe, and an edge between x and y if and only
if y is a member of the hitting set produced by the procedure on input x. Then
Gn is a disperser with threshold 2n2ε

.

Proof We need to prove that given any subset S of Un with |S| ≥ 2n2ε
,

more than half the vertices of Vn are adjacent to S. Suppose not. Let S be
a set for which this is not the case, and let A be the non-neighbors of S, so
we have |A| ≥ |Vn|/2. Viewed as a subset of {0, 1}dnδe, we can use A as an
oracle and consider circuit complexity relative to A. By Shannon’s counting
argument, viewed as truth tables for Boolean functions on n variables, at
least one of the members of S must have SV-nondeterministic oracle circuit
complexity with oracle gates for A at least 1

2
log |S|/ log log |S| > nε = 2εm.

Let this element of S be denoted a. Thus, as the procedure has the property
of Corollary 16, the vertices in Vn adjacent to a will intersect every set in Vn

which

1. is the characteristic (accepted) set of an oracle circuit with oracle gates
for A of size at most n and

2. has size at least |Vn|/2.

But then consider the oracle circuit defined by x → A(x). It has size n,
its characteristic set has size at least |Vn|/2, and the neighbors of a do not
intersect its characteristic set, as this set is the non-neighbors of S and a ∈ S.
A contradiction. 2

6 Final Remarks

In addition to the derandomization of AM, Klivans and Van Melkebeek
[KvM99] had several other applications of the fact that the Impagliazzo-
Wigderson construction relativizes. Each of the applications showed that a
hardness assumption involving oracle circuits implies a “derandomization”
(in a loose sense).
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For one of these extra applications we can combine their reasoning with
Corollary 8 and obtain an improvement. Specifically, we can prove the fol-
lowing theorem relating two circuit lower bounds, which is identical to Theo-
rem 5.15, [KvM99], except that there, “SV-nondeterministic circuit complex-
ity” is replaced with “oracle circuit complexity with oracle gates for SAT”.

Theorem 18 If there is a language L in E so that L has SV-nondeterministic
circuit complexity at least 2Ω(n), then there exists a polynomially bounded
function p(n) and a polynomial-time computable family of matrices Mn where
Mn is an n×n matrix over Zp(n)[x] such that the linear transformation defined
by the family Mn cannot be computed by log-depth linear size circuits which
have special gates that can compute binary linear operators over Zp(n)[x].

We omit the proof which is a straightforward combination of the proof of
Theorem 5.15 in Klivans and Van Melkebeek and Corollary 8 of the present
paper.

7 Acknowledgement

Both authors were supported by the ESPRIT Long Term Research Pro-
gramme of the EU under project number 20244 (ALCOM-IT) and by BRICS,
Basic Research in Computer Science, Centre of the Danish National Research
Foundation.

We would like to thank Dieter van Melkebeek and Luca Trevisan for very
helpful discussions.

References

[ACR96a] Alexander E. Andreev, Andrea E. F. Clementi, and José D. P.
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