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Decoding Choice Encodings∗

Uwe Nestmann, BRICS†, Aalborg University, Denmark
Benjamin C. Pierce, University of Pennsylvania, USA

Abstract

We study two encodings of the asynchronous π-calculus with input-guarded choice
into its choice-free fragment. One encoding is divergence-free, but refines the atomic
commitment of choice into gradual commitment. The other preserves atomicity, but
introduces divergence. The divergent encoding is fully abstract with respect to weak
bisimulation, but the more natural divergence-free encoding is not. Instead, we show
that it is fully abstract with respect to coupled simulation, a slightly coarser—but
still coinductively defined—equivalence that does not enforce bisimilarity of internal
branching decisions. The correctness proofs for the two choice encodings introduce a
novel proof technique exploiting the properties of explicit decodings from translations
to source terms.

∗This paper is a revised full version of a technical report that appeared first as IMMD-VII-01/96 at
University of Erlangen and TR 342 at University of Cambridge. An extended summary then appeared in the
Proceedings of the 7th International Conference on Concurrency Theory (CONCUR’96) LNCS 1119, pages
179–194, Springer-Verlag, 1996. The work was mainly carried out while the first author was at the University
of Erlangen-Nürnberg, Germany (supported by Deutsche Forschungsgemeinschaft, Sonderforschungsbereich
182, project C2, and by Deutscher Akademischer Austauschdienst within the ARC-program), and while the
second author was at the University of Cambridge, UK (supported by the British Science and Engineering
Research Council). The first revision took place while the first author was supported by a post-doc fellowship
from ERCIM (European Research Consortium for Informatics and Mathematics); it is available as ERCIM
Research Report 10/97-R051.

†Basic Research in Computer Science, Centre of the Danish National Research Foundation.
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1 Introduction

The problem of implementing the concurrent choice operator in terms of lower-level con-
structs is interesting from a number of points of view. Theoretically, it contributes new in-
sight on the expressiveness of process calculi and the computational content of choice. More
practically, it provides correctness arguments supporting the design of high-level concurrent
languages on top of process calculi. Furthermore, it is tightly related to the distributed im-
plementation of synchronization and selective communication [Mit86, PS92, Kna93, BG95].

Our interest in the study of choice encodings originates from the design and implemen-
tation of the high-level concurrent language Pict [PT95, PT99], an asynchronous choice-free
π-calculus [HT91, Bou92] enriched with several layers of encoded syntactic sugar. The ab-
stract machine of Pict does not provide instructions for selective communication; instead,
choice is provided as a library module by a straightforward encoding. Surprisingly, however,
this encoding turns out not to be valid with respect to standard weak bisimulation.

We study choice encodings in the π-calculus with asynchronous messages (or equiv-
alently, with non-blocking output prefix). This setting has received increasing attention
in recent years. In the ν-calculus, asynchrony was treated using a non-standard labeled
semantics [HT91, HT92, Hon92]; the mini π-calculus used a chemical semantics [Bou92];
it has also been investigated using reduction semantics [HY95], concurrent combinators
[HY94a, HY94b], and output-only barbed congruences [Ode95a, FG96]. Only recently,
it has been extended with an input-guarded choice operator, equipped with a standard
labeled semantics, and studied with bisimulation from an asynchronous observer’s view-
point [ACS98].

We use standard notations for restriction (x)P of name x to process P , parallel com-
position P1|P2, input y(x).P of a name from channel y for use as x in P , and output
yz of name z on channel y. Furthermore,

∏
and

∑
denote indexed parallel composition

and input-guarded choice, respectively. For convenience, we introduce the conditional form
if l then P else Q, which performs a case analysis driven by the special names t and f by
reading from l either t or f and behaving afterwards like P or Q, respectively.

We study two variants of the choice encoding. The non-divergent version, which is more
interesting from a pragmatic perspective, will occupy most of our attention. For each choice
expression

∑
j∈J

yj(x).Pj , the translation

C
[[ ∑

j∈J
yj(x).Pj

]]
def= (l)

(
lt

∣∣ ∏
j∈J

Branch l〈 yj(x).Pj 〉
)

runs a mutual exclusion protocol, installing a local lock—a message that carries a special
name—on the parallel composition of its branches. The branches

Branch l〈 yj(x).Pj 〉 def= yj(x) . l(b) . if b then ( C[[Pj ]] | lf ) else ( yjx | lf )

concurrently try to (destructively) test the lock after reading messages from the environ-
ment. Only the first branch managing to interrogate the lock (via l(b)) will proceed with
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its continuation (then) and thereby commit the choice — every other branch will then be
forced to resend its message and abort its continuation (else). The resending of messages by
non-chosen branches essentially reflects the asynchronous character of the encoding. For an
asynchronous observer, who can not detect when a message is consumed by a receptor, the
resending of messages is immaterial, and so this encoding seems intuitively to be correct.

However, even for the asynchronous observer, it turns out that source terms and their C-
translations are not weakly bisimilar. The reason is that the latter carry out commitments
only gradually, resulting in intermediate states that do not correspond to any source term.
In order to deal with partially committed states, we instead characterize the correctness of
the encoding as a pair of simulations which are coupled by requiring that less committed (i.e.,
simulating) processes can always internally evolve into more committed (i.e., simulated)
processes [PS92].

For comparison, we also study another encoding that introduces an alternate path in
each branch of a choice allowing it to “back out” and return to its initial state after it has
been given the lock. This encoding avoids gradual commitments and can, in fact, be proven
fully abstract with respect to weak bisimilarity. However, it is pragmatically unsatisfactory
since it introduces divergence.

The remainder of the paper is organized as follows. We first introduce the setting of
an asynchronous π-calculus (§2) and review some standard notions of correctness (§3). We
then present the divergence-free encoding C and the divergent encoding D, followed by an
example that shows the failure of full abstraction of the C-encoding with respect to weak
bisimulation ≈ (§4). Using an intermediate language which lets us factor the C-encoding
into two steps, we define two decoding functions that constitute an asynchronous coupled
simulation. This leads to our main result: for all source terms S,

S � C[[S ]]

where � is (asynchronous) coupled simulation equivalence; we also prove that the C-
encoding is divergence-free, and we sketch a proof that S ≈ D[[S ]] (§5). Finally, we offer
some concluding remarks and hint at related and future work (§6).

2 Technical preliminaries: The asynchronous π-calculus

Many variants of the π-calculus [MPW92] have appeared in the recent process algebra
literature. We use here a version which is close to the core language of Pict [PT95, PT99]: an
asynchronous, first-order, monadic π-calculus [HT91, Bou92], where replication is restricted
to input processes and evaluated lazily [HY95, MP95], i.e., copies of a replicated input are
spawned during communication.

2



2.1 Syntax

Let N be a countable set of names. Then, the set P of processes P is defined by

P ::= (x)P
∣∣ P |P ∣∣ yz

∣∣ 0
∣∣ R

∣∣ !R

R ::= y(x).P

where x, y, z ∈ N. The semantics of restriction, parallel composition, input, and output, is
standard. The form !y(x).P is the replication operator restricted to input-prefixes. In yz
and y(x), the name y is called the subject, whereas x, z are called objects. We refer to outputs
as messages and to (ordinary or replicated) inputs as receptors. A term is guarded when
it occurs as a subterm of an input prefix R. As a notational abbreviation, if the object in
some input or output is of no importance in some term, then it may be completely omitted,
i.e., y(x).P with x 6∈ P and yz are written y.P and y. The usual constant 0 denoting the
inactive process can be derived as (x)x, but we prefer to include it explicitly for a clean
specification of structural and operational semantics rules.

The definitions of name substitution and α-conversion are standard. A name x is bound
in P , if P contains an x-binding operator, i.e., either a restriction (x)P or an input prefix
y(x).P as a subterm. A name x is free in P if it occurs outside the scope of an x-binding
operator. We write bn(P ) and fn(P ) for the sets of P ’s bound and free names; n(P ) is their
union. Renaming of bound names by α-conversion =α is as usual. Substitution P{z/x}
is given by replacing all free occurrences of x in P with z, first α-converting P to avoid
capture.

Operator precedence is, in decreasing order of binding strength: (1) prefixing, restric-
tion, (2) substitution, (3) parallel composition.

2.2 Operational semantics

Let y, z ∈ N be arbitrary names. Then, the set L of labels µ is generated by

µ ::= y(z)
∣∣ yz

∣∣ yz
∣∣ τ

representing bound and free output, early input, and internal action. The functions bn
and fn yield the bound names, i.e., the objects in bound (bracketed) outputs, and free
names (all others) of a label. We write n(µ) for their union bn(µ) ∪ fn(µ).

The operational semantics for processes is given as a transition system with P as its
set of states. The transition relation −→⊆ P × L × P is defined as the smallest relation
generated by the set of rules in Table 1. We use an early instantiation scheme as expressed
in the INP and COM/CLOSE-rules, since it allows us to define bisimulation without clauses
for name instantiation and since it allows for a more intuitive modeling in §4, but this
decision does not affect the validity of our results. Rule OPEN prepares for scope extrusion,
whereas in CLOSE the previously opened scope of a bound name is closed upon its reception.

3
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OUT: yz
yz−−−→ 0

INP: y(x).P
yz−−−→ P{z/x}

R-INP: !y(x).P
yz−−−→ P{z/x} | !y(x).P

COM∗
1:

P1
yz−−−→ P ′

1 P2
yz−−−→ P ′

2

P1 | P2
τ−−→ P ′

1 | P ′
2

OPEN:
P

yz−−−→ P ′

(z)P
y(z)−−−−→ P ′

if y 6= z

CLOSE∗
1:

P1
y(z)−−−−→ P ′

1 P2
yz−−−→ P ′

2

P1 | P2
τ−−→ (z)( P ′

1 | P ′
2 )

if z 6∈ fn(P2)

PAR∗
1:

P1
µ−−→ P ′

1

P1 | P2
µ−−→ P ′

1 | P2

if bn(µ) ∩ fn(P2) = ∅

RES:
P

µ−−→ P ′

(x)P
µ−−→ (x)P ′ if x 6∈ n(µ)

ALPHA:
P̂

µ−−→ P̂ ′

P
µ−−→ P̂ ′ if P =α P̂

∗: and the evident symmetric rules COM2, CLOSE2, and PAR2

Table 1: Transition semantics
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Weak arrows ( =⇒) denote the reflexive and transitive closure of internal transitions;
arrows with hats denote that two processes are either related by a particular transition or
else equal in the case of an internal transition.

=⇒ def=
τ−−→∗ µ̂−−→ def=

{ µ−−→ if µ 6= τ
τ−−→ ∪ = if µ = τ

µ̂
==⇒ def= =⇒ µ̂−−→ =⇒

µ
==⇒ def= =⇒ µ−−→ =⇒

2.3 Bisimulation

Two process systems are equivalent when they allow us to observe the same operational
behavior. Bisimulation equivalence is defined as the mutual simulation of single computa-
tion steps resulting in equivalent system states. In the standard literature on bisimulations,
e.g. [Mil89, MPW92], a simulation is a binary relation S on processes such that (P,Q) ∈ S
implies, for arbitrary label µ:

• if P
µ−−→ P ′, then there is Q′ such that Q

µ−−→ Q′ and (P ′, Q′) ∈ S.

A bisimulation is a simulation whose opposite is again a simulation. In this subsection, we
review various refinements of standard bisimulation: we define its asynchronous variant,
identify a few structural laws, refine it to a preorder that takes efficiency into account, and
finally refine it to deal with divergence.

Asynchrony

In calculi with synchronous message-passing, output- and input-transitions are dealt with
symmetrically in the definition of bisimulation. In contrast, the concept of asynchronous
messages suggests a non-standard way of observing processes. Since the sending of a mes-
sage to an observed system is not blocking for the observer, the latter can not immediately
detect whether the message was actually received, or not. The only possible observations are
messages eventually coming back from the system. Different formulations of asynchronous
bisimulation (all inducing the same equivalence) have been proposed in the literature, based
on a modified labeled input rule [HT92], on output-only barbed congruences [HY95], and on
a standard labeled semantics with asynchronous observers [ACS98]. Here, we follow the lat-
ter approach. Unless otherwise stated, we implicitly assume an asynchronous interpretation
of observation throughout the paper.

Definition 2.3.1 (Simulation, bisimulation) A binary relation S on processes is a strong
simulation if (P,Q) ∈ S implies:

• if P
µ−−→ P ′, where µ is either τ or output with bn(µ) ∩ fn(P |Q) = ∅,

then there is Q′ such that Q
µ−−→ Q′ and (P ′, Q′) ∈ S

5
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α-conversion P ≡ Q if P =α Q

associativity P | (Q|R) ≡ (P |Q) | R

commutativity P | Q ≡ Q | P

neutrality P | 0 ≡ P

scope extrusion (y)P | Q ≡ (y)(P |Q) if y 6∈ fn(Q)

scope elimination (y)Q ≡ Q if y 6∈ fn(Q)

Table 2: Structural laws

• ( az|P , az|Q ) ∈ S for arbitrary messages az.

B is called a strong bisimulation if both B and B−1 are strong simulations. Two processes P
and Q are strongly bisimilar, written P ∼ Q, if they are related by some strong bisimulation.

Replacing Q
µ−−→ Q′ with Q

µ̂
==⇒ Q′ in this definition yields the weak versions of the

corresponding simulations. Write ≈ for weak bisimulation. Process Q weakly simulates P ,
written P 4 Q, if there is a weak simulation S with (P,Q) ∈ S.

Fact 2.3.2 ≈ is a congruence on P. [Hon92, ACS98]

Structural laws

Certain laws on processes have been recognized as having merely “structural” content;
they are valid with respect to all different kinds of behavioral congruences, equivalences
and preorders, including strong bisimulation (the finest “reasonable” equivalence). In this
paper, we use a few structural laws (indicated by the symbol ≡) listed in Table 2 in order
to simplify the presentation of some derivation sequences of transitions in the proofs of
Section 5.

Fact 2.3.3 ≡ ⊂ ∼ .

In particular, we work up to α-conversion, where appropriate, i.e., we omit to mention
the implicit application of rule ALPHA since it may be captured by a simple structural
transformation. Thus, we silently identify processes or actions which only differ in the
choice of bound names. Furthermore, due to the associativity law for composition, we omit
brackets in multiple parallel composition and use finite parallel composition

∏
with the

usual meaning.
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Efficiency

Often, weakly bisimilar processes differ only in the number of internal steps. The expansion
preorder [AH92] takes this into account by stating that one process engages in at least
as many internal actions as another. We use expansions to define an up-to technique in
Section 2.5, and to precisely formulate the correctness of an encoding in Section 5.5.

Deviating from the standard presentation of expansion, we introduce some auxiliary
terminology that will be useful in the next subsection for capturing aspects of divergence.
It is partly inspired by the notion of progressing bisimulation in CCS [MS92b].

Definition 2.3.4 A weak simulation S is called

• progressing, if P
µ−−→ P ′ implies that there is Q′ with Q

µ
==⇒ Q′ such that (P ′, Q′) ∈ S

• strict, if P
µ−−→ P ′ implies that there is Q′ with Q

µ̂−−→ Q′ such that (P ′, Q′) ∈ S
for all (P,Q) ∈ S and for all µ being τ or output with bn(µ) ∩ fn(P |Q) = ∅.

Note that a weak simulation is strong if it is both progressing and strict.

Definition 2.3.5 (Expansion) A binary relation E on processes is an expansion if E is
a progressing simulation and E−1 is a strict simulation. Process Q expands P , written
P . Q, if there is an expansion E with (P,Q) ∈ E.

Fact 2.3.6 ∼ ⊂ . ⊂ ≈ .

Divergence

Since we are going to formally reason about divergence properties of encodings in Sec-
tion 5.8, we need some basic definitions. According with standard intuitions, a process P
is said to be divergent, written P⇑, if there is an infinite sequence of τ -steps starting at P ;
otherwise it is called convergent, written P⇓.

Weak (bi-)simulation is insensitive to the divergence of processes. This lack of expres-
siveness arises from the definition of weak simulation, which may always choose to mimic
τ -steps trivially. Weak bisimulation, or observation equivalence, may therefore equate two
processes exactly one of which is diverging: it simply ignores the existence of infinite τ -
sequences. Enhancements of bisimulation have been investigated that take divergence be-
havior explicitly into account, resulting in preorders among bisimilar processes [Wal90].

For our purposes in Section 5.8, the simpler property of preserving divergence will suffice.
A weak simulation S has this property if P⇑ implies Q⇑ for all (P,Q) ∈ S. Intuitively,
when required to weakly simulate an infinite τ -sequence, S must progress infinitely often.
Let us introduce some further notation (inspired by Priese [Pri78]) to make precise what
this means.

7



Let
τ−−→n denote a τ -sequence of length n and

τ−−→+ def=
τ−−→n for some n > 0 denote

a non-empty, but arbitrarily long, finite sequence of τ -steps.

Definition 2.3.7 (Eventually progressing simulation) A weak simulation S is called
eventually progressing if, for all (P,Q) ∈ S, there is a natural number kP ∈ N such that
P

τ−−→n P ′ with n > kP implies that there is Q′ with Q
τ−−→+ Q′ such that (P ′, Q′) ∈ S.

According to the definition, a simulation S is eventually progressing if, for sufficiently
long finite τ -sequences, S must eventually reproduce a τ -step. In this respect, kP is to
be understood as an upper bound for the number of τ -steps starting from P that may
be trivially simulated. Note that every progressing simulation is, by definition, eventually
progressing with upper bound 0.

With a progressing simulation, every infinite sequence may be simulated by subse-
quently simulating sufficiently long finite subsequences non-trivially, i.e., such that they
represent progress. This resembles the chunk-by-chunk idea of simulation due to Gammel-
gaard [Gam91].

Lemma 2.3.8 Eventually progressing simulations preserve divergence.

Proof: Let S be a progressing simulation and (P,Q) ∈ S. If P⇑ then there is P
τ−−→ω .

Since S is progressing, there is kP ∈ N such that P
τ−−→kP +1 P ′ τ−−→ω and Q

τ−−→+ Q′ with
(P ′, Q′) ∈ S. Since now P ′⇑, we can repeat the procedure infinitely often. �

2.4 When weak bisimulation is too strong . . .

Every bisimulation B can be regarded as a pair (S1,S2) of contrary simulations S1 and
S−1

2 , where S1 and S2 contain exactly the same pairs of processes, i.e., S1 = B = S2.
For some applications, this requirement is too strong. For example, consider the following
P-processes:

P
def= (i)

(
i | i.A | i.B | i.C

)
Q

def= (i1)(i2)
(

i1 | i2 | i1.A | i1.( i2.B | i2.C )
)

where i, i1, i2 6∈ fn(A,B,C). The example was originally introduced in CCS, using choice
operators [PS92]. In fact, both P and Q implement two different versions of some behavior
that performs an internal choice among the processes A, B, and C by the concurrent race
of inputs for an output on some shared internal channel. The difference is that P only uses
one internal channel (i), whereas Q uses two of them (i1 and i2) and, as a result, needs two
internal steps in order to decide which of B or C is chosen in the case that A was preempted.
Hence, the choice implemented by P is atomic, whereas the choice of Q is gradual.

8



Although intuitively P and Q might be regarded as observably equivalent by disregard-
ing the internal choices, which are present in Q but not in P , they are not weakly bisimilar.
According to the derivation trees up to ∼ (using the law (i)( i.P |Q ) ∼ Q, if i 6∈ fn(Q)) and
with BC := (i2)( i2 | i2.B | i2.C ),

P
τ

����������
τ

��

τ

��
???????? Q

τ

���������
τ

!!BBBBBBBB

A B C A BC
τ

}}{{{{{{{{
τ

!!CCCCCCCC

B C

the state BC cannot be related to any of the states beneath P , which would both simu-
late BC and be simulated by BC. At best, we can find two contrary simulations S1 and
S−1

2 with

S def= { (P,Q), (A,A), (B,B), (C,C), . . . }
S1

def= S ∪ { (B, BC ), (C, BC ) }
S2

def= S ∪ { (P, BC ) }
which, unfortunately, do not coincide. The distinguishing pairs express the problem with
the partially committed τ -derivative BC of Q: on the one hand, it cannot be simulated by
any τ -derivative of P due to their lack of ability to reach both B and C; on the other hand,
it can itself no longer simulate P , because it has lost the ability to reach A.

As an appropriate mathematical tool to handle situations as the above example, Parrow
and Sjödin developed the notion of coupled simulation [PS92]: two contrary simulations are
no longer required to coincide, but only to be coupled in a certain way. Several candidates
have been presented for what it means to be coupled. No coupling at all would just lead to
the notion of mutual simulation. A non-trivial notion of coupling was based on the property
of stability by requiring the coincidence of two contrary simulations in at least the stable
states. This style induces a relation which is an equivalence only for convergent processes,
and it has been proven to be strictly weaker than bisimulation and strictly stronger than
testing equivalence [PS92]; indeed, the two processes P and Q of the introductory example
are equivalent in that sense, as formalized in Definition 2.4.1 below.

In this paper, we use a generalization for divergent processes, as suggested by van
Glabbeek [Gla93, PS94], where coupling requires the ability of a simulating process to
evolve into a simulated process by internal action. We recapitulate the formal definition:

Definition 2.4.1 (Coupled simulation) A mutual simulation is a pair (S1,S2), where
S1 and S−1

2 are weak simulations. A coupled simulation is a mutual simulation (S1,S2)
satisfying

9



• if (P,Q) ∈ S1, then there is some Q′ such that Q =⇒ Q′ and (P,Q′) ∈ S2;
• if (P,Q′) ∈ S2, then there is some P ′ such that P =⇒ P ′ and (P ′, Q′) ∈ S1.

Processes P and Q are coupled simulation equivalent (or coupled similar), written P � Q,
if they are related by both components of some coupled simulation.

Using dotted lines to represent the simulations, the coupling property of (S1,S2) may be
depicted as an ‘internally out-of-step bisimulation’ by:

P

S1

+3 P ′

S1

· · · P

<

+3 P ′

<

· · ·

Q +3 Q′

S2

· · ·

or:

Q +3 Q′

<

· · ·

Of two processes contained in one component relation of some coupled simulation, the
simulated (more committed) process is always a bit ahead of its simulating (less committed)
counterpart. Intuitively, ‘Q coupled simulates P ’ means that ‘Q is at most as committed as
P ’ with respect to internal choices and that Q may internally evolve to a state Q′ where it
is at least as committed as P , i.e., where P coupled simulates Q′.

Fact 2.4.2 Let (S1,S2) be a coupled simulation. Then (S−1
2 ,S−1

1 ) is a coupled simulation.

Observe that the pair (≈,≈) is a coupled simulation by trivial coupling sequences, as
motivated at the beginning of the section. Furthermore, the motivating example witnesses
that coupled simulation equivalence is strictly coarser than weak bisimilarity.

Fact 2.4.3 ≈ ⊂ � .

On processes without infinite τ -sequences, coupled simulation is strictly finer than testing
equivalence, so it represents a reasonable (and coinductively defined) candidate in the lattice
of process equivalences [Gla93]. In general, it is compatible with all operators of P.

Proposition 2.4.4 � is a congruence on P.

Proof: Reflexivity is immediate by definition.
For symmetry, let P1 � P2 by (S1,S2) with (P1, P2) ∈ S1 ∩ S2. This is equivalent to

(P2, P1) ∈ S−1
2 ∩ S−1

1 , and, by Fact 2.4.2, we have P2 � P1.
For transitivity, let P � Q � R due to their containment in coupled simulations

(P,Q) ∈ (SPQ ,SQP ) and (Q,R) ∈ (SQR,SRQ). Now, let SPQR := SPQSQR and SRQP :=
SQPSRQ . Then, both SPQR and S−1

RQP are simulations by transitivity of simulation. For
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the coupling between SPQR and SRQP , we show only one direction. Since (SPQ ,SQP ) is a
coupled simulation, we know that Q =⇒ Q′ with (P,Q′) ∈ SQP . Since (Q,R) ∈ SQR, this
sequence can be simulated by R =⇒ R′ with (Q′, R′) ∈ SQR. Now, since (SQR,SRQ ) is a
coupled simulation, we have R′ =⇒ R′′ such that (Q′, R′′) ∈ SRQ . Therefore, we conclude
that R =⇒ R′′ with (P,R′′) ∈ SQPSRQ = SRQP .

For congruence, we show that � is preserved by all operators in P. For each pair (P1, P2)
in �, there is a witnessing coupled simulation (S1,S2). Congruence of � requires the
preservation of � under all operators in P. It is known that weak simulation is preserved
by all operators of P. In addition, we only have to check that the required coupling is
preserved correspondingly. This, however, is straightforward since the coupling is just the
existence of some possibly trivial internal sequence. For parallel composition and restriction,
the coupling is inherited directly from the components; for (replicated) guards, the coupling
is trivial. �

2.5 Up-to techniques

By the coinductive definition of bisimulation, a proof that two processes P and Q are
bisimilar, i.e., P ≈ Q, rests on the construction of some bisimulation B which contains the
pair (P,Q). Up-to techniques have been introduced in order to improve the bisimulation
proof technique by relaxing the proof obligations and thereby reducing the size of the witness
relation B [Mil89, San95b]. We explain the idea by the notion of weak simulation up to
expansion. (The composition of relations is denoted by juxtaposition.)

Definition 2.5.1 (Simulation up to expansion) A binary relation S on processes is a
(weak) simulation up to . if (P,Q) ∈ S implies:

• if P
µ−−→ P ′, where µ is τ or an output with bn(µ) ∩ fn(P |Q) = ∅,

then there is Q′ such that Q
µ̂

==⇒ Q′ and (P ′, Q′) ∈ S .
• ( az|P , az|Q ) ∈ S for arbitrary messages az.

Note that the first obligation on S does not require of Q′ that (P ′, Q′) ∈ S, but only that
Q′ expands some process Q′′ with (P ′, Q′′) ∈ S. The following lemma provides a proof
technique for weak simulation based on the above definition.

Lemma 2.5.2 If Q simulates P up to expansion, then P 4 Q.

Proof: Let U be a weak simulation up to expansion that contains (P,Q). Then the relation

U ∪ { (P ′, Q′) | ∃(P0, Q0) ∈ U . ∃(P ′, Q′′) ∈ U . ∃µ ∈ L. (P
µ−−→ P ′ ∧ Q

µ̂
==⇒ Q′′ . Q′) } is a

weak simulation and contains (P,Q). �

The following lemma allows us to compose coupled simulations with bisimulations.
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Lemma 2.5.3 Let (S1,S2) be a coupled simulation and B a weak bisimulation. Then the
composite pair (S1B,S2B) is again a coupled simulation.

Proof: We have to prove that both S1B and (S2B)−1 are weak simulations and that there is
the desired coupling via internal transition sequences. All of these facts are straightforward.
We only show the case for the reachability of coupled states.

Let (P,R) ∈ S1B via Q, i.e., (P,Q) ∈ S1 and (Q,R) ∈ B. Then, since (S1,S2) is a
coupled simulation, we know that there is Q′ with Q =⇒ Q′ and (P,Q′) ∈ S2. Furthermore,
from (Q,R) ∈ B we know that there is some R′ with R =⇒ R′ and (Q′, R′) ∈ B. Thus,
(P,R′) ∈ S2B.

The proof of the second clause for coupling is even simpler. Let (P,R) ∈ S2B via Q,
i.e., (P,Q) ∈ S2 and (Q,R) ∈ B. From (S1,S2) being a coupled simulation we know that
there is P ′ with P =⇒ P ′ and (P ′, Q) ∈ S2. Then, immediately (P ′, R) ∈ S1B via Q. �

Thus, in order to prove that two processes S and T are coupled similar, it suffices to show
that S is coupled similar to some other process A (this might be considerably easier),
which, in turn, is bisimilar to the process T . We may call the composite (S1B,S2B) a
coupled simulation up to bisimulation, although this is not exactly in the spirit of up-to
techniques. There, the aim is to reduce the size of relations that are necessary to prove
that two processes are related. Here, we do not decrease the size, but simply carry out the
proof on another, but bisimilar, set of terms that may provide richer structure for actually
doing the proof.

3 Discussion: Correctness of encodings

In this section, we briefly digress to review a few known notions of correctness and discuss
their advantages and disadvantages. Thereby, we aim at precisely characterizing the class
of non-prompt encodings that is represented by the choice encodings of the Introduction
and Section 4. As shown later on in Section 5, it is the non-prompt character of choice
encodings that complicates the definition of and reasoning about their correctness.

Intuitively, if we can compare terms and their translations directly, then we may require
that every source term S and its translation [[S ]] should be semantically equivalent

S � [[S ]]

where � denotes some notion of equivalence; we provide examples with Theorems 5.6.1
and 5.7.4. The stronger the employed equivalence, the more we are tempted to accept [[ ]]
as being correct. For process calculi, some prominent candidates among the vast num-
ber of equivalences are (with decreasing ability to distinguish process terms): strong and
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weak bisimulation, testing, and trace equivalence. Since most encodings introduce addi-
tional computation steps compared to the behavior of source terms, we may hardly expect
correctness up to strong bisimulation. Weak bisimulation may be applicable whenever
the additional steps are internal. Furthermore, bisimulation comes with coinductive proof
techniques. Testing equivalences that are strictly weaker than bisimulation may often be
sufficient as correctness criteria, but they lack a convenient proof technique. Therefore,
bisimulation is also appealing in those cases where, for example, some testing equivalence
would suffice.

In general, however, we cannot assume that we have a formal setting at hand that
allows us to compare terms and their translations directly. The notion of full abstraction
has been developed to get around this problem. Here, correctness is expressed as the
preservation and reflection of equivalence of source terms. Let �s and �t denote equivalences
of the source and the target language, respectively. Then, the full abstraction property is
formulated as:

S1 �s S2 if and only if [[S1 ]] �t [[S2 ]].

Up to the chosen notions of equivalence, fully abstract encodings allow us—for reasoning
about terms—to freely switch between the source and target languages in both directions.
Note that, usually, the reflection (if ) of equivalence, often called adequacy, is relatively easy
to establish. In contrast, to prove the preservation (only if ) of equivalence is not an easy
task: the chosen notions of equivalence should be insensitive to the additional computation
steps that are introduced by the encoding; moreover, when one is interested in congruences,
the equivalence has to be preserved in not only translated high-level contexts, but arbitrary
low-level contexts. Yet, only when both reflection and preservation hold the theory and
proof techniques of a low-level language can always be used for reasoning about high-level
terms; preservation then provides behavioral completeness, reflection provides behavioral
soundness.

Often, e.g. for encodings of object-oriented languages, the source language is not a priori
equipped with a notion of equivalence. Thus, we may not be able to check the encoding’s
correctness via a full abstraction result. The notion of operational correspondence was
therefore designed to capture correctness as the preservation and reflection of execution
steps as defined by an operational semantics of the source and the target languages, and
expressed in the model of transition systems which specify the execution of terms. Let →s

and →t denote transition relations on the source and target language, respectively, and let
⇒s and ⇒t denote their reflexive transitive closure. Then, operational correspondence is
characterized by two complementary propositions, which we briefly call completeness (C)
and soundness (S).
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Completeness (Preservation of execution steps.) The property

if S →s S′, then [[S ]] ⇒t [[S′ ]] (C)

states that all possible executions of S may be simulated by its translation, which is naturally
desirable for most encodings.

Soundness (Reflection of execution steps.) The converse of completeness, i.e., the prop-
erty

if [[S ]] ⇒t [[S′ ]] then S ⇒s S′,

is, in general, not strong enough since it deals neither with all possible executions of transla-
tions nor with the behavior of intermediate states between [[S ]] and [[S′ ]]. For example, non-
deterministic or divergent executions, sometimes regarded as undesirable, could although
starting from a translation [[S ]] never again reach a state that is a translation [[S′ ]]. A
refined property may consider the behavior of intermediate states to some extent:

if [[S ]] →t T then there is S →s S′ such that T �t [[S′ ]] (I)

says that initial steps of a translation can be simulated by the source term such that the
target-level derivative is equivalent to the translation of the source-level derivative.

Let us call a target-level step committing if it directly corresponds to some source-level
step. It should be clear that only prompt encodings, i.e., those where initial steps of literal
translations are committing, will satisfy I. As a matter of fact, most encodings studied up
to now in the literature are prompt. Promptness also leads to ‘nice’ proof obligations since
it requires case analysis over single computation steps.

However, non-prompt encodings do not satisfy I; like choice encodings, they allow ad-
ministrative (or book-keeping) steps to precede a committing step. Sometimes (cf. [Ama94]),
these administrative steps are well behaved in that they can be captured by a confluent
and strongly normalizing reduction relation. Then, the encoding is optimized to perform
itself the initial administrative overhead by mapping source terms onto administrative nor-
mal forms to satisfy I. A satisfyingly general approach to take administrative steps into
account is:

if [[S ]] ⇒t T then there is S ⇒s S′ such that T ⇒t [[S′ ]] (S)

says that arbitrary sequences of target steps are simulated (up to completion) by the source
term. It takes all derivatives T—including intermediate states—into account and does
not depend on the encoding being prompt or normalizable. Thus, S is rather appealing.
However, it only states correspondence between sequences of transitions and is therefore, in
general, rather hard to prove, since it involves analyzing arbitrarily long transition sequences
between [[S ]] and T (see [Wal95] for a successful proof).
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Finally, note that a proof that source terms and their translations are the same up to
some operationally defined notion of equivalence gives full abstraction up to that equivalence
and operational correspondence for free (see Corollaries 5.6.4 and 5.7.6, and the discussion
at the end of Section 5.4).

4 Encoding input-guarded choice, asynchronously

This section defines encodings of the asynchronous π-calculus with input-guarded choice P
Σ

into its choice-free fragment P (§4.1): a divergence-free choice encoding, and a divergent
variant of it (§4.2). The essential idea of the encodings is that a branch may consume
a message before it checks whether it was allowed to do so; if yes, then it may proceed,
otherwise it simply resends the consumed message. Such protocols are only correct with
respect to asynchronous observation, which is insensitive to the temporary buffering of
messages. An example process term (§4.3) exhibits the essential difference between the two
choice encodings and prepares the ground for a discussion of possible correctness statements.

In the above-mentioned protocols, mutual exclusion among the branches of a choice is
implemented by a concurrent race for a shared lock. Since the lock may be most succinctly
expressed by means of some form of boolean values, we introduce (in §4.1) an intermediate
language that provides a convenient primitive operator for testing boolean-valued messages;
§4.4 gives a careful treatment of the expansion of those intermediate terms.

4.1 The setting

An encoding is a function from some source syntax into some target syntax. This subsec-
tion introduces the language P

Σ that represents the source syntax. In addition, we refine
the setting by an intermediate language P

test to be used instead of the intended target
language P.

S := P
Σ


 �)_��
P P

test�lr =: T

In diagrams like the above, dotted arrows are just placeholders for encoding functions.

Source language We introduce choice as a finitely indexed operator on input terms. Its
behavior is specified by the operational semantics rule in Table 3, which formally describes
that each branch in a choice may be selected and consume an external message, preempting
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all of its competing branches. The set P
Σ of processes with input-guarded choice is generated

by adding a clause for
∑

-expressions to the grammar of P:

P ::= . . .
∣∣ ∑

j∈J
Rj

where J is some finite indexing set. We also use the abbreviation R1 + R2 to denote binary
input-guarded choice. The labeled transition semantics of P

Σ is the relation generated by
the rules in Table 1 and rule C-INP in Table 3.

Target language(s) Instead of directly defining the encodings from P
Σ into P, we use

an intermediate language P
test that provides special boolean names, and also a conditional

form test l then P else Q for testing the (boolean) value of messages along some channel l.
Let B := {f, t} be the set of special names that we interpret as boolean values. Let

V := N ] B be referred to as the set of values. Then the set P
test of processes with

conditionals is defined by adding a clause for test-expressions to the grammar of P:

P ::= . . .
∣∣ test y then P else P

In addition, in order to forbid restriction on, communication on, and substitution for
booleans, we adopt some naming conventions concerning their admissible occurrences in
the clauses of the grammar of P (cf. §2) by requiring that x, y ∈ N and z ∈ V. Thus, the
only use of booleans in P

test is as objects in messages. Note that test-expressions can be
regarded as abbreviations of if-expressions that are prefixed with some input of a boolean
message.

test y then P1 else P2 =̂ y(b) . if b then P1 else P2

The reason for using test instead of if is, on the one hand, better readability and, on
the other hand, that if, like matching operators, destroys some congruence properties of
the language. In order to model the behavior of test-expressions that can interact with
messages, we supply an operational semantics by the rules in Table 4 that properly fits
with the labeled transition system semantics of P and the explanation in terms of if.1 The

1By using an early instantiation scheme, the interaction between boolean messages and test-expressions
is handled by the standard COM -rule; otherwise, we would have to supply some refined interaction rule for
controlling the admissible transmission of booleans.

�

�

�

�

C-INP:
∑
j∈J

yj(x).Pj
ykz−−−→ Pk if k ∈ J

Table 3: Operational semantics for
∑

-expressions
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labeled transition semantics of P
test is then determined as the smallest relation generated

by the rules in Table 4 and Table 1, where we add the side-condition z ∈ N to the rules INP

and R-INP; this additional side-condition prevents the standard input forms from receiving
special names, and thus also from unintendedly using special names as channels.

After having presented the encodings into T in §4.2, we formalize in §4.4 the interpreta-
tion of those encodings as encodings into P. The reader might object that these encodings
can not be regarded as identical since T contains test-expressions. However, we can safely
make this identification up to some notion of equivalence. As one might expect, this de-
pends on the way that we actually use the additional primitives in our choice encodings:
we only use the booleans on restricted channels, so they never become visible. The formal
justification later on uses this fact explicitly (cf. §5.5).

4.2 Two choice encodings

This subsection contains two simple encodings of S into its choice-free fragment T. Both
encodings C[[ ]],D[[ ]] : S → T map terms of the source language S inductively into the target
language T. Since the encodings coincide on all constructors but choice, we use a common
homomorphic scheme of definition, where [[ ]] may denote either C[[ ]] or D[[ ]]:

[[ (x)P ]] def= (x)[[P ]] [[P1|P2 ]] def= [[P1 ]] | [[P2 ]]

[[ yz ]] def= yz [[0 ]] def= 0

[[ y(x).P ]] def= y(x).[[P ]] [[ !R ]] def= ! [[R ]]

This scheme will also be reused later on for other encoding functions: if an encoding X [[ ]]
acts homomorphically on each constructor of P, then it is defined according to the scheme
with [[ ]] replaced by X [[ ]].

A source-level choice term is implemented by a particular target-level structure: for
each choice expression, the translation[[ ∑

j∈J
Rj

]]
def= (l)

(
lt

∣∣ ∏
j∈J

Branch l〈 [[Rj ]] 〉
)

installs a local lock—a message on l that carries a boolean name—that is only accessible for
the parallel composition of its branches, which use the lock for running a mutual exclusion

�

�

�

�

TRUE: test l then P1 else P2
lt−−→ P1

FALSE: test l then P1 else P2
lf−−→ P2

Table 4: Operational semantics for test-expressions
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protocol, as specified by the semantic rule C-INP. The protocol crucially depends on the
invariant that at any time there is at most one boolean message available on l. If we
manage to maintain this invariant, i.e., if it holds for all derivatives, then we are guaranteed
that at any time the value of the lock is uniquely determined, which allows us to regard
possible subsequent messages on l as representing the behavior of a ‘determinate’ lock that
is accessible via l. The determinacy of the lock limits the nondeterminacy of the encoding
solely to the concurrent race of the translations of the branches. Initially the lock carries
t, so it represents the fact that the choice is not yet resolved; consequently, a committed
choice will be recognizable by the lock carrying f.

Two slightly different ways of implementing the mutual exclusion protocol are given in
the following subsections, differing only with respect to the possibility of undoing activities
of branches, thus yielding two different definitions for the implementation Branchl.

Divergence-free protocol

In the Introduction, we presented the following algorithm (note the use of test):

Branch l〈 yj(x).Pj 〉 def= yj(x) . test l then ( C[[Pj ]] | lf ) else ( yjx | lf )

Every branch tests the lock after having received a value on its channel. If the lock carries t,
then the testing branch proceeds with its continuation, otherwise it resends the message that
it has consumed and terminates. Each time the lock is read, it is immediately reinstalled—
independent of its former value—with the value f. Thus, at most one branch will ever be
chosen, since only the first branch that reads the lock will read t.

In order to conveniently denote intermediate states in the branches of an encoding, we
use the following abbreviations, where R on the left hand side matches the term y(x).P
such that y, x, P may be used on the right-hand side of the definitions.

Read l〈R 〉 def= y(x).Test l〈R 〉
Test l〈R 〉 def= test l then Commit l〈R 〉 else Abort l〈R 〉

Commit l〈R 〉 def= lf | P

Abort l〈R 〉 def= lf | yx

Observe that Branch l〈R 〉 = Read l〈R 〉 by definition, so a choice expression is translated
by

C
[[ ∑

j∈J
Rj

]]
def= (l)

(
lt

∣∣ ∏
j∈J

Read l〈 C[[Rj ]] 〉
)

where l is fresh

into the composition of its branches in Read -state and the lock carrying t.
Note that the C-encoding does not add divergence to the behavior of source terms, as

can be observed by inspection of the abbreviations: only finite τ -sequences are used in order
to implement a choice, whereas τ -loops are not possible (we prove it formally in §5.8).
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Protocol with undo-loops

We now define the other choice encoding. Its main difference from the encoding C[[ ]] is that
a supposedly committed branch may change its mind and deny the commitment, releasing
the lock and giving back the value it consumed from the environment. Let internal choice
be:

P ⊕ Q
def= (i) ( i | i.P | i.Q ) where i fresh

The encoding D[[ ]] is then defined by modifying just the clause Test l〈R 〉 of the C-encoding
by inserting an internal choice as follows:

Test l〈R 〉 def= test l then Commit l〈R 〉 ⊕ Undol〈R 〉 else Abort l〈R 〉
Undol〈R 〉 def= lt | yx

Note that in contrast to the cases of Commit/Abort , where the lock’s value is set to f,
in the case of Undo it is crucial to set it to t, because in this case the choice is still not
resolved. In order to have a fresh copy of the branch in initial state available after having
undone an activity, we use replication of the Read -agents as the translation of branches:
with Branch l〈R 〉 = !Read l〈R 〉 a choice expression is translated by:

D
[[ ∑

j∈J
Rj

]]
def= (l)

(
lt

∣∣ ∏
j∈J

!Read l〈D[[Rj ]] 〉
)

where l is fresh

In their D-translation, convergent branches of a choice term possibly engage in internal
loops that may be used to restart a possibly committing branch from an initial state. This
behavior might be considered problematic from an implementation point of view, but in
the next subsection, we shall see that the D-encoding is interesting despite its divergence.

4.3 An example

We highlight the difference between the two choice encodings by comparing a particular
source term with both of its translations. Let

S = y2z | N where N = R1 + R2 with Ri = yi(x).Pi

describe a binary choice in the presence of a single message matching the second of the bran-
ches, where P1, P2 are arbitrary terms in P (i.e., not containing choices or test-expressions).
It turns out that both S 6≈ C[[S ]] and S ≈ D[[S ]] hold, which imply that the C-encoding
neither preserves nor reflects weak bisimulation (Lemmas 4.3.3 and 4.3.4).
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Divergence-free encoding

The transition systems of the above S and C[[S ]] can be depicted as follows. Since, for estab-
lishing bisimulations in the asynchronous π-calculus, input transitions are only considered
in the context of arbitrary messages, we do not mention them explicitly in the pictures,
but just the internal and output transitions. The dotted lines representing simulation rela-
tions are to be read from left to right; when the lines are vertical, simulation holds in both
directions. We get

S : N

<

S

<

y2z
oo τ // P2{z/x}

<<

T : C[[N ]]

4

C[[S ]]
y2z

oo

4

τ // C
τ //

<

C2

4

where (letting Bi = Read l〈 C[[Ri ]] 〉):

C[[S ]] = y2z | C[[N ]]

C[[N ]] = (l)
(

lt | B1 | B2

)
C = (l)

(
lt | B1 | Test l〈 C[[R2 ]] 〉 {z/x}

)
C2 = (l)

(
0 | B1 | Commit l〈 C[[R2 ]] 〉 {z/x}

)
≡ (l)

(
lf | B1

)
︸ ︷︷ ︸

≈0 (see Lemma 5.2.2)

| C[[P2 ]]{z/x}

We may phrase the intermediate state C as having partially committed : at that stage of
commitment, it is already clear that one of the branches will eventually be chosen, but
it is not yet clear if it will be the activated branch (as we chose in the computation path
with C2) or if it will be the competing branch (still waiting at y1 for some value), since
there might still be a suitable message provided by the context which could activate the
latter and afterwards pre-empt the former. As a consequence, the state C does not directly
correspond to any of the source terms with respect to weak bisimulation, which implies:

Fact 4.3.1 S 6≈ C[[S ]].

On the other hand, the observation that S < C < P2{z/x} with S =⇒ P2{z/x} in the
above example suggests coupled simulation as an appropriate notion of correctness for the
C-encoding.

20



Divergent encoding

The corresponding transition systems of S and D[[S ]], again omitting input transitions, are

S : N

≈

S

≈

y2z
oo τ // P2{z/x}

≈

T : D[[N ]] D[[S ]]
y2z

oo τ // D
τ //

≈

D′ τ //

≈

τ
dd

D2

where (letting Bi = !Read l〈D[[Ri ]] 〉):

D[[S ]] = y2z | D[[N ]]

D[[N ]] = (l)
(

lt |B1 |B2

)
D = (l)

(
lt |B1 |B2 | Test l〈D[[R2 ]] 〉 {z/x}

)
D′ = (l)

(
0 |B1 |B2 |

(
Commit l〈D[[R2 ]] 〉 ⊕ Undol〈D[[R2 ]] 〉){z/x}

)
= (l)

(
0 |B1 |B2 |

(D[[P2 ]]{z/x} | lf
) ⊕ (

y2z | lt
))

D2 ≡ (l)
(

lf |B1 |B2

)
︸ ︷︷ ︸
≈0 (see Lemma 5.7.1)

| D[[P2 ]]{z/x}

The internal undo-transition from D′ back to D[[S ]] is essential in proving that the inter-
mediate states D and D′ are actually weakly bisimilar to S, since only by internally looping
back to the initial state can they simulate all of S’s behavior; that possibility is lacking in
the C-encoding.

Proposition 4.3.2 S ≈ D[[S ]].

Note another aspect of the above computation paths of C[[S ]] and D[[S ]]: Whereas the
step from C[[S ]] to C uses up the component B2, its correspondent survives in the step
from D[[S ]] to D since, there, it is a replication.

Full abstraction?

We can now use S to prove that the C-encoding is not fully abstract with respect to weak
bisimulation. Note that both C[[ ]] and D[[ ]], extended in the obvious way for test-clauses, act
as an identity on terms in T, which implies that C[[ C[[S ]] ]] = C[[S ]] and C[[D[[S ]] ]] = D[[S ]].

Weak bisimulation is not reflected by the C-encoding.
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Lemma 4.3.3 C[[S1 ]] ≈ C[[S2 ]] does not imply S1 ≈ S2.

Proof: Let S1 = S be the example above and S2 = C[[S ]] its translation. By definition, we
have C[[S2 ]] = C[[ C[[S ]] ]] = C[[S ]] = C[[S1 ]], but S2 6≈ S. �

Weak bisimulation is also not preserved by the C-encoding.

Lemma 4.3.4 S1 ≈ S2 does not imply C[[S1 ]] ≈ C[[S2 ]].

Proof: Let S1 = S and S2 = D[[S ]], so that S1 ≈ S2. Suppose, for a contradiction, that C[[ ]]
preserved ≈; then, by definition, we would have C[[S ]] = C[[S1 ]] ≈ C[[S2 ]] = C[[D[[S ]] ]] =
D[[S ]] ≈ S, which contradicts Fact 4.3.1. �

4.4 Expanding the encodings

In §4.1, we introduced the intermediate language P
test as a for the convenient presentation

of choice encodings. We justify the use of P
test by translating it itself into the language P.

We first sketch the idea of expanding boolean messages and test-expressions into P

by using 2-adic messages. It is directly inspired from a standard protocol for encoding the
behavior of persistent boolean values [Mil93] adapted to the needs of the example, where the
boolean messages correspond to ephemeral boolean variables. The encoding function B̃[[ ]]
acts homomorphically on every constructor of P that does not involve booleans; for those
constructors that apply to or just mention booleans, B̃[[ ]] is defined by

B̃[[ lt ]] def= l(t, f).t

B̃[[ lf ]] def= l(t, f).f

B̃[[ test l then P else Q ]] def= (t)(f)( l〈t, f〉 | t.B̃[[P ]] | f.B̃[[Q ]] )

where l〈t, f〉 and l(t, f).P denote 2-adic communication (cf. [Mil93]). In contrast to the
higher-level test-notation, the B̃-encoding causes one additional τ -step for each test.

We still have not yet arrived at the language P due to the use of 2-adic messages in
the B̃-encoding; note that we do not need the expressive power of the full polyadic π-calcu-
lus, here. To get rid of them, we may use a technique for asynchronously encoding 2-adic
messages [HT91] that was called ‘zip-lock’ technique by Odersky [Ode95a]. The encoding
function Z[[ ]] acts homomorphically on every constructor of P; for 2-adic messages and
inputs,

Z[[ l〈t, f〉 ]] def= (u)(lu| u(v).( vt| u(w).wf))

Z[[ l(t, f).P ]] def= l(u).(v)(uv| v(t).(w)(uw|w(f).Z[[P ]]))

yields monadic processes, where the names u, v,w are assumed not to occur free in P .
We could have used fewer freshly created names by reusing u for different purposes, but
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the number of necessary internal actions cannot be reduced, since one (on l) is needed to
establish the connection, two (on v,w) for transferring the data, and another two (on u)
for transmitting the local channels and also serving as internal acknowledgments in order
to maintain the order of the data by transmitting them in a ‘zip-lock’ way.

By using the zip-lock encoding, we give an expanded B-encoding into the monadic target
language P, where we also use ‘void’ names that are merely used as signal objects and
could be instantiated with any name since they are never used as channels.

B[[ lt ]] def= Z[[ l(t, f).t ]]

B[[ lf ]] def= Z[[ l(t, f).f ]]

B[[ test l then P else Q ]] def= (t)(f)(Z[[ l〈t, f〉 ]] | t.B[[P ]] | f.B[[Q ]] )

Obviously, a language with boolean messages and test-expressions as primitives will be much
clearer than the B-translations, when used in order to write down an encoding function.

Finally, we are ready to give the full encodings C.[[ ]] and D.[[ ]] by composing the earlier
encodings into the intermediate target language T with the expanding encoding B[[ ]]:

C.[[ ]] def= (B ◦ C)[[ ]]

D.[[ ]] def= (B ◦D)[[ ]]

which are indeed encodings of P
Σ into its choice-free fragment P.

S = P
Σ

C[[ ]],D[[ ]]


 �)

C.[[ ]],D.[[ ]]

_��
P P

test
B[[ ]]

�lr = T

We can ‘safely’ use primitive test-forms within the encoding functions since, as we will show
in §5.5, the following property holds:

for all S ∈ S : for all C[[S ]] −→∗ T : T . B[[T ]]

i.e., the encoding B[[ ]] ‘expands’ certain T-terms in the sense of Definition 2.3.5: T and B[[T ]]
are weakly bisimilar, but the latter uses more τ -steps. The proof of this property relies on
the fact that any use of booleans within the encoding C[[ ]] is restricted for an outside
observer of a choice expression. The same property holds of the encoding D[[ ]].
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4.5 Discussion

As the distinguishing example in §4.3 indicates, for reasoning about the choice encoding’s
behavioral correctness, we are able to compare source terms S and their translations [[S ]]
directly; the visible labels of source and target transitions are the same. Furthermore, by
the arguments of the previous section, both encodings can be regarded as endomorphic
mappings where the target T is a fragment of the source S, at least up to expansion of
translations.

With respect to operational correspondence, the choice encodings represent the class of
non-prompt translations where, as in the motivation of the soundness property S, commit-
ting steps of translations are preceded by administrative steps. Those pre-administrative
steps can not be simply defined away (by using administrative normal forms) since, in gen-
eral, they are not confluent: imagine a process containing two choices that compete for
a single message; both choices could evolve by consuming the message, but each would
pre-empt the other.

In the first author’s PhD thesis [Nes96], the discussion of appropriate notions of cor-
rectness as well as a discussion of possible (correct) and impossible (incorrect) variants of
the proposed choice encodings are carried out in considerably more detail.

5 Correctness proof by decoding

In this section, we prove the correctness of the C-encoding with respect to coupled simulation
equivalence (§5.2–§5.6) and sketch the corresponding proof for the D-encoding with respect
to weak bisimulation equivalence (§5.7). The main contribution of this section is a proof
notation and technique, with decoding functions, which we use to exhibit that source terms
and their translations are in fact equivalent. We also include a proof that the C.-encoding
is divergence-free (§5.8).

5.1 Overview

Since the choice encodings are not prompt, we have to explicitly deal with the behavior of
intermediate states and relate them to source terms with equivalent behavior. Moreover,
in the case of the C.-encoding, an intermediate state may be partially committed, so we
may have to relate it to two different source terms. By definition, partial commitments are
absent in source terms; thus, a partially committed derivative of a translation can only be
related to source terms which represent either its reset or its completion.

Technically, we are going to build the coupled simulation constructively as a pair of
decoding functions from target terms to source terms. However, intermediate states are
target terms that have lost the structure of being literal translations of source terms; thus,
it is impossible to denote the source term from which an intermediate target term derives
without some knowledge of its derivation history.
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We therefore introduce annotated source terms (§5.2) as abbreviations for derivatives of
their translations. An annotated term shows its source-level choice structure while provid-
ing information about which target state its choices inhabit, using a representation of its
derivation history that is constructed from an operational semantics of annotated choice.
We formally introduce the language A of annotated source terms and use it as follows for
the investigation of the correctness of the C.-encoding:

Factorization (§5.3) Annotated source terms represent ab-
breviations of target terms. We define an annotation
encoding A mapping source terms to abbreviations and
a flattening encoding F expanding abbreviations to tar-
get terms.

Decoding (§5.4) Annotated source terms deal with partial
commitments explicitly. We define two decoding func-
tions U of annotated terms back into source terms, where
U[ resets and U] completes partial commitments.

Expansion (§5.5) Since the target language T is a language
extended with booleans, we show that their use in our
setting is rather well-behaved according to the expanding
encoding B.

S
A[[ ]] � ,2

C[[ ]]

	 �(
IIIIIIIIIIIIIIIIIIIII

_��

A

F [[ ]]

_��
P T

�lr

S

_��

A

U][[ ]]�lr

U[[[ ]]

�lr

_��
P TB[[ ]]

�lr

The factorization, the decodings, and the expansion enjoy several nice properties:

1. F is a strong bisimulation between abbreviations and boolean target terms.
2. (U[,U]) is a coupled simulation between abbreviations and source terms.
3. B, i.e., a variant of it, is an expansion for booleans in target terms.

Those can be combined to provide a coupled simulation on S × P. The observation that
every source term S and its translation C.[[S ]] are related by this relation concludes the
proof of coupled-simulation-correctness of the C.-encoding (§5.6).

Simplifications due to homomorphic encodings and decodings Many of the proofs
in this section have in common that they exhibit particular transitions of terms by con-
structing appropriate inference trees either

• from the inductive structure of (annotated) terms, or
• by simply replacing some leafs in the inference trees of their encodings or decodings.

Since the A,F ,U[,U],B-functions are each defined homomorphically on every constructor
of P according to the scheme in §4, there is a strong syntactic correspondence between
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terms and their respective translations, and, as a consequence, there is also a strong corre-
spondence between transition inference trees. More precisely, since in transitions involving
choice

• there is at most one application of a choice rule, and
• an application of the choice rule always represents a leaf in the inference tree,

it suffices for all proofs to regard choice terms in isolation.
When looking for simulations between terms and their translations (as in the proofs

of Proposition 5.3.4, Lemmas 5.3.1, 5.4.2 and 5.4.3), a transition which does not involve
choice rules is trivially simulated via the identical inference tree by the translated term.
A transition which emanates from a choice term inside a term context, and which may
be simulated by the translated choice term in isolation, will also be derivable by the same
inference tree, except for the leaf being adapted to the simulating transition. Note that
possible side-conditions are not critical, if the simulation has been successful for the choice
term itself.

When (as in the proofs 5.4.7 and 5.4.6) looking for internal transitions of a particular
term, generated by occurrences of choice, it suffices to use choices in isolation since τ -steps
are passed through arbitrary contexts without condition.

5.2 Annotated choice

This subsection introduces an annotated variant of choice, which provides abbreviations for
all derivatives of C-translations. Its shape reveals the high-level structure, but it exhibits
low-level operational behavior. The attached annotations record essential information about
the low-level derivation history.

According to the definition in §4, the computations of individual branches of a choice
will pass through basically three different states: Read , Test , and one of Commit or Abort
as the final state. The state of each branch is completely determined by the result of two
inputs:

• the value (if any) which is currently carried by the channel, and
• the boolean (if any) which has been assigned by acquiring the lock.

For the representation of that information for a J-indexed choice, we use

• a partial function v : J ⇀ V, mapping choice indices to values, and
• a possibly empty set B ⊆ J of choice indices such that B ∩ dom(v) = ∅.

In the context of a particular J-indexed choice with branches Rj = yj(x).Pj for each j ∈ J ,
the definedness of vj (the value v(j) held by branch j) means that a value has been read from
the environment, but has not yet either led to a commitment of branch j or been reinjected
into the environment. The set B records those branches which have already accessed the
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READ:
( ∑

j∈J
Rj

)v

B

ykz−−−→ ( ∑
j∈J

Rj

)v +(k 7→z)

B
if k ∈ J\(V ∪B)

COMMIT:
( ∑

j∈J
Rj

)v

∅
τ−−→ ( ∑

j∈J
Rj

)v−k

{k}
∣∣ Pk{vk/x} if k ∈ V

ABORT:
( ∑

j∈J
Rj

)v

B 6=∅
τ−−→ ( ∑

j∈J
Rj

)v−k

B+k

∣∣ yk vk if k ∈ V

Table 5: Early transition semantics for annotated choice

boolean lock. An empty set B means that none of the branches has yet been chosen, i.e.,
that the choice has not (yet) committed. Then, with the abbreviation V := dom(v), the
state of each individual branch can be retrieved from the annotations v and B. Branch
k ∈ J is in

• Read -state if k ∈ J\(V ∪B)
• Test-state if k ∈ V
• Commit/Abort -state if k ∈ B.

The state of the whole choice is completely determined by the states of its branches.

Definition 5.2.1 (Annotated choice) Let J be a set of indices. Let Rj = yj(x).Pj be
input prefixes for j ∈ J . Let v : J ⇀ V and B ⊆ J with B ∩ V = ∅, where V := dom(v).
Then, ∑

j∈J
Rj and

( ∑
j∈J

Rj

)v

B

are referred to as bare and annotated choice, respectively.

Annotated choice is given the operational semantics in Table 5. The dynamics of annotated
choice mimic precisely the behavior of the intended low-level process. READ allows a branch
k in Read -state (k ∈ J\(V ∪B)) to optimistically consume a message.2 If the choice is not
yet resolved (B = ∅), COMMIT specifies that an arbitrary branch k in Test-state (k ∈ V )
can immediately evolve into its Commit-state. i.e., trigger its continuation process Pk.
After the choice is resolved (B 6= ∅), ABORT allows any branch k in Commit -state (k ∈ V )
to evolve into its Abort-state release their consumed messages. Intuitively, by reading the

2Compared to its late counterpart, the early instantiation scheme may be more intuitive for showing that
a particular value has entered the choice system. Furthermore, we do not have to deal with α-conversion of
homonym bound names in different branches. Nevertheless, the further development in this paper does not
depend on this decision. Note also that early and late bisimulation coincide in our setting (cf. §2.3).
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lock, a branch immediately leaves the choice system and exits. Therefore, annotated choice
only contains branches in either Read - or Test-state.

We distinguish three cases for choice constructors that are important enough to give
them names: initial for V = ∅ = B, partial for V 6= ∅ and B = ∅, and committed for
B 6= ∅. Note that both initial and partial choice contain all branches, whereas committed
choice never does; it will even become empty, once all branches have reached their final
state (B = J).

Committed choice exhibits a particularly interesting property: its branches in Test-state
already have consumed a message which they will return after recognizing, by internally
testing the lock, that the choice is already committed; its branches in Read -state are still
waiting for values to be consumed and—since the choice is resolved and the lock carries f—
immediately resent after an internal step. Processes with such receive-and-resend behavior
are weakly bisimilar to 0 and were called identity receptors by Honda and Tokoro [HT92].
In fact, a stronger property holds:

Lemma 5.2.2
( ∑

j∈J
Rj

)v

B 6=∅ &
∏

j∈V
yj vj.

Proof: Let M be an arbitrary m-ary composition of messages. We show that

R def=
{ (

M
∣∣ ( ∑

j∈J
Rj

)v

B 6=∅︸ ︷︷ ︸
LHS

, M
∣∣ ∏

j∈V
yj vj︸ ︷︷ ︸

RHS

) ∣∣∣ ( ∑
j∈J

Rj

)v

B
∈ A

}

is an expansion.

case internal steps According to the operational semantics, τ -transitions are only possi-
ble for LHS. Since RHS does not exhibit τ -transitions, we show that for all LHS

τ−−→
LHS′, we have (LHS′,RHS) ∈ R. There are two subcases: either (1) via an ABORT -
step of choice, or (2) via choice consuming an M -message due to READ.

case ABORT Since B 6= ∅, for k ∈ V , via ABORT , followed by m times PAR1, we have
LHS = M

∣∣ ( ∑
j∈J

Rj

)v

B

τ−−→≡ M
∣∣ yk vk

∣∣ ( ∑
j∈J

Rj

)v−k

B+k
=: LHS′

Since k’s values are erased from v, we observe that the R-correspondent of
LHS′—note that it is an admissible left hand side for R—as defined by

M
∣∣ yk vk

∣∣ ∏
k 6=j∈V

yj vj = M
∣∣ ∏

j∈V
yj vj

coincides with RHS.
case READ For M ≡ N | yz and k ∈ J\(V ∪B) such that y = yk, let v′ = v +(k 7→z).

Then, via rule READ for the choice part, OUT for the indicated y-message, and
rule COM to derive the τ -transition from the former visible transitions, we have
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LHS = N
∣∣ yz

∣∣ ( ∑
j∈J

Rj

)v

B

τ−−→ N
∣∣ ( ∑

j∈J
Rj

)v′

B
=: LHS′

By definition, the R-correspondent of LHS′, is of the form
N

∣∣ ∏
j∈V ′

yj vj = N
∣∣ yk vk

∣∣ ∏
j∈V

yj vj = M
∣∣ ∏

j∈V
yj vj

which coincides with RHS.

case output steps According to the operational semantics, output-transitions are possi-
ble for each message in M , i.e., for both LHS and RHS. The (strong) bisimulation
behavior for that case is trivial. LHS does not exhibit further immediate outputs. In
contrast, RHS allows outputs for each message in

∏
j∈V

yj vj, i.e., for k ∈ V , via OUT

and PAR, we have

RHS = M
∣∣ ∏

j∈V

yj vj
yk vk−−−−−→ M

∣∣ ∏
k 6=j∈V

yj vj =: RHS′

Due to ABORT , we derive an internal step and afterwards release the message yk vk

LHS = M
∣∣ ( ∑

j∈J
Rj

)v

B

τ−−→ M
∣∣ ( ∑

j∈J
Rj

)v−k

B+k

∣∣ yk vk

yk vk−−−−−→ M
∣∣ ( ∑

j∈J
Rj

)v−k

B+k
=: LHS′

which weakly simulates the transition of RHS. We observe that (LHS′,RHS′) ∈ R.
�

Corollary 5.2.3 (Inertness)
( ∑

j∈J
Rj

)∅
B 6=∅ & 0.

From an asynchronous observer’s point of view, committed choice behaves exactly like the
composition of the messages that are held by branches in Test-state, except that it involves
additional internal computation. Note that a standard (synchronous) observer, which may
detect inputs, would be able to tell the difference.

Since the purpose of annotated choice is to keep track of which low-level actions belong
to the same high-level choice, we introduce a language of annotated processes. The set P

(Σ)

such processes is generated by adding a clause for (
∑

)-expressions to the grammar of P:

P ::= . . .
∣∣ ( ∑

j∈J

Rj

)v

B

The operational semantics of P
(Σ) is given by the rules in Table 1 and Table 5.
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5.3 Factorization

We now introduce the components of a factorization for the encoding C[[ ]]: an annotation
encoding A[[ ]], and a flattening encoding F [[ ]].

S
A[[ ]] � ,2

C[[ ]]

� �(

A

F [[ ]]

_��

:⊂ P
(Σ)

T

An intermediate sublanguage A will be characterized as the sublanguage of P
(Σ) that pre-

cisely contains the derivatives of A-translations. We write C, A, and F for the encoding
functions considered as relations.

Annotation.

The encoding A[[ ]] : S → P
(Σ) acts homomorphically on every constructor except for choice

according to the scheme in §4. The latter case is given by

A
[[ ∑

j∈J
Rj

]]
def= (

∑
j∈J

A[[Rj ]])∅∅

which translates choices into their annotated counterparts with all branches in initial state.
The following lemma represents a first simple operational completeness statement for A[[ ]].

Lemma 5.3.1 (Completeness) A is a weak simulation up to expansion.

Proof: We show the proof for weak synchronous simulation, which implies the asynchronous
case. The proof is by structural induction on S ∈ S and transition induction on S −→ S′.
By the simplification discussed in Section 5.1, it suffices to regard the case

S =
∑
j∈J

Rj

where, according to the rules in Table 3, there is only one subcase.

case C-INP For k ∈ J , with
∑
j∈J

Rj
ykz−−−→ Pk{z/x} ,

there is always a weakly simulating sequence by READ and COMMIT
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A
[[ ∑

j∈J
Rj

]]
=

( ∑
j∈J

A[[Rj ]]
)∅
∅

ykz−−−→ ( ∑
j∈J

A[[Rj ]]
)(k 7→z)

∅
τ−−→ A[[Pk ]]{z/x}

∣∣ ( ∑
j∈J

A[[Rj ]]
)∅
{k}

& A[[Pk ]]{z/x}
∣∣ 0

≡ A[[Pk{z/x} ]]

where the expansion relation holds due to Lemma 5.2.2. �

Intermediate language.

Terms in the target of A[[ ]] and also their derivatives are of a particular restricted form,
which can be made precise by characterizing the possible shape of occurrences of choice
terms. Let a subterm be called guarded when it occurs as a subterm of a guard. The basic
syntactic properties of the intermediate language then are:

• All occurrences of choice are annotated.
• All guarded occurrences of choice are initial.
• Unguarded occurrences of choice may be initial, partial, or committed.

Later on in this paper (for the proofs of the Lemmas 5.4.6 and 5.4.8), we need these
properties in order to conclude that no guarded annotated choice is in an intermediate
state.

Therefore, let A denote the sublanguage of terms in P
(Σ) that satisfy the above syntactic

requirements; we give an inductive grammar for generating appropriate terms by two levels.
One level generates terms I with only initially annotated occurrences of choice terms

G ::= y(x).I

I ::= 0
∣∣ yz

∣∣ G
∣∣ (y)I

∣∣ I|I ∣∣ !G
∣∣ ( ∑

j∈J
Gj

)∅
∅

Another level on top generates terms A which allow active (top-level) choices to be in
intermediate state, but guarded occurrences of choice only to be initial, as specified by I:

R ::= y(x).I

A ::= 0
∣∣ yz

∣∣ R
∣∣ (y)A

∣∣ A|A ∣∣ !R
∣∣ ( ∑

j∈J
Rj

)v

B

where v : J ⇀ V and B ⊆ J for arbitrary index set J , as usual. A term A ∈ A is called
partially committed (or partial), if it contains at least one occurrence of partial choice, and
fully committed (or full), otherwise.
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An important property of A is that it is transition-closed.

Lemma 5.3.2 For all A ∈ A, if A
µ−−→ A′, then A′ ∈ A.

Proof: By inspection of the rules in Table 5. �

Flattening.

The encoding F [[ ]] : P
(Σ) → T acts homomorphically on every constructor but annotated

choice according to the scheme in §4. For annotated choice, the translation

F
[[ ( ∑

j∈J

Rj

)v

B

]]
def= (l)

(
lb

∣∣ ∏
j∈J\(V ∪B)

Read l〈F [[Rj ]] 〉
∣∣ ∏

j∈V
Test l〈F [[Rj ]] 〉{v(j)/x}

)
where b is t, if B = ∅, and f, otherwise, expands the abbreviations into the intended target
term by following the semantic rules in Table 5. Branches in Test-state are those that
carry values (therefore j ∈ V ); the substitution {v(j)/x} replaces the input variable in the
continuation process Pj with the corresponding value. Branches in Read -state must neither
currently carry values (j 6∈ V ) nor have accessed the lock after reading values (j 6∈ B).

Lemma 5.3.3 (Factorization) 1. F [[ ]] ◦A[[ ]] = C[[ ]].
2. F [[ ]] is surjective. for all A ∈ A, F [[Aσ ]] = F [[A ]]σ.

Proof:

1. Straightforward induction on the structure of source terms.
2. Straightforward. Neither A[[ ]] nor F [[ ]] erase names. Free (bound) occurrences of

names of terms correspond to free (bound) occurrences in their translations. �

The important property of the factorization is that the semantics of annotated choice
(cf. Table 5) precisely mirrors the behavior of the original translations and their derivatives.

Proposition 5.3.4 (Semantic correctness) F is a strong bisimulation.

Proof: By simple induction on the structure of A ∈ A and transition induction on A −→
A′ and F [[A ]] −→ T ′, where it suffices to check the induction case for annotated choice
constructors (see Appendix A.1). �

Corollary 5.3.5 (Mirroring) For all S ∈ S and C[[S ]] −→∗ T ∈ T, there is A ∈ A such
that (A[[S ]] −→∗ A and) F [[A ]] = T .
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With Proposition 5.3.4 we prove the correctness of C[[ ]] by proving the correctness of A[[ ]].
This is a considerably simpler task, since the A-annotations in the target of A[[ ]] provide
more structure, in particular concerning partially committed derivatives, which is heavily
exploited in §5.4.

5.4 Decoding derivatives of A-translations

We want to construct a coupled simulation (cf. Definition 2.4.1) between source terms and
abbreviated target terms by mapping the latter back to the former. Since derivatives of
target terms may correspond to source-level choices in a partially committed intermediate
state, there are two natural strategies for decoding. The decoding functions U[[[ ]] and U][[ ]]

S A

U][[ ]]�lr

U[[[ ]]

�lr

map partially committed annotated terms in A back to source terms in S which are either

• the least possible committed (resetting decoding U[), or
• the most possible committed (committing decoding U]).

The functions U[[[ ]],U][[ ]] : A → S act homomorphically on every constructor but annotated
choice according to the scheme in §4. For the latter, we distinguish between choices that
are initial, committed, or partial.

For non-partial choices, the two decoding functions have the same definition (read U [[ ]]
as either U[[[ ]] or U][[ ]]): initial choice (V = ∅ = B) is mapped to its bare counterpart,

initial : U
[[ ( ∑

j∈J
Rj

)∅
∅
]]

def=
∑
j∈J

U [[Rj ]]

committed : U
[[ ( ∑

j∈J

Rj

)v

B 6=∅
]]

def=
∏

j∈V

yj vj

while committed choice (B 6= ∅) is mapped to the parallel composition of those messages
which are currently held by its branches.

For partial choice (B = ∅ and V 6= ∅), the two decoding functions act in a different way
according to the intuition described above.

Resetting. The aim is to decode an annotated term to its least possible committed source
correspondent. Intuitively, this means that we have to reset all of its partial commitments
by mapping it to the original choice in parallel with the already consumed messages.

partial : U[

[[ ( ∑
j∈J

Rj

)v 6=∅
∅

]]
def=

∏
j∈V

yj vj

∣∣ ∑
j∈J

U[[[Rj ]]
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Committing. The aim is to decode an annotated term to a committed source corre-
spondent. Intuitively, this means that we have to complete one of the (possibly several)
activated branches that the annotated choice has engaged in. Let k := take(V ) select an
arbitrary element of V . Then,

partial : U]

[[ ( ∑
j∈J

Rj

)v 6=∅
∅

]]
def=

∏
j∈V −k

yj vj

∣∣ U][[Pk ]]{vk/x}

maps to the source-level commitment to the selected branch.

Lemma 5.4.1 (Decoding)

1. Let U ∈ {U[,U]}. Then U [[ ]] ◦A[[ ]] = id.
2. Both U[[[ ]] and U][[ ]] are surjective.
3. For A ∈ A and U ∈ {U[,U]}, U [[Aσ ]] = U [[A ]]σ.

Proof: Immediate by definition (1,2); straightforward by induction (3). �

In the remainder of this subsection, we prove that (U[,U]) is a coupled simulation on
A×S (Proposition 5.4.9). This requires, in particular, that U[ and U−1

] are weak simulations.
We will see that these simulations are eventually progressing. First, we show that U[[[A ]]
simulates A (i.e., A 4 U[[[A ]]) for all A ∈ A.

Lemma 5.4.2 U[ is a weak simulation.

Proof: The proof is by structural induction on A ∈ A and transition induction on U][[A ]] −→
S′. By the simplification discussed in Section 5.1, it suffices to regard the case

A =
( ∑

j∈J
Rj

)v

B

where, by the operational rules in Table 5, there are three subcases.

case (committed) B 6= ∅ : Then, U[[[A ]] =
∏

j∈V
yj vj .

Since we know by Lemma 5.2.2 that
( ∑

j∈J
Rj

)v

B
&

∏
j∈V

yj vj,

we have that, in this case, U[[[A ]] is even bisimilar to A.

case (initial) V = ∅ = B : Then, U[[[A ]] =
∑
j∈J

U[[[Rj ]]

and there is only one type of transitions possible. Note that we do not have to directly
simulate input transitions for simulation in the asynchronous π-calculus, but we have
to care about the simulation in all contexts, including matching messages. Therefore:
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case READ/OUT/COM : For k ∈ J\(V ∪B), we have
ykz

∣∣ ( ∑
j∈J

Rj

)v

B

τ−−→ ( ∑
j∈J

Rj

)v +(k 7→z)

B
and

U[

[[
ykz

∣∣ ( ∑
j∈J

Rj

)v

B

]]
= ykz

∣∣ ∑
j∈J

Rj

∣∣ ∏
j∈V

yj vj ≡ U[

[[ ( ∑
j∈J

Rj

)v +(k 7→z)

B

]]
immediately concludes the proof by an empty weakly simulating sequence.

case (partial) B = ∅ 6= V : Let k = take(v). There are two subcases:

case READ/OUT/COM : (completely analogous to previous case).
case COMMIT : For k ∈ V , we have( ∑

j∈J
Rj

)v

∅
τ−−→ Pkσk

∣∣ ( ∑
j∈J

Rj

)v−k

{k}

and via C-INP/OUT/PAR/COM , there is the simulating step
U[

[[ ( ∑
j∈J

Rj

)v

∅
]]

=
∑
j∈J

Rj

∣∣ ∏
j∈V

yj vj

τ−−→ Pk{vk/z} | ∏
k 6=j∈V

yj vj

= U[

[[
Pkσk

∣∣ ( ∑
j∈J

Rj

)v−k

{k}
]]

which concludes the proof. �

Next, we show that U][[A ]] is simulated by A (i.e., A < U][[A ]]) for all A ∈ A.

Lemma 5.4.3 U−1
] is a weak simulation.

Proof: The proof is by structural induction on A ∈ A and transition induction on U][[A ]] −→
S′. By the simplification discussed in Section 5.1, it suffices to regard the case

A =
( ∑

j∈J
Rj

)v

B

where, by definition of U], there are three subcases.

case (initial) V = ∅ = B : Then U][[A ]] =
∑
j∈J

yj(x).U][[Pj ]]

where, according to the rule in Table 3, there is only one subcase for generating
transitions: C-INP . For k ∈ J , we have∑

j∈J
yj(x).U][[Pj ]]

ykz−−−→ U][[Pk ]]{z/x}
and there is always a weakly simulating sequence by READ and COMMIT

A =
( ∑

j∈J

Rj

)∅
∅

ykz−−−→ ( ∑
j∈J

Rj

)(k 7→z)

∅
τ−−→ Pkσk

∣∣ ( ∑
j∈J

Rj

)∅
{k} =: A′

where U][[A′ ]] = U][[Pk ]]{z/x} holds.
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case (committed) B 6= ∅ : Then, U][[A ]] =
∏

j∈V
yj vj .

case OUT: For k ∈ V , the transitions

U][[A ]]
yvk−−−−→ ∏

j∈V −k

yj vj =: Sk

can be simulated by

A
τ−−→ ( ∑

j∈J
Rj

)v−k

B+k

∣∣ yk vk
yvk−−−−→ ( ∑

j∈J
Rj

)v−k

B+k
=: Ak

such that Sk = U][[Ak ]].

case (partial) B = ∅ 6= V : Let k = take(v). Then

U][[A ]] =
∏

j∈V −k

yj vj

∣∣ U][[Pk ]]σk =: S′.

By A
τ−−→ ( ∑

j∈J
Rj

)v−k

{k}
∣∣ Pkσk =: A′ such that S′ = U][[A′ ]]

we can always take an internal step in order to fully commit A. Note that A′ is fully
committed since, as a guarded subterm, Pk is fully committed by definition of A. The
observation that S′ = U][[A′ ]] already concludes the proof since we may reduce it to
the case of full terms. �

In addition, the weak simulations U[ and U−1
] satisfy further useful properties (cf. §5.8).

Lemma 5.4.4

1. U[ is strict, U−1
] is progressing.

2. Both U[ and U−1
] are eventually progressing.

Proof: Both the strictness of U[ and the progressiveness of U−1
] follow from previous proofs:

For U[, proof 5.4.2 shows that some τ -steps of A may be simulated trivially by U[[[A ]]:

A
τ−−→ A′ implies U[[[A ]]

τ̂−−→ U[[[A
′ ]]

For U−1
] , proof 5.4.3 shows that no τ -step of U][[A ]] may be suppressed by A:

U][[A ]]
τ−−→ U][[A′ ]] implies A

τ==⇒ A′

Immediately, we get that U−1
] is eventually progressing.
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However, we have not yet proven that also U[ is eventually progressing. We proceed by
analyzing τ -sequences starting from an arbitrary A ∈ A.

A = A0
τ−−→ A1

τ−−→ A2
τ−−→ · · ·

Since we know that U[ is strict, we have that

Ai
τ−−→ Ai+1 implies U[[[Ai ]]

τ̂−−→ U[[[Ai+1 ]],

so we only have to argue that there is an upper bound kA for the number of steps where
the τ -step may be simulated trivially such that for n > kA:

A = A0
τ−−→ A1

τ−−→ · · · τ−−→ An implies U[[[A ]]
τ−−→+ U[[[An ]].

For arbitrary steps

Ai
τ−−→ Ai+1

we may distinguish four different cases, according to which combination of rules have been
applied in the inference. We omit merely structural rules and mention only the essential
rules. The following analysis resembles the proof of Lemma 5.4.2. The difference is that,
here, we are not interested in visible steps; instead, we take a closer look at the simulations
of τ -steps.

case COM/CLOSE/∗-INP Here, no choice operator is involved. The transition is caused
by a subterm which may be regarded as a target term. The decoding U[[[ ]] reproduces
this part homomorphically at the source level, wherefore we have

U[[[Ai ]]
τ−−→ U[[[Ai+1 ]]

case COM/CLOSE/READ An occurrence of a choice operator is involved. By inspection
of rule READ and the definition of U[[[ ]], we have

U[[[Ai ]] ≡ U[[[Ai+1 ]]

case COMMIT The transition is coming from a partially committed occurrence of anno-
tated choice. Here, we have,

U[[[Ai ]]
τ−−→ U[[[Ai+1 ]]

case ABORT Similar to the case before, except that there is no need to perform a τ -step
at the source-level.

U[[[Ai ]] ≡ U[[[Ai+1 ]]
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Now, if we look at the above τ -sequence between A0 and An, we have to argue that the
second and fourth case cannot happen unboundedly often and, by that, prevent the first
and third case. In fact, if A contains no choices, only the first case applies, concluding the
proof.

If A contains choices, we may count the number of all branches in Read - or Test-state
of all (unguarded) occurrences of choice, since exactly those may give rise to the sequence
of τ -steps. In a partial/initial choice, the number of its branches in Read -state, determined
by |J\(V ∪ B)|, tells how many subsequent applications of the second case (READ) might
be possible, before a COMMIT -step has to be derived. In a committed choice, the number
of its branches in Test-state (provided by |V |) yields the number of possible subsequent
applications of the forth case (ABORT); afterwards, no more τ -steps are generated from this
choice, since it is strongly bisimilar to 0.

Since each term A may only contain a finite number of unguarded occurrences of choice,
kA is determined as the sum of all of their branches in either Read - or Test-state. �

Apart from the simulation proofs for the components, a coupled simulation also requires
two coupling properties—the existence of internal transition sequences connecting the sim-
ulation relations on both sides (Definition 2.4.1). For the proofs of these two properties,
which we carry out by induction on the structure of terms, we only exploit the annotations
of choices in A to derive the required internal transitions. We start by stating a useful fact.

Fact 5.4.5 Let A ∈ A be fully committed. Then U][[A ]] = U[[[A ]].

Full A-terms trivially satisfy coupling properties, since the two decodings coincide. For
partially committed terms, this does not hold. There, we have to derive nontrivial internal
transitions. Since choice may also occur guarded in a term, we might have to deal with
transitions under prefixes, which are forbidden in the operational semantics. Therefore,
we must restrict guarded occurrences of choice to being non-partial (e.g. initial)—which is
exactly what is guaranteed by the definition of A in Section 5.3.

Since U[[[A ]] < A for all A ∈ A, the first coupling property requires the existence of
transition U[[[A ]] =⇒ U][[A ]] (in S, thus called S-coupling).

S : U[[[A ]] +3 U][[A ]]

<

A : A

<

Lemma 5.4.6 (S-coupling) For all A ∈ A, U[[[A ]] =⇒ U][[A ]].
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Proof: The proof is by structural induction on A ∈ A. By the simplification discussed in
Section 5.1, it suffices to regard the case

A =
( ∑

j∈J

Rj

)v

B

where, by definition of U][[ ]], there are three subcases.

case (initial) V = ∅ = B or (committed) B 6= ∅ :
Immediate by Fact 5.4.5.

case (partial) B = ∅ 6= V : Let k = take(V ). Then,
U[[[A ]] =

∏
j∈V

yj vj

∣∣ ∑
j∈J

U[[[Rj ]]

τ−−→ ∏
j∈V −k

yj vj

∣∣ U[[[Pk ]]σk =
∏

j∈V −k

yj vj

∣∣ U][[Pk ]]σk = U][[A ]].

where U[[[Pk ]]σk = U][[Pk ]]σk since Pkσk is fully committed.
There may be several occurrences of partially committed choices in a term A, but,
by definition, they only occur unguarded. We may simply collect the corresponding
internal steps in either order which leads to A =⇒ A′. �

Since A < U][[A ]] for all A ∈ A, the second coupling property addresses U]-related terms.
In this case, it is not as simple as for the S-coupling to denote what coupling means, so
we explain it a bit more carefully: For all A ∈ A, whenever (A,S) ∈ U], i.e., S = U][[A ]],
there is an internal sequence A =⇒ A′ (in A, thus called A-coupling), such that (A′, S) ∈ U[,
i.e., S = U[[[A′ ]]. If we link the two equations for S, we get the coupling requirement
U][[A ]] = U[[[A′ ]] for A =⇒ A′. In the diagram

S : U][[A ]]

<

= U][[A′ ]] =

4

U[[[A′ ]]

A : A +3 A′

<

we also indicate the way we proceed in order to do the proof. The relation on the left is the
assumption because U−1

] is a simulation. The two relations on the right hold if A′ is fully
committed. The following lemma states that such an A′ always exists as a derivative of A
and, furthermore, connects the left- and right-hand sides of the diagram.

Lemma 5.4.7 For all A ∈ A, there is a fully committing A =⇒ A′ such that U][[A ]] =
U][[A′ ]].
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Proof: The proof is by structural induction on A ∈ A. By the simplification discussed in
Section 5.1, it suffices to regard the case

A =
( ∑

j∈J

Rj

)v

B

where, by definition of U][[ ]], there are three subcases.

case (initial) V = ∅ = B or (committed) B 6= ∅ :

Immediate with A′ def= A.
case (partial) B = ∅ 6= V : Let k = take(V ).

Then, with A
τ−−→ ( ∑

j∈J
Rj

)v−k

{k}
∣∣ Pkσk

def= A′

we have U][[A ]] =
∏

j∈V −k

yj vj

∣∣ U][[Pk ]]σk = U][[A′ ]].

Note that Pk is fully committed since it was guarded in A and not changed by the
transition; thus, A′ is fully committed, since branch k has been successfully chosen.

�

Lemma 5.4.8 (A-coupling) For all A ∈ A, there is A =⇒ A′ such that U][[A ]] = U[[[A′ ]].

Proof: Let A′ be constructed as in the proof of Lemma 5.4.7. Thus, we know that U][[A ]] =
U][[A′ ]] and, since A′ is fully committed, we also know (Fact 5.4.5) that U][[A′ ]] = U[[[A′ ]].

�

Finally, the main property of the decoding functions U[[[ ]] and U][[ ]] is:

Proposition 5.4.9 (U[,U]) is a coupled simulation.

Proof: By Lemmas 5.4.2 and 5.4.3, we know that (U[,U]) is a mutual simulation. By
Lemmas 5.4.6 and 5.4.8, we have the necessary coupling between U[ and U]. �

Corollary 5.4.10 (U−1
] ,U−1

[ ) is a coupled simulation.

Proof:

By Fact 2.4.2. �
Before ending this section, we show how the decoding functions may be used to provide

a notably sharp operational correctness argument for the A-encoding. Let a1···an======⇒ denote
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the sequence a1===⇒ · · · an===⇒ where the ai are output-labels. Then, for arbitrary S ∈ S and
A[[S ]] a1···an======⇒ A, we have the following relations:

S : S
a1···an +3

<4

U[[[A ]] +3 U][[A ]] =: S′

< <4

A : A[[S ]]
a1···an +3 A

<

+3 A[[S′ ]]

each derivative A of a translation A[[S ]] represents an intermediate state in some source-
level computation evolving from an S-derivative U[[[A ]] into an S-derivative S′ := U][[A ]], as
proved by Proposition 5.4.6 (S-coupling). Furthermore, by Proposition 5.4.8 (A-coupling),
A can internally evolve into the A-translation of S′. In arbitrary contexts within S, the
derivation trace of S corresponds to the derivation trace of A[[S ]], since U[ is a weak
simulation containing (A[[S ]], S). Finally, U[[[A ]] and U][[A ]] coincide in the case that A is
not partial.

The results of this subsection provide a very tight correspondence between source
terms S and their annotated translations A[[S ]]. It may be written as S � A[[S ]] for
every S ∈ S, since every pair (S,A[[S ]]) is contained in both components of the coupled
simulation (U−1

] ,U−1
[ ). However, we are not primarily interested in properties of A[[ ]], but

in properties of C[[ ]] and C.[[ ]]. Those results are assembled in §5.6 after we have shown
rigorously in the next subsection that the use of booleans in the target language T is of
mere notational convenience.

5.5 Expanding derivatives of C-translations

Another advantage of abbreviated target terms is that we can use their structure to prove
that boolean messages and test-expressions are correctly expanded into terms of the lan-
guage P. More precisely, the above Corollary 5.3.5 allows us to quantify over all derivatives T
of C-translations by simply quantifying over all terms A in A, and assuming that T = F [[A ]].

We start with an operational correspondence result for the B-encoding of derivatives of
C-translations. It makes explicit the number of additional τ -steps that are needed in order
to perform the exchange of 2-adic messages via the zip-lock encoding, and the subsequent
triggering action, where the void name is exchanged.

Lemma 5.5.1 (Operational correspondence for B[[ ]])
Let T := F [[A ]] for some A ∈ A.

1. Let µ 6= τ . Then T
µ−−→ T ′ iff B[[T ]]

µ−−→ B[[T ′ ]].
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2. If T
τ−−→ T ′, then there is

either B[[T ]]
τ−−→ B[[T ′ ]] or B[[T ]]

τ−−→6 ≡ B[[T ′ ]].
3. If B[[T ]]

τ−−→ P , then there is T
τ−−→ T ′ such that

either P = B[[T ′ ]] or P
τ−−→5 ≡ B[[T ′ ]].

Proof: By transition induction on F [[A ]]
µ−−→ T ′ and (B ◦F)[[A ]]

µ−−→ P (see §A.2). �

Note that part 3 of the operational correspondence lemma witnesses the promptness of
the B-encoding: the first low-level interaction in

B[[T ]]
τ−−→ P

τ−−→5 ≡ B[[T ′ ]]

always corresponds to some T-level interaction.
According to the proof, the rather constrained behavior of interactions along the chan-

nels u, v,w, t, f (as introduced by the B-encoding) is due to its temporarily determinate
character. As soon as the first private interaction has taken place (via l according to the
encoding functions), the following five interactions are determined since any of the above
private channels is used uniquely and is restricted to the outside world—no other actions
may prevent those five from taking place. This leads us to a strengthening of cases 2 and
3 of the operational correspondence lemma, so for the intermediate states P ′ after the first
interaction and before reaching the expansion of the successor state:

B[[T ]]
τ−−→ P =⇒ P ′ =⇒≡ B[[T ′ ]] implies P ′ & B[[T ′ ]].

Lemma 5.5.2 Let T := F [[A ]] for some A ∈ A.

2. If T
τ−−→ T ′, then there is B[[T ]]

τ−−→ P with P & B[[T ′ ]].
3. If B[[T ]]

τ−−→ P , then there is T
τ−−→ T ′ and P & B[[T ′ ]].

Proof: By looking closer at the proof for operational correspondence in Appendix A.2; all
the details are already there. �

In order to carry over this result to the relation between test-expressions and their B-
translations, we define an extension of the relation B by including the required pairs for
intermediate derivatives P ′ of B[[T ]].

B→ def= B ∪ {
(T ′, P ′) ∈ P

test × P
∣∣ there is T = F [[A ]] for A ∈ A

such that T
τ−−→ T ′ and B[[T ]]

τ−−→+ P ′ =⇒≡ B[[T ′ ]]
}

Lemma 5.5.3 B→ is an expansion.
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Proof: Immediate by the operational correspondence (Lemma 5.5.1) and the expansion
property for all intermediate states P ′. �

Fact 5.5.4 For all T = F [[A ]] for A ∈ A : (T,B[[T ]]) ∈ B→.

Corollary 5.5.5 Let A ∈ A and S ∈ S.

1. For all T := F [[A ]] : T . B[[T ]].
2. For all C[[S ]]

τ−−→∗ T : T . B[[T ]].

Proof: (1) is a consequence from Fact 5.5.4 and Lemma 5.5.3. (2) is then a direct conse-
quence of (1) and Corollary 5.3.5. �

Lemma 5.5.6 B→ is progressing; (B→)−1 is eventually progressing.

Proof: Directly from the operational correspondence Lemma 5.5.1. The eventually pro-
gressing property for (B→)−1 comes with an upper bound for trivially simulating τ -steps
as determined by the (finite) number of ‘active’ test-expressions, multiplied with 5 as the
worst case that all of the active test-expressions have just done the first step. �

5.6 Main result

In this section, we establish a coupled simulation (cf. Definition 2.4.1) between source terms
and their C.-translations by exploiting the results for the A-encoding via the decodings U[[[ ]]
and U][[ ]]. Reasoning about the annotated versions of choice allowed us to use their high-
level structure for the decoding functions.

We argued that we could safely concentrate on the annotated language A, since F [[ ]]
flattens abbreviation terms correctly (up to ∼) into terms of P

test, whereas B[[ ]] expands
test-expressions correctly (up to .) into terms of P. In order to combine those ideas, let
the simulations C (completeness) and S−1 (soundness) be defined by

C
def= U−1

] F B→ and S
def= U−1

[ F B→

according to the diagram

P
Σ

C

_��

S

_��

P
(Σ)

U]�lr

U[

�lr

F

_��
P P

test
B→

�lr

where the relations U[ and U] are only defined on the subset A of P
(Σ). The results for

annotated terms carry over smoothly to the expanded versions.
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Theorem 5.6.1 ( C,S ) is a coupled simulation.

Proof: By Corollary 5.4.10, Proposition 5.3.4, and Lemma 2.5.3 twice. �

Observe that C is constructed from the committing decoding U][[ ]], so derivatives of target
terms are at most as committed as their C-related source terms. Analogously, S is con-
structed from the resetting decoding U[[[ ]], so derivatives of target terms are at least as
committed as their S-related source terms.

By construction, the relations C and S are big enough to contain all source and target
terms and, in particular, to relate all source terms and their C.-translations.

Lemma 5.6.2 For all S ∈ S : (S, C.[[S ]]) ∈ C ∩ S.

Proof: By the syntactic adequacy lemmas (5.4.1 and 5.3.3), we know that, for all S ∈ S,
the translations A[[S ]] and C[[S ]] = (F ◦A)[[S ]] yield the witnesses for (S, C.[[S ]]) being
contained in both C and S. �

Thus, the C.-encoding is operationally correct, in the sense that every source term is
simulated by its translation (completeness via C) and also itself simulates its translation
(soundness via S). Moreover, the result is much stronger since the simulations are coupled.

Theorem 5.6.3 (Correctness of C.) For all S ∈ S : S � C.[[S ]].

Proof: By Theorem 5.6.1 and Lemma 5.6.2. �

Corollary 5.6.4 (Full abstraction) For all S1, S2 ∈ S : S1 � S2 iff C.[[S1 ]] � C.[[S2 ]].

Proof: By transitivity. �

Note that the C.-encoding is not fully abstract up to weak bisimulation, as proven in §4.3.

5.7 Correctness of the divergent protocol

The proof for the divergent choice encoding follows the outline of Sections 5.2 to 5.6. In con-
trast to the divergence-free encoding, the D.-encoding is correct up to weak bisimulation.
The overall proof is simpler since the proof obligations for weak bisimulation require less
work than those of coupled simulation. We sketch the full proof here by carefully defining
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just the main ingredient of the factorization and decoding diagram:

S
A[[ ]]

� ,2

	 �(

D.[[ ]]

_��

A

F [[ ]]

_��

U [[ ]]�lr

P TB[[ ]]

�lr

The annotated intermediate language A that we use here is similar to the one for the C-
encoding. Of course, the annotations and the operational semantics have to be different
in the case of the D-encoding, since they are now expected to model different behavior.
Also, since we expect source terms and translations to be bisimilar, we only need a single
decoding function.

Annotated divergent choice. Since many (replicated) copies of the same branch may
be activated at the same time, we enhance the annotation v to map indices to multisets
of values N

V. The information whether a choice is resolved can only be inferred from the
value of the lock. In case it is held by an activated branch, the choice is not (yet) resolved,
since this branch may still decide to undo its activity.

Let J be some indexing set. Let v : J ⇀ N
V be a partial function mapping indices

to multisets of values and let v +(k, z) and v−(k, z) denote appropriate extensions and
removals of single index-value pairs. Let b ∈ {t, f }∪{ (k, z) ∈ J ×V | z ∈ vk } denote either
the state of the lock or a single index-value pair. The annotated divergent choice( ∑

j∈J
Rj

)v

b

is given the operational semantics in Table 6.

Lemma 5.7.1 (Inertness)
( ∑

j∈J
Rj

)v

f
≈ ∏

j∈V
yj vj.

Factorization. The annotation translation is almost the same as in Section 5.3. Here,
we have to initialize the lock-information with t.

A
[[ ∑

j∈J
Rj

]]
def=

( ∑
j∈J

A[[Rj ]]
)∅
t
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�

�

�

�

READ:
( ∑

j∈J
Rj

)v

b

ykz−−−→ ( ∑
j∈J

Rj

)v +(k,z)

b
if k ∈ J

TRY:
( ∑

j∈J
Rj

)v

t

τ−−→ ( ∑
j∈J

Rj

)v

(k,z)
if z ∈ vk

COMMIT:
( ∑

j∈J
Rj

)v

(k,z)

τ−−→ ( ∑
j∈J

Rj

)v−(k,z)

f
| Pk{z/x}

UNDO:
( ∑

j∈J
Rj

)v

(k,z)

τ−−→ ( ∑
j∈J

Rj

)v−(k,z)

t
| ykz

ABORT:
( ∑

j∈J
Rj

)v

f

τ−−→ ( ∑
j∈J

Rj

)v−(k,z)

f
| ykz if z ∈ vk

Table 6: Transition semantics for annotated divergent choice

The flattening of annotated divergent choice into T is

F
[[ ( ∑

j∈J
Rj

)v

B

]]
def= (l)

(
T

∣∣ ∏
j∈J

!Read l〈F [[Rj ]] 〉∣∣ ∏
(j,z)∈V −b

Test l〈F [[Rj ]] 〉{z/x}
)

where T
def=

{(
Commit l〈Rk 〉 ⊕ Undol〈Rk 〉

){z/x} if b = (k, z)
lb otherwise

Proposition 5.7.2 F is a strong bisimulation.

Decoding. The decoding function also takes care of ‘hesitating’ branches.

U
[[ ( ∑

j∈J

Rj

)v

b

]]
def=

∏
j∈V

yj vj

∣∣ S

where S
def=


∑
j∈J

U [[Rj ]] if b = t or b = (k, z)

0 if b = f

Proposition 5.7.3 U is a weak bisimulation.

Theorem 5.7.4 U−1F is a weak bisimulation.

Theorem 5.7.5 (Correctness of D) For all S ∈ S : S ≈ D[[S ]].
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Corollary 5.7.6 (Full abstraction) For all S1, S2 ∈ S : S1 ≈ S2 iff D[[S1 ]] ≈ D[[S2 ]].

Every annotated choice term with at least one branch holding some value, has τ -loops,
i.e., divergent computations. For example,( ∑

j∈J

Rj

)v

t

τ−−→ ( ∑
j∈J

Rj

)v

(k,z)

τ−−−→ ( ∑
j∈J

Rj

)v−(k,z)

t

∣∣ ykz
τ−−−→ ( ∑

j∈J

Rj

)v

t

where z ∈ vk, is infinitely often trying, undoing, reading, . . .
Finally, if we define D.[[ ]] as B[[ ]] ◦D[[ ]], then by proving that U−1FB→ is a weak

bisimulation, we also get that D.[[ ]] is correct and fully abstract with respect to weak
bisimulation.

5.8 Divergence

In §4, we have claimed that our two choice encodings differ in their divergence-behavior.
Our results in the previous subsections do not yet provide any rigorous justification of this,
since the definition of weak simulation ignores divergence, as we discussed in Section 2.3.

As explained in §2.3, an encoding [[ ]] is called divergence-free if it does not add divergence
to the behavior of source terms. More technically, every infinite τ -sequence of a derivative T ′

of a translation [[S ]] corresponds to some infinite τ -sequence of a derivative S′ of S, i.e.,
T ′⇑ implies S′⇑. Whereas it is simple to show that the D.-encoding is not divergence-free
by giving an example of a τ -loop (which is possible in almost every D-translation for terms
containing choices, and carries over to their B-expansions), as we did in the previous section,
our claim that the C-encoding is divergence-free requires a proof (cf. Theorem 5.8.2).

We are going to prove the divergence-freedom by establishing an eventually progressing
simulation between derivatives of translations and source terms; by this simulation, we
capture any reachable state of some translation and are guaranteed that its divergence was
not introduced by the encoding, but already present at the source-level.

A good candidate for such a simulation is S−1 since it relates all derivatives of C.-
translations and is itself composed of three eventually progressing simulations.

Proposition 5.8.1 S−1 is eventually progressing.

Proof: By S
def= U−1

[ F B→, we have S−1 = (B→)−1F−1U[. Since all of (B→)−1, F−1, and
U[ are eventually progressing, there composition is also eventually progressing, as proved
by simply multiplying the upper bounds for the number of trivial simulation steps of the
components. �

Theorem 5.8.2 C.[[ ]] is divergence-free.

Proof: Since (S, C.[[S ]]) ∈ S−1 for all S ∈ S, and S−1 is an eventually progressing simu-
lation by Proposition 5.8.1. �
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6 Conclusions

We have investigated two different encodings of the asynchronous π-calculus with input-
guarded choice into its choice-free fragment. Several points deserve to be discussed.

Correctness: For both choice encodings, we provided a framework that allowed us to
compare source terms and their translations directly. This enabled us to use a cor-
rectness notion that is stronger than the usual full abstraction, which here comes
up as a simple corollary. The strength of our results may be compared with the
notion of representability in [HY94a, HY94b], where it was left as an open problem
whether some form of summation could be behaviorally represented by concurrent
combinators. Our divergent encoding (for theoretical questions like representability,
divergence is acceptable) provides a first positive answer for the representability of
input-guarded choice up to weak asynchronous bisimulation.
Our results also hold in the setting of value-passing CCS with boolean values and
test-expressions. However, in the π-calculus, these additional notions can be encoded
by a simple name-passing protocol (as shown in this paper). Furthermore, the results
(except for the congruence properties) can be generalized to calculi with polyadic
communication, full replication, and matching.

Asynchrony: For both encodings, the correctness proofs cannot be built upon standard
(i.e., synchronous) notions of simulation. The reason lies in the inherent asynchrony
of the implementation algorithm, which arises from the resending of messages (which
must not be kept by a branch when the choice has already committed to a competing
branch).

Non-promptness: Most examples of encodings into process calculi known in the literature
enjoy the simplifying property of being prompt, i.e., initial transitions of translations
are committing, by corresponding to some particular computation step of their source.
Both of our choice encodings fall in the class of non-prompt encodings that, moreover,
can not be dealt with by optimization with administrative normal forms.

Partial commitments: With respect to the different results for the two choice encodings,
it is crucial to notice that only C[[ ]] breaks up the atomicity of committing a choice.
The resulting partially committed states are exactly the reason why correctness up to
weak bisimulation has to fail, whereas coupled simulation applies successfully.

Divergence: We have not been able to formulate a choice encoding which is divergence-free
and correct with respect to weak bisimulation. We conjecture that it is impossible.

Decodings: Any operational correctness proof which states that an encoding is sound in
the sense that each step of a translation is compatible with some source step implicitly
uses the idea of mapping back the translation to its source term in order to detect
the correspondence. We made this intuition explicit in decoding functions which
provide a notation for the proofs that is both compact and intuitive. With prompt
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encodings, the reconstruction of source terms from target terms is rather simple, since
it suffices to deal with literal translations. In contrast, non-prompt encodings require
the decoding of derivatives of translations.

Annotations: The only way to detect the origin of derivatives of translations is to retrace
their derivation histories. As the underlying semantics, one could, for example, use
causality-based techniques, but this would introduce extra technical overhead. In-
stead, we exploit annotated source terms that precisely capture the information that
is necessary to perform the backtracking. An intermediate language built from anno-
tated source terms provides the basis for a sound factorization and a proper setting
for the definition of decodings.

According to the soundness interpretation of the correctness results for the A-encoding
in §5.4, the operational character of coupled simulation (C,S) also induces a sharp charac-
terization the operational soundness of the C-encoding: for all source terms S ∈ S,

P
Σ : S

a1···an +3

SC

S′ +3 S′′

C SC

P : C.[[S ]] a1···an +3 T

S

+3 C.[[S′′ ]]

an arbitrary derivative T of a translation represents an intermediate state in some source-
level computation evolving from S′ into S′′. The correspondence between the derivation
traces of target C[[S ]] and source S is guaranteed by S. The relations S′ < T < S′′ hold
due to S and C, respectively. If T is not partial, then S′ and S′′ coincide.

Related work

The C-encoding represents a striking example where weak bisimulation is too strong a
criterion to compare process systems. It is similar to the multiway synchronization example
of [PS92]. The latter led to the definition of coupled simulation in order to deal with gradual
commitments, which do also appear in the C-encoding. Our encodings differ in that they
address the implementation of channel-based choice in the context of an underlying medium
supplying asynchronous message-passing; they are thus more closely related to the work of
Mitchell [Mit86], Knabe [Kna93], and Busi and Gorrieri [BG95].

In [Mit86], a divergent choice encoding in the rather restricted setting of Static CCS was
proved correct with respect to an adapted (‘weak-must’) testing equivalence that accepts
divergent implementations (τω|P ) of P as valid, but that lacks a powerful (e.g. coinductive)
proof technique. Here, we have given two asynchronous choice encodings, one of which is
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divergence-free, and presented a way to prove them correct using asynchronous simulation
techniques. Since the original definition of stably coupled simulation equivalence has been
shown to imply testing equivalence, we argue that our correctness result for the C-encoding
is powerful, even though it is strictly more permissive than weak bisimulation.

The distributed implementation of mixed guarded channel-based choice by Knabe [Kna93]
has not been investigated concerning its functional correctness. The emphasis was more on
the question of deadlock-freedom; a proof was sketched in [Kna93]. However, the semantics
and implementation of this and other choice operators have been studied within the chem-
ical abstract machine framework for the semantics of Facile by Leth and Thomsen [LT95].

In the CCS-setting of Busi and Gorrieri [BG95], choice is replaced by a lower-level notion
of conflict that is based on a set of conflict names (and contrasting conames) together with
corresponding prefix and restriction operators. An operational semantics keeps track of
the set of conflicts that a process must respect as permission for performing actions; an
auxiliary kill-operator deals with the proper handling of permissions. The idea is that, in a
process P |Q, “if P performs an action, it propagates its effect to Q by killing its conflicting
subagents”. Then, the hidden activities that go on in a process like P + Q are modeled
explicitly by means of a fully abstract (w.r.t. strong bisimulation) encoding of choice into
this calculus. Instead of interpreting P + Q as first resolving the choice, their approach
is guided by the idea of a posteriori choice which means that both P and Q may start
their activities, and the first that manages to complete its action wins, preventing the other
from completion. Some similarities and differences between their approach and ours are
clear: whereas we use the primitives of a fragment of the source language by only exploiting
the concept of asynchronous communication of private names, their approach needs the
additional concept of conflict names. In fact, the choice encodings of the current paper
follow the same idea of a posteriori choice as in [BG95]; yet, we go a step further. In
our case, concurrent branches in a choice may start their activity by consuming matching
messages from the environment that afterwards might have to be given back. Technically,
their encoding introduces conflict names for each occurrence of P + Q and restricts that
name on the parallel composition of the branches P and Q, ours introduce lock-messages
that are accessible within restricted scope and perform the propagation of conflicts via
internal communication.

The idea of committing steps, i.e., those target steps which directly correspond to a
source-level computation step, is comparable to the notion of principal transition that has
been developed for proving the correctness of a compiler from an Occam-like programming
language into an assembler language [Gam91]. However, in this setting principal steps
could always be chosen as the initial steps. Committing steps have also been recognized by
distinguishing real and administrative steps in the non-prompt encoding of Facile [Ama94]
and the concurrent λ-calculus [ALT95] into the π-calculus. In both settings, however, pre-
administrative steps were normalizable, allowing for an optimized prompt encoding, which
is not the case in the choice encodings.
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Encodings of languages into fragments of themselves have been proposed or investi-
gated by several authors, e.g. by the study of encodings of higher-order-communication
into first-order communication within process calculi [San93, Tho93, Ama93], the transla-
tion of polyadic into monadic π-calculus [Mil93], the implementation of synchronous via
asynchronous message-passing within the choice-free (mini) π-calculus [Bou92], several en-
codings within a hierarchy of π-calculi with internal mobility [San96], the encoding of the
choice-free asynchronous π-calculus into the join-calculus [FG96] (which may be interpreted
as a fragment of the π-calculus), and the translation of the choice-free synchronous π-cal-
culus into trios [Par99].

Much more work has been done on the compilation of whole languages into process
calculi, exploring both semantics and expressiveness. Examples include translations be-
tween the process calculi CSP and CCS [Li83, Mil87], between the join-calculus and the
π-calculus [FG96], of λ-calculi into process calculi [Mil92, San94b, Lav93, San94a, Tho95,
San94b, San95a, ALT95, Ode95b, Nie96], data types and other sequential programming
constructs [Mil89, Mil93, Wal91b, Ode95a], from object-oriented languages into process
calculi [Vaa90, Wal91a, Wal95, Wal93, Jon93, Wal94, PT95], from logic programming lan-
guages into the π-calculus [Ros93, Li94], and from concurrent constraint languages into the
π-calculus [Smo94, VP96].

The formalization of compilers for concurrent languages has also motivated the study of
encodings, e.g. for Occam [Gam91], Facile [Ama94], Urlang [Gla94], and Pict [PT99]. Fur-
ther interesting examples report on translations between various notions of rewrite systems
[OR94, But94], addressing both semantics and implementation issues.

Future work

The observation that the completeness simulation C and the soundness simulation S are
progressing and strict, respectively, and both eventually progressing, suggests the study of
enhancements of coupled simulation equivalence. The coupled simulation (C,S) does not
constitute an expansion, though, since C and S do not coincide. However, it would be
straightforward to define the notion of coupled expansion as a mutual simulation exhibiting
the coupling as required in Definition 2.4.1 such that one of the component simulations is
progressing while the other is strict. Another idea that arises immediately is to enhance
coupled simulation with the requirement that the two simulations should be eventually
progressing. In fact, (C,S) is such an eventually progressing coupled simulation as the
results in §5 show. Putting all observations together, (C,S) would satisfy the requirements
of an eventually progressing coupled expansion being a coupled expansion where the strict
component is also progressing. This preorder would in our case express that (1) source
terms and target terms are behaviorally the same, (2) source terms are more efficient than
target terms since they use fewer τ -steps, and (3) target terms may only diverge if the
corresponding source terms do, and vice versa. We think that equivalence notions along
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this line deserve further investigation.
Axiomatizations of both weak asynchronous bisimulation and asynchronous coupled

simulation are not yet known. Alternative formulations of the definitions of asynchronous
bisimulation (see [ACS98], also for an axiomatization in the strong case) might prove conve-
nient for finding modal characterizations and also, in general, for establishing bisimulations.

Endomorphic encodings into a language fragment, like the ones which we investigated
in this paper, are easier to deal with than encodings between different languages. This
fact relies on the use of a common (labeled) transition semantics for the source and tar-
get language which allowed us to directly compare terms and translations in a common
formal setting. Furthermore, our choice encodings guaranteed that high-level channels are
used in exactly the same way in translations. This not always the case, as even for the
tuple encoding into monadic π-calculus channels are used differently in source and target.
Barbed bisimulation, which was invented to provide a uniform definitional scheme of term
equivalence based on reduction semantics [MS92a, HY95], could be especially useful with
respect to encodings between different calculi, since it rests on laxer notions of observation.
Also, a barbed definition of coupled simulation, based on reduction semantics, might allow
to prove results for encodings which are not fully abstract up to weak bisimulation.

Since the writing of the conference version of this paper, new results have been presented
concerning more sophisticated choice operators and their encodings. Palamidessi showed in
[Pal97] that it is not possible to give a divergence-free encoding of mixed-guarded choice in a
fully distributed way, i.e., where parallel composition and restriction do not add centralizing
components that could be used to globally manage the interactions on channels. Nestmann
showed in [Nes97] that it is, however, possible to encode separate choice (either purely
input-guarded or purely output-guarded) up to Palamidessi’s criteria. Furthermore, the
latter contains a discussion on how to relax the criteria for full distribution to get also
‘good’ encodings for mixed choice along the lines of [Kna93]. Full abstraction results are
not yet known for these more recent encodings.
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A Some Proofs

A.1 F is a strong bisimulation (Proposition 5.3.4)

We show the proof for strong synchronous bisimulation, which implies the asynchronous
case; we simply omit the second clause of Definition 2.3.1 and use the first clause also for
input transitions. The proof is by structural induction on A ∈ A and transition induction
on A −→ A′. By the simplification discussed in Section 5.1, it suffices to regard the case

A =
( ∑

j∈J
Rj

)v

B

where, according to the rules in Table 5, there are three subcases.
The following proofs are in each case to be read if-and-only-if since the enabling side-

conditions for the respective transitions of A and its translation F [[A ]] coincide in each
case. Let σj := {v(j)/x} for all j ∈ V .

case READ In the following J-indexed annotated choice, let k ∈ J\(V ∪B) and let z be
transmittable on yk and v′ = v +(k 7→ z). Let b be defined as t if B = ∅, and as f
otherwise. Then, we have( ∑

j∈J

Rj

)v

B

ykz−−−→ ( ∑
j∈J

Rj

)v′

B
and

F
[[ ( ∑

j∈J

Rj

)v

B

]]
= (νl)

(
lb

∣∣ ∏
j∈J\(V ∪B)

Read l〈F [[Rj ]] 〉∣∣ ∏
j∈V

Test l〈F [[Rj ]] 〉σj

)
ykz−−−→ (νl)

(
lb

∣∣ ∏
k 6= j∈J\(V ∪B)

Read l〈F [[Rj ]] 〉
∣∣ Test l〈F [[Rk ]] 〉{z/x}∣∣ ∏

j∈V

Test l〈F [[Rj ]] 〉σj

)
≡ (νl)

(
lb

∣∣ ∏
j∈J\(V ′∪B)

Read l〈F [[Rj ]] 〉∣∣ ∏
j∈V ′

Test l〈F [[Rj ]] 〉σ′
j

)
= F

[[ ( ∑
j∈J

Rj

)v′

B

]]
where σ is extended to σ′ according to v′, yields the proof.

case ABORT In every context, for k ∈ V , via rule ABORT , we have( ∑
j∈J

Rj

)v

B 6=∅
τ−−→ ( ∑

j∈J
Rj

)v−k

B+k
| yk vk and
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F
[[ ( ∑

j∈J
Rj

)v

B

]]
= (νl)

(
lf

∣∣ ∏
j∈J\(V ∪B)

Read l〈F [[Rj ]] 〉∣∣ ∏
j∈V

Test l〈F [[Rj ]] 〉σj

)
τ−−→ (νl)

( ∏
j∈J\(V ∪B)

Read l〈F [[Rj ]] 〉∣∣ ∏
k 6= j∈V

Test l〈F [[Rj ]] 〉σj

∣∣ Abort l〈F [[Rk ]] 〉σk

)
≡ (νl)

(
lf

∣∣ ∏
j∈J\(V ∪B)

Read l〈F [[Rj ]] 〉∣∣ ∏
k 6=j∈V

Test l〈F [[Rj ]] 〉σj∣∣ yk vk

)
≡ F

[[ ( ∑
j∈J

Rj

)v

B

∣∣ yk vk

]]
which holds since J\(V −k)\(B+k) = J\(V ∪B) and yk vk = ykxσk.

case COMMIT In every context, for k ∈ V , via rule COMMIT , we have( ∑
j∈J

Rj

)v

∅
τ−−→ ( ∑

j∈J
Rj

)v−k

{k}
∣∣ Pkσk and

F
[[ ( ∑

j∈J
Rj

)v

∅
]]

= (νl)
(

lt
∣∣ ∏

j∈J\(V )

Read l〈F [[Rj ]] 〉∣∣ ∏
j∈V

Test l〈F [[Rj ]] 〉σj

)
τ−−→ (νl)

( ∏
j∈J\(V ∪B)

Read l〈F [[Rj ]] 〉∣∣ ∏
k 6= j∈V

Test l〈F [[Rj ]] 〉σj

∣∣ Commit l〈F [[Rk ]] 〉σk

)
≡ (νl)

(
lt

∣∣ ∏
j∈J\(V ∪B)

Read l〈F [[Rj ]] 〉∣∣ ∏
k 6=j∈V

Test l〈F [[Rj ]] 〉σj∣∣ F [[Pk ]]σk

)
≡ F

[[ ( ∑
j∈J

Rj

)v

B

∣∣ Pkσk

]]
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which holds because of J\(V −k)\(B+k) = J\(V ∪B) and since substitutions satisfy
F [[Rkσk ]] = F [[Rk ]]σk. �

A.2 Operational correspondence for the B-encoding (Proposition 5.5.1)

Proof: We know by T = F [[A ]] for some A ∈ A that all test-subterms of F [[A ]] are
generated as part of some branch in the flattening of an annotated choice. Because of the
simplification discussed in Section 5.1, we regard annotated choice terms in isolation.

A =
( ∑

j∈J
Rj

)v

B

Then, the possible occurrences of test-subterms are those given by

T := F [[A ]] = (l)
(

lb
∣∣ ∏

j∈J\(V ∪B)

Read l〈F [[Rj ]] 〉
∣∣ ∏

j∈V
Test l〈F [[Rj ]] 〉{v(j)/x}

)
so the B-encoding will only act nontrivially on them.

The proof is by transition induction, where it suffices to regard the cases where tran-
sitions involve test-expressions and their translations since other constructs are mapped
homomorphically identical by the B-encoding.

1. Immediate since the above test-expressions are always restricted on their channel l
such that they can never show any visible behavior.

2. Straightforward, since we only have to follow the encoding’s idea. Let us emphasize
the structure of T by

T = (l)
(

lb
∣∣ Q

∣∣ test l then Q1 else Q2

)
(where the test-expression is the derivative of the particular branch that causes the T-
level transition, and Q represents the remaining branches). If the rules TRUE/FALSE

are not involved in the derivations, then the simulation by some transition of B[[T ]]
is trivial by the identical inference tree. Otherwise, the transition is of the form

T
τ−−→ (l)

(
0

∣∣ Q
∣∣ Q′

i

)
=: T ′

where Q′
i is either the continuation process (i = 1) of the test-ing branch, or the

resent message (i = 2), in both cases also providing the message lf; we omit the
explicit syntax.
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In the B-translation, the first action of B[[T ]] that is necessary in order to simulate
the above transition of T has to be on the lock-channel l as becomes clear from the
translated term by expanding the 2-adic subterms via the zip-lock encoding:

B[[T ]] = (l)
( Z[[ l(t, f).b ]]
| B[[Q ]]
| (t)(f)(Z[[ l〈t, f〉 ]] | t.B[[Q1 ]] | f.B[[Q2 ]] )

)
= (l)

(
l(u).(v)(uv|v(t).(w)(uw|w(f).b))

| B[[Q ]]
| (t)(f) ( (u)(lu|u(v).(vt|u(w).wf))

| t.B[[Q1 ]]
| f.B[[Q2 ]] )

)
τ−−→ (l) (u)

(
(v)(uv|v(t).(w)(uw|w(f).b))

| B[[Q ]]
| (t)(f) ( u(v).(vt|u(w).wf)

| t.B[[Q1 ]]
| f.B[[Q2 ]] )

)
=: P

where b = t, if b = t, and b = f , otherwise. Note the extrusion of the scope of u,
which may now be used as a private communication line between the 2-adic sender
and receiver.
In the resulting derivative P , the behavior of the P-level subsystem that belongs
to the test-expression—i.e., disregarding B[[Q ]]—is completely determined by four
subsequent reductions (interactions along u, v, u, and w, where there is always exactly
one sender and receiver) for the exchange of the 2-adic message, such that it arrives
at

P
τ−−→4 (l)(t)(f) ( (v)(w)b

| B[[Q ]]
| (u)0
| t.B[[Q1 ]]
| f.B[[Q2 ]] )

)
=: P ′

≡ν (l)(t)(f) ( b
| B[[Q ]]
| t.B[[Q1 ]]
| f.B[[Q2 ]]

where we have done a bit of garbage collection that is possible since the names u, v,
and w are no longer used. Finally, after another determinate reduction, depending on
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the actual value of the T-level lock-message, we get

P ′ ≡ τ−−→



(l)(t)(f)
(
0 | B[[Q ]] | B[[Q1 ]] | f.B[[Q2 ]]

)
≡ (l)( B[[Q ]] | B[[Q1 ]] ) if b = t

(l)(t)(f)
(
0 | B[[Q ]] | t.B[[Q1 ]] | B[[Q2 ]]

)
≡ (l)( B[[Q ]] | B[[Q2 ]] ) if b = f

again by garbage-collecting obsolete name restrictions and inaccessible processes.
3. Straightforward, again by distinguishing the possible cases for τ -steps of B[[T ]]: if the

rules TRUE/FALSE are involved in the derivations, then the begun P-level interaction
can be simulated at the T-level since the only test-expressions have come from Test-
states of branches in annotated choices. �
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