
B
R

IC
S

R
S

-99-39
R

.R
izzi:

O
n

the
S

teiner
Tree

32 -A
pproxim

ation
for

Q
uasi-B

ipartite
G

raphs

BRICS
Basic Research in Computer Science

On the Steiner Tree3
2
-Approximation for

Quasi-Bipartite Graphs

Romeo Rizzi

BRICS Report Series RS-99-39

ISSN 0909-0878 November 1999

Copyright c© 1999, Romeo Rizzi.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/99/39/

On the Steiner tree 3
2
-approximation for

quasi-bipartite graphs

Romeo Rizzi

BRICS∗

Department of Computer Science
University of Aarhus

Ny Munkegade
DK-8000 Aarhus C, Denmark

e-mail: romeo@cwi.nl

Abstract

Let G = (V, E) be an undirected simple graph and w : E 7→ IR+ be
a non-negative weighting of the edges of G. Assume V is partitioned
as R ∪ X . A Steiner tree is any tree T of G such that every node
in R is incident with at least one edge of T . The metric Steiner tree
problem asks for a Steiner tree of minimum weight, given that w is a
metric. When X is a stable set of G, then (G, R, X) is called quasi-
bipartite. In [1], Rajagopalan and Vazirani introduced the notion of
quasi-bipartiteness and gave a (3

2 + ε) approximation algorithm for the
metric Steiner tree problem, when (G, R, X) is quasi-bipartite. In this
paper, we simplify and strengthen the result of Rajagopalan and Vazi-
rani. We also show how classical bit scaling techniques can be adapted
to the design of approximation algorithms.

Key words: Steiner tree, local search, approximation algorithm, bit scaling.

1 Introduction

Let G = (V,E) be an undirected simple graph and w : E 7→ IR+ be a non-
negative weighting of the edges of G. Assume V is partitioned into R and
X = R. (From set theory, R = V \R). A Steiner tree is any tree T of G such

∗Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

1

that every node in R is incident with at least one edge of T . The metric
Steiner tree problem asks for a Steiner tree of minimum weight, given that w
is a metric. (The weight of a tree T is defined as w(T) =

∑
e∈T we). When

no edge of G has both endpoints in X, then (G,R) is called quasi-bipartite.
In [1], Rajagopalan and Vazirani introduced the notion of quasi-bipartiteness
and gave a (3

2 +ε) approximation algorithm for the metric Steiner tree prob-
lem, when (G,R) is quasi-bipartite. In this paper, we greatly simplify the
analysis of Rajagopalan and Vazirani and give a local search 3

2 approxima-
tion algorithm for the same problem. We also show how classical bit scaling
techniques can be adapted to the design of approximation algorithms.

Denote by MST (G,w) the minimum weight of a spanning tree for (G,w).
When S ⊆ V , then 〈S〉 denotes the set of those edges in E with both
endpoints in S and G[S] denotes the subgraph of G induced by S. (That is,
G[S] = (S, 〈S〉)).

The graph G[V \X], where X ⊆ V , is also denoted by G\X or by G[X].
Let T be a minimum weight spanning tree for (G[X], w) and x be a node of
X. Our arguments base on the following simple and fundamental lemma: if
MST (G[X ∪ {x}], w) ≥ w(T) for every x ∈ X and X is a stable set of G,
then MST (G[X ∪X ′], w) ≥ w(T) for every X ′ ⊆ X.

2 An useful lemma

Let G = (V,E) be an undirected simple graph and w : E 7→ IR+ be a non-
negative weighting of the edges of G. Let X ⊆ V be a stable set of G. In
the next section, the following lemma is put into use.

Lemma 1 Let X be a stable set of G. Assume MST (G[X ∪ {x}], w) ≥
MST (G[X], w) for every node x ∈ X. Then MST (G[X ∪ X ′], w) ≥
MST (G[X], w) for every X ′ ⊆ X.

To prove Lemma 1, we need to introduce some notations and facts.
Usually, we consider a tree T to be just a set of edges. Sometimes however,
and depending on our convenience, a tree T will be regarded as the graph
(V (T), T), where V (T) is the set of endnodes of edges in T . Let V1, . . . , Vk

be a partition of V . Denote by G < V1, . . . , Vk > the graph obtained from
G by identifying all nodes of Vi into a single node (for i = 1, . . . , k).

2

Lemma 2 Let v1, . . . , vk the neighbors of a node x in G and C1, . . . , Ck a
partition of V \ {x} such that vi ∈ Ci (for i = 1, . . . , k). Assume w(δ(x)) <
MST (G[V \ {x}] < C1, . . . , Ck >,w). Then MST (G,w) < MST (G \
{x}, w).

Proof: Let T be any spanning tree for (G \ {x}, w). It suffices to show
that there always exists a spanning tree F of T < C1, . . . , Ck > such that
T \ F ∪ δ(x) is a spanning tree of G. Let v be a leaf of T and let vu be the
edge of T incident with v. W.l.o.g. assume v ∈ C1.
Case 1: Assume that v 6= v1. Let T ′ = T \{vu} and G′ be the graph obtained
from G by identifying node v with node u. (All edges previously incident
with v will become incident with u, and v is removed). Note that T ′ is a span-
ning tree for G′\{x}. Let F be a spanning tree of T ′ < C1\{v}, C2, . . . , Ck >
such that T ′ \ F ∪ δ(x) is a spanning tree of G′. But then, F is a spanning
tree of T < C1, . . . , Ck > such that T \ F ∪ δ(x) is a spanning tree of G.
Case 2: Assume therefore that v = v1. This time G′ and T ′ are obtained
from G and T as follows. First remove edge vu from T , and in G, remove
xv and identify v with u. Next, as long as T contains an edge ab with
a ∈ C1, then remove ab from T and in G identify a with b. Let G′ and
T ′ be the graph and the tree so obtained. Note that T ′ is a spanning tree
for G′ \ {x}. Let F be a spanning tree of T ′ < C2, . . . , Ck > such that
T ′ \F ∪ δ(x) is a spanning tree of G′. But then, F ∪{vu} is a spanning tree
of T < C1, . . . , Ck > such that T \ F ∪ δ(x) is a spanning tree of G. 2

Proof of Lemma 1: It suffices to show that if MST (G[X ∪ X ′], w) <
MST (G \ {x}, w) for some X ′ ⊆ X with |X ′| ≥ 2, then MST (G[X ∪
X ′′], w) < MST (G \ {x}, w) for some proper subset X ′′ of X ′. Let T ′

be a spanning tree of G[X ∪ X ′] with w(T ′) < MST (G \ {x}, w). In a
minimal counterexample, we can always assume that X ′ = X and that
every edge of G with an endpoint in X is contained in T ′. Let x be
any node in X and X ′′ = X \ {x}. Let v1, . . . , vk be the neighbors of
x in G. Consider the connected components C̃1, . . . , C̃k of the graph ob-
tained by removing node x from the graph T ′. (Assume w.l.o.g. that
vi ∈ C̃i, for i = 1, . . . , k). If MST (G[X ∪X ′′], w) ≥ w(T ′), then w(δ(x)) <
MST (G[V \ {x}] < C̃1, . . . , C̃k >,w). For i = 1, . . . , k, let Ci = C̃i ∩ X .
Since X is a stable set of G, then G[X] < C1, . . . , Ck >= G[V \ {x}] <
C̃1, . . . , C̃k >. Hence MST (G[X] < C1, . . . , Ck >,w) > w(δ(x)). By
Lemma 2, MST (G[X ∪ {x}], w) < MST (G[X], w). 2

3

3 The result

Let G = (V,E) be an undirected simple graph and w : E 7→ IR+ be a non-
negative weighting of the edges of G. In this section, we also assume that w
satisfies the triangle inequality and that (G,R) is quasi-bipartite.

Let T be an optimal Steiner tree for (G,R,w). If we knew which of
the nodes of X, say I ⊆ X, are actually in V (T), then we could find an
optimal Steiner tree by computing a minimum spanning tree of (G[R∪I], w).
Moreover, since w is a metric, there always exists an optimal solution T such
that no node in I is incident with less than 3 edges in T . As observed by
Rajagopalan and Vazirani in [1], the following local search algorithm returns
a 3

2-optimal Steiner tree, i.e. a Steiner tree T̃ with w(T̃) ≤ 3
2w(T).

Algorithm 1 Local Steiner tree (G,R,w)
1. I ← ∅; T ← any minimum spanning tree of (G[R ∪ I], w);
2. while ∃x ∈ X \ I such that MST (G[R ∪ I ∪ {x}], w) < w(T) do
3. I ← I ∪ {x}; T ← any minimum spanning tree of (G[R ∪ I], w);
4. remove from I all nodes with degree one in T ; update T accordingly;

(drop the corresponding leafs);
5. remove from I all nodes with degree two in T ; update T accordingly;

(shortcut the pairs of consecutive edges si and it with the single
edges st);

6. return T ;

We offer a direct and simple proof of the following result.

Theorem 3 The Steiner tree output by Algorithm 1 is within a factor of 3
2

from optimum.

Proof: Let T̃ be the Steiner tree output by Algorithm 1 and let T be an
optimal Steiner tree for (G,R,w). Let Ĩ = V (T̃) \ R and I = V (T) \ R.
In T̃ , consider the stars of the nodes in Ĩ. Since (G,R) is quasi-bipartite,
then these stars are all disjoint. Moreover, by steps 4 and 5, each star
contains at least three edges. For every x ∈ Ĩ , let ex be any edge of T̃
incident with x and with smallest possible weight. By the above remarks,∑

x∈Ĩ w(ex) ≤ 1
3w(T̃). Since for every x ∈ Ĩ one of the two endpoints

of ex is in R, then there exists a spanning tree T of G[R ∪ I ∪ Ĩ] with
w(T) ≤ w(T) + 1

3w(T̃). (Take any spanning tree in T ∪ {ex : x ∈ Ĩ}). By
step 3, MST (G[R ∪ Ĩ ∪ {x}], w) ≥ w(T̃) for every x ∈ X \ Ĩ. By Lemma 1,

4

w(T) ≥ w(T̃). Combining, w(T) + 1
3w(T̃) ≥ w(T̃). So, w(T̃) ≤ 3

2w(T). 2

4 Running time

In this section, we show how a bit-scaling technique can be employed to
derive an implementation of Algorithm 1 with running time polynomial in
the size of the input.

Consider the sequence of weightings w = w0, w1, . . ., where, for i > 0, wi

is defined as follows: wi(e) = bwi−1(e)
2 c. Let k be the smallest index for which

wk(e) ≤ 1 for every edge e of G. Therefore k ≤ log2(max{w(e) : e ∈ E}).
When Algorithm 1 is executed on (G,R,wk) as input, then loop 2–5 will
cycle at most n times, since wk is a 0, 1-vector. The output will be a tree
T k

APX . Note that T k
APX is a 3

2 -optimal Steiner tree for (G,R,wk).

For i = 0, 1, . . . , k, let T i
OPT be an optimal and T i

APX be a 3
2 -optimal

Steiner tree in (G,wi). Hence,

wi(T i
APX)− wi(T i−1

OPT) ≤ wi(T i
APX)− wi(T i

OPT) ≤ 1
2
wi(T i

OPT)

Moreover, since every tree has less that n edges, we have:

wi−1(T i
OPT)− wi−1(T i−1

OPT) ≤
(
2wi(T i

OPT) + n
)
− 2wi(T i−1

OPT) ≤ n

Therefore,

wi−1(T i
APX)− wi−1(T i−1

OPT) ≤ (
2wi(T i

APX) + n
)− 2wi(T i−1

OPT) ≤
n + 2

(
wi(T i

APX)− wi(T i−1
OPT)

) ≤ n + 2
(

1
2wi(T i

OPT)
)
≤

n + 2
2

(
1
2wi−1(T i

OPT)
)
≤

n + 1
2

(
wi−1(T i

OPT) + wi−1(T i−1
OPT)− wi−1(T i−1

OPT)
)
≤

n + 1
2wi−1(T i−1

OPT) + 1
2

(
wi−1(T i

OPT)− wi−1(T i−1
OPT)

)
≤

n + 1
2wi−1(T i−1

OPT) + 1
2 (n) = 3

2n + 1
2wi−1(T i−1

OPT)

We conclude that wi−1(T i
APX) ≤ 3

2n + 3
2wi−1(T i−1

OPT). Therefore, by
executing loop 2–5 at most 3

2n times, then Algorithm 1 finds a 3
2 -optimal

Steiner tree in (G,wi−1) starting from any 3
2 -optimal Steiner tree in (G,wi).

Acknowledgements

I thank Devdatt Dubashi for stimulating conversations.

5

References

[1] Sridhar Rajagopalan and Vijay V. Vazirani, On the Bidirected Cut
Relaxation for the Metric Steiner Tree Problem. SODA ’99 (1999) 742–
751.

6

Recent BRICS Report Series Publications

RS-99-39 Romeo Rizzi.On the Steiner Tree3
2
-Approximation for Quasi-

Bipartite Graphs. November 1999. 6 pp.

RS-99-38 Romeo Rizzi. Linear Time Recognition of P4-Indifferent
Graphs. November 1999. 11 pp.

RS-99-37 Tibor Jordán. Constrained Edge-Splitting Problems. November
1999. 23 pp. A preliminary version with the title Edge-Splitting
Problems with Demandsappeared in Cornujols, Burkard and
Woeginger, editors, Integer Programming and Combinatorial
Optimization: 7th International Conference, IPCO ’99 Proceed-
ings, LNCS 1610, 1999, pages 273–288.

RS-99-36 Gian Luca Cattani and Glynn Winskel. Presheaf Models for
CCS-like Languages. November 1999.

RS-99-35 Tibor Jordán and Zoltán Szigeti. Detachments Preserving Lo-
cal Edge-Connectivity of Graphs. November 1999. 16 pp.

RS-99-34 Flemming Friche Rodler. Wavelet Based 3D Compression for
Very Large Volume Data Supporting Fast Random Access. Oc-
tober 1999. 36 pp.

RS-99-33 Luca Aceto, Zolt́an Ésik, and Anna Ingólfsdóttir. The Max-
Plus Algebra of the Natural Numbers has no Finite Equational
Basis. October 1999. 25 pp. To appear inTheoretical Computer
Science.

RS-99-32 Luca Aceto and Franc¸ois Laroussinie. Is your Model Checker
on Time? — On the Complexity of Model Checking for Timed
Modal Logics. October 1999. 11 pp. Appears in Kutyłowski,
Pacholski and Wierzbicki, editors, Mathematical Foundations
of Computer Science: 24th International Symposium, MFCS ’99
Proceedings, LNCS 1672, 1999, pages 125–136.

RS-99-31 Ulrich Kohlenbach. Foundational and Mathematical Uses of
Higher Types. September 1999. 34 pp.

RS-99-30 Luca Aceto, Willem Jan Fokkink, and Chris Verhoef. Struc-
tural Operational Semantics. September 1999. 128 pp. To ap-
pear in Bergstra, Ponse and Smolka, editors,Handbook of Pro-
cess Algebra, 1999.

RS-99-29 Søren Riis.A Complexity Gap for Tree-Resolution. September
1999. 33 pp.

