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Constrained edge-splitting problems

Tibor Jorchnf
November 19, 1999

Abstract

Splitting off two edgessu, sv in a graphG means deletingu, sv and
adding a new edgev. LetG = (V + s, E) be k-edge-connected iy
(k > 2) and letd(s) be even. LowaSz proved that the edges incidentsto
can be split off in pairs in a such a way that the resulting graph on vertex
setV is k-edge-connected. In this paper we investigate the existence of
such complete splitting sequences when the set of split edges has to meet
additional requirements. We prove structural properties of the set of those
pairsu, v of neighbours of for which splitting off su, sv destroysk-edge-
connectivity. This leads to a new method for solving problems of this type.
By applying this method we obtain a short proof for a recent result of
Nagamochi and Eades on planarity-preserving complete splitting sequences
and prove the following new results: &tandH be two graphs on the same
setV + s of vertices and suppose that their sets of edges incidentom-
cide. LetGG (H) bek-edge-connected-gdge-connected, respectively)lin
and letd(s) be even. Then there exists a pair, su which can be split off in
both graphs preserving-edge-connectivity [(edge-connectivity, resp.) in
V, providedd(s) > 6. If k and/ are both even then such a pair always
exists. Using these edge-splitting results and the polymatroid intersection
theorem we give a polynomial algorithm for the problem of simultaneously
augmenting the edge-connectivity of two graphs by adding a (common) set
of new edges of (almost) minimum size.

*A preliminary version of this paper appeared in: Proc. IPCO '99 (G. Ggjois, R.E. Burkard
and G. Woeginger, eds.) Springer Lecture Notes in Computer Science 1610, 273-288.

'BRICS (Basic Research in Computer Science, Centre of the Danish National Research Foun-
dation), Department of Computer Science, University of Aarhus, Ny Munkegade, building 540,
DK-8000 Aarhus, Denmark. e-majbrdan@daimi.au.dk
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1 Introduction

Edge-splitting is a well-known and useful method for solving problems in graph
connectivity. Splitting off two edgesu, sv means deletingu, sv and adding a
new edgeuv. This operation may decrease the edge-connectivity of the graph.
The essence of the edge-splitting method is to find a pair of edges which can be
split off maintaining the edge-connectivity or other connectivity properties of the
graph. If such a good pair exists then one may reduce the problem to a smaller
graph which can lead to inductive proofs. Another typical application is the edge-
connectivity augmentation problem where splitting off is an important subroutine
in some polynomial algorithms. This connection will be discussed in detail in
Section 5. (For a survey see [8].)

Let G = (V + s, E) be a graph which ig-edge-connected i, that is,
d(X) > k holds for every) # X C V. Hered(X) denotes the degree of.
Suppose thad(s) is even andc > 2. Lovasz [11] proved that for every edge
there exists an edge for which splitting off the pairsu, sv maintainsk-edge-
connectivity inV. We call such a paiadmissible By repeated applications of
this theorem we can see that all the edges incidentcin be split off in pairs in
such a way that the resulting graph (on vertexisgts k-edge-connected. Such
a splitting sequence which isolategand preservek-edge-connectivity i) is
called acomplete (admissible) splitting at

This result gives no information about the structure of the subg(&ph’)
induced by the sef’ of new edges that we obtain by the splittings (except the
degree-sequence of its vertices, which is the same for every complete splitting).
Recent problems in edge-connectivity augmentation gave rise to edge-splitting
problems where the goal is to find a complete admissible splitting for which the
subgraph of the new edges satisfies some additional requirement. For example,
while addingF' to G — s, one may want to preserve simplicity [2], planarity [12],
or bipartiteness [1], too.

The goal of this paper is to develop a new method for solving these kind of
edge-splitting problems. The basic idea is to definenbre-admissibility graph



B(s) of G = (V + s, E) on the set of neighbours efby connecting two vertices

x,y if and only if the pairsz, sy is not admissible. We give a complete char-
acterization of those graphs that arise as non-admissibility graphs. Furthermore,
we prove thatB(s) is 2-edge-connected if and only B(s) is a cycle,k is odd

andG has a special structure which we call round. This structural property turns
out to be essential in several edge-splitting problems. Suppose that the additional
requirement the split edges have to meet is given by definicgnatraint graph

D(s) on the neighbours of at every iteration of the splittings and demanding that
for the next admissible pait, sv that we splituv € E(D(s)) must hold. Clearly,

such an admissible pair exists if and onlyif s) is not a subgraph aB(s). Our
method is to compare the structure of the grapiis) and D(s) that may occur

at some iteration. By showing th&l(s) can never be the subgraph of the cor-
respondingB(s) we can verify the existence of a complete admissible splitting
satisfying the additional requirement.

As a first application of this method we give simplified proofs for previous
results of Nagamochi and Eades [12] on planarity-preserving complete admissible
splittings and for some results of Bang-Jensen, Gabowadoadd Szigeti [1] on
partition-constrained complete admissible splittings. Then we use our structural
results to prove the following “intersection theorem” for admissible splittings: let
two graphsz = (V + s, E) andH = (V + s, K) be given, for which the sets of
edges incidenttein G andH coincide. Let andH bek- and/-edge-connected
in V, respectively k,I > 2). Then there exists a pair of edges, sv which
is admissible inG and H (with respect tak andl, respectively) simultaneously,
providedd(s) > 6. If k andl are both even then such a pair always exists, and
therefore a simultaneously admissible complete splitting exists as well.

Using these edge-splitting results and ghpolymatroid intersection theorem
of Frank [6] we give a min-max theorem and a polynomial algorithm forsie
multaneous edge-connectivity augmentation problerthis problem two graphs
G' = (V,FE'), H = (V,K’) and two integerg,! > 2 are given and the goal is
to find a smallest set of new edges whose addition méKegsnd H') k-edge-
connected/fedge-connected, respectively) simultaneously. Our algorithm finds a
feasible solution whose size does not exceed the optimum by more than éne. If
and! are both even then the solution is optimal.

1.1 Definitions and notation

Graphs in this paper are undirected and may contain parallel edges- ket
(V, E) be a graph. Asubpartitionof V' is a collection of pairwise disjoint non-
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empty subsets of’. A set consisting of a single vertexis simply denoted by

v. An edge joining vertices andy is denoted byry. Sometimesey will refer

to an arbitrary copy of the parallel edges betweeandy but this will not cause
any confusion. Adding or deleting an edge a graphG is denoted by> + e or

G — e, respectively. The symbofs andC denote set containment and proper set
containment, respectively.

For XY C V, d(X,Y) denotes the number of edges with one endvertex
in X — Y and the other inY — X. We define thedegreeof a subsetX as
d(X) = d(X,V — X). For examplel(v) denotes the degree of vertex The
set ofneighboursof v (or v-neighboursfor short), that is, the set of vertices ad-
jacent to vertex, is denoted byV(v). A graphG = (V, E) is k-edge-connected
if

d(X)>k forall ) £X CV. (1)

The operatiorsplitting offa pair of edgesu, sv at a vertexs means replacing
su, sv by a new edgew. If «w = v then the resulting loop is deleted. We usg,
to denote the graph obtained after splitting off the edgeswv in G (the vertexs
will always be clear from the context). @omplete splittingt vertexs (with even
degree) is a sequencedifs) /2 splittings of pairs of edges incident o

2 Preliminaries
The degree function satisfies the following well-known equalities.
Proposition 2.1 Let H = (V, E') be a graph. For arbitrary subset¥, Y C V,
AX)+d(Y)=d(XNY)+d(XUY)+2d(X,Y), (2)
AX)+dY)=dX —=Y)+dY —X)+2d(XNY,V —(XUY)). (3

In the rest of this section latbe a specified vertex of a gragh= (V + s, F)
with degree functionl such thati(s) is even and (1) holds with respect to some
k > 2. Saying (1) holds in such a graghmeans it holds foral) # X c V. A
set) # X C Vis calleddangerousf d(X) < k+1andd(s, X) > 2. (Notice that
in the standard definition of dangerous sets propétty.X) > 2 is not required.)
Asetl) # X C Viscritical if d(X) = k. Two setsX, Y C V arecrossing(or X
crosse)if X —Y,Y — X, XNY andV — (X UY) are all nonempty. Edges
sv, st form anadmissible paitin G if G, still satisfies (1). It is easy to see that
sv, st is not admissible if and only if some dangerous set containstoertialv.
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The following two lemmas can be proved by standard methods using Proposi-
tion 2.1. Most of them are well-known and appeared explicitely or implicitely in
[7] (or later in [1]). We include the proofs for completeness.

Lemma 2.2 (a) A maximal dangerous set does not cross any critical set.

(b) If X is dangerous thed(s,V — X) > d(s, X).

(c) If k is even then two maximal dangerous s€t&” which are crossing have
d(s,XNY)=0.

Proof: Let X be a maximal dangerous set and suppose it crosses a critidal set
The maximality of X showsd(X UY) > k + 2. Thus @) givesk + 1 + k >
dX)+dY)>dXNY)+d(XUY) > k+ k+ 2, acontradiction.

By (1) we see that < d(V — X) = d(X) —d(s,X) +d(s,V — X). Since
d(X) < k+1, thisimpliesd(s, V — X) > d(s, X) — 1 and sincel(s) is even we
cannot have equality.

SupposeX andY are maximal dangerous and crossing such #fiatX N
Y) > 1. By Proposition 2.1 and (1), we get th&tX) = k + 1,d(X - Y) = k
andd(X NY) = k. Itis easy to see that(X) is congruent tal(X — Y) +
d(X N'Y’) modulo2, but this contradicts the fact thd{.X) is odd and each of
d(X —Y),d(XNY)iseven. o

Let ¢ be a neighbour ot. A dangerous seX with ¢ € X is called at-
dangerous set

Lemma 2.3 Letwv be ans-neighbour. Then exactly one of the following holds:

(0) The pairsv, su is admissible for every edge: # sv.

(i) There exists a unique maximaldangerous sek'.

(i) There exist precisely two maximatdangerous set, Y. In this case
kis odd and we havé(X) = d(Y) = k+ 1,d(X - Y) = d(Y — X) = k,
d(XNY) =k, d(XUY) =k+2,d(XNY,V+s—(XUY)) =1,d(s,X-Y) > 1,
d(s,Y = X)>1l,andd(XNY, X -Y)=d(XNY,Y = X)=(k—1)/2.

Proof: Suppose neither (0) nor (i) holds for Let F be the collection of max-
imal v-dangerous sets. Any two maximaldangerous sets are crossingl(k)

is even [7]. ThusF consists of (at least two) pairwise crossing sets. By Lemma
2.2(c) this shows that is odd. LetX,Y € F be chosen in such a way that
|X NY] is as large as possible. SinééandY cross, by(2) and(3) we ob-
taind(X) =dY) =k+1,dX =-Y) =dY —X) =k dXNY) =k,



d(XUY) = k+2,d(XNY, V4+s—(XUY)) = 1. Thusd(M) = kfor M := XnNY.
Suppose that a sef € F, 7 # X, Y exists. By Lemma 2.2(a) we can see that
M C Z and therefore the choice &f andY impliesM = XNZ =Y N Z.
From this(3), applied to each pair fronX,Y, Z givesd(M) = 1, contradict-
ing (1). ThusX andY are the onlyv-dangerous sets. To complete the proof
observe thatl(X) = d(X NY) +d(X —Y)—-2d(X NY,X —Y) and hence
dXNY,X-Y)=(k—1)/2. Similarly we getd( X NY,Y — X) = (k—1)/2.
Our definition of dangerous sets adfdX NY,V +s — (X UY)) = 1 gives
d(s, X —=Y)>1landd(s,Y — X) > 1. o

An s-neighbour for which (ii) holds in Lemma 2.3 is callespecial
The previous lemmas include all ingredients of Frank’s proof [7] for the next
splitting off theorem due to Lasz.

Theorem 2.4 [11] Suppose that (1) holds & = (V + s, F), k > 2, d(s) is even
and|N(s)| > 2. Then for every edge there exists an edge: (¢ # ) such that
the pairst, su is admissible.

3 The structure of non-admissibility graphs

In this section letz = (V +s, E) be given which satisfied ) with respect to some
k > 2. Thenon-admissibility grapiB(s) = (N (s), E(B(s))) of G (with respect
to s) is defined on vertex sé¥(s). Two verticesu, v € N(s), (u # v) are adjacent
in B(s) if and only if the pairsu, sv is not admissible iz. Notice that whileG
may contain multiple edgeB(s) is always a simple graph. By definition, two
edgessu, sv (u # v) form an admissible pair it¥ if and only if uv € E(B(s)),
that is,uv is an edge of theomplemenof B(s).

This notion turns out to be useful in problems where we search for a com-
plete admissible splitting for which the sEtof edges obtained by the splittings
satisfies some additional propetily Let G’ := G — s. For exampleG' + F
may be required to be simple, planar, or bipartite. If propé&rtg closed under
taking subgraphs, it defines a graph for every iteration of a splitting sequence in
the following way. Suppose that by splitting off some admissible pairs we have
maintained propertyl, that is,G’ + F” satisfied] for the setF” of edges split off
so far. Define a&onstraint graphDy(s) = (N(s), E(D(s))) on the set of neigh-
bours ofs in such a way that splitting offy maintainslI (that is,G’ + F' + zy
satisfieslI) if and only if zy € E(Dy(s)). By definition, a constraint graph is



simple. GivenlI and its constraint grapPy(s), an admissible split satisfyind
will be called aDr(s)-split, or simply aD(s)-split. It is clear from the definitions
that aD(s)-split exists if and only ifD(s) and B(s) has a common edge. In other
words, aD(s)-split does not exist if and only iD(s) is a subgraph oB(s). Itis
easy to decide whether/ay (s)-split exists for a giverdl. On the other hand, to
decide whether a complete admissible splitting satisfying progémyists may
be difficult (for instance, to decide whether there is a complete admissible split-
ting in a simple graph that preserves simplicity is NP-complete [10]). Structural
properties of the non-admissibility graph help overcome this difficulty in several
cases by the following observation: if;;(s) cannot be the subgraph &f(s) at
any iteration (since, say, it is always connected while the non-admissibility graph
is disconnected) then a complete admissible splitting satisfying profjesxysts.

In order to use this kind of argument, we characterize those graphs that arise
as non-admissibility graphs. A vertexwhich is adjacent to all the other vertices
of the graph is alominating vertex A complete (subgraph of a) graph will be
called aclique The union of two cliques with precisely one vertex in common
is adouble clique Every double clique has a dominating vertex. In what follows
assume thad(s) is even andN(s)| > 2. The definition ofB(s), Lemma 2.3 and
Theorem 2.4 imply the following.

Lemma 3.1 (a) B(s) has no dominating vertex. (b) The neighbours of a vertex
in B(s) induce a clique, unlegsis special. Ift is special, the neighbours otan
be covered by two cliques &(s).

This leads to a simple characterization of non-admissibility graphs in the case
whenk is even.

Theorem 3.2 Suppose thatr = (V +s, E) satisfieg1), d(s) iseven|N(s)| > 2,
andk is even. ThemB(s) is the disjoint union of (at least two) complete graphs.

Proof: By Lemma 2.3 there is no specigineighbour inG. Hence, by Lemma
3.1(b), if su, sv andsu, sw (v # w) are both non-admissible then the pait sw
is also non-admissible. By this transitivity propeRys) is the union of pairwise
disjoint cliques.B(s) itself cannot be complete by Lemma 3.1(a). .

It is easy to see that every graph consisting of (at least two) disjoint complete
graphs can be obtained as a non-admissibility graph.

Now let us focus on the case whén> 3 is odd. In this case the complete
characterization of non-admissibility graphs is more complicated. We need the
following key lemma.



Lemma 3.3 Suppose that is special and letX andY be the two maximad-
dangerous sets. Letbe a speciak-neighbouriny” — X. LetY andZ denote the
two maximal.-dangerous sets itv. ThenZNX =0, Y = (X NY)uU (ZNY)
andd(s,Y) = 2.

Proof: Notice that for every special vertex € Y — X one of the two maximal/'-
dangerous sets must be thusY is indeed one of the two maximatdangerous
sets.

Let v be ans-neighbour inZ — Y. First suppose € X — Y. SinceX
andY are the only maximat-dangerous sets we havez Z. This shows that
v is also special and the two maximaldangerous sets at€ and Z. Lemma
2.3 impliesd(Z) = k+ 1 andd(X —Y) = d(Y — X) = k. Hence by(3),
applied toZ and X — Y andtoZ andY — X, we obtainX — Y C Z and
Y — X C Z.ByLemma2.3we havéd(X NY) = k. HenceZN X NY = () by
Lemma 2.2, provided U (X NY') # V. Moreover,Z U (X NY) =V implies
d(s,Z) > d(s) — 1 > d(s,V — Z), usingd(s) > 4. SinceZ is dangerous, this
would contradict Lemma 2.2(b). Thus we concluder X NY = (.

The above verified properties gfand Lemma 2.3 imply thdt+ 1 = d(Z) >
d(XNY,Z)+d(s, Z) > d(XNY, X=Y)+d(XNY, Y =X)+2 = k—14+2 = k+1.
This shows thati(s, Z) = 2 and hencel(s, Z U (X NY)) = 3 holds. We also
getd(Z,V —Z —(XNY))=0and by Lemma23weha#X NY,V — 7 —
(XNY)) =0aswell Thereforel(ZU (XNY),V-Z—-(XNY)) =0and
henced(s,ZU (X NY))=d(ZUXUY) =3 <k. ThisshowsZUX UY is
dangerous, contradicting the maximality ot

Thus we may assume thate V — (X UY'). By Lemma 2.3 we havé(Z) =
E+1,d(X —-Y)=d(Y — X)=d(X NY) =k and there exists asrneighbour
w € X =Y. Clearly,t ¢ Z and by the previous argument we may assumg .
We claim thatZ N (X — Y) = (. Indeed, otherwis¢/ and X — Y would cross
(observe that ¢ Z U (X — Y)), contradicting Lemma 2.2(a). We claim that
Z N (X NY) = ( holds as well. This claim follows similarly by Lemma 2.2(a),
sincew ¢ ZU (X NY). Athird application of Lemma 2.2(a) shows— X C Z.
To see this observe that¢ Z U (Y — X) and hencéY — X) — Z # () would
imply thatZ andY — X cross, a contradiction.

Summarizing the previous observations we obtdim X = () andY =
(XNY)u(ZnY). By Lemma 2.3 this impliegl(s,Y) = 2. This proves
the lemma. o



A corollary of Lemma 3.3 is the following sharpening of Lemma 3.1(b). Let
t be a speciak-neighbour and lefX andY be the maximat-dangerous sets.
Then each paisz, sy with z € X — Y,y € Y — X is admissible and hence the
t-neighbours inB(s) induce two disjoint cliques.

We recall some basic definitions and facts. An inclusionwise maxirealge-
connected subgraph is2acomponent (By definition, a single vertex i3-edge-
connected.) An edge is called acut-edgein a connected grapl/ if H — e
is disconnected. It is well-known that tRecomponents of a graph are pairwise
vertex-disjoint and those edges of a connected graph which are not included in
any 2-component are precisely the cut-edges. By contractin@tb@mponents
of a connected grapH we get a tree whose edges correspond to the cut-edges of
H. This tree is th&-component treef H. 2-components corresponding to the
leaves of this tree are calléeves

Theorem 3.4 Suppose that' = (V+s, F) satisfieg1), d(s) isevenandN(s)| >

2. Let H be a component dB(s). ThenH is either (a) a clique, or (b) a double
clique, or (d) two disjoint cliques connected by a path, or (d) a cycle of length at
least four.

Proof: First we show that each-componentiV of H is either a clique, or a
double-clique, or a cycle. Suppo$E is neither a clique nor a double-clique.
SinceW is not a clique, there exists a vertex W for which the neighbours of

t in W do not form a clique. By Lemma 3.1 and the maximality/fit follows
thatt is special. LetX andY denote the two cliques i (s) corresponding to
the two maximak-dangerous sets @f. By the choice of and the maximality of
W we haveX UY C W. SinceX U Y forms a double-clique iB3(s) andV is
connected and is not a double-clique, without loss of generality, there is an edge
winWwithueY —t,ve W — (X UY). Applying Lemma 3.3 t¢ andu we
getY = {¢,u} and that: and¢ have no common neighbours. LBthe a shortest
path inWW — tu from ¢ to u. Such path exists sind&” is 2-edge-connected. By
Lemma 3.3 there are no edgesis) from X —ttoY — ¢. ThusP has at least
three edges and' := P + tu is a cycle of length at least four. We claim that
W = C. SinceP is a shortest path;’ has no diagonals. Therefore each vertex
on C is special by Lemma 3.1(b). Suppose there is a vertexiV — C that is
adjacent to a vertex af’. Sinceu andt have no common neighbours, we may
assume that andwu are nonadjacent. Let # u be the last neighbour afon P
(counting fromt to u) and letp be the vertex preceedingon P. (Observe that

q # t by Lemma 3.1(b). Thup exists.) By Lemma 3.1(b) and the choiceqf
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it follows thatp andz are adjacent. On the other hand, applying Lemma 3.3 to
the special vertex and its neighboug, it follows thatp andg have no common
neighbours, a contradiction. This proves that= C', as required.

It remains to verify that if7 is not2-edge-connected then it is the union of two
disjoint cliques, connected by a path. In our argument the following corollaries of
Lemma 3.1(b) and Lemma 3.3, respectively, are crucialB(j) has no “claw”
(that is, a vertex that is adjacent to three pairwise non-adjacent vertice$)( {)i)
contains no induced subgraph isomorphic to the union of a trigigie «) and
two independent edges, uy.

Suppose thatf is not2-edge-connected and |I&tbe a non-singletof-com-
ponent of H. By our proof above and sincB(s) is simple,Z is either a clique
(on at leasB vertices), or a double-clique (with each clique containing at |g@ast
vertices), or a cycle (on at leastvertices). SinceZ # H, there is at least one
cut-edgee incident toZ. If Z is a double-clique or a cycle then+ e has a claw
or a bad triangle as in (ii), a contradiction. We have the same conclusion if there
are at least two cut-edges incident4cand 7 is a clique. This shows that each
non-singletor2-component of/ is a clique which is also a leaf. Therefore, since
B(s) has no claw, th@-component tree must be a path and heHcde the union
of two disjoint cliques, connected by a path, as required. °

By Lemma 3.1(a) a non-admissibility graph has no dominating vertex. It is
not difficult to show that every grapH’ which has no dominating vertex and for
which each componerff of H' satisfies one of (a)-(d) of Theorem 3.4 arises as
the non-admissibility graps(s) of some graptty = (V + s, F).

Those graphsy = (V + s, E) for which B(s) is 2-edge-connected are of
special interest. To describe their structure first we need some definitions. In a
cyclic partition X = (X, ..., X;—1) of V thet partition classe§ Xy, ..., X;_1}
are cyclically ordered. Thus we use the conventign= X, and so on. In a
cyclic partition two classesX; and X; areneighbouringf |j — | = 1 andnon-
neighbouringotherwise. We say that’ = (V', E’) is aC}-graphfor somep > 3
and some eveh > 2 if there exists a cyclic partitio)) = (Yp, ..., Y,—1) of V’
for whichd'(Y;) =1 (0 < i < p—1)andd(Y;,Y;) = [/2 for each pairy;,Y;
of neighbouring classes ¢f (which impliesd(Y;, Y;/) = 0 for each pair of non-
neighbouring classes;, Y;/). A cyclic partition of G’ with these properties is
calleduniform
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Let G = (V + s, F) satisfy (1) for some oddk > 3. Such aG is called
round (from vertexs) if G — s is aC*)-graph. Note that by1) this implies that

d(s,V;) = 1foreach clas¥; (0 < i < d(s)—1) of a uniform partition) of G — s.

Lemma 3.5 LetG = (V + s, E) satisfy(1) for some odd: > 3. Suppose that
G is round froms and letV = (14, ..., V;) be a uniform partition ofi”, where
r=d(s) — 1. Then

(@) G — sis (k — 1)-edge-connected and for eveky C V with dg_(X) =
k — 1 eitherX C V; or V — X C V; holds for somé < i < ror X = [J7V,
forsomed <i<r,1<j<r-—1.

(b) For any set/ of new edges which induces a connected grapiVos), the
graph(G — s) + I is k-edge-connected.

(c) The uniform partition o7 — s is unique.

(d) B(s) is a cycle ond(s) vertices (which follows the ordering ®).

Proof: Let H := G — s. SinceG satisfies(1) anddg(s,V;) = 1for0 <i <r,
we getdy(Y) > k— 1if Y C V, for somei. Suppose that{ is not(k — 1)-
edge-connected and I1&f C V be a maximal set withly(X) < k — 2. By
the definition of a uniform partitioX’ cannot be the union of some classeg’of
Thus there exists &; € V for which X andV; are intersecting. IK UV; =V
thendy(X) = dy(V — X) = dy(V; — X) < k — 2 follows, a contradiction.
ThusX andV; cross. Now(2) and the maximality ofX imply £ — 1 +k — 2 >
dy(V;) +du(X) > d(V;NX)+d(V;UX) > k— 1+ k — 1, a contradiction.
This provesH is (k — 1)-edge-connected. Léf C V satisfydy(Y) =k — 1
and assume that neith€rnor V' — Y is a subset of some class¥f If Y crosses
someV; then by(2) and(3) we havedy (Y NV;) = dy(V; —Y) =k — 1. This
cannot hold by(1) anddq(s,V;) = 1. ThusY is the union of some classes of
V. By the properties of a uniform partition it is clear that these classes have to be
consecutive. This proves (a).

Property (a) implies that if is a set of new edges which induces a connected
graph onN(s) then for everyy” C V with dy(Y) = k—1 there is at least one edge
xy € I'with |Y'N{z,y}| = 1. Thus addind to H increases the edge-connectivity
to at least. This proves (b).

To see (c) let us fix some-neighbourv. In a given uniform partition this
vertex is the unique-neighbour in somé&’; and by property (ay is the unique
maximal set of degrek in G which contains. This shows that the set of classes
of the uniform partitions is unique. By the degree properties of a uniform partition
it follows that the cyclic ordering of these classes is also unique. This proves (c).
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By definition a uniform partition satisfiesds(V; U V;11) = k+ 1 for 0 <
i < r. ThusB(s) contains a cycle which follows the cyclic ordering¥f This
proves (d) when = 2. Suppose: > 3 and take a dangerous sgtin GG. By (a)
we can see thal;(s, X) = 2 anddy(X) = k£ — 1 hold and thatX must be the
union of two consecutive classes¥f ThereforeB(s) is a cycle. o

Theorem 3.6 Suppose that; = (V' + s, F) satisfies(1) for somek > 2, d(s)
is even, andN(s)| > 2. ThenB(s) is 2-edge-connected if and onlyH(s) is a
cycle of lengthi(s), k is odd,d(s) > 4, andG is round froms.

Proof: Suppose that: is round froms andd(s) > 4. Lemma 3.5(d) shows(s)

is a cycle and hencB(s) is 2-edge-connected. To see the other direction assume
that B(s) is 2-edge-connected. By Theorem 3.4 and Lemma 3.B(g) is a cy-

cle. Thus, by Lemma 3.1(b), easmeighbour is special, and hence there are no
parallel edges incident toby Lemma 2.3. This shows th&(s) hasd(s) vertices.

Let vy, ..., va(s)—1 denote the vertices aB(s), following the cyclic ordering. Let
Vi=X, NX; (0 <i<d(s)— 1), whereX] andX? are the two maximad;-
dangerous sets ii. Now by Lemma 2.3(ii) and Lemma 3.3 it is easy to see that
(Vb, .-, Vas)—1) is a uniform partition ofi. HenceG is round froms, as required.

[

4 Applications
In this section we apply Theorems 3.2 and 3.6 and give short proofs for previous

results from [1] and [12].

4.1 Edge-splitting preserving planarity

The following theorem is due to Nagamochi and Eades [12]. The new proof we
present here is substantially simpler.

Theorem 4.1 [12] Let G = (V +s, E) be a planar graph witli(s) even satisfying
(1) with respect to either an evelnor £ = 3. Then there exists a complete
admissible splitting at for which the resulting graph is planar.
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Proof: Suppose that we are given a fixed planar embeddingy dthis embedding
uniquely determines a cyclic orderitgof (the edges incident te and hence)

the neighbours ot. Clearly, splitting off a pairsu, sv for which « and v are
consecutiven this cyclic ordering preserves planarity (and a planar embedding
of the resulting graph can be obtained without reembed@irg{su, sv}). Thus

to see that a complete admissible splitting exists athich preserves planarity

it is enough to prove thgt«) there exists an admissible pait, sv for which u
andv are consecutive i@. Let us call such a pair eonsecutive admissible pair

By repeated applications ¢%) we obtain a complete admissible splitting which
preserves planarity (and the embedding-0f s as well).

The existence of a consecutive admissible pair can be formulated in terms of a
constraint graph. We may assuié(s)| > 3. Let D(s) be a cycle defined on the
neighbours of following the cyclic ordering’. Clearly, a consecutive admissible
pair exists if and only if there exists B(s)-split. If £ is even then Theorem
3.2 and the fact thab(s) is connected (while the non-admissibility graptis)
is disconnected) shows thét) holds in every iteration. Therefore the proof of
Theorem 4.1 is complete in the case wida even. (Note that during the process
of iteratively splitting off consecutive admissible pairs the set of neighbours as
well as the constraint graph(s) may change. This happens whelooses some
neighbourw by splitting off the last copy of the edges’.)

Now consider the case = 3. The above argument and Theorem 3.6 shows
(using the fact thaiD(s) is 2-edge-connected) that by splitting off consecutive
admissible pairs as long as possible either we find a complete admissible splitting
which preserves planarity (and the embeddingef s) or we get stuck in a graph
G’ which is round froms and for whichBg/ (s) = D¢ (s) holds. In the latter case
we need to reembed some partgHfin order to complete the splitting sequence
and maintain planarity.

Let us consider such a roudd = (V + s, E’) with B/ (s) = D (s). Let
Vo, -, Vom—1 be the uniform partition oV in G’ — s (where2m := dq(s)) and let
v; be the neighbour of in V; (0 < i < 2m — 1). There exists a facé of G’ — s
whose boundary includes evesyneighbour. Sincé = 3 andG’ is round, it can
be seen that we may assume thas a finite face in the embedding 6f — s and
every edge connecting two consecutive members of the uniform partiti@h-of
is on the boundary of’ as well as on the boundary of the infinite face. SiGtés
round, Lemma 3.5 applies, and we can easily see that adding thewgagesnd
ViVam—i (1 < i <m —1)to G’ — s results in &-edge-connected gragh’. Thus
G" can be obtained fror@”’ by a complete admissible splitting. Furthermore, this
set ofm new edges can be added to the planar embeddiag-efs within face F’
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in such a way that in the resulting embeddingtfevery edge crossing involves
the edgevyv,,,. To avoid these edge crossings we can do the following: first we
“flip” V, and/orV,, in G’ — s, that is, reembed the subgraphs induced/pand

V., in such a way that both, andv,, occur on the boundary of the unbounded
face while the edges leavirlg, andV,, remain unchanged. Sine& is round,

k = 3, andy, andv,, ares-neighbours i/, it is easy to see that this can be done.
Then we can connect, andv,,, within the unbounded face and add the other new
edges as before. This yields a planar embeddin@’ofThis completes the proof

of the theorem. °

The theorem does not holdAf> 5 is odd, see [12]. Note that the above proof
implies that the graphs obtained by a maximal planarity preserving admissible
splitting sequence are round for every ddd 5. The original proof in [12] also
used the flipping operation but in a more sophisticated way. Our proof shows that
if £ = 3 then at most two flippings are sufficient.

4.2 Edge-splitting with partition constraints

LetG = (V+s, E) be agraph for which (1) holds for sorhe> 2 andd(s) is even.
LetP ={P,, P,,...,P.},2 <r <|V|beaprescribed partition &f. In order to
solve a more general partition-constrained augmentation problem, Bang-Jensen,
Gabow, Jordh and Szigeti [1] investigated the existence of complete admissible
splittings ats for which each split edge connects two distinct classeB.oT his
problem can also be formulated in terms of constraint graphs and our results on
non-admissibility graphs can be applied to obtain somewhat simpler proofs for
some (partial) results of [1]. We briefly sketch this connection below. (Note that
the partition-constrained edge-splitting problem turns out to be a special case of
the “simultaneous edge-splitting problem” that we discuss in detail in Section 5.)
An admissible pairsz, sy is calledallowedif x andy belong to different
classes ofP. Let S := N(s), S; := SN P, and letd; := d(s, S;). The fol-
lowing definition describes a situation when a complete allowed splitting does not
existif k£ is odd.

Definition 4.2 [1] Let {A;, Ay, By, B>} be a partition ofV" with the following
propertiesinG for someindex, 1 < i <r: (i) d(X) = kfor X = A, Ay, By, Bs;
(i) d(X,Y) = 0for (X,Y) = (Ay, As), (B, By); (iii)) SNX = S; for X =
Ay U Ay or X = By U By; (V) d; = d(s)/2. Such a partition is called a &
obstacle inG.

14



The following lemma is extracted from [1, Lemma 2.13, 3.3, 3.4, 5.1].

Lemma4.3LetG = (V + s, E) be a graph for which (1) holds{(s) is even,
andd; < d(s)/2forall 1 <i <r. Then: (i) ifd(s) > 6 then for any non-empty
S; there is an allowed paisz, sy with x € S;; (i) if d(s) = 4 then there exists
a complete allowed splitting at unlessk is odd andG contains aCs-obstacle
{A1, Ao, By, Bo}. In the latter case in graplir — s we haved(A4,) = d(A42) =
d(By) = d(By) = k—1landd(A; U B;y) = d(A; U By) = k — 1. Moreover, (iii)
if k& is even then there exists a complete allowed splitting ahd (iv) if & is odd
then there exists a sequence of allowed splittings of length atdéast2 — 2.

Proof: For a non-empty; let the constraint grap®(s) be the complete bipar-
titite graph on color classes; and.S — S;, respectively. Sincd; < d(s)/2, we
haveS — S; # (. An allowed pairsz, sy with x € S; exists if and only if there
exists aD(s)-split. D(s) is either2-edge-connected and is not a cycle, or has
a dominating vertex, or is a four-cycle. In the first two cases Theorem 3.2 and
Theorem 3.6 show that&(s)-split exists. Moreover, ifD(s) is a four-cycle then
G is round andi(s) = 4. In that case& — s is aC,-obstacle with the required
properties. This proves (i) and (ii).

Letd; > d; for everyl < i < r. Splitting off an allowed paisz, sy with
x € P; maintainsd; < d(s)/2forall 1 < ¢ < r. Thus iteratively applying (i) by
choosing arb; with the largestl; we can find a complete allowed splitting fifis
even) or a sequence of allowed splittings of length at légst/2 — 2. This proves
(iii) and (iv). o

Note that by Lemma 3.5(c) thé,-obstacle in (ii), if exists, is unique.

5 Simultaneous edge-splitting and edge-connectivity
augmentation

In this section we consider the following optimization problem:det= (V, E)

andH = (V, K) be two graphs on the same sétof vertices and lekt,! > 2

be integers. Find a smallest s€tof new edges for whiclti = (V, E + F) is
k-edge-connected and = (V, K + F) is l-edge-connected. Let us call this
the simultaneous edge-connectivity augmentation probl&give a polynomial
algorithm which finds an optimal solution if bothand! are even and finds a
solution whose size is at most one more than the optimum otherwise. One of the
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two main parts of our algorithm is based on a new splitting off theorem that we
prove using Theorems 3.2, 3.4, and 3.6.

If G = H (andk > [) then our problem reduces to finding a smallest/set
of edges for whict; = (V, E + F) is k-edge-connected. This is the well-solved
k-edge-connectivity augmentation probler8everal polynomial algorithms are
known which can solve this problem optimally. One approach, which is due to
Cai and Sun [3] (simplified and extended later by Frank [7]), divides the problem
into two parts: first it extend&’ by adding a new vertex and a smallest s&t’
of edges incident t@ such that F’| is even and>’ = (V + s, E + F’) satisfies
(1) with respect tok. Then in the second part, using Theorem 2.4, it finds a
complete admissible splitting fromin G’. The resulting set of split edges will be
an optimal solution for thé-edge-connectivity augmentation problem, see [7].

We follow and extend this approach for the simultaneous augmentation prob-
lem. To do this we have to extend both parts: we need an algorithm which finds a
smallestt” incident tos for whichG’ = (V+s, E4+F')andH' = (V+s, K+ F")
simultaneously satisfyl) with respect td: and!, respectively, and then we need
to verify that there exists a complete splittingsathich is simultaneously admis-
sible inG’ andH'.

Both of these extended problems have interesting new properties. While a
smallestF” in the first part can be found by a greedy deletion procedure ik-the
edge-connectivity augmentation problem, this is not the case in the simultaneous
version. Moreover, a complete splitting @atwhich is simultaneously admissi-
ble in G’ and H' does not always exist. (To see this lét= {a,b,c,d}, E =
{ac,bd}, K = {ab,bc, cd,da}, F" = {sa, sb, sc, sd} and letk = 2, [ = 3.) How-
ever, as we shall see, a smalléstcan be found in polynomial time by solving
an appropriate “submodular flow” problem. Furthermore, &nd/ are both even
then the required complete and simultaneously admissible splitting does exist (and
an “almost complete” splitting sequence can always be found).

5.1 Simultaneous edge-splitting

We start with the splitting problem. Lét = (V+s, E4+ F)andH = (V+s, K+
F') be given which satisfyl) with respect td: and/, respectively. Heré’ denotes
the set of edges incident to (For simplicity, we assum& = V(G) = V(H),
although for the splitting problem we do not need this.) Supposedfat:=
da(s) = du(s) is even. We say that a pait, sv is legal if it is admissible inG
as well as ind. A complete splitting sequence ats legalif the resulting graphs
(after deletings) satisfy(1) with respect tac and(, respectively. The property of
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being legal can be formulated in terms of a constraint géapd). Namely, a pair
su, sv (u # v) is legal if and only ifsu, sv is a D(s)-split in G with respect to
D(s) = By (s). Thus a legal pair exists if and only & (s) is not a subgraph of
BGf(S).

Lemma5.1 LetH = (V + s, K + F) satisfy(1) with respect to some > 2 and
let d(s) be even. LeD be the complement of the non-admissibility grapi(s)
of H. Then one of the following holds: (i) is 2-edge-connected anf is not a
cycle, (ii) D has a dominating vertex, (iilp = Cy, (iv) D arises from a complete
bipartite graphK,,,, (m > 1) by attaching an edge to a vertex of degreg(v) D
consists of two independent edges.

Proof: Let B = By(s) and letS := N(s). If B is 2-edge-connected the is a
cycle of lengthd(s) > 4 by Theorem 3.6. Ifi(s) = 4 then (v) holds, otherwise
() holds. Thus we may assume thais not2-edge-connected.

Case |: B is disconnected.

If B has an isolated vertex then (ii) holds. Otherwishas a bipartitiors =
XUY, |X|,|Y| > 2, such that there are no edges fréito Y in B. Letp := | X]|
andr := |Y|. Now D contains a spanning complete bipartite grdg)).. ThusD
is 2-edge-connected. if = r = 2 then (iii) holds, otherwise (i) holds.

Case II: B is connected (and has at least one cut-edge).

If (at least) one of the components we obtain by deleting an arbitrary cut-edge
from B is a sigleton then it is easy to see tlaarises from &-edge-connected
subgraphV/ by attaching some vertices of degree one. This is impossible by The-
orem 3.4 and Lemma 3.1(a). Thus we can assume that there existsasi with
| X],|S—X| >2anddp(X) = 1. Letp := | X|andr := |S — X| and lete = zv,

v € X, be the unique edge leavidgin B. Now D contains a spanning complete
bipartite graph/, , minus one edge. I, > 3 then (i) holds. Ifp = r = 2
thenB (as well asD) is a path on four vertices and hence (iv) holds with= 1.
Suppose we have= 2, > 3. Let X = {v, w}. SinceB is connected, the edge
vw is present inB. FurthermoreD — x is 2-edge-connected. Thus,(z) > 2
implies (i). If dp(z) = 1 thenx is adjacent to every vertexe S — X — {z}

in B. Sincev has no neighbours if — X — {z}, it follows from Lemma 3.1(b)
thatx is special and — X induces a complete graph #. ThusD arises from a
complete bipartite grapK, ,, with m = r» — 1 > 2 by attaching an edge:() to

a vertex of degree:. This gives (iv). o
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Theorem 5.2 If d(s) > 6 then there exists a legal pait, sv. If k and!/ are both
even then there exists a complete legal splitting. at

Proof: Let D := By (s) andA := Bg(s). If k andl are both even then Theorem
3.2 shows thab is connected (since it is the complement of a disconnected graph)
andA is disconnected. This implies that a legal pair exists for arbitrary éyen
and hence a complete legal splitting exists as well.

Supposet is odd andd(s) > 6. We may assumeN (s)| > 4. (Otherwise,
by Lemma 3.1(a)By(s) has an isolated vertex and henbehas a dominating
vertex, whileA has no such vertex.p satisfies one of (i)-(v) in Lemma 5.1. If
(i) or (ii) holds then by Theorem 3.6 and Lemma 3.1{ayrannot be a subgraph
of A and hence we are done. If (v) holds thBp (s) is cycle of length four. If
(iii) holds andD is a subgraph ofl then A is 2-edge-connected and by Theorem
3.6 we have that! is a cycle of length four. In both caséés) = 4 follows, a
contradiction.

Now assume (iv) holds. Ifn = 1 then D (as well asB) is a path on four
vertices. In this case ifl containsD then by Lemma 3.1(a) eithet is a four-
cycle, in which caséd(s) = 4 follows, or A = D. In the latter case Lemma 3.1(b)
implies that the two inner vertices of are special irG. Similarly, the two inner
vertices of B (which are disjoint from the inner vertices df) are special ind.
Therefore by Lemma 2.3 there are no parallel edges incidenatald(s) = 4.
This settles case (iv) when = 1.

If (iv) holds with m > 2 then A cannot be a cycle. Thus by Theorem 3.6s
not 2-edge-connected. On the other hand4 i€ontains (the-connected graph)
D then by Theorem 3.4 can be obtained from a cycle by attaching an edge. This
contradicts Lemma 3.1(b). This completes the proof of the theorem. .

Corollary 5.3 Suppose thai(s) = 4 and there exists no legal pair. Then at least
one ofG and H is round.

Proof: In the proof of Theorem 5.2 we already saw that if no legal pair exists
thend(s) = 4 and either one off and H is round orBy(s) is a path on four
vertices. We show the latter case is impossible. Let the path,lbec, d). By the
definition of By (s), there exists a dangerous sétin H which containg andc.
Sinced(s) = |N(s)| = 4, Lemma 2.2(b) impliegl(s, X) = d(s,V — X) = 2.
Therefored(X) = d(V — X), V — X is also dangerous, andd € V — X. In

this case: andd should also be adjacent iy (s), a contradiction. .
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Note that a complete splitting sequence which is simultaneously admissible
in three (or more) graphs does not necessarily exist, even if each of the edge-
connectivity values is even.

We remark that the partition-constrained splitting problem can be reduced to
a simultaneous edge-splitting problem where at least oriearfd! is even. To
see this suppose that an instance of the partition-constrained splitting problem is
given as in the beginning of Section 4.2. L&} := max;{dg(s, P,)} in G =
(V+s,E+ F)andletS := Ng(s). Build graphH = (S+x+ s, K + F) as
follows. For each set N P, in G let the corresponding set iff induce a(2d,,)-
edge-connected graph (say, a complete graph with sufficiently many parallel edges
or a singleton). The edges incidentta G and H coincide. Then from vertex
of H add2d,,—dq(s, P;) parallel edges to some vertex®h P; (1 < i < r). Now
H satisfieq 1) with respect td := 2d,,,. It can be seen that a complete admissible
splitting satisfying the partition-constraintsdhexists if and only if there exists a
complete legal splitting in the pai¥, H. This shows that characterizing the pairs
G, H for which a complete legal splitting does not exist (even if oné aind!
is even) is at least as difficult as the solution of the partition-constrained problem

[1].

5.2 Simultaneous edge-connectivity augmentation

LetG = (V, E) andH = (V, K) be given for which(1) holds with respect t&
andl, respectively. First we show how to find a smallEStor which the extended
graphsG’ = (V + s, E+ F')andH' = (V + s, K + F’) simultaneously satisfy
(1) with respect td: and!, respectively. We need some results from the theory of
polymatroids.

Let V be a finite ground-set and lgt 2" — Z U {—occ} be an integer-valued
function for whichp() = 0. We callp fully supermodulaiif p(X) + p(Y) <
p(XNY)+p(XUY) holds for everyX, Y C V. Afunctionp : 2V — ZU{—o0}is
skew supermodulaffor every X, Y C V either the above submodular inequality
holds orp(X) +p(Y) < p(X =Y) +p(Y — X). If p(Y') < p(X) holds for every
Y C X thenp is monotone For a fully supermodular and monotone functjon
the setC(p) := {x € RV : x > 0,2(A) > p(A) foreveryA C V} is called the
contra-polymatroicbf p. The next result is due to Frank.
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Theorem 5.4 [7] Let p be a skew supermodular function. Th&(p) is a contra-
polymatroid whose unique (monotone, fully supermodular) defining fungi®n
given by

P(X) :=max(D>_p(X;): {Xi,..., X,} is a subpartition ofX).
t

Given a graph? = (V,E) andk € Z,, letpt, : 2V — Z be defined by
PE(X) =k — da(X),if 0 # X # V andpk(0) = pk(V) = 0. This function
pq 1S skew-supermodular by Proposition 2.1. Following [7], we say that a vector
z:V — Z, is anaugmentation vectasf G (with respect tdk) if 2(X) > p&(X)
for every X C V. Observe that:' = (V + s, E' + F) satisfies(1) with respect
to & if and only if z(v) := dp(v) (v € V) is an augmentation vector. Hence by
Theorem 5.4 the problem of finding a smalléstor whichG' = (V + s, E + F)
satisfies(1) can be reduced to finding an integer valued element of the contra-
polymatroidC(pf,) for which z(V') is minimum. This can be done by a greedy
algorithm [7]. Similarly, addingF” is simultaneously good for and H if and
only if 2(X) > max{pk(X),p’(X)} for everyX C V, wherez(v) := dp(v),
(v € V). Let us call such & a common augmentation vectof G and H.
Clearly, finding a smallest” for whichG' = (V + s, E+ F') andH' = (V +
s, K + F’) satisfy (1) with respect tok and!, respectively, can be solved by
finding an integer valued € C(pe) N C(py) for which z(V') is minimum. By
Frank’s [6] “g-polymatroid intersection theorem” (see also Frank and Tardos [9,
Theorem 1.4, Proposition 4.1] and [5]) the syst&tp%, ply) = {x € RV : z >
0,2(A) > max{pk(A),ply(A)}} is a “submodular flow system” and hence we
can find an integer valued € S(pk, p';) minimizing z(V) in polynomial time
(see e.g. Cunningham and Frank [4]).

Summarizing our observations we obtain the following algorithm for the si-
multaneous edge-connectivity augmentation problem.(Let (V, E) andH =
(V, K) (satisfying(1) with respect td: andl, resp.) be the pair of input graphs.
(Step 1) Find a common augmentation vector@and H for which z(V') is as
small as possible.
(Step 2) Add a new vertexto each ofG and H andz(v) parallel edges from to
v for everyv € V. If z(V) is odd then add one more edge for somew € V.
(Step 3) Find a maximal legal splitting sequereat s in the resulting pair of
graphs. IS is complete, let the solutiof' consist of the set of split edges. Other-
wise splitting offS results in a pair of graphs’, H' for whichd(s) = |N(s)| = 4.
In this case let the solutioR" be the union of the split edges and a seif three
properly chosen additional edges that form a path on thesa@ighbours.
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The following theorem shows the correctness of the above algorithm and proves
that the solution sef’ is (almost) optimal. Let us define
Byy(G, H) = max{ 3} (k — (X)) + £b 1 (1 — dur(Xy) -
{X1, ..., X;} is a subpartition of/; 0 < r < t}.
The size of a smallest simultaneous augmenting set:fand H (with respect to
k andl, resp.) is denoted b PT}, (G, H).

Theorem 5.5 ’Vq)k,l<G7 H)/Q—‘ < OPT]@J(G, H) < (q)hl(G,H)/Q—‘ + 1. If kand
[ are both even the®@ PT}, (G, H) = [®,,(G, H)/2] holds.

Proof: It is easy to see thgt?, (G, H)/2] < OPT;,(G, H) holds. We shall
prove that the above algorithm results in a simultaneous augmentirfg wéh

size at mos{®,,(G, H)/2] + 1 (and with size[®, (G, H)/2], if k and! are

both even). ¢ From thepolymatroid intersection theorem, Theorem 5.4 and our
remarks on common augmentation vectors it follows that for the vedtoat we
obtain in Step 1 of the above algorithm we hav&’) = ¢, ,(G, H). Hence we
have2[®,, (G, H)/2] edges incident te at the end of Step 2. By Theorem 5.2 we
can find a maximal sequence of legal splittings in Step 3 which is either complete
or results in a pair of graphs’, H', whered(s) = |N(s)| = 4. In the former case

the setl’ of split edges, which is clearly a feasible simultaneous augmenting set,
has sizd @, (G, H)/2], and hence is optimal. If and! are both even then such a
complete legal splitting always exists, proviod® T, ,(G, H) = [®,,(G, H)/2].

In the latter case one ¢ andH’, sayG’, is round by Corollary 5.3. There exists

a complete admissible splitting iH’ by Theorem 2.4. Let = wv, f = xy be

the two edges obtained by such a complete splitting.¢gLet vz. Adding e and

f to H' — s gives ani-edge-connected graph and by Lemma 3.5(b) adding the
edge sef := {e, f, g} to G’ — s yields ak-edge-connected graph. Thus the set
of edgesF’ which is the union of the edges obtained by the maximal legal split-
ting sequence and the edge $&$ a simultaneous augmenting set. We also have
|F| = [®x,(G, H)/2] + 1, as required. .

There are examples showigPT = [®/2] + 1 may hold. (Takel” =
{a,b,¢,d}, E = {ac,bd}, K = {ab,bc,cd,da}, and letk = 2,1 = 3.) Itis
easy to see that the above algorithm can be implemented in polynomial time. As
we pointed out, Step 1 is a submodular flow problem and hence can be solved in
polynomial time. One approach to solve Step 3 efficiently is using max-flow com-
putations to check whether a pair of edges is legal or not. We omit the algorithmic
details.
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