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Constrained edge-splitting problems∗

Tibor Jord́an†

November 19, 1999

Abstract

Splitting off two edgessu, sv in a graphG means deletingsu, sv and
adding a new edgeuv. Let G = (V + s,E) be k-edge-connected inV
(k ≥ 2) and letd(s) be even. Lov´asz proved that the edges incident tos
can be split off in pairs in a such a way that the resulting graph on vertex
set V is k-edge-connected. In this paper we investigate the existence of
such complete splitting sequences when the set of split edges has to meet
additional requirements. We prove structural properties of the set of those
pairsu, v of neighbours ofs for which splitting offsu, sv destroysk-edge-
connectivity. This leads to a new method for solving problems of this type.

By applying this method we obtain a short proof for a recent result of
Nagamochi and Eades on planarity-preserving complete splitting sequences
and prove the following new results: letG andH be two graphs on the same
setV + s of vertices and suppose that their sets of edges incident tos coin-
cide. LetG (H) bek-edge-connected (l-edge-connected, respectively) inV
and letd(s) be even. Then there exists a pairsu, sv which can be split off in
both graphs preservingk-edge-connectivity (l-edge-connectivity, resp.) in
V , providedd(s) ≥ 6. If k and l are both even then such a pair always
exists. Using these edge-splitting results and the polymatroid intersection
theorem we give a polynomial algorithm for the problem of simultaneously
augmenting the edge-connectivity of two graphs by adding a (common) set
of new edges of (almost) minimum size.

∗A preliminary version of this paper appeared in: Proc. IPCO ’99 (G. Cornu´ejols, R.E. Burkard
and G. Woeginger, eds.) Springer Lecture Notes in Computer Science 1610, 273-288.

†BRICS (Basic Research in Computer Science, Centre of the Danish National Research Foun-
dation), Department of Computer Science, University of Aarhus, Ny Munkegade, building 540,
DK-8000 Aarhus, Denmark. e-mail:jordan@daimi.au.dk
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1 Introduction

Edge-splitting is a well-known and useful method for solving problems in graph
connectivity. Splitting off two edgessu, sv means deletingsu, sv and adding a
new edgeuv. This operation may decrease the edge-connectivity of the graph.
The essence of the edge-splitting method is to find a pair of edges which can be
split off maintaining the edge-connectivity or other connectivity properties of the
graph. If such a good pair exists then one may reduce the problem to a smaller
graph which can lead to inductive proofs. Another typical application is the edge-
connectivity augmentation problem where splitting off is an important subroutine
in some polynomial algorithms. This connection will be discussed in detail in
Section 5. (For a survey see [8].)

Let G = (V + s, E) be a graph which isk-edge-connected inV , that is,
d(X) ≥ k holds for every∅ 6= X ⊂ V . Hered(X) denotes the degree ofX.
Suppose thatd(s) is even andk ≥ 2. Lovász [11] proved that for every edgesu
there exists an edgesv for which splitting off the pairsu, sv maintainsk-edge-
connectivity inV . We call such a pairadmissible. By repeated applications of
this theorem we can see that all the edges incident tos can be split off in pairs in
such a way that the resulting graph (on vertex setV ) is k-edge-connected. Such
a splitting sequence which isolatess (and preservesk-edge-connectivity inV ) is
called acomplete (admissible) splitting ats.

This result gives no information about the structure of the subgraph(V, F )
induced by the setF of new edges that we obtain by the splittings (except the
degree-sequence of its vertices, which is the same for every complete splitting).
Recent problems in edge-connectivity augmentation gave rise to edge-splitting
problems where the goal is to find a complete admissible splitting for which the
subgraph of the new edges satisfies some additional requirement. For example,
while addingF to G − s, one may want to preserve simplicity [2], planarity [12],
or bipartiteness [1], too.

The goal of this paper is to develop a new method for solving these kind of
edge-splitting problems. The basic idea is to define thenon-admissibility graph
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B(s) of G = (V + s, E) on the set of neighbours ofs by connecting two vertices
x, y if and only if the pairsx, sy is not admissible. We give a complete char-
acterization of those graphs that arise as non-admissibility graphs. Furthermore,
we prove thatB(s) is 2-edge-connected if and only ifB(s) is a cycle,k is odd
andG has a special structure which we call round. This structural property turns
out to be essential in several edge-splitting problems. Suppose that the additional
requirement the split edges have to meet is given by defining aconstraint graph
D(s) on the neighbours ofs at every iteration of the splittings and demanding that
for the next admissible pairsu, sv that we splituv ∈ E(D(s)) must hold. Clearly,
such an admissible pair exists if and only ifD(s) is not a subgraph ofB(s). Our
method is to compare the structure of the graphsB(s) andD(s) that may occur
at some iteration. By showing thatD(s) can never be the subgraph of the cor-
respondingB(s) we can verify the existence of a complete admissible splitting
satisfying the additional requirement.

As a first application of this method we give simplified proofs for previous
results of Nagamochi and Eades [12] on planarity-preserving complete admissible
splittings and for some results of Bang-Jensen, Gabow, Jord´an and Szigeti [1] on
partition-constrained complete admissible splittings. Then we use our structural
results to prove the following “intersection theorem” for admissible splittings: let
two graphsG = (V + s, E) andH = (V + s, K) be given, for which the sets of
edges incident tos in G andH coincide. LetG andH bek- andl-edge-connected
in V , respectively (k, l ≥ 2). Then there exists a pair of edgessu, sv which
is admissible inG andH (with respect tok and l, respectively) simultaneously,
providedd(s) ≥ 6. If k and l are both even then such a pair always exists, and
therefore a simultaneously admissible complete splitting exists as well.

Using these edge-splitting results and theg-polymatroid intersection theorem
of Frank [6] we give a min-max theorem and a polynomial algorithm for thesi-
multaneous edge-connectivity augmentation problem. In this problem two graphs
G′ = (V, E ′), H ′ = (V, K ′) and two integersk, l ≥ 2 are given and the goal is
to find a smallest set of new edges whose addition makesG′ (andH ′) k-edge-
connected (l-edge-connected, respectively) simultaneously. Our algorithm finds a
feasible solution whose size does not exceed the optimum by more than one. Ifk
andl are both even then the solution is optimal.

1.1 Definitions and notation

Graphs in this paper are undirected and may contain parallel edges. LetG =
(V, E) be a graph. Asubpartitionof V is a collection of pairwise disjoint non-
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empty subsets ofV . A set consisting of a single vertexv is simply denoted by
v. An edge joining verticesx andy is denoted byxy. Sometimesxy will refer
to an arbitrary copy of the parallel edges betweenx andy but this will not cause
any confusion. Adding or deleting an edgee in a graphG is denoted byG + e or
G − e, respectively. The symbols⊆ and⊂ denote set containment and proper set
containment, respectively.

For X, Y ⊆ V , d(X, Y ) denotes the number of edges with one endvertex
in X − Y and the other inY − X. We define thedegreeof a subsetX as
d(X) = d(X, V − X). For exampled(v) denotes the degree of vertexv. The
set ofneighboursof v (or v-neighbours, for short), that is, the set of vertices ad-
jacent to vertexv, is denoted byN(v). A graphG = (V, E) is k-edge-connected
if

d(X) ≥ k for all ∅ 6= X ⊂ V. (1)

The operationsplitting offa pair of edgessu, sv at a vertexs means replacing
su, sv by a new edgeuv. If u = v then the resulting loop is deleted. We useGu,v

to denote the graph obtained after splitting off the edgessu, sv in G (the vertexs
will always be clear from the context). Acomplete splittingat vertexs (with even
degree) is a sequence ofd(s)/2 splittings of pairs of edges incident tos.

2 Preliminaries

The degree function satisfies the following well-known equalities.

Proposition 2.1 LetH = (V, E) be a graph. For arbitrary subsetsX, Y ⊆ V ,

d(X) + d(Y ) = d(X ∩ Y ) + d(X ∪ Y ) + 2d(X, Y ), (2)

d(X) + d(Y ) = d(X − Y ) + d(Y − X) + 2d(X ∩ Y, V − (X ∪ Y )). (3)

In the rest of this section lets be a specified vertex of a graphG = (V + s, E)
with degree functiond such thatd(s) is even and (1) holds with respect to some
k ≥ 2. Saying (1) holds in such a graphG means it holds for all∅ 6= X ⊂ V . A
set∅ 6= X ⊂ V is calleddangerousif d(X) ≤ k+1 andd(s, X) ≥ 2. (Notice that
in the standard definition of dangerous sets propertyd(s, X) ≥ 2 is not required.)
A set∅ 6= X ⊂ V is critical if d(X) = k. Two setsX, Y ⊆ V arecrossing(or X
crossesY ) if X − Y , Y − X, X ∩ Y andV − (X ∪ Y ) are all nonempty. Edges
sv, st form anadmissible pairin G if Gv,t still satisfies (1). It is easy to see that
sv, st is not admissible if and only if some dangerous set contains botht andv.
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The following two lemmas can be proved by standard methods using Proposi-
tion 2.1. Most of them are well-known and appeared explicitely or implicitely in
[7] (or later in [1]). We include the proofs for completeness.

Lemma 2.2 (a) A maximal dangerous set does not cross any critical set.
(b) If X is dangerous thend(s, V − X) ≥ d(s, X).
(c) If k is even then two maximal dangerous setsX, Y which are crossing have

d(s, X ∩ Y ) = 0.

Proof: Let X be a maximal dangerous set and suppose it crosses a critical setY .
The maximality ofX showsd(X ∪ Y ) ≥ k + 2. Thus (2) givesk + 1 + k ≥
d(X) + d(Y ) ≥ d(X ∩ Y ) + d(X ∪ Y ) ≥ k + k + 2, a contradiction.

By (1) we see thatk ≤ d(V − X) = d(X) − d(s, X) + d(s, V − X). Since
d(X) ≤ k + 1, this impliesd(s, V −X) ≥ d(s, X)− 1 and sinced(s) is even we
cannot have equality.

SupposeX andY are maximal dangerous and crossing such thatd(s, X ∩
Y ) ≥ 1. By Proposition 2.1 and (1), we get thatd(X) = k + 1, d(X − Y ) = k
andd(X ∩ Y ) = k. It is easy to see thatd(X) is congruent tod(X − Y ) +
d(X ∩ Y ) modulo2, but this contradicts the fact thatd(X) is odd and each of
d(X − Y ), d(X ∩ Y ) is even. •

Let t be a neighbour ofs. A dangerous setX with t ∈ X is called at-
dangerous set.

Lemma 2.3 Let v be ans-neighbour. Then exactly one of the following holds:
(o) The pairsv, su is admissible for every edgesu 6= sv.
(i) There exists a unique maximalv-dangerous setX.
(ii) There exist precisely two maximalv-dangerous setsX, Y . In this case

k is odd and we haved(X) = d(Y ) = k + 1, d(X − Y ) = d(Y − X) = k,
d(X∩Y ) = k, d(X∪Y ) = k+2, d(X∩Y, V +s−(X∪Y )) = 1, d(s, X−Y ) ≥ 1,
d(s, Y − X) ≥ 1, andd(X ∩ Y, X − Y ) = d(X ∩ Y, Y − X) = (k − 1)/2.

Proof: Suppose neither (0) nor (i) holds forv. Let F be the collection of max-
imal v-dangerous sets. Any two maximalv-dangerous sets are crossing ifd(s)
is even [7]. ThusF consists of (at least two) pairwise crossing sets. By Lemma
2.2(c) this shows thatk is odd. LetX, Y ∈ F be chosen in such a way that
|X ∩ Y | is as large as possible. SinceX andY cross, by(2) and (3) we ob-
tain d(X) = d(Y ) = k + 1, d(X − Y ) = d(Y − X) = k, d(X ∩ Y ) = k,
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d(X∪Y ) = k+2, d(X∩Y, V +s−(X∪Y )) = 1. Thusd(M) = k for M := X∩Y .
Suppose that a setZ ∈ F , Z 6= X, Y exists. By Lemma 2.2(a) we can see that
M ⊂ Z and therefore the choice ofX andY impliesM = X ∩ Z = Y ∩ Z.
From this(3), applied to each pair fromX, Y, Z givesd(M) = 1, contradict-
ing (1). ThusX andY are the onlyv-dangerous sets. To complete the proof
observe thatd(X) = d(X ∩ Y ) + d(X − Y ) − 2d(X ∩ Y, X − Y ) and hence
d(X ∩ Y, X − Y ) = (k − 1)/2. Similarly we getd(X ∩ Y, Y −X) = (k − 1)/2.
Our definition of dangerous sets andd(X ∩ Y, V + s − (X ∪ Y )) = 1 gives
d(s, X − Y ) ≥ 1 andd(s, Y − X) ≥ 1. •

An s-neighbourv for which (ii) holds in Lemma 2.3 is calledspecial.
The previous lemmas include all ingredients of Frank’s proof [7] for the next

splitting off theorem due to Lov´asz.

Theorem 2.4 [11] Suppose that (1) holds inG = (V + s, E), k ≥ 2, d(s) is even
and |N(s)| ≥ 2. Then for every edgest there exists an edgesu (t 6= u) such that
the pairst, su is admissible.

3 The structure of non-admissibility graphs

In this section letG = (V +s, E) be given which satisfies(1) with respect to some
k ≥ 2. Thenon-admissibility graphB(s) = (N(s), E(B(s))) of G (with respect
to s) is defined on vertex setN(s). Two verticesu, v ∈ N(s), (u 6= v) are adjacent
in B(s) if and only if the pairsu, sv is not admissible inG. Notice that whileG
may contain multiple edgesB(s) is always a simple graph. By definition, two
edgessu, sv (u 6= v) form an admissible pair inG if and only if uv ∈ E(B̄(s)),
that is,uv is an edge of thecomplementof B(s).

This notion turns out to be useful in problems where we search for a com-
plete admissible splitting for which the setF of edges obtained by the splittings
satisfies some additional propertyΠ. Let G′ := G − s. For example,G′ + F
may be required to be simple, planar, or bipartite. If propertyΠ is closed under
taking subgraphs, it defines a graph for every iteration of a splitting sequence in
the following way. Suppose that by splitting off some admissible pairs we have
maintained propertyΠ, that is,G′ + F ′ satisfiesΠ for the setF ′ of edges split off
so far. Define aconstraint graphDΠ(s) = (N(s), E(D(s))) on the set of neigh-
bours ofs in such a way that splitting offxy maintainsΠ (that is,G′ + F ′ + xy
satisfiesΠ) if and only if xy ∈ E(DΠ(s)). By definition, a constraint graph is
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simple. GivenΠ and its constraint graphDΠ(s), an admissible split satisfyingΠ
will be called aDΠ(s)-split, or simply aD(s)-split. It is clear from the definitions
that aD(s)-split exists if and only ifD(s) andB̄(s) has a common edge. In other
words, aD(s)-split does not exist if and only ifD(s) is a subgraph ofB(s). It is
easy to decide whether aDΠ(s)-split exists for a givenΠ. On the other hand, to
decide whether a complete admissible splitting satisfying propertyΠ exists may
be difficult (for instance, to decide whether there is a complete admissible split-
ting in a simple graph that preserves simplicity is NP-complete [10]). Structural
properties of the non-admissibility graph help overcome this difficulty in several
cases by the following observation: ifDΠ(s) cannot be the subgraph ofB(s) at
any iteration (since, say, it is always connected while the non-admissibility graph
is disconnected) then a complete admissible splitting satisfying propertyΠ exists.

In order to use this kind of argument, we characterize those graphs that arise
as non-admissibility graphs. A vertexv which is adjacent to all the other vertices
of the graph is adominating vertex. A complete (subgraph of a) graph will be
called aclique. The union of two cliques with precisely one vertex in common
is adouble clique. Every double clique has a dominating vertex. In what follows
assume thatd(s) is even and|N(s)| ≥ 2. The definition ofB(s), Lemma 2.3 and
Theorem 2.4 imply the following.

Lemma 3.1 (a) B(s) has no dominating vertex. (b) The neighbours of a vertext
in B(s) induce a clique, unlesst is special. Ift is special, the neighbours oft can
be covered by two cliques ofB(s).

This leads to a simple characterization of non-admissibility graphs in the case
whenk is even.

Theorem 3.2 Suppose thatG = (V +s, E) satisfies(1), d(s) is even,|N(s)| ≥ 2,
andk is even. ThenB(s) is the disjoint union of (at least two) complete graphs.

Proof: By Lemma 2.3 there is no specials-neighbour inG. Hence, by Lemma
3.1(b), if su, sv andsu, sw (v 6= w) are both non-admissible then the pairsv, sw
is also non-admissible. By this transitivity propertyB(s) is the union of pairwise
disjoint cliques.B(s) itself cannot be complete by Lemma 3.1(a). •

It is easy to see that every graph consisting of (at least two) disjoint complete
graphs can be obtained as a non-admissibility graph.

Now let us focus on the case whenk ≥ 3 is odd. In this case the complete
characterization of non-admissibility graphs is more complicated. We need the
following key lemma.
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Lemma 3.3 Suppose thatt is special and letX and Y be the two maximalt-
dangerous sets. Letu be a specials-neighbour inY −X. LetY andZ denote the
two maximalu-dangerous sets inG. ThenZ ∩ X = ∅, Y = (X ∩ Y ) ∪ (Z ∩ Y )
andd(s, Y ) = 2.

Proof: Notice that for every special vertexu′ ∈ Y −X one of the two maximalu′-
dangerous sets must beY , thusY is indeed one of the two maximalu-dangerous
sets.

Let v be ans-neighbour inZ − Y . First supposev ∈ X − Y . SinceX
andY are the only maximalt-dangerous sets we havet /∈ Z. This shows that
v is also special and the two maximalv-dangerous sets areX andZ. Lemma
2.3 impliesd(Z) = k + 1 andd(X − Y ) = d(Y − X) = k. Hence by(3),
applied toZ and X − Y and toZ and Y − X, we obtainX − Y ⊂ Z and
Y − X ⊂ Z. By Lemma 2.3 we haved(X ∩ Y ) = k. HenceZ ∩ X ∩ Y = ∅ by
Lemma 2.2, providedZ ∪ (X ∩ Y ) 6= V . Moreover,Z ∪ (X ∩ Y ) = V implies
d(s, Z) ≥ d(s) − 1 > d(s, V − Z), usingd(s) ≥ 4. SinceZ is dangerous, this
would contradict Lemma 2.2(b). Thus we concludeZ ∩ X ∩ Y = ∅.

The above verified properties ofZ and Lemma 2.3 imply thatk+1 = d(Z) ≥
d(X∩Y, Z)+d(s, Z) ≥ d(X∩Y, X−Y )+d(X∩Y, Y −X)+2 = k−1+2 = k+1.
This shows thatd(s, Z) = 2 and henced(s, Z ∪ (X ∩ Y )) = 3 holds. We also
getd(Z, V − Z − (X ∩ Y )) = 0 and by Lemma 2.3 we haved(X ∩ Y, V − Z −
(X ∩ Y )) = 0 as well. Therefored(Z ∪ (X ∩ Y ), V − Z − (X ∩ Y )) = 0 and
henced(s, Z ∪ (X ∩ Y )) = d(Z ∪ X ∪ Y ) = 3 ≤ k. This showsZ ∪ X ∪ Y is
dangerous, contradicting the maximality ofX.

Thus we may assume thatv ∈ V − (X ∪ Y ). By Lemma 2.3 we haved(Z) =
k + 1, d(X − Y ) = d(Y − X) = d(X ∩ Y ) = k and there exists ans-neighbour
w ∈ X−Y . Clearly,t /∈ Z and by the previous argument we may assumew /∈ Z.
We claim thatZ ∩ (X − Y ) = ∅. Indeed, otherwiseZ andX − Y would cross
(observe thatt /∈ Z ∪ (X − Y )), contradicting Lemma 2.2(a). We claim that
Z ∩ (X ∩ Y ) = ∅ holds as well. This claim follows similarly by Lemma 2.2(a),
sincew /∈ Z ∪ (X ∩Y ). A third application of Lemma 2.2(a) showsY −X ⊂ Z.
To see this observe thatt /∈ Z ∪ (Y − X) and hence(Y − X) − Z 6= ∅ would
imply thatZ andY − X cross, a contradiction.

Summarizing the previous observations we obtainZ ∩ X = ∅ and Y =
(X ∩ Y ) ∪ (Z ∩ Y ). By Lemma 2.3 this impliesd(s, Y ) = 2. This proves
the lemma. •
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A corollary of Lemma 3.3 is the following sharpening of Lemma 3.1(b). Let
t be a specials-neighbour and letX and Y be the maximalt-dangerous sets.
Then each pairsx, sy with x ∈ X − Y, y ∈ Y − X is admissible and hence the
t-neighbours inB(s) induce two disjoint cliques.

We recall some basic definitions and facts. An inclusionwise maximal2-edge-
connected subgraph is a2-component. (By definition, a single vertex is2-edge-
connected.) An edgee is called acut-edgein a connected graphH if H − e
is disconnected. It is well-known that the2-components of a graph are pairwise
vertex-disjoint and those edges of a connected graph which are not included in
any2-component are precisely the cut-edges. By contracting the2-components
of a connected graphH we get a tree whose edges correspond to the cut-edges of
H. This tree is the2-component treeof H. 2-components corresponding to the
leaves of this tree are calledleaves.

Theorem 3.4 Suppose thatG = (V +s, E) satisfies(1), d(s) is even and|N(s)| ≥
2. LetH be a component ofB(s). ThenH is either (a) a clique, or (b) a double
clique, or (d) two disjoint cliques connected by a path, or (d) a cycle of length at
least four.

Proof: First we show that each2-componentW of H is either a clique, or a
double-clique, or a cycle. SupposeW is neither a clique nor a double-clique.
SinceW is not a clique, there exists a vertext ∈ W for which the neighbours of
t in W do not form a clique. By Lemma 3.1 and the maximality ofW it follows
that t is special. LetX andY denote the two cliques inB(s) corresponding to
the two maximalt-dangerous sets ofG. By the choice oft and the maximality of
W we haveX ∪ Y ⊆ W . SinceX ∪ Y forms a double-clique inB(s) andW is
connected and is not a double-clique, without loss of generality, there is an edge
uv in W with u ∈ Y − t, v ∈ W − (X ∪ Y ). Applying Lemma 3.3 tot andu we
getY = {t, u} and thatu andt have no common neighbours. LetP be a shortest
path inW − tu from t to u. Such path exists sinceW is 2-edge-connected. By
Lemma 3.3 there are no edges inB(s) from X − t to Y − t. ThusP has at least
three edges andC := P + tu is a cycle of length at least four. We claim that
W = C. SinceP is a shortest path,C has no diagonals. Therefore each vertex
on C is special by Lemma 3.1(b). Suppose there is a vertexz ∈ W − C that is
adjacent to a vertex ofC. Sinceu and t have no common neighbours, we may
assume thatz andu are nonadjacent. Letq 6= u be the last neighbour ofz on P
(counting fromt to u) and letp be the vertex preceedingq on P . (Observe that
q 6= t by Lemma 3.1(b). Thusp exists.) By Lemma 3.1(b) and the choice ofq,

9



it follows that p andz are adjacent. On the other hand, applying Lemma 3.3 to
the special vertexp and its neighbourq, it follows thatp andq have no common
neighbours, a contradiction. This proves thatW = C, as required.

It remains to verify that ifH is not2-edge-connected then it is the union of two
disjoint cliques, connected by a path. In our argument the following corollaries of
Lemma 3.1(b) and Lemma 3.3, respectively, are crucial: (i)B(s) has no “claw”
(that is, a vertex that is adjacent to three pairwise non-adjacent vertices); (ii)B(s)
contains no induced subgraph isomorphic to the union of a triangle(t, w, u) and
two independent edgestx, uy.

Suppose thatH is not2-edge-connected and letZ be a non-singleton2-com-
ponent ofH. By our proof above and sinceB(s) is simple,Z is either a clique
(on at least3 vertices), or a double-clique (with each clique containing at least3
vertices), or a cycle (on at least4 vertices). SinceZ 6= H, there is at least one
cut-edgee incident toZ. If Z is a double-clique or a cycle thenZ + e has a claw
or a bad triangle as in (ii), a contradiction. We have the same conclusion if there
are at least two cut-edges incident toZ andZ is a clique. This shows that each
non-singleton2-component ofH is a clique which is also a leaf. Therefore, since
B(s) has no claw, the2-component tree must be a path and henceH is the union
of two disjoint cliques, connected by a path, as required. •

By Lemma 3.1(a) a non-admissibility graph has no dominating vertex. It is
not difficult to show that every graphH ′ which has no dominating vertex and for
which each componentH of H ′ satisfies one of (a)-(d) of Theorem 3.4 arises as
the non-admissibility graphB(s) of some graphG = (V + s, E).

Those graphsG = (V + s, E) for which B(s) is 2-edge-connected are of
special interest. To describe their structure first we need some definitions. In a
cyclic partitionX = (X0, ..., Xt−1) of V the t partition classes{X0, ..., Xt−1}
are cyclically ordered. Thus we use the conventionXt = X0, and so on. In a
cyclic partition two classesXi andXj areneighbouringif |j − i| = 1 andnon-
neighbouringotherwise. We say thatG′ = (V ′, E′) is aCp

l -graphfor somep ≥ 3
and some evenl ≥ 2 if there exists a cyclic partitionY = (Y0, ..., Yp−1) of V ′

for which d′(Yi) = l (0 ≤ i ≤ p − 1) andd(Yi, Yj) = l/2 for each pairYi, Yj

of neighbouring classes ofY (which impliesd(Yi′, Yj′) = 0 for each pair of non-
neighbouring classesYi′, Yj′). A cyclic partition of G′ with these properties is
calleduniform.
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Let G = (V + s, E) satisfy (1) for some oddk ≥ 3. Such aG is called
round(from vertexs) if G − s is aC

d(s)
k−1-graph. Note that by(1) this implies that

d(s, Vi) = 1 for each classVi (0 ≤ i ≤ d(s)−1) of a uniform partitionV of G−s.

Lemma 3.5 Let G = (V + s, E) satisfy(1) for some oddk ≥ 3. Suppose that
G is round froms and letV = (V0, ..., Vr) be a uniform partition ofV , where
r = d(s) − 1. Then

(a) G − s is (k − 1)-edge-connected and for everyX ⊂ V with dG−s(X) =
k − 1 eitherX ⊆ Vi or V − X ⊆ Vi holds for some0 ≤ i ≤ r or X =

⋃i+j
i Vi

for some0 ≤ i ≤ r, 1 ≤ j ≤ r − 1.
(b) For any setI of new edges which induces a connected graph onN(s), the

graph(G − s) + I is k-edge-connected.
(c) The uniform partition ofG − s is unique.
(d) B(s) is a cycle ond(s) vertices (which follows the ordering ofV).

Proof: Let H := G − s. SinceG satisfies(1) anddG(s, Vi) = 1 for 0 ≤ i ≤ r,
we getdH(Y ) ≥ k − 1 if Y ⊆ Vi for somei. Suppose thatH is not (k − 1)-
edge-connected and letX ⊂ V be a maximal set withdH(X) ≤ k − 2. By
the definition of a uniform partitionX cannot be the union of some classes ofV.
Thus there exists aVj ∈ V for which X andVj are intersecting. IfX ∪ Vj = V
thendH(X) = dH(V − X) = dH(Vj − X) ≤ k − 2 follows, a contradiction.
ThusX andVj cross. Now(2) and the maximality ofX imply k − 1 + k − 2 ≥
dH(Vj) + dH(X) ≥ d(Vj ∩ X) + d(Vj ∪ X) ≥ k − 1 + k − 1, a contradiction.
This provesH is (k − 1)-edge-connected. LetY ⊂ V satisfydH(Y ) = k − 1
and assume that neitherY norV − Y is a subset of some class ofV. If Y crosses
someVj then by(2) and(3) we havedH(Y ∩ Vj) = dH(Vj − Y ) = k − 1. This
cannot hold by(1) anddG(s, Vj) = 1. ThusY is the union of some classes of
V. By the properties of a uniform partition it is clear that these classes have to be
consecutive. This proves (a).

Property (a) implies that ifI is a set of new edges which induces a connected
graph onN(s) then for everyY ⊂ V with dH(Y ) = k−1 there is at least one edge
xy ∈ I with |Y ∩{x, y}| = 1. Thus addingI to H increases the edge-connectivity
to at leastk. This proves (b).

To see (c) let us fix somes-neighbourv. In a given uniform partition this
vertex is the uniques-neighbour in someVj and by property (a)Vj is the unique
maximal set of degreek in G which containsv. This shows that the set of classes
of the uniform partitions is unique. By the degree properties of a uniform partition
it follows that the cyclic ordering of these classes is also unique. This proves (c).
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By definition a uniform partitionV satisfiesdG(Vi ∪ Vi+1) = k + 1 for 0 ≤
i ≤ r. ThusB(s) contains a cycle which follows the cyclic ordering ofV. This
proves (d) whenr = 2. Supposer ≥ 3 and take a dangerous setX in G. By (a)
we can see thatdG(s, X) = 2 anddH(X) = k − 1 hold and thatX must be the
union of two consecutive classes ofV. ThereforeB(s) is a cycle. •

Theorem 3.6 Suppose thatG = (V + s, E) satisfies(1) for somek ≥ 2, d(s)
is even, and|N(s)| ≥ 2. ThenB(s) is 2-edge-connected if and only ifB(s) is a
cycle of lengthd(s), k is odd,d(s) ≥ 4, andG is round froms.

Proof: Suppose thatG is round froms andd(s) ≥ 4. Lemma 3.5(d) showsB(s)
is a cycle and henceB(s) is 2-edge-connected. To see the other direction assume
thatB(s) is 2-edge-connected. By Theorem 3.4 and Lemma 3.1(a)B(s) is a cy-
cle. Thus, by Lemma 3.1(b), eachs-neighbour is special, and hence there are no
parallel edges incident tos by Lemma 2.3. This shows thatB(s) hasd(s) vertices.
Let v0, ..., vd(s)−1 denote the vertices ofB(s), following the cyclic ordering. Let
Vi = X1

vi
∩ X2

vi
(0 ≤ i ≤ d(s) − 1), whereX1

vi
andX2

vi
are the two maximalvi-

dangerous sets inG. Now by Lemma 2.3(ii) and Lemma 3.3 it is easy to see that
(V0, ..., Vd(s)−1) is a uniform partition ofG. HenceG is round froms, as required.
•

4 Applications

In this section we apply Theorems 3.2 and 3.6 and give short proofs for previous
results from [1] and [12].

4.1 Edge-splitting preserving planarity

The following theorem is due to Nagamochi and Eades [12]. The new proof we
present here is substantially simpler.

Theorem 4.1 [12] Let G = (V +s, E) be a planar graph withd(s) even satisfying
(1) with respect to either an evenk or k = 3. Then there exists a complete
admissible splitting ats for which the resulting graph is planar.
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Proof: Suppose that we are given a fixed planar embedding ofG. This embedding
uniquely determines a cyclic orderingC of (the edges incident tos and hence)
the neighbours ofs. Clearly, splitting off a pairsu, sv for which u and v are
consecutivein this cyclic ordering preserves planarity (and a planar embedding
of the resulting graph can be obtained without reembeddingG − {su, sv}). Thus
to see that a complete admissible splitting exists ats which preserves planarity
it is enough to prove that(∗) there exists an admissible pairsu, sv for which u
andv are consecutive inC. Let us call such a pair aconsecutive admissible pair.
By repeated applications of(∗) we obtain a complete admissible splitting which
preserves planarity (and the embedding ofG − s as well).

The existence of a consecutive admissible pair can be formulated in terms of a
constraint graph. We may assume|N(s)| ≥ 3. Let D(s) be a cycle defined on the
neighbours ofs following the cyclic orderingC. Clearly, a consecutive admissible
pair exists if and only if there exists aD(s)-split. If k is even then Theorem
3.2 and the fact thatD(s) is connected (while the non-admissibility graphB(s)
is disconnected) shows that(∗) holds in every iteration. Therefore the proof of
Theorem 4.1 is complete in the case whenk is even. (Note that during the process
of iteratively splitting off consecutive admissible pairs the set of neighbours as
well as the constraint graphD(s) may change. This happens whens looses some
neighbourw by splitting off the last copy of the edgessw.)

Now consider the casek = 3. The above argument and Theorem 3.6 shows
(using the fact thatD(s) is 2-edge-connected) that by splitting off consecutive
admissible pairs as long as possible either we find a complete admissible splitting
which preserves planarity (and the embedding ofG−s) or we get stuck in a graph
G′ which is round froms and for whichBG′(s) = DG′(s) holds. In the latter case
we need to reembed some parts ofG′ in order to complete the splitting sequence
and maintain planarity.

Let us consider such a roundG′ = (V + s, E ′) with BG′(s) = DG′(s). Let
V0, ..., V2m−1 be the uniform partition ofV in G′−s (where2m := dG′(s)) and let
vi be the neighbour ofs in Vi (0 ≤ i ≤ 2m − 1). There exists a faceF of G′ − s
whose boundary includes everys-neighbour. Sincek = 3 andG′ is round, it can
be seen that we may assume thatF is a finite face in the embedding ofG′ − s and
every edge connecting two consecutive members of the uniform partition ofG′−s
is on the boundary ofF as well as on the boundary of the infinite face. SinceG′ is
round, Lemma 3.5 applies, and we can easily see that adding the edgesv0vm and
viv2m−i (1 ≤ i ≤ m − 1) to G′ − s results in a3-edge-connected graphG′′. Thus
G′′ can be obtained fromG′ by a complete admissible splitting. Furthermore, this
set ofm new edges can be added to the planar embedding ofG′− s within faceF
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in such a way that in the resulting embedding ofG′′ every edge crossing involves
the edgev0vm. To avoid these edge crossings we can do the following: first we
“flip” V0 and/orVm in G′ − s, that is, reembed the subgraphs induced byV0 and
Vm in such a way that bothv0 andvm occur on the boundary of the unbounded
face while the edges leavingV0 andVm remain unchanged. SinceG′ is round,
k = 3, andv0 andvm ares-neighbours inG′, it is easy to see that this can be done.
Then we can connectv0 andvm within the unbounded face and add the other new
edges as before. This yields a planar embedding ofG′′. This completes the proof
of the theorem. •

The theorem does not hold ifk ≥ 5 is odd, see [12]. Note that the above proof
implies that the graphs obtained by a maximal planarity preserving admissible
splitting sequence are round for every oddk ≥ 5. The original proof in [12] also
used the flipping operation but in a more sophisticated way. Our proof shows that
if k = 3 then at most two flippings are sufficient.

4.2 Edge-splitting with partition constraints

LetG = (V +s, E) be a graph for which (1) holds for somek ≥ 2 andd(s) is even.
LetP = {P1, P2, . . . , Pr}, 2 ≤ r ≤ |V | be a prescribed partition ofV . In order to
solve a more general partition-constrained augmentation problem, Bang-Jensen,
Gabow, Jord´an and Szigeti [1] investigated the existence of complete admissible
splittings ats for which each split edge connects two distinct classes ofP. This
problem can also be formulated in terms of constraint graphs and our results on
non-admissibility graphs can be applied to obtain somewhat simpler proofs for
some (partial) results of [1]. We briefly sketch this connection below. (Note that
the partition-constrained edge-splitting problem turns out to be a special case of
the “simultaneous edge-splitting problem” that we discuss in detail in Section 5.)

An admissible pairsx, sy is calledallowed if x and y belong to different
classes ofP. Let S := N(s), Si := S ∩ Pi and letdi := d(s, Si). The fol-
lowing definition describes a situation when a complete allowed splitting does not
exist if k is odd.

Definition 4.2 [1] Let {A1, A2, B1, B2} be a partition ofV with the following
properties inG for some indexi, 1 ≤ i ≤ r: (i) d(X) = k for X = A1, A2, B1, B2;
(ii) d(X, Y ) = 0 for (X, Y ) = (A1, A2), (B1, B2); (iii) S ∩ X = Si for X =
A1 ∪ A2 or X = B1 ∪ B2; (iv) di = d(s)/2. Such a partition is called a C4-
obstacle inG.
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The following lemma is extracted from [1, Lemma 2.13, 3.3, 3.4, 5.1].

Lemma 4.3 Let G = (V + s, E) be a graph for which (1) holds,d(s) is even,
anddi ≤ d(s)/2 for all 1 ≤ i ≤ r. Then: (i) ifd(s) ≥ 6 then for any non-empty
Si there is an allowed pairsx, sy with x ∈ Si; (ii) if d(s) = 4 then there exists
a complete allowed splitting ats unlessk is odd andG contains aC4-obstacle
{A1, A2, B1, B2}. In the latter case in graphG − s we haved(A1) = d(A2) =
d(B1) = d(B2) = k − 1 andd(A1 ∪ B1) = d(A1 ∪ B2) = k − 1. Moreover, (iii)
if k is even then there exists a complete allowed splitting ats, and (iv) ifk is odd
then there exists a sequence of allowed splittings of length at leastd(s)/2 − 2.

Proof: For a non-emptySi let the constraint graphD(s) be the complete bipar-
titite graph on color classesSi andS − Si, respectively. Sincedi ≤ d(s)/2, we
haveS − Si 6= ∅. An allowed pairsx, sy with x ∈ Si exists if and only if there
exists aD(s)-split. D(s) is either2-edge-connected and is not a cycle, or has
a dominating vertex, or is a four-cycle. In the first two cases Theorem 3.2 and
Theorem 3.6 show that aD(s)-split exists. Moreover, ifD(s) is a four-cycle then
G is round andd(s) = 4. In that caseG − s is aC4-obstacle with the required
properties. This proves (i) and (ii).

Let dj ≥ di for every1 ≤ i ≤ r. Splitting off an allowed pairsx, sy with
x ∈ Pj maintainsdi ≤ d(s)/2 for all 1 ≤ i ≤ r. Thus iteratively applying (i) by
choosing anSj with the largestdj we can find a complete allowed splitting (ifk is
even) or a sequence of allowed splittings of length at leastd(s)/2−2. This proves
(iii) and (iv). •

Note that by Lemma 3.5(c) theC4-obstacle in (ii), if exists, is unique.

5 Simultaneous edge-splitting and edge-connectivity
augmentation

In this section we consider the following optimization problem: letG = (V, E)
andH = (V, K) be two graphs on the same setV of vertices and letk, l ≥ 2
be integers. Find a smallest setF of new edges for whicĥG = (V, E + F ) is
k-edge-connected and̂H = (V, K + F ) is l-edge-connected. Let us call this
thesimultaneous edge-connectivity augmentation problem. We give a polynomial
algorithm which finds an optimal solution if bothk and l are even and finds a
solution whose size is at most one more than the optimum otherwise. One of the
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two main parts of our algorithm is based on a new splitting off theorem that we
prove using Theorems 3.2, 3.4, and 3.6.

If G = H (andk ≥ l) then our problem reduces to finding a smallest setF
of edges for whichĜ = (V, E + F ) is k-edge-connected. This is the well-solved
k-edge-connectivity augmentation problem. Several polynomial algorithms are
known which can solve this problem optimally. One approach, which is due to
Cai and Sun [3] (simplified and extended later by Frank [7]), divides the problem
into two parts: first it extendsG by adding a new vertexs and a smallest setF ′

of edges incident tos such that|F ′| is even andG′ = (V + s, E + F ′) satisfies
(1) with respect tok. Then in the second part, using Theorem 2.4, it finds a
complete admissible splitting froms in G′. The resulting set of split edges will be
an optimal solution for thek-edge-connectivity augmentation problem, see [7].

We follow and extend this approach for the simultaneous augmentation prob-
lem. To do this we have to extend both parts: we need an algorithm which finds a
smallestF ′ incident tos for whichG′ = (V +s, E+F ′) andH ′ = (V +s, K+F ′)
simultaneously satisfy(1) with respect tok andl, respectively, and then we need
to verify that there exists a complete splitting ats which is simultaneously admis-
sible inG′ andH ′.

Both of these extended problems have interesting new properties. While a
smallestF ′ in the first part can be found by a greedy deletion procedure in thek-
edge-connectivity augmentation problem, this is not the case in the simultaneous
version. Moreover, a complete splitting ats which is simultaneously admissi-
ble in G′ andH ′ does not always exist. (To see this letV = {a, b, c, d}, E =
{ac, bd}, K = {ab, bc, cd, da}, F ′ = {sa, sb, sc, sd} and letk = 2, l = 3.) How-
ever, as we shall see, a smallestF ′ can be found in polynomial time by solving
an appropriate “submodular flow” problem. Furthermore, ifk andl are both even
then the required complete and simultaneously admissible splitting does exist (and
an “almost complete” splitting sequence can always be found).

5.1 Simultaneous edge-splitting

We start with the splitting problem. LetG = (V +s, E+F ) andH = (V +s, K+
F ) be given which satisfy(1) with respect tok andl, respectively. HereF denotes
the set of edges incident tos. (For simplicity, we assumeV = V (G) = V (H),
although for the splitting problem we do not need this.) Suppose thatd(s) :=
dG(s) = dH(s) is even. We say that a pairsu, sv is legal if it is admissible inG
as well as inH. A complete splitting sequence ats is legal if the resulting graphs
(after deletings) satisfy(1) with respect tok andl, respectively. The property of
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being legal can be formulated in terms of a constraint graphD(s). Namely, a pair
su, sv (u 6= v) is legal if and only ifsu, sv is aD(s)-split in G with respect to
D(s) = B̄H(s). Thus a legal pair exists if and only if̄BH(s) is not a subgraph of
BG(s).

Lemma 5.1 LetH = (V + s, K + F ) satisfy(1) with respect to somek ≥ 2 and
let d(s) be even. LetD be the complement of the non-admissibility graphBH(s)
of H. Then one of the following holds: (i)D is 2-edge-connected andD is not a
cycle, (ii)D has a dominating vertex, (iii)D = C4, (iv) D arises from a complete
bipartite graphK2,m (m ≥ 1) by attaching an edge to a vertex of degreem, (v) D
consists of two independent edges.

Proof: Let B = BH(s) and letS := N(s). If B is 2-edge-connected thenB is a
cycle of lengthd(s) ≥ 4 by Theorem 3.6. Ifd(s) = 4 then (v) holds, otherwise
(i) holds. Thus we may assume thatB is not2-edge-connected.

Case I:B is disconnected.

If B has an isolated vertex then (ii) holds. OtherwiseS has a bipartitionS =
X ∪Y , |X|, |Y | ≥ 2, such that there are no edges fromX to Y in B. Letp := |X|
andr := |Y |. Now D contains a spanning complete bipartite graphKp,r. ThusD
is 2-edge-connected. Ifp = r = 2 then (iii) holds, otherwise (i) holds.

Case II:B is connected (and has at least one cut-edge).

If (at least) one of the components we obtain by deleting an arbitrary cut-edge
from B is a sigleton then it is easy to see thatB arises from a2-edge-connected
subgraphM by attaching some vertices of degree one. This is impossible by The-
orem 3.4 and Lemma 3.1(a). Thus we can assume that there exists anX ⊂ S with
|X|, |S −X| ≥ 2 anddB(X) = 1. Let p := |X| andr := |S −X| and lete = xv,
v ∈ X, be the unique edge leavingX in B. NowD contains a spanning complete
bipartite graphKp,r minus one edge. Ifp, r ≥ 3 then (i) holds. Ifp = r = 2
thenB (as well asD) is a path on four vertices and hence (iv) holds withm = 1.
Suppose we havep = 2, r ≥ 3. Let X = {v, w}. SinceB is connected, the edge
vw is present inB. Furthermore,D − x is 2-edge-connected. ThusdD(x) ≥ 2
implies (i). If dD(x) = 1 thenx is adjacent to every vertexy ∈ S − X − {x}
in B. Sincev has no neighbours inS − X − {x}, it follows from Lemma 3.1(b)
thatx is special andS − X induces a complete graph inB. ThusD arises from a
complete bipartite graphK2,m with m = r − 1 ≥ 2 by attaching an edge (xw) to
a vertex of degreem. This gives (iv). •
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Theorem 5.2 If d(s) ≥ 6 then there exists a legal pairsu, sv. If k andl are both
even then there exists a complete legal splitting ats.

Proof: Let D := B̄H(s) andA := BG(s). If k andl are both even then Theorem
3.2 shows thatD is connected (since it is the complement of a disconnected graph)
andA is disconnected. This implies that a legal pair exists for arbitrary evend(s)
and hence a complete legal splitting exists as well.

Supposek is odd andd(s) ≥ 6. We may assume|N(s)| ≥ 4. (Otherwise,
by Lemma 3.1(a),BH(s) has an isolated vertex and henceD has a dominating
vertex, whileA has no such vertex.)D satisfies one of (i)-(v) in Lemma 5.1. If
(i) or (ii) holds then by Theorem 3.6 and Lemma 3.1(a)D cannot be a subgraph
of A and hence we are done. If (v) holds thenBH(s) is cycle of length four. If
(iii) holds andD is a subgraph ofA thenA is 2-edge-connected and by Theorem
3.6 we have thatA is a cycle of length four. In both casesd(s) = 4 follows, a
contradiction.

Now assume (iv) holds. Ifm = 1 thenD (as well asB) is a path on four
vertices. In this case ifA containsD then by Lemma 3.1(a) eitherA is a four-
cycle, in which cased(s) = 4 follows, orA = D. In the latter case Lemma 3.1(b)
implies that the two inner vertices ofA are special inG. Similarly, the two inner
vertices ofB (which are disjoint from the inner vertices ofA) are special inH.
Therefore by Lemma 2.3 there are no parallel edges incident tos andd(s) = 4.
This settles case (iv) whenm = 1.

If (iv) holds with m ≥ 2 thenA cannot be a cycle. Thus by Theorem 3.6A is
not 2-edge-connected. On the other hand, ifA contains (the2-connected graph)
D then by Theorem 3.4A can be obtained from a cycle by attaching an edge. This
contradicts Lemma 3.1(b). This completes the proof of the theorem. •

Corollary 5.3 Suppose thatd(s) = 4 and there exists no legal pair. Then at least
one ofG andH is round.

Proof: In the proof of Theorem 5.2 we already saw that if no legal pair exists
thend(s) = 4 and either one ofG andH is round orBH(s) is a path on four
vertices. We show the latter case is impossible. Let the path be(a, b, c, d). By the
definition ofBH(s), there exists a dangerous setX in H which containsb andc.
Sinced(s) = |N(s)| = 4, Lemma 2.2(b) impliesd(s, X) = d(s, V − X) = 2.
Therefored(X) = d(V − X), V − X is also dangerous, anda, d ∈ V − X. In
this casea andd should also be adjacent inBH(s), a contradiction. •

18



Note that a complete splitting sequence which is simultaneously admissible
in three (or more) graphs does not necessarily exist, even if each of the edge-
connectivity values is even.

We remark that the partition-constrained splitting problem can be reduced to
a simultaneous edge-splitting problem where at least one ofk and l is even. To
see this suppose that an instance of the partition-constrained splitting problem is
given as in the beginning of Section 4.2. Letdm := maxi{dG(s, Pi)} in G =
(V + s, E + F ) and letS := NG(s). Build graphH = (S + x + s, K + F ) as
follows. For each setS ∩ Pi in G let the corresponding set inH induce a(2dm)-
edge-connected graph (say, a complete graph with sufficiently many parallel edges
or a singleton). The edges incident tos in G andH coincide. Then from vertexx
of H add2dm−dG(s, Pi) parallel edges to some vertex ofS∩Pi (1 ≤ i ≤ r). Now
H satisfies(1) with respect tol := 2dm. It can be seen that a complete admissible
splitting satisfying the partition-constraints inG exists if and only if there exists a
complete legal splitting in the pairG, H. This shows that characterizing the pairs
G, H for which a complete legal splitting does not exist (even if one ofk and l
is even) is at least as difficult as the solution of the partition-constrained problem
[1].

5.2 Simultaneous edge-connectivity augmentation

Let G = (V, E) andH = (V, K) be given for which(1) holds with respect tok
andl, respectively. First we show how to find a smallestF ′ for which the extended
graphsG′ = (V + s, E + F ′) andH ′ = (V + s, K + F ′) simultaneously satisfy
(1) with respect tok andl, respectively. We need some results from the theory of
polymatroids.

Let V be a finite ground-set and letp : 2V → Z ∪ {−∞} be an integer-valued
function for whichp(∅) = 0. We callp fully supermodularif p(X) + p(Y ) ≤
p(X∩Y )+p(X∪Y ) holds for everyX, Y ⊆ V . A functionp : 2V → Z∪{−∞} is
skew supermodularif for everyX, Y ⊆ V either the above submodular inequality
holds orp(X) + p(Y ) ≤ p(X − Y ) + p(Y −X). If p(Y ) ≤ p(X) holds for every
Y ⊆ X thenp is monotone. For a fully supermodular and monotone functionp
the setC(p) := {x ∈ RV : x ≥ 0, x(A) ≥ p(A) for everyA ⊆ V } is called the
contra-polymatroidof p. The next result is due to Frank.
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Theorem 5.4 [7] Let p be a skew supermodular function. ThenC(p) is a contra-
polymatroid whose unique (monotone, fully supermodular) defining functionp̄ is
given by

p̄(X) := max(
∑

t

p(Xi) : {X1, ..., Xt} is a subpartition ofX).

Given a graphG = (V, E) andk ∈ Z+, let pk
G : 2V → Z be defined by

pk
G(X) := k − dG(X), if ∅ 6= X 6= V andpk

G(∅) = pk
G(V ) = 0. This function

pG is skew-supermodular by Proposition 2.1. Following [7], we say that a vector
z : V → Z+ is anaugmentation vectorof G (with respect tok) if z(X) ≥ pk

G(X)
for everyX ⊆ V . Observe thatG′ = (V + s, E + F ) satisfies(1) with respect
to k if and only if z(v) := dF (v) (v ∈ V ) is an augmentation vector. Hence by
Theorem 5.4 the problem of finding a smallestF for whichG′ = (V + s, E + F )
satisfies(1) can be reduced to finding an integer valued element of the contra-
polymatroidC(pk

G) for which z(V ) is minimum. This can be done by a greedy
algorithm [7]. Similarly, addingF ′ is simultaneously good forG andH if and
only if z(X) ≥ max{pk

G(X), pl
H(X)} for everyX ⊆ V , wherez(v) := dF ′(v),

(v ∈ V ). Let us call such az a common augmentation vectorof G and H.
Clearly, finding a smallestF ′ for which G′ = (V + s, E + F ′) andH ′ = (V +
s, K + F ′) satisfy (1) with respect tok and l, respectively, can be solved by
finding an integer valuedz ∈ C(pG) ∩ C(pH) for which z(V ) is minimum. By
Frank’s [6] “g-polymatroid intersection theorem” (see also Frank and Tardos [9,
Theorem 1.4, Proposition 4.1] and [5]) the systemS(pk

G, pl
H) = {x ∈ RV : x ≥

0, x(A) ≥ max{pk
G(A), pl

H(A)}} is a “submodular flow system” and hence we
can find an integer valuedx ∈ S(pk

G, pl
H) minimizing x(V ) in polynomial time

(see e.g. Cunningham and Frank [4]).
Summarizing our observations we obtain the following algorithm for the si-

multaneous edge-connectivity augmentation problem. LetG = (V, E) andH =
(V, K) (satisfying(1) with respect tok andl, resp.) be the pair of input graphs.

(Step 1) Find a common augmentation vector forG andH for which z(V ) is as
small as possible.
(Step 2) Add a new vertexs to each ofG andH andz(v) parallel edges froms to
v for everyv ∈ V . If z(V ) is odd then add one more edgesw for somew ∈ V .
(Step 3) Find a maximal legal splitting sequenceS at s in the resulting pair of
graphs. IfS is complete, let the solutionF consist of the set of split edges. Other-
wise splitting offS results in a pair of graphsG′, H ′ for whichd(s) = |N(s)| = 4.
In this case let the solutionF be the union of the split edges and a setI of three
properly chosen additional edges that form a path on the fours-neighbours.
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The following theorem shows the correctness of the above algorithm and proves
that the solution setF is (almost) optimal. Let us define

Φk,l(G, H) = max{∑r
1(k − dG(Xi)) +

∑t
r+1(l − dH(Xi) :

{X1, ..., Xt} is a subpartition ofV ; 0 ≤ r ≤ t}.
The size of a smallest simultaneous augmenting set forG andH (with respect to
k andl, resp.) is denoted byOPTk,l(G, H).

Theorem 5.5 dΦk,l(G, H)/2e ≤ OPTk,l(G, H) ≤ dΦk,l(G, H)/2e + 1. If k and
l are both even thenOPTk,l(G, H) = dΦk,l(G, H)/2e holds.

Proof: It is easy to see thatdΦk,l(G, H)/2e ≤ OPTk,l(G, H) holds. We shall
prove that the above algorithm results in a simultaneous augmenting setF with
size at mostdΦk,l(G, H)/2e + 1 (and with sizedΦk,l(G, H)/2e, if k and l are
both even). ¿From theg-polymatroid intersection theorem, Theorem 5.4 and our
remarks on common augmentation vectors it follows that for the vectorz that we
obtain in Step 1 of the above algorithm we havez(V ) = Φk,l(G, H). Hence we
have2dΦk,l(G, H)/2e edges incident tos at the end of Step 2. By Theorem 5.2 we
can find a maximal sequence of legal splittings in Step 3 which is either complete
or results in a pair of graphsG′, H ′, whered(s) = |N(s)| = 4. In the former case
the setF of split edges, which is clearly a feasible simultaneous augmenting set,
has sizedΦk,l(G, H)/2e, and hence is optimal. Ifk andl are both even then such a
complete legal splitting always exists, provingOPTk,l(G, H) = dΦk,l(G, H)/2e.
In the latter case one ofG′ andH ′, sayG′, is round by Corollary 5.3. There exists
a complete admissible splitting inH ′ by Theorem 2.4. Lete = uv, f = xy be
the two edges obtained by such a complete splitting. Letg = vx. Adding e and
f to H ′ − s gives anl-edge-connected graph and by Lemma 3.5(b) adding the
edge setI := {e, f, g} to G′ − s yields ak-edge-connected graph. Thus the set
of edgesF which is the union of the edges obtained by the maximal legal split-
ting sequence and the edge setI is a simultaneous augmenting set. We also have
|F | = dΦk,l(G, H)/2e + 1, as required. •

There are examples showingOPT = dΦ/2e + 1 may hold. (TakeV =
{a, b, c, d}, E = {ac, bd}, K = {ab, bc, cd, da}, and letk = 2, l = 3.) It is
easy to see that the above algorithm can be implemented in polynomial time. As
we pointed out, Step 1 is a submodular flow problem and hence can be solved in
polynomial time. One approach to solve Step 3 efficiently is using max-flow com-
putations to check whether a pair of edges is legal or not. We omit the algorithmic
details.
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