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Detachments preserving local edge-connectivity of
graphs

Tibor Jord́an∗ Zoltán Szigeti†

November 9, 1999

Abstract

Let G = (V + s,E) be a graph and letS = (d1, ..., dp) be a set of positive integers with∑
dj = d(s). An S-detachment splitss into a set ofp independent verticess1, ..., sp with

d(sj) = dj , 1 ≤ j ≤ p. Given a requirement functionr(u, v) on pairs of vertices ofV , an
S-detachment is calledr-admissible if the detached graphG′ satisfiesλG′(x, y) ≥ r(x, y)
for every pairx, y ∈ V . HereλH(u, v) denotes the local edge-connectivity betweenu andv
in graphH.

We prove that anr-admissibleS-detachment exists if and only if (a)λG(x, y) ≥ r(x, y),
and (b)λG−s(x, y) ≥ r(x, y) − ∑bdj/2c hold for everyx, y ∈ V .

The special case of this characterization whenr(x, y) = λG(x, y) for each pair inV was
conjectured by B. Fleiner. Our result is a common generalization of a theorem of W. Mader
on edge splittings preserving local edge-connectivity and a result of B. Fleiner on detach-
ments preserving global edge-connectivity. Other corollaries include previous results of L.
Lovász and C.J.St.A. Nash-Williams on edge splittings and detachments, respectively. As a
new application, we extend a theorem of A. Frank on local edge-connectivity augmentation
to the case when stars of given degrees are added.

1 Introduction

Given a graphG = (V + s, E) with a designated vertexs, a degree specificationfor s is a
sequenceS = (d1, ..., dp) of positive integers with

∑p
j=1 dj = d(s). An S-detachmentof s

in G is created by replacings by a sets1, ..., sp of independent vertices and distributing the
edges incident tos among them in such a way thatd(si) = di (1 ≤ i ≤ p) holds in the new
graph. All the other ends of the edges inG remain the same. This operation may decrease (but
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cannot increase) the local edge-connectivity between pairs of vertices inV . (For a survey on
detachments see [7].)

The main result of this paper (Theorem 3.1) gives a necessary and sufficient condition for the
existence of anS-detachment ofs which satisfies given local edge-connectivity requirements.
For a given arequirement functionr : V × V → Z+, anS-detachment is calledr-admissibleif
the detached graphG′ satisfiesλG′(x, y) ≥ r(x, y) for every pairx, y ∈ V . (We useλH(u, v)
to denotelocal edge-connectivitybetweenu andv in graphH, that is, the size of a minimum
edge cut separatingu andv in H.) We characterize those graphs for which anr-admissibleS-
detachment exists. The proof leads to a polynomial algorithm which finds such a detachment if
it exists.

Detachments are strongly related to (and generalize) splitting off.Splitting off two edges
su, sv in a graph means replacingsu, sv by a new edgeuv. If u = v then the resulting loop
is deleted. This operation is a well-known and useful tool in proving theorems and designing
algorithms for connectivity problems, see e.g. [3, 4, 6]. Subdividing the split edgeuv by a new
vertext does not change the local edge-connectivities. Thus a splitting off operation corresponds
to a (2, d(s) − 2)-detachment ofs in this sense. Also, the special case of our problem, when
d(s) is even,S = (2, 2, ..., 2), andr(x, y) = λG(x, y) for each pairx, y ∈ V , corresponds to the
problem of finding a ‘complete splitting’ of the edges incident tos preserving all the local edge-
connectivities withinV . A celebrated result of W. Mader [6] shows that such a complete splitting
always exists (provided there is no cut-edge incident tos), see Theorem 2.5. This implies that an
r-admissible(2, 2, ..., 2)-detachment exists for every requirement functionr satisfyingr(u, v) ≤
λG(x, y) for x, y ∈ V .

While such detachments always exist for every ‘reasonable’r, allowing vertices with degree
more than2 (in particular, allowing odd degrees) inS gives rise to a new necessary condition. We
shall prove that anr-admissibleS-detachment ofs exists if and only if (a)λG(x, y) ≥ r(x, y),
and (b)λG−s(x, y) ≥ r(x, y) − ∑p

j=1bdj/2c hold for everyx, y ∈ V .
The special case of this characterization whenr(x, y) = λG(x, y) for each pair inV was

conjectured by B. Fleiner [1]. Our result is a common generalization of the above mentioned
theorem of Mader on edge splittings preserving local edge-connectivity and a result of Fleiner
[1] on detachments preserving global edge-connectivity. The latter corresponds to the case when
r(x, y) ≡ k ≥ 2 for each pairx, y ∈ V .

Other corollaries include a theorem of L. Lov´asz [5] on edge splittings preserving global
edge-connectivity and a result of C.J.St.A. Nash-Williams [8] characterizing those graphsG
and those lists of degree specifications for which simultaneously detaching the vertices ofG
preserves global edge-connectivity (see Theorem 6.2). Lov´asz’ theorem follows directly from
Theorem 2.5, while Nash-Williams’ result can be deduced easily from Fleiner’s result [1]. As
a new application, we solve a graph augmentation problem where stars of given degrees have
to be attached to a given graph in order to meet given local edge-connectivity requirements.
This extends a theorem of A. Frank [3] on augmenting the local edge-connectivities by adding a
smallest set of new edges.

The organization of the paper is the following. Further definitions and preliminary results are
given in Section 2. The proof of the main result starts in Section 3, where we reduce the problem
to the case whenS = (3, 3, ..., 3). Section 4 discusses the method of ‘tight set contraction’.
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This method was used previously by Mader and Frank and turned out to be an important step in
proving Theorem 2.5. Here we prove several new properties of this operation. This will enable
us to handle the remaining case and complete the proof in Section 5. Applications, corollaries,
and extensions are discussed in Sections 6 and 7 along with some algorithmic remarks.

2 Definitions and Preliminaries

Graphs in this paper are undirected and loopless but may contain multiple edges. LetG = (V, E)
be a graph. ForX, Y ⊆ V we used(X, Y ) to denote the number of edges fromX − Y to
Y − X. Thedegreed(X, V − X) of a setX is denoted byd(X). A singleton set{v} is simply
denoted byv. Thusd(v) is the degree of vertexv ∈ V . The symbols⊆ and⊂ denote set
containment and proper set containment respectively. Two setsX, Y are said to beintersecting
if X ∩ Y ,X − Y ,Y − X are all non-empty.G is k-edge-connectedif d(X) ≥ k holds for every
∅ 6= X ⊂ V .

The degree function of a graph satisfies the following two well-known equalities.

Proposition 2.1 LetH = (V, E) be a graph. For arbitrary subsetsX, Y ⊆ V ,

d(X) + d(Y ) = d(X ∩ Y ) + d(X ∪ Y ) + 2d(X, Y ), (1)

d(X) + d(Y ) = d(X − Y ) + d(Y − X) + 2d(X ∩ Y, V − (X ∪ Y )). (2)

Let G = (V + s, E) be a graph and letr : V × V → Z+ be a requirement function. We
defineR(X) := max{r(u, v) : u ∈ X, v ∈ V − X}. Clearly, R(X) = R(V − X). Let
s(X) := d(X) − R(X). The following property was verified by Frank.

Proposition 2.2 [3, Proposition 5.4] For any two subsetsX, Y ⊆ V at least one of the following
inequalities holds:

R(X) + R(Y ) ≤ R(X ∩ Y ) + R(X ∪ Y ), (3)

R(X) + R(Y ) ≤ R(X − Y ) + R(Y − X). (4)

If X ∪ Y = V then (4) always holds (with equality).

Propositions 2.1 and 2.2 imply:

Proposition 2.3 For any two subsetsX, Y ⊆ V at least one of the following inequalities holds:

s(X) + s(Y ) ≥ s(X ∩ Y ) + s(X ∪ Y ) + 2d(X, Y ), (5)

s(X) + s(Y ) ≥ s(X − Y ) + s(Y − X) + 2d(X ∩ Y, V − (X ∪ Y )). (6)

If X ∪ Y = V then (6) always holds (with equality).
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Let su, sv, sz be distinct edges inG = (V + s, E). The operation2-split deletes the edges
su, sv and adds a new vertext and two new edgestu, tv. Similarly, operation3-split deletes
su, sv, sz and adds a new vertext and three new edgestu, tv, tz. By definition, both of these
operations are special detachments ofs. Let r : V ×V → Z+ be a requirement function. We say
that a2-split or 3-split is r-admissibleif the graphG′ obtained by the split satisfiesλG′(u, v) ≥
r(u, v) for every pairu, v ∈ V . A requirement function isproper for G if λG(u, v) ≥ r(u, v)
holds for each pairu, v ∈ V . Without loss of generality we shall assume that requirement
functions are symmetric, that is,r(u, v) = r(v, u) holds for each pair.

GivenG = (V + s, E) and a proper requirement functionr, we call a set∅ 6= X ⊂ V tight
(dangerous) if s(X) = 0 (s(X) ≤ 1, respectively). A set withs(X) ≤ 2 is calledbad.

Claim 2.4 A pair su, sv is an r-admissible2-split if and only if there is no dangerous setX
containingu andv. A triple su, sv, sz is anr-admissible3-split if and only if (a) there is no tight
setX with |X ∩ {u, v, z}| ≥ 2 and (b) there is no bad set containingu, v andz.

Proof: We prove the claim for3-splits. The case of2-splits is similar (but simpler). Suppose
su, sv, sz is not admissible. This meansλG′(x, y) < r(x, y) for some pairx, y ∈ V in the result-
ing graphG′ = (V +s+ t, E ′), wheret denotes the new vertex of degree3 created by the3-split.
We also haveλG(x, y) ≥ r(x, y), sincer is proper, andd′(Y ) < R(Y ) for someY ⊂ V + t, by
Menger’s theorem. Sinced′(Z) = d(Z) for t /∈ Z, we must havet ∈ Y . Let X = Y − t and let
α = |X ∩{u, v, z}|. We haveR(X) > d′(X) = d(X)−α+(3−α) ≥ R(X)−2α+3, showing
α ∈ {2, 3}. If α = 3 thens(X) ≤ 2 follows. ThusX is a bad set inG containingu, v, z. If
α = 2 thenX is tight. The other direction is easy to verify by a similar argument. •

The counterpart of Claim 2.4 for global edge-connectivity (that is, whenr(u, v) ≡ k ≥ 2)
appeared in [1]. We remark here that (extensions of) some other basic observations from [1] will
also be used later on. Our proof, however, is substantially different from that of [1] in several
aspects.

Mader proved the following deep result (see also [2]). To follow our terminology, let us
define a requirement functionrλ by settingrλ(u, v) = λG(u, v) for each pairu, v ∈ V .

Theorem 2.5 [6] Let G = (V + s, E) be a graph withd(s) 6= 3 such that there is no cut-edge
incident tos. Then there is anrλ-admissible2-split of edges incident tos.

3 Detachments via admissible2-splits

In this section we formulate our main result on the existence of anr-admissibleS-detachment in
a graphG = (V + s, E) and give the first part of the proof, where we reduce the problem to the
case whereS = (3, 3, ..., 3). For convenience, we make the following assumptions: (a)di ≥ 2,
i = 1, ..., p, (b) G is 2-edge-connected. In Section 6 we shall extend our result to the case when
these assumptions are dropped.
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Theorem 3.1 Letr be a requirement function forG = (V + s, E) and suppose thatG is 2-edge-
connected andr(u, v) ≥ 2 for each pairu, v ∈ V . LetS = (d1, ..., dp) be a degree specification
for s with di ≥ 2, i = 1, ..., p. Then there exists anr-admissibleS-detachment ofs if and only if
r is proper and

λG−s(u, v) ≥ r(u, v) −
p∑

i=1

bdi/2c (7)

holds for every pairu, v ∈ V of vertices.

Proof: Suppose thatG′ is obtained fromG by anr-admissible(d1, ..., dp)-detachment. Since
λG(u, v) ≥ λG′(u, v) for each pairu, v, the requirement function must be proper. Let us define
D :=

∑p
i=1bdi/2c. To prove (7) takeλG′(u, v) pairwise edge-disjoint pathsP1, ..., Pl (l =

λG′(u, v)) in G′. Since the union of these paths uses an even number of edges from the star
of each new vertexsi (i = 1, ..., p), it follows that at mostD paths may go through the set
{s1, ..., sp}. Therefore at leastl − D paths lie entirely inG′ − {s1, ..., sp} = G − s. This gives
λG−s(u, v) ≥ l − D = λG′(u, v) − D ≥ r(u, v)− D, as required.

¿From now on we prove that if (7) holds andr is proper then anr-admissibleS-detachment
exists inG = (V + s, E). We start by converting (7) into a more convenient form. Letd∗ denote
the degree function ofG − s.

Claim 3.2 Condition (7) holds inG if and only if

d∗(X) ≥ R(X) − D (8)

for every∅ 6= X ⊂ V . Furthermore, if (8) holds, we haved(s, X) ≤ s(X) + D for every proper
subsetX of V .

Proof: By Menger’s theorem having at leastr(u, v) edge-disjoint paths between each pair of
verticesu, v ∈ V is equivalent to satisfyingd(X) ≥ R(X) for every∅ 6= X ⊂ V . This implies
the first part of the claim. To see the second part observe thatd(s, X) = d(X) − d∗(X) ≤
d(X) − (R(X) − D) = s(X) + D by the definition ofs(X) and by (8). •

By Claim 3.2 we may supposeG = (V +s, E) satisfies (8) with respect toS andr. We show
the existence of the desired detachment by induction ond(s). We may assumep ≥ 2, sinceG
itself is anr-admissibleS-detachment otherwise. Thus, sincedi ≥ 2 for 1 ≤ i ≤ p, we may also
assumed(s) ≥ 4 andD ≥ 2. The induction step is based on the following claim.

Suppose that we execute anr-admissible2-split (if d1 ≥ 4 or d1 = 2) or a3-split (if d1 = 3)
in G = (V + s, E) and letG′ = (V + t + s, E ′) denote the resulting graph, wheret is the
vertex of degree two or three ‘split off’ froms. The reduced requirement functionr′ in G′ is
defined byr′(u, v) = r(u, v) for every pairu, v ∈ V andr′(t, v) = 2 for everyv ∈ V . The
reduced degree specificationS ′ of s in G′ is obtained by decreasingd1 appropriately: for a2-
split we setS ′ = (d1 − 2, ..., dp) (if d1 ≥ 4) or S ′ = (d2, ..., dp) (if d1 = 2). For a3-split we
setS ′ = (d2, ..., dp) (if d1 = 3). Observe thatG′ is 2-edge-connected,r′ ≥ 2, and the reduced
requirement function is proper inG′, since the split isr-admissible.
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Claim 3.3 LetS = (d1, ..., dp) be a degree specification fors in G = (V + s, E). Suppose that
G has anr-admissible2-split (in the case whend1 ≥ 4 or d1 = 2) or an r-admissible3-split
(whend1 = 3) at s for which the resulting graphG′ = (V + t + s, E ′) has anr′-admissible
S ′-detachment, wherer′ andS ′ are the reduced requirements and reduced degree specification,
respectively. ThenG has anr-admissibleS-detachment.

Proof: The proof is easily seen by observing that anr-admissibleS-detachment inG can be
obtained from ther′-admissibleS ′-detachment ofG′ by either identifying vertext and the ap-
propriate vertex ofG′ (whend1 ≥ 4), or defining the detachment ofs in G as the union of the
2-split (or3-split) and ther′-admissibleS ′-detachment ofs in G′ (whend1 = 2 or d1 = 3). •

Thus, to make the induction work, it is enough to find anr-admissible2-split (or 3-split) for
which the resulting graphG′ satisfies(8) with respect to the reduced requirement function and
the reduced degree specification. Anr-admissible2-split or3-split is calledfeasibleif (8) holds
in G′.

By reducing the degree specification as above we getD′ = D − 1, whereD′ is the corre-
sponding value inG′. Therefore(8) holds inG′ if and only if dG′−s(X) ≥ R′(X) − D + 1 for
every∅ 6= X ⊂ V + t. Notice that for the reducedr′ andR′ we have thatR′(t) = R′(V ) = 2,
R′(X) = R(X) for ∅ 6= X ⊂ V , andR′(X) = R(X − t) otherwise.

Let B′ = {X ⊂ V : d∗(X) = R(X) − D} denote those subsets ofV which satisfy (8) with
equality. LetB denote the minimal members ofB′. Sets inB are calledcores.

Claim 3.4 (a) Anr-admissible2-split su, sv is feasible if and only if|X ∩ {u, v}| ≥ 1 for every
X ∈ B′.

(b) Anr-admissible3-split su, sv, sz is feasible if and only if|X ∩ {u, v, z}| ≥ 1 for every
X ∈ B′.

Proof: We prove (a) and (b) simultaneously. LetT = {u, v} (T = {u, v, z}) for ther-admissible
2-split (3-split, respectively). Notice thatu, v, z are not necessarily distinct. For every proper
subsetY of V we haveR′(Y ) = R(Y ) anddG′−s(Y ) = d∗(Y )+|Y ∩T |. Thus, sinceD′ = D−1,
G′ satisfies (8) with respect to proper subsets ofV if and only if |X ∩ T | ≥ 1 for everyX ∈ B′.
Condition (8) is trivially met fort andV .

Now consider a setW with t ∈ W and withY = W ∩ V non-empty. For suchW we have
R′(W ) = R(Y ) anddG′−s(W ) = d∗(Y ) + |(V − Y ) ∩ T |. ThusG′ satisfies (8) with respect
to setsW of this type if and only if|(V − X) ∩ T | ≥ 1 for everyX ∈ B′. SinceR andd∗ are
symmetric inV , this is equivalent to saying|X ∩ T | ≥ 1 for everyX ∈ B′. This proves the
claim. •

Lemma 3.5 |B| ∈ {0, 2, 3} and the sets inB are pairwise disjoint. Furthermore, if|B| = 3 then
S = (3, 3, ..., 3), d(s) = 3D, and for eachBi ∈ B (i = 1, 2, 3) we haved(s, Bi) = D andBi is
tight.
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Proof: SupposeB is non-empty. Sinced∗ andR are symmetric inV , |B| ≥ 2 follows. Let
B1, B2 ∈ B be intersecting sets. Applying Propositions 2.1 and 2.3 toB1, B2 shows that either
B1 − B2 ∈ B′ or B1 ∩ B2 ∈ B′, contradicting the minimality ofB1. Thus sets inB are pairwise
disjoint. Sincer is proper,d(B) ≥ R(B) holds and henced(s, B) ≥ D for eachB ∈ B. ¿From
the definition ofD it is clear thatd(s) ≤ 3D andd(s) = 3D if and only ifS = (3, 3, ..., 3). This
implies|B| ≤ 3 and that|B| = 3 may hold only ifS = (3, 3, ..., 3), d(s) = 3D, andd(s, Bi) = D
for eachBi ∈ B, i = 1, 2, 3. The last equality givesd(Bi) = R(Bi), thus eachBi is tight. •

In the first part of the proof we assume that, without loss of generality,d1 6= 3 and show that
a feasible andr-admissible2-split exists. (The remaining case, whenS = (3, 3, ..., 3), will be
dealt with in Section 5.)

Lemma 3.5 shows that in this case we have|B| ∈ {0, 2}. Sinced(s) ≥ 4, r is proper, and
there are no cut-edges inG, Theorem 2.5 implies that an (rλ-admissible and hence)r-admissible
2-split exists. IfB = ∅ then everyr-admissible2-split is feasible by Claim 3.4 and hence we are
done by Claim 3.3. The next lemma shows which2-split to choose when|B| = 2.

Lemma 3.6 SupposeG = (V +s, E) satisfies (8) andB = {B1, B2}. Then every2-split sb1, sb2

with bi ∈ Bi (i = 1, 2) is r-admissible and feasible.

Proof: By the choice ofb1, b2 and Claim 3.4(a) it is enough to prove that such a2-split is r-
admissible. Letα = d(s, B1) andβ = d(s, B2). Note thatα, β ≥ D. SinceB1 ∈ B, we have
R(B1) − D = d∗(B1) = d(B1) − α and hences(B1) = α − D. Similarly,s(B2) = β − D.

For a contradiction suppose, by Claim 2.4, that there exists a dangerous setX ⊂ V with
b1, b2 ∈ X. AssumingB1 ∪ B2 ⊆ X, from (8) we getR(X) − D ≤ d∗(X) ≤ d(X) − α − β ≤
d(X) − 2D ≤ R(X) + 1 − 2D, contradictingD ≥ 2. Thus we may assume, without loss of
generality, thatB1 − X 6= ∅. By the choice ofb1 andb2 we haveX ∩ B1 6= ∅ andX − B1 6= ∅.

SinceB1 andB2 are the only cores, each set inB′ includesB1 or B2. ThusV −(X∪B1) /∈ B′

follows. HenceR(V − (X ∪ B1)) − D < d∗(V − (X ∪ B1)). Using this and the symmetry of
d∗ andR in V , we getd(X ∪ B1) ≥ d∗(X ∪ B1) + α + 1 = d∗(V − (X ∪ B1)) + α + 1 >
R(V − (X ∪B1))−D + α + 1 = R(X ∪B1) + α−D + 1 and hences(X ∪B1) ≥ α−D + 2
follows.

Now we apply Proposition 2.3 toX andB1. If (5) holds andB1 ∪ X 6= V then we have
1 + (α − D) ≥ s(X) + s(B1) ≥ s(X ∩ B1) + s(X ∪ B1) ≥ α − D + 2, a contradiction. Thus
we can assume (6) holds forX andB1.

Let γ = d(s, X ∩ B1). SinceB1 is a core, we haveR(B1 − X) − D < d∗(B1 − X).
This impliesd(B1 − X) = d∗(B1 − X) + α − γ > R(B1 − X) − D + α − γ and there-
fore s(B1 − X) ≥ α − D + 1 − γ. From this (6) yields1 + (α − D) ≥ s(X) + s(B1) ≥
s(X −B1) + s(B1 −X) + 2d(s, X ∩B1) ≥ α−D + 1 + γ. This is a contradiction, sinceγ ≥ 1
by the existence of the edgesb1. •

Thus we have seen that ifdi 6= 3 for some1 ≤ i ≤ p then there exists anr-admissible and
feasible2-split in G. By Claim 3.3 this completes the first part of the proof.
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4 Contracting tight sets

In this section we prove that, roughly speaking, contracting non-singleton tight sets does not
change the problem. Assuming each tight set is a singleton will be a crucial point in the rest of
the main proof given in Section 5.

Let us fix a tight setT ⊂ V with |T | ≥ 2 in our graphG = (V + s, E), if exists. Recall
that for a tight setT we haves(T ) = d(T ) − R(T ) = 0 and therefore (in fact, equivalently)
there exists a paira, b ∈ V , separated byT , with r(a, b) = d(T ). Let G′ = (V ′ + s, E ′) be
obtained fromG by contractingT into a single vertext. We used′ to denote the degree function
in G′ and we define the requirement functionr′ for G′ as follows: we setr′(u, v) = r(u, v) for
u, v ∈ V ′ − t and we setr(x, t) = r(t, x) = max{r(w, x) : w ∈ T} otherwise. It is easy to see
thatG′ is 2-edge-connected,r′ ≥ 2 is proper forG′, andt is a singleton tight set inG′.

The next lemma follows directly from the definition ofr′, without using the fact thatT is
tight.

Lemma 4.1 Let X ′ ⊂ V ′ and letX be the corresponding set inV (that is,X = X ′ if t /∈ X ′

andX = (X ′ − t) ∪ T otherwise). ThenR(X) = R′(X ′).

Proof: SinceR′ (R) is symmetric inV ′ (V , respectively), we may assumet /∈ X ′. In this case
X = X ′ andX ∩ T = ∅ hold. First pickx ∈ X, y ∈ V − X with r(x, y) = R(X). If y /∈ T
thenR′(X ′) = R′(X) ≥ r′(x, y) = r(x, y) = R(X) follows. If y ∈ T then, by the definition of
r′, we haveR′(X ′) = R′(X) ≥ r′(t, x) ≥ r(y, x) = R(X). This provesR′(X ′) ≥ R(X).

To see the other direction choosex′ ∈ X ′, y′ ∈ V ′ − X ′ with r′(x′, y′) = R′(X ′). If
y′ 6= t then R(X) = R(X ′) ≥ r(x′, y′) = r′(x′, y′) = R′(X ′) follows. If y′ = t then
R(X) = R(X ′) ≥ max{r(w, x′) : w ∈ T} = r′(t, x′) = R′(X ′). This givesR(X) ≥ R′(X ′). •

We obtain the following two easy but useful corollaries.

Lemma 4.2 Let su, sv be anr-admissible2-split in G. Thensu′, sv′ is r′-admissible inG′.

Proof: Suppose thatsu′, sv′ is notr′-admissible inG′. Then by Claim 2.4 there exists a danger-
ous setX ′ ⊂ V ′ with s′(X ′) = d′(X ′) − R′(X ′) ≤ 1 andu′, v′ ∈ X ′. Sinced(X) = d′(X ′) and
by Lemma 4.1 we haveR(X) = R′(X ′) for the corresponding setX in G, it follows thatX is a
dangerous set inG which containsu andv, a contradiction. •

Lemma 4.3 SupposeG satisfies (8). ThenG′ satisfies (8) with respect toV ′ andr′.

Proof: Suppose (8) fails inG′ and letW ′ ⊂ V ′ be a set withdG′−s(W
′) < R′(W ′) − D. Since

dG−s(W ) = dG′−s(W
′) and by Lemma 4.1 we haveR(W ) = R′(W ′) for the corresponding set

W in G, it follows thatdG−s(W ) < R(W ) − D, a contradiction. •

Mader [6] and Frank [2, Claim 3.2] showed that if a2-split is rλ′-admissible inG′ then the
corresponding2-split is rλ-admissible inG. We need a similar fact for3-splits and arbitrary
proper requirement functionsr.
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Lemma 4.4 Let su′, sv′, sz′ be anr′-admissible3-split in G′. Then the corresponding edges
su, sv, sz form anr-admissible3-split in G.

Proof: Suppose that the triplesu, sv, sz is notr-admissible inG. By Claim 2.4 this implies that
in G either (a) there is a tight setX with |X∩{u, v, z}| ≥ 2 or (b) there is a bad setM containing
u, v andz.

Let Y be a subset ofV with eitherY ∩ T = ∅ or T ⊆ Y and letY ′ be the set corresponding
to Y in G′. Such a setY clearly satisfiesR′(Y ′) = R(Y ) (by Lemma 4.1) andd′(Y ′) =
d(Y ). Therefore ifY is tight (bad) inG with respect tor thenY ′ is tight (bad, respectively)
in G′ with respect tor′. Thus we may assume that(∗) for any tight setX ′ (bad setM ′) with
|X ′∩{u, v, z}| ≥ 2 ({u, v, z} ⊂ M ′) the setsX ′ andT (M ′ andT , respectively) are intersecting.

Consider case (a) first and assume, without loss of generality, that thatu, v ∈ X for a tight
setX in G. SinceX ∪ T cannot be tight by(∗), we haves(X ∪ T ) ≥ 1. We apply Proposition
2.3 to X and T . If (5) holds andX ∪ T 6= V then, using the fact thatT is tight, we get
0 + 0 = s(X) + s(T ) ≥ s(X ∩ T ) + s(X ∪ T ) ≥ 0 + 1, a contradiction.

Thus (6) holds. In this case we have0 + 0 = s(X) + s(T ) ≥ s(X − T ) + s(T − X) +
2d(s, X ∩ T ). Therefored(s, X ∩ T ) = 0, sou, v ∈ X − T follows. We also gets(X − T ) = 0,
contradicting(∗). This shows case (a) cannot hold.

Suppose now that case (b) holds, that is, there is a bad setM containingu, v andz in G.
SinceM ∪ T cannot be bad by(∗), we have that eitherM ∪ T = V or s(M ∪ T ) ≥ 3. We
apply Proposition 2.3 toM andT . If (5) holds andM ∪ T 6= V then, using the fact thatT is
tight, we get2 + 0 ≥ s(M) + s(T ) ≥ s(M ∩ T ) + s(M ∪ T ) ≥ 0 + 3, a contradiction. Thus
(6) holds and we have2 + 0 ≥ s(M) + s(T ) ≥ s(M − T ) + s(T − M) + 2d(s, M ∩ T ). This
showsd(s, M ∩T ) ≤ 1. Moreover, ifd(s, M ∩T ) = 1 thens(M −T ) = 0 must hold and hence
M − T is a tight set including two vertices fromu, v, z, contradicting the fact that case (a) does
not hold. Thusd(s, M ∩ T ) = 0 ands(M − T ) ≤ 2. This contradicts(∗). •

5 The case whenS = (3, 3, ..., 3)

In this section we assumeS = (3, 3, ..., 3) and show the existence of anr-admissible and feasible
3-split in G. This will complete the proof by Claim 3.3. First we consider the case|B| = 3. In
this case we can avoid tight set contractions. We use the following two claims instead.

Claim 5.1 LetX be a maximal tight set and letY be tight withY −X 6= ∅. Thend(s, X∩Y ) =
0.

Proof: We may assumeX ∩ Y 6= ∅ and apply Proposition 2.3 toX and Y . If (5) holds
andX ∪ Y 6= V then0 + 0 = s(X) + s(Y ) ≥ s(X ∩ Y ) + s(X ∪ Y ) ≥ 0 + 0 follows
and hences(X ∪ Y ) is also tight, contradicting the maximality ofX. Thus (6) applies. Then
0 + 0 = s(X) + s(Y ) ≥ s(X − Y ) + s(Y −X) + 2d(s, X ∩ Y ), and henced(s, X ∩ Y ) = 0. •

Let su, sv, sz be distinct edges incident tos. These three edges (and also the multiset
{u, v, z} of vertices) is called alegal triple if there is no tight setX with |X ∩ {u, v, z}| ≥ 2.
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Claim 5.2 Let K be a tight set and letL be a maximal bad set such thatd(s, K ∩ L) ≥ 1 and
for a legal tripleu, v, z we haveu, v, z ∈ L. ThenK ⊆ L.

Proof: We apply Proposition 2.3 toK andL. If (5) holds andK ∪L 6= V then, by the maximal-
ity of L, we get0+2 ≥ s(K)+ s(L) ≥ s(K ∩L)+ s(K ∪L) ≥ 0+3, a contradiction. Thus (6)
applies. Then0 + 2 = s(K) + s(L) ≥ s(K −L) + s(L−K) + 2d(s, K ∩L) ≥ 0 + 0 + 2, since
d(s, K ∩ L) ≥ 1 by our assumption. This givesd(s, K ∩ L) = 1 ands(L − K) = 0. Hence at
least two edges of the triple must go froms to the tight setL − K. This contradicts the fact that
the triple is legal. •

Lemma 5.3 LetB = {B1, B2, B3}. Then every3-split sb1, sb2, sb3 with bi ∈ Bi (i = 1, 2, 3) is
r-admissible and feasible.

Proof: By the choice ofbi (i = 1, 2, 3) and Claim 3.4 it is enough to prove that a3-split of this
kind is r-admissible. To see thatsb1, sb2, sb3 with bi ∈ Bi (i = 1, 2, 3) is r-admissible, by Claim
2.4 it is sufficient to show that the triple is legal and there is no bad setM includingb1, b2, b3.

Suppose that there is a maximal tight setX includingb1 andb2. By Lemma 3.5 eachBi is
tight. Thus Claim 5.1 implies(B1 ∪ B2) ⊆ X. Therefore, by Claim 3.2,D = D + s(X) ≥
d(s, X) ≥ 2D follows, contradicting the fact thatD ≥ 2. Thus the triple is legal.

Now suppose there is a maximal bad setM includingb1, b2, b3. SinceM includes the endver-
tices of a legal triple and eachBi is tight by Claim 3.5, Claim 5.2 implies(B1 ∪ B2 ∪ B3) ⊆ M
and therefore by Claim 3.2 we get2 + D ≥ s(M) + D ≥ d(s, M) ≥ 3D, a contradiction. •

In the rest of the proof we can assume|B| ∈ {0, 2}. In this case we prove the existence of
the required3-split with the help of the results of Section 4. In the following lemmas we shall
consider a2-edge-connected graphH = (V + s, E) with degree specificationS = (d1, ..., dp)
for s where

every tight set is a singleton (9)

with respect to a proper requirement functionr ≥ 2.

Lemma 5.4 Suppose thatH = (V + s, E) satisfies (8), (9) andd(s) > 2D. Let su, sv be an
r-admissible2-split in H. Then there exists an edgesz for whichsu, sv, sz is a legal triple.

Proof: Suppose that some edgesa, different fromsu, sv, does not form a legal triple withsu and
sv. Since the pairsu, sv is r-admissible, by Claim 2.4 there is no tight set containing bothu and
v. Therefore a tight set includinga and one ofu or v must exist. Now (9) implies that, without
loss of generality,a = u and{u} is tight. Thus by Claim 3.2d(s, u) ≤ D holds and hence there
exists an edgesb, different fromsv, with b 6= u. If the triplesu, sv, sb is not legal either, then
we haveb = v and{v} is tight. Again,d(s, v) ≤ D follows and hence, sinced(s) > 2D, there
exists an edgesz with z 6= u, v. This edgesz will do. •

In the next lemma we shall improve on Lemma 5.4 and prove that everyr-admissible2-split
su, sv is part of anr-admissible3-split unlessH has a special structure.
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A graphH ′ = (V + s, E) with d(s) = 6 is called a2-obstacle(with respect to a given
requirement functionr) if there exist two bad setsM1, M2 in H ′ such that (i)M1 − M2 and
M2 − M1 are tight, (ii)d(s, M1 − M2) = d(s, M1 ∩ M2) = d(s, M2 − M1) = 2, and (iii) the
2-split su, sv is r-admissible foru, v ∈ M1 ∩ M2. It is easy to see that there is nor-admissible
3-split in a2-obstacle which contains the edgessu, sv. On the other hand, anr-admissible(3, 3)-
detachment is easy to find in a2-obstacle.

Lemma 5.5 Let H = (V + s, E) be a2-obstacle and suppose that (9) holds. ThenH has an
r-admissible(3, 3)-detachment.

Proof: It is enough to find anr-admissible3-split in H. Let the (singleton) tight setsM1 − M2

andM2 − M1 be verticesa andb, respectively. We claim that every triplesa, su, sb forms an
r-admissible3-split. To see this notice that the triple is legal, sincea, u, b are distinct and by (9).
Furthermore, a bad setN with a, u, b ∈ N would haved(s, N) ≥ 5, contradicting Claim 3.2.•

Lemma 5.6 Suppose thatH = (V + s, E) satisfies (8), (9), andd(s) = 3D. If H is not
a 2-obstacle then for everyr-admissible2-split su, sv in H there exists an edgesz such that
su, sv, sz form anr-admissible3-split.

Proof: By Lemma 5.4 there exists an edgesa such thatsu, sv, sa is a legal triple. If this triple
forms anr-admissible3-split, we are done. Otherwise by Claim 2.4 there exists a maximal bad
setM containingu, v, a. Since, by Claim 3.2, we haved(s, M) ≤ s(M) + D ≤ 2 + D and we
also haveD ≥ 2, our assumptiond(s) = 3D implies that there exists an edgesb with b ∈ V −M .
Observe thatu, v, b form a legal triple by (9). Thus eithersb is the desired edge or there exists a
maximal bad setM ′ containingu, v, b. Clearly,M andM ′ are intersecting.

We apply Proposition 2.3 toM andM ′. If (5) holds andM ∪ M ′ 6= V then we get2 + 2 ≥
s(M)+s(M ′) ≥ s(M∩M ′)+s(M∪M ′) ≥ 2+3, a contradiction. Here we useds(M∩M ′) ≥ 2
(sincesu, sv is anr-admissible2-split) ands(M ∪ M ′) ≥ 3 (by the maximality ofM).

Thus we can assume that (6) holds. LetN := V − (M ∪ M ′). We obtain2 + 2 ≥ s(M) +
s(M ′) ≥ s(M −M ′)+ s(M ′−M)+2d(N + s, M ∩M ′) ≥ 2d(N + s, M ∩M ′). The existence
of the edgessu, sv implies that the right-hand side is at least4. It follows that equality holds
everywhere, in particulars(M −M ′) = s(M ′ −M) = 0 andd(N + s, M ∩M ′) = 2 must hold.
ThereforeM−M ′ andM ′−M are both tight and by Claim 3.2 we haved(s, M−M ′), d(s, M ′−
M) ≤ D. In this cased(s, N) = 0 would imply2D + 2 ≥ d(s) = 3D and henceD = 2. Thus
H would be a2-obstacle (by takingM1 = M andM2 = M ′ in the definition), a contradiction.

This showsd(s, N) ≥ 1. Let us pick an edgesc with c ∈ N . As above, it can be seen that
u, v, c is a legal triple and eithersc is the desired edge or there is a maximal bad setM ′′ containing
u, v, c. In the latter case we can apply Proposition 2.3 toM andM ′′ and toM ′ andM ′′, as above,
and conclude thatM − M ′′, M ′′ − M , M ′ − M ′′, M ′′ − M ′ are all tight. Since (9) holds and
these bad sets are pairwise distinct and maximal, it follows thatM ∩M ′ = M ∩M ′′ = M ′∩M ′′

andM ∪ M ′ ∪ M ′′ = M ∩ M ′ ∩ M ′′ ∪ {a, b, c}.

Claim 5.7 There is an edge inH froma to M − a (and similarly fromb to M ′ − b and fromc to
M ′′ − c).
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Proof: Suppose that no such edge exists and first consider the case whenR(M) is attained on a
pairx, y with x ∈ M − a. In this caseR(M − a) ≥ R(M) and sinced(a) ≥ 2 we conclude that
d(M−a) ≤ d(M)−2 and henceM−a is tight. Sinceu, v ∈ M−a, this contradicts the fact that
su, sv is anr-admissible2-split. In the other case, whenR(M) = r(a, y) for somey ∈ V − M ,
we haveR(M) ≤ R(a) ≤ d(a) ≤ d(M) − d(M − a) ≤ R(M) + 2 − 2 = R(M), and hence
d(M − a) = 2 must hold. Thus, sincer ≥ 2, we haveR(M − a) ≥ 2 and hence the setM − a
is tight. Sinceu, v ∈ M − a, this contradicts the fact that the2-split su, sv is r-admissible. This
proves the claim. •

The edge fromc toM ′′−c = M∩M ′, which exists by Claim 5.7, implies thatd(c, M∩M ′) ≥
1. Together with the edgessu, sv this givesd(N + s, M ∩M ′) ≥ 3, a contradiction. This proves
the lemma. •

By Claim 3.3 the proof is complete once we can show anr-admissible and feasible3-split in
G. If |B| = 3 then we are done by Lemma 5.3. Suppose|B| ∈ {0, 2}. In this case, starting from
G, let us contract non-singleton tight sets as long as possible and letG′ = (V ′ + s, E ′) andr′

denote the resulting graph and requirement function, respectively. By Lemma 4.3G′ satisfies (8)
with respect toV ′ andr′ and by construction (9) holds. Note that the degree specification fors
in G and inG′ are the same (henced′(s) = 3D ≥ 6).

Let us choose anr-admissible2-split su, sv in G in such a way thatu andv are chosen from
distinct cores in the case whenG has precisely two cores. By Theorem 2.5 and by Lemma 3.6
this can be done. By Lemma 4.2 the corresponding2-split su′, sv′ is r′-admissible inG′. Thus
by Lemma 5.5 and Lemma 5.6 there exists anr′-admissible3-split su′, sv′, sz′ in G′. Applying
Lemma 4.4 we can see that the corresponding3-split su, sv, sz is r-admissible inG. By the
choice of the pairsu, sv and by Claim 3.4 thisr-admissible3-split in G is feasible as well. This
completes the proof of Theorem 3.1. •

6 Applications and corollaries

It is easy to see that in Theorem 2.5 it is sufficient to consider2-edge-connected graphs. Thus
Theorem 2.5 follows immediately from Theorem 3.1 by takingS = (2, 2, ..., 2) andr = rλ.
Note that in this case condition (7) is void.

The special case of Theorem 3.1, whenr = rλ andS is arbitrary, was posed as a conjecture
by Fleiner [1]. In the same paper Fleiner proved the following ‘global edge-connectivity’ version
of our result. Let us call a detachmentk-admissiblefor somek ≥ 2 if it is r-admissible for the
uniform requirementsr(u, v) ≡ k. This result is also an immediate corollary of Theorem 3.1.

Theorem 6.1 [1] Suppose thatG = (V + s, E) is k-edge-connected inV (for somek ≥ 2) and
let S = (d1, ..., dp) be a degree specification with

∑p
j=1 dj = d(s) anddj ≥ 2, 1 ≤ j ≤ p. There
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exists ak-admissibleS-detachment ofs if and only ifG − s is γ-edge-connected, where

γ = k −
r∑

i=1

bdi/2c. (10)

Theorem 6.1 extends a theorem of Lov´asz [5] on edge splittings preserving global edge-
connectivity the same way as Theorem 3.1 extends Theorem 2.5. Another application of The-
orem 6.1, which was pointed out by Fleiner [1], is the following theorem of Nash-Williams
[8]. Given a collection of degree specificationsSv, one for each vertexv of G, a simultane-
ousS-detachmentis obtained fromG by applying anSv-detachment atv, for each vertexv,
simultaneously.

Theorem 6.2 [8] Let G = (V, E) be a graph and let a degree specificationSv = (dv
1, ..., d

v
pv

)
be given for each vertexv ∈ V . ThenG has ak-edge-connected simultaneousS-detachment if
and only ifG is k-edge-connected anddv

i ≥ k for everyv ∈ V , 1 ≤ i ≤ pv, unlessk is odd and
eitherG has a cut-vertexv with Sv = (k, k), or V = {u, v} andSu = Sv = (k, k).

It would be interesting to prove some kind of local edge-connectivity version of Theorem
6.2, using Theorem 3.1.

In what follows we apply Theorem 3.1 to deduce a new result. In local edge-connectivity
augmentation problem a graphG = (V, E) and a requirement functionr(u, v), u, v ∈ V are
given, and the goal is to find a smallest setF of new edges for which the augmented graph
satisfies the requirements, that is, for which inG′ = (V, E + F ) we haveλ′(u, v) ≥ r(u, v) for
each pairu, v ∈ V . This problem was solved, in terms of a min-max equality and a polynomial
algorithm, by Frank [3]. A possible extension of this problem has the same input, but instead of
adding edges (or equivalently,attachingdegree-two vertices) the goal is to attach stars of some
given size. In such a ‘star-attachment’ the centers of the stars are required to be disjoint fromV
and from each other and their leaves are incident toV .

For convenience, we assumer(u, v) ≥ 2 for each pairu, v. Without this assumption one
has to deal with the so-called “marginal components’ as well, see [3]. The extension to arbitrary
requirements can be done following [3]. We leave these details to the reader.

Let G = (V, E) and a requirement functionr(u, v) be given along with a set of integers
d1, ..., dp (dj ≥ 2). Let R(X) = max{r(u, v) : u ∈ X, v ∈ V − X} be defined for each proper
subsetX of V and letq(X) = R(X)−d(X). A component ofG is called amarginal component
if q(W ) ≤ 0 for everyW ⊂ C andq(C) ≤ 1 hold. For simplicity, we assumeG has no marginal
components with respect tor. (The extension to arbitrary requirements can be done following
[3]. We leave these details to the reader.)

Theorem 6.3 Let a graphG = (V, E) and local edge-connectivity requirementsr(u, v), u, v ∈
V be given such that there is no marginal component inG. ThenG can be augmented to satisfy
the requirementsr(u, v) by attachingp stars with degreesd1, ..., dp (dj ≥ 2, 1 ≤ j ≤ p) if and
only if

t∑

i=1

q(Xi) ≤
p∑

j=1

dj (11)
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holds for every subpartition{X1, ..., Xt} of V andλG(u, v) ≥ r(u, v) − ∑p
j=1bdj/2c for every

pair u, v ∈ V .

Proof: Let H be a properly augmented graph. By Menger’s theorem we must havedH(X) ≥
R(X) = d(X) + q(X) for everyX ⊂ V . This shows (11) holds. Observe thatH can be
obtained fromG by adding a new vertexs, creating a graphG′ = (V + s, E ′) that satisfies all
the requirements inV and hasd(s) =

∑p
j=1 dj, and then executing anr-admissible(d1, ..., dp)-

detachment ats in G′. This gives rise to the second necessary condition.
Now we prove these conditions together are sufficient. Letβ =

∑p
j=1 dj. Since

∑
q(Xi) ≤ β

for every subpartition{X1, ..., Xt}, we can apply [3, Lemma 5.6] and conclude thatG can be
extended to a graphG′ = (V + s, E ′) by adding a new nodes andβ edges betweenV ands so
that no edge incident tos is a cut-edge inG′ andλ′(u, v) ≥ r(u, v) holds for each pairu, v ∈ V .
It is easy to see that we may assume thatG′ is 2-edge-connected and thus we may assumer ≥ 2.
Using the fact thatλG(u, v) ≥ r(u, v)−∑bdj/2c for every pairu, v ∈ V , we can apply Theorem
3.1 and obtain anr-admissibleS-detachment ofs. This yields the required augmentation ofG.
•

Based on Theorem 6.3 we can easily solve the following optimization problem: givenG,
r and an integerw, determine the minimum number ofw-stars that, by attaching them appro-
priately, can makeG satisfy all the local edge-connectivity requirementsr(u, v). If w = 2 (or
equivalently, ifdi = 2 for 1 ≤ i ≤ p in Theorem 6.3), then we are back at Frank’s theorem [3].

Theorem 6.4 [3] Given a graphG = (V, E) and local edge-connectivity requirementsr(u, v)
for each pairu, v ∈ V such thatG has no marginal components,G can be augmented to sat-
isfy the requirementsr(u, v) by addingp new edges if and only if

∑
(q(Xi)) ≤ 2p for every

subpartition{X1, ..., Xt} of V .

7 Extensions and algorithmic remarks

In this section we show some extensions of Theorem 3.1 which apply even if we drop our previ-
ous assumptions (a)di ≥ 2, and (b)G is 2-edge-connected.

First letG = (V + s, E) andr be given as in Theorem 3.1 but suppose that in the degree
specificationS = (d1, ..., dp) we havedi = 1 for some (say, preciselyb) indices1 ≤ i ≤ p.
Condition (7) is clearly necessary to have anr-admissibleS-detachment in this case, too. Since
the degree-one vertices and the edges incident to them, created by some detachment, does not
influence the local edge-connectivity values inV , it is easy to see that ifG has anr-admissible
S-detachment then we can deleteb edges incident tos in G in such a way thatλ(u, v) ≥ r(u, v)
is maintained foru, v ∈ V and (7) is preserved. By Theorem 3.1 we can prove that the converse
also holds.

Theorem 7.1 There exists anr-admissibleS-detachment inG = (V + s, E) if and only if (7)
holds and

∑t
i=1 q(Xi) ≤ d(s) − b for every subpartition{X1, ..., Xt} of V .
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Proof: (sketch) The theorem follows from Theorem 3.1 and the following result of Frank (cf. [3,
Lemma 5.6]): if there are no cut-edges incident tos in G then at leastb edges incident tos can be
deleted in such a way thatr remains proper (that is,d′(X) ≥ R(X) holds in the resulting graph
G′ for every∅ 6= X ⊂ V ) if and only if

∑
q(Xi) ≤ d(s) − b for every subpartition{X1, ..., Xt}

of V . •

In our problem of finding anr-admissibleS-detachment ofs, if exists, we may clearly assume
that the input graphG = (V + s, E) is connected. In addition, ifr ≥ 1 (that is, connectedness
has to be preserved) then we can assume that the cut-edges, if exist, are all incident tos. In what
follows we sketch how to handle these cut-edges. We shall assumer ≥ 1 and thatr is proper.

Suppose that we havec cut-edges incident tos and letĜ = (V̂ + s, Ê) denote the graph
obtained fromG by deleting all the cut-edges incident tos as well as those components of the
resulting graph that do not contains. Let r̂ be the restriction ofr to V̂ . Ĝ is either a single vertex
{s} or is 2-edge-connected. The former case is trivial: eitherp = 1 or there is nor-admissible
detachment. In the latter case we may assumer̂ ≥ 2. It can be seen that anr-admissibleS-
detachment exists inG if and only if Ĝ has anr̂-admissibleŜ = (f1, ..., fp)-detachment for
some integersfi with

∑
fi =

∑
dj − c and1 ≤ fi ≤ di, 1 ≤ i ≤ p. The existence of such a

detachment (and more generally, the problem of finding anr′-admissible detachment ofs with
prescribed lower and upper bounds for each number of the possible degree specification) can be
solved by Theorems 3.1 and 7.1. We omit the details.

We do not attempt to describe an efficient algorithm for finding anr-admissibleS-detachment
in this paper. We note, however, that our proof is algorithmic and easily implies a polynomial
algorithm for this problem as well as for the problem of optimally augmenting a graph by attach-
ing stars of some given size. This follows from the fact that checking whether a2-split or3-split
is r-admissible and feasible is easy by max-flow computations. For the special case of finding
rλ-admissible2-splits (as in Theorem 2.5) Gabow [4] developed an efficient algorithm.
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