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Detachments preserving local edge-connectivity of
graphs

Tibor Jordan* Zoltan Szigeti
November 9, 1999

Abstract

LetG = (V + s, E) be agraph and |ef = (d, ..., d,) be a set of positive integers with
>-d; = d(s). An S-detachment splits into a set ofp independent vertices;, ..., s, with
d(s;) = d;, 1 < j < p. Given a requirement function(v, v) on pairs of vertices oV, an
S-detachment is calleg-admissible if the detached grapgH satisfies\¢/ (z,y) > r(x,y)
for every pairz,y € V. HereAy (u, v) denotes the local edge-connectivity betweeandv
in graphH.

We prove that am-admissibleS-detachment exists if and only if (A (z,y) > r(z,y),
and (b)Ag_s(z,y) > r(z,y) — >_|d;/2] hold for everyz,y € V.

The special case of this characterization when y) = \¢(z, y) for each pair inl” was
conjectured by B. Fleiner. Our result is a common generalization of a theorem of W. Mader
on edge splittings preserving local edge-connectivity and a result of B. Fleiner on detach-
ments preserving global edge-connectivity. Other corollaries include previous results of L.
Lovasz and C.J.St.A. Nash-Williams on edge splittings and detachments, respectively. As a
new application, we extend a theorem of A. Frank on local edge-connectivity augmentation
to the case when stars of given degrees are added.

1 Introduction

Given a graphG = (V + s, ) with a designated vertex, a degree specificatiofor s is a
sequenceS = (di, ..., d,) of positive integers with ", d; = d(s). An S-detachmenbf s

in G is created by replacing by a sets, ..., s, of independent vertices and distributing the
edges incident ta among them in such a way thdts;) = d; (1 < i < p) holds in the new
graph. All the other ends of the edges(iremain the same. This operation may decrease (but
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cannot increase) the local edge-connectivity between pairs of vertidés {ror a survey on
detachments see [7].)

The main result of this paper (Theorem 3.1) gives a necessary and sufficient condition for the
existence of ars-detachment o which satisfies given local edge-connectivity requirements.
For a given aequirement functiom : V' x V' — Z,, anS-detachment is callectadmissiblaf
the detached grapfy’ satisfies\q/(z,y) > r(z,y) for every pairr,y € V. (We usely(u,v)
to denotelocal edge-connectivitpetweenu andv in graph H, that is, the size of a minimum
edge cut separatingandv in H.) We characterize those graphs for whichraadmissibleS-
detachment exists. The proof leads to a polynomial algorithm which finds such a detachment if
it exists.

Detachments are strongly related to (and generalize) splittingSftitting offtwo edges
su, sv in a graph means replacing, sv by a new edgew. If u = v then the resulting loop
is deleted. This operation is a well-known and useful tool in proving theorems and designing
algorithms for connectivity problems, see e.g. [3, 4, 6]. Subdividing the split edfg a new
vertext does not change the local edge-connectivities. Thus a splitting off operation corresponds
to a(2,d(s) — 2)-detachment of in this sense. Also, the special case of our problem, when
d(s)isevensS = (2,2, ...,2), andr(z,y) = Ag(z,y) for each pairc,y € V, corresponds to the
problem of finding a ‘complete splitting’ of the edges incident freserving all the local edge-
connectivities within/. A celebrated result of W. Mader [6] shows that such a complete splitting
always exists (provided there is no cut-edge incider) teee Theorem 2.5. This implies that an
r-admissiblg?2, 2, ..., 2)-detachment exists for every requirement functi@atisfyingr(u, v) <
Aa(z,y) forx,y e V.

While such detachments always exist for every ‘reasonabkiowing vertices with degree
more thar (in particular, allowing odd degrees)dhgives rise to a new necessary condition. We
shall prove that am-admissibleS-detachment of exists if and only if (@\¢(z,y) > r(z,y),
and (D)A\g—s(x,y) > r(z,y) — >_4_,[d;/2] hold for everyz,y € V.

The special case of this characterization whén y) = \;(z,y) for each pair inl” was
conjectured by B. Fleiner [1]. Our result is a common generalization of the above mentioned
theorem of Mader on edge splittings preserving local edge-connectivity and a result of Fleiner
[1] on detachments preserving global edge-connectivity. The latter corresponds to the case when
r(z,y) = k > 2 for each pair,y € V.

Other corollaries include a theorem of L. lawZ [5] on edge splittings preserving global
edge-connectivity and a result of C.J.St.A. Nash-Williams [8] characterizing those gfaphs
and those lists of degree specifications for which simultaneously detaching the vertiGes of
preserves global edge-connectivity (see Theorem 6.2) asxuwheorem follows directly from
Theorem 2.5, while Nash-Williams’ result can be deduced easily from Fleiner’s result [1]. As
a new application, we solve a graph augmentation problem where stars of given degrees have
to be attached to a given graph in order to meet given local edge-connectivity requirements.
This extends a theorem of A. Frank [3] on augmenting the local edge-connectivities by adding a
smallest set of new edges.

The organization of the paper is the following. Further definitions and preliminary results are
given in Section 2. The proof of the main result starts in Section 3, where we reduce the problem
to the case whe = (3,3,...,3). Section 4 discusses the method of ‘tight set contraction’.
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This method was used previously by Mader and Frank and turned out to be an important step in
proving Theorem 2.5. Here we prove several new properties of this operation. This will enable
us to handle the remaining case and complete the proof in Section 5. Applications, corollaries,
and extensions are discussed in Sections 6 and 7 along with some algorithmic remarks.

2 Definitions and Preliminaries

Graphs in this paper are undirected and loopless but may contain multiple edgés=L@ét, £)
be a graph. FoX,Y C V we used(X,Y) to denote the number of edges frakh— Y to
Y — X. Thedegreed(X,V — X) of a setX is denoted byl/(X). A singleton sefv} is simply
denoted byv. Thusd(v) is the degree of vertex € V. The symbolsC and C denote set
containment and proper set containment respectively. TwaXsétsare said to bentersecting
if XNY,X —Y,Y — X are all non-emptyG is k-edge-connected d(.X) > k holds for every
D#XCV.
The degree function of a graph satisfies the following two well-known equalities.

Proposition 2.1 Let H = (V, E) be a graph. For arbitrary subset¥ Y C V,
dX)+dY)=d(XNY)+dXUY)+2d(X,Y), (1)
dX)+dY)=dX -Y)+dY - X)+2d(XNY,V - (XUY)). 2
LetG = (V +s,E) beagraphandlet: V x V — Z, be a requirement function. We
define R(X) := max{r(u,v) : v € X,v € V — X}. Clearly, R(X) = R(V — X). Let
s(X) :=d(X) — R(X). The following property was verified by Frank.

Proposition 2.2 [3, Proposition 5.4] For any two subsefs, Y C V' at least one of the following
inequalities holds:

RX)+RYY)<RXNY)+R(XUY), 3)
RX)+RY)<RX-Y)+R(Y —X). 4)
If X UY =V then (4) always holds (with equality).
Propositions 2.1 and 2.2 imply:

Proposition 2.3 For any two subsetX, Y C V' at least one of the following inequalities holds:
s(X)+s(Y)>s(XNY)+s(XUY)+2d(X,Y), (5)

s(X)4+s(Y)>s(X=-Y)+s(Y = X)+2d(X NY,V — (XUY)). (6)
If X UY =V then (6) always holds (with equality).



Let su, sv, sz be distinct edges it = (V' + s, F)). The operatiore-split deletes the edges
su, sv and adds a new vertexand two new edgesu, tv. Similarly, operatior3-split deletes
su, sv, sz and adds a new vertexand three new edges, tv, tz. By definition, both of these
operations are special detachments.dfetr : V' x V' — Z, be a requirement function. We say
that a2-split or 3-split is r-admissibldf the graphG’ obtained by the split satisfieg, (u, v) >
r(u,v) for every pairu,v € V. A requirement function iproperfor G if A\g(u,v) > r(u,v)
holds for each paiu,v € V. Without loss of generality we shall assume that requirement
functions are symmetric, that is(u, v) = r(v, u) holds for each pair.

GivenG = (V + s, E) and a proper requirement functionwe call a sef) # X C V tight
(dangerouyif s(X) = 0 (s(X) < 1, respectively). A set with(X) < 2 is calledbad

Claim 2.4 A pair su, sv is an r-admissible2-split if and only if there is no dangerous s&t
containingu andv. A triple su, sv, sz is anr-admissible3-split if and only if (a) there is no tight
setX with | X N {u,v,z}| > 2 and (b) there is no bad set containingv and z.

Proof: We prove the claim foB-splits. The case d2-splits is similar (but simpler). Suppose
su, sv, sz is not admissible. This means, (z,y) < r(x,y) for some paitc,y € V' in the result-
ing graphG’ = (V +s+t, E’), wheret denotes the new vertex of degreereated by thé-split.
We also have\;(z,y) > r(z,y), sincer is proper, and/’'(Y') < R(Y) for someY C V +t, by
Menger’s theorem. Sincé(Z) = d(Z) fort ¢ Z, we must have € Y. Let X =Y — ¢t and let
a = |XN{u,v,z}. We haveR(X) > d'(X) = d(X)—a+(3—«a) > R(X) —2a+ 3, showing

a € {2,3}. If a = 3thens(X) < 2 follows. ThusX is a bad set irG containingu, v, z. If

a = 2 thenX is tight. The other direction is easy to verify by a similar argument. o

The counterpart of Claim 2.4 for global edge-connectivity (that is, whenv) = k& > 2)
appeared in [1]. We remark here that (extensions of) some other basic observations from [1] will
also be used later on. Our proof, however, is substantially different from that of [1] in several
aspects.

Mader proved the following deep result (see also [2]). To follow our terminology, let us
define a requirement function by settingr,(u, v) = Ag(u, v) for each pain,v € V.

Theorem 2.5 [6] Let G = (V + s, E) be a graph withi(s) # 3 such that there is no cut-edge
incident tos. Then there is amy-admissible2-split of edges incident ts.

3 Detachments via admissibl@-splits

In this section we formulate our main result on the existence efamissibleS-detachment in

a graphGG = (V + s, F') and give the first part of the proof, where we reduce the problem to the
case wher&s = (3,3, ..., 3). For convenience, we make the following assumptionsi(&) 2,
1=1,...,p, (b) G is 2-edge-connected. In Section 6 we shall extend our result to the case when
these assumptions are dropped.



Theorem 3.1 Letr be a requirement function far = (V' + s, E') and suppose that is 2-edge-
connected and(u, v) > 2 for each pairu,v € V. LetS = (dy, ..., d,) be a degree specification
forswithd;, > 2,7 =1, ..., p. Then there exists arradmissibleS-detachment of if and only if

r IS proper and
p

Aa—s(u,v) = r(u,v) = Y " |di/2] (7)
=1
holds for every pain, v € V of vertices.

Proof: Suppose thaf’ is obtained fromG by anr-admissible(dy, ..., d,)-detachment. Since
Aa(u,v) > Ag/(u,v) for each pain, v, the requirement function must be proper. Let us define

D = >" 1d;/2|. To prove (7) take\q (u,v) pairwise edge-disjoint pathB,..., P, (I =

Ao (u,v)) in G'. Since the union of these paths uses an even number of edges from the star
of each new vertex; (i = 1,...,p), it follows that at mostD paths may go through the set
{s1,..., 8,}. Therefore at least— D paths lie entirely inG' — {sy, ..., s,} = G — s. This gives
Ao—s(u,v) > 1 —D = Aer(u,v) — D > r(u,v) — D, as required.

¢, From now on we prove that if (7) holds angs proper then am-admissibleS-detachment
existsinG = (V + s, E). We start by converting (7) into a more convenient form. d’etlenote
the degree function af — s.

Claim 3.2 Condition (7) holds irG if and only if
d'(X)>R(X)-D (8)

for every() # X C V. Furthermore, if (8) holds, we hav&s, X) < s(X) + D for every proper
subsetX of V.

Proof: By Menger’s theorem having at leastu, v) edge-disjoint paths between each pair of
verticesu, v € V' is equivalent to satisfyind(X) > R(X) for every( # X C V. This implies
the first part of the claim. To see the second part observedidatX) = d(X) — d*(X) <
d(X) — (R(X) — D) = s(X) + D by the definition ofs(X') and by (8). o

By Claim 3.2 we may suppose = (V + s, E) satisfies (8) with respect t® andr. We show
the existence of the desired detachment by inductiod(en We may assumg > 2, sinceG
itself is anr-admissibleS-detachment otherwise. Thus, sine> 2 for 1 < i < p, we may also
assumel(s) > 4 andD > 2. The induction step is based on the following claim.

Suppose that we execute amdmissible2-split (if d; > 4 or d; = 2) or a3-split (if d; = 3)
inG = (V+s,E) and letG' = (V +t + s, E') denote the resulting graph, wherés the
vertex of degree two or three ‘split off’ from. Thereduced requirement functiorl in G’ is
defined byr'(u,v) = r(u,v) for every pairu,v € V andr/(t,v) = 2 for everyv € V. The
reduced degree specificatidii of s in G’ is obtained by decreasing] appropriately: for &-
split we setS” = (dy — 2,...,d,) (if d > 4) or S’ = (do, ..., d,) (if dy = 2). For a3-split we
setS’ = (dy, ..., d,) (if d; = 3). Observe tha&’ is 2-edge-connected; > 2, and the reduced
requirement function is proper @&, since the split is-admissible.
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Claim 3.3 LetS = (dy, ..., d,) be a degree specification ferin G = (V' + s, E)). Suppose that

G has anr-admissible2-split (in the case wherd,; > 4 or d; = 2) or an r-admissible3-split
(whend; = 3) at s for which the resulting graplt’ = (V' + ¢ + s, E’) has anr’-admissible
S’-detachment, whereg and S’ are the reduced requirements and reduced degree specification,
respectively. They has anr-admissibleS-detachment.

Proof: The proof is easily seen by observing thatraadmissibleS-detachment inG can be
obtained from the’-admissibleS’-detachment oy’ by either identifying vertex and the ap-
propriate vertex ofy’ (whend; > 4), or defining the detachment efin G as the union of the
2-split (or 3-split) and the’-admissibleS’-detachment of in G’ (whend; =2ord; =3). e

Thus, to make the induction work, it is enough to findramdmissible2-split (or 3-split) for
which the resulting graphy’ satisfies(8) with respect to the reduced requirement function and
the reduced degree specification. Aadmissible2-split or 3-split is calledfeasibleif (8) holds
inG'.

By reducing the degree specification as above weljet D — 1, whereD’ is the corre-
sponding value ir’. Therefore(8) holds inG’ if and only if der—s(X) > R'(X) — D + 1 for
every() # X C V + t. Notice that for the reduced and R’ we have that?'(t) = R'(V) = 2,
R(X)=R(X)for) # X Cc V,andR'(X) = R(X — t) otherwise.

Let5B' = {X C V : d*(X) = R(X) — D} denote those subsetsdfwhich satisfy (8) with
equality. LetB denote the minimal members Bf. Sets in53 are calleccores

Claim 3.4 (a) Anr-admissible-split su, sv is feasible if and only ifX N {u,v}| > 1 for every
X enB.

(b) Anr-admissible3-split su, sv, sz is feasible if and only ifX N {u,v, z}| > 1 for every
X enB.

Proof: We prove (a) and (b) simultaneously. llet= {u, v} (T' = {u, v, z}) for ther-admissible
2-split (3-split, respectively). Notice that, v, z are not necessarily distinct. For every proper
subsel’” of V- we haveR' (Y) = R(Y) anddg_4(Y) = d*(Y)+|Y'NT|. Thus, sinceD’ = D—1,
G’ satisfies (8) with respect to proper subset¥ af and only if | X NT'| > 1 for every X € B'.
Condition (8) is trivially met fort andV'.

Now consider a sétl” with ¢ € W and withY = W N V non-empty. For suchl” we have
R (W) = R(Y) anddg _s(W) = d*(Y) + |[(V = Y) N T|. ThusG’ satisfies (8) with respect
to setslV of this type if and only if|(V — X) nT'| > 1 for every X € B'. SinceR andd* are
symmetric inV/, this is equivalent to sayingX N 7| > 1 for every X € B’. This proves the
claim. .

Lemma 3.5 |B| € {0, 2, 3} and the sets i are pairwise disjoint. Furthermore, j3| = 3 then
S =1(3,3,...,3),d(s) = 3D, and for eachB; € B (i = 1,2, 3) we havel(s, B;) = D and B; is
tight.



Proof: SupposeB is non-empty. Since* and R are symmetric inl/, |B| > 2 follows. Let
B1, By € B be intersecting sets. Applying Propositions 2.1 and 2.B4taB, shows that either
B, — By € B or B; N By € B, contradicting the minimality of3;. Thus sets i3 are pairwise
disjoint. Sincer is properd(B) > R(B) holds and hencé(s, B) > D for eachB € B. ¢From
the definition ofD it is clear thati(s) < 3D andd(s) = 3D ifand only if S = (3,3, ..., 3). This
implies|B| < 3 and thatB| = 3 may hold only ifS = (3,3, ...,3),d(s) = 3D, andd(s, B;) = D
for eachB; € B,i = 1,2, 3. The last equality gived(B;) = R(B;), thus eaclB,; is tight. .

In the first part of the proof we assume that, without loss of generdlity; 3 and show that
a feasible and-admissible2-split exists. (The remaining case, wh&n= (3,3, ...,3), will be
dealt with in Section 5.)

Lemma 3.5 shows that in this case we h&8e e {0,2}. Sinced(s) > 4, r is proper, and
there are no cut-edges@ Theorem 2.5 implies that any-admissible and hencejadmissible
2-split exists. IfB = () then every--admissible2-split is feasible by Claim 3.4 and hence we are
done by Claim 3.3. The next lemma shows whiesplit to choose whef3| = 2.

Lemma 3.6 Supposér = (V +s, E) satisfies (8) an® = { By, B2}. Then everg-split sby, sby
with b, € B; ( = 1, 2) is r-admissible and feasible.

Proof: By the choice oft;, b, and Claim 3.4(a) it is enough to prove that suci-gplit is r-
admissible. Letv = d(s, B;) and§ = d(s, B2). Note thatw, 5 > D. SinceB; € B, we have
R(B)) — D =d*(B,) = d(By) — a and hence(B;) = a — D. Similarly, s(By) = § — D.

For a contradiction suppose, by Claim 2.4, that there exists a dangerols set” with
by, by € X. AssumingB; U B, C X, from (8) we getR(X) — D < d*"(X) <d(X)—a—-p<
d(X) —2D < R(X) + 1 — 2D, contradictingD > 2. Thus we may assume, without loss of
generality, thaf3; — X # (). By the choice ob; andb, we haveX N B, # () andX — B; # ().

SinceB; andB, are the only cores, each set3hincludesB; or B,. ThusV —(XUB,) ¢ 5
follows. HenceR(V — (X U By)) — D < d*(V — (X U By)). Using this and the symmetry of
dandRinV,wegetd X UB;) >d*(XUB)+a+1=d(V-(XUDBy))+a+1>
RV —-(XUB))—-D+a+1=RXUB))+a—D+1landhence(XUB;) >a—D+2
follows.

Now we apply Proposition 2.3 t& and B;. If (5) holds andB; U X # V then we have
14+ (a—D) > s(X)+s(By) >s(XNBy)+s(XUB;) >a— D+ 2, acontradiction. Thus
we can assume (6) holds far and B;.

Lety = d(s,X N B;). SinceB, is a core, we hav&l(B; — X) — D < d*(B; — X).
This impliesd(B; — X) = d*(B1 — X)+a—v > R(B; — X) — D + a — v and there-
fore s(By — X) > a — D + 1 — ~. From this (6) yieldsl + (« — D) > s(X) + s(By) >
s(X —B1)+s(B1—X)+2d(s, XN By) > a— D+ 1++. Thisis a contradiction, since > 1
by the existence of the edgé, . °

Thus we have seen thatdf # 3 for somel < i < p then there exists arnradmissible and
feasible2-splitin G. By Claim 3.3 this completes the first part of the proof.



4 Contracting tight sets

In this section we prove that, roughly speaking, contracting non-singleton tight sets does not
change the problem. Assuming each tight set is a singleton will be a crucial point in the rest of
the main proof given in Section 5.

Let us fix a tight sel” ¢ V with |T'| > 2 in our graphG = (V + s, E), if exists. Recall
that for a tight sefl” we haves(T') = d(T) — R(T') = 0 and therefore (in fact, equivalently)
there exists a pait,b € V, separated by, with r(a,b) = d(T). LetG' = (V' + s, E’) be
obtained from by contractingl” into a single vertex. We used’ to denote the degree function
in G’ and we define the requirement functigrfor G’ as follows: we set’(u,v) = r(u,v) for
u,v € V' —t and we set(z,t) = r(t,z) = max{r(w,z) : w € T} otherwise. It is easy to see
thatG’ is 2-edge-connected, > 2 is proper forGG’, andt is a singleton tight set iy,

The next lemma follows directly from the definition of without using the fact that’ is
tight.

Lemma 4.1 Let X' C V'’ and letX be the corresponding set i (thatis, X = X'ift ¢ X’
and X = (X' —t) U T otherwise). TheR(X) = R'(X’).

Proof: SinceR’ (R) is symmetric inV’ (V, respectively), we may assumet X'. In this case
X = X'andX NT = () hold. First pickz € X,y € V — X with r(z,y) = R(X). Ify ¢ T
thenR' (X') = R(X) > r'(z,y) = r(z,y) = R(X) follows. If y € T then, by the definition of
r’, we haveR'(X') = R'(X) > r'(t,x) > r(y,x) = R(X). This provesk’'(X') > R(X).

To see the other direction choosé € X',y € V' — X’ with v'(z/,y) = R(X'). If
y # tthenR(X) = R(X') > r(2,y) = r'(«/,y) = R(X’) follows. If y/ = ¢ then
R(X) = R(X') > max{r(w,2') :w e T} =r'(t,2') = R'(X’). ThisgivesR(X) > R'(X'). e

We obtain the following two easy but useful corollaries.
Lemma 4.2 Let su, sv be anr-admissible-split in G. Thensu', sv” is r’-admissible inG'.

Proof: Suppose thatu’, sv’ is notr’-admissible inG’. Then by Claim 2.4 there exists a danger-
ous setX’ C V' with s'(X’) = d'(X') — R(X’) < 1andu/,v € X'. Sinced(X) = d'(X’) and
by Lemma 4.1 we hav&(X) = R'(X’) for the corresponding séf in G, it follows thatX is a
dangerous set i@ which contains, andv, a contradiction. °

Lemma 4.3 Supposé- satisfies (8). Thet’ satisfies (8) with respect 6’ andr’.

Proof: Suppose (8) fails i’ and letiW’ C V' be a set withig_(W') < R (W') — D. Since
dg_s(W) = dg—s(W') and by Lemma 4.1 we have(WW) = R'(W’) for the corresponding set
W in G, it follows thatds_s(W) < R(W) — D, a contradiction. .

Mader [6] and Frank [2, Claim 3.2] showed that iRasplit is ry,-admissible inG’ then the
correspondin@-split is r,-admissible inG. We need a similar fact foB-splits and arbitrary
proper requirement functions



Lemma 4.4 Let su/, sv’, sz’ be anr’-admissible3-split in G’. Then the corresponding edges
su, sv, sz form anr-admissible3-splitin G.

Proof: Suppose that the triple:, sv, sz is notr-admissible inG. By Claim 2.4 this implies that
in G either (a) there is a tight séf with | X' N{u, v, z}| > 2 or (b) there is a bad sét’ containing
u,v andz.

LetY be a subset of” with eitherY N7 = () or ' C Y and letY” be the set corresponding
to Y in G'. Such a sel” clearly satisfiesk'(Y’) = R(Y) (by Lemma 4.1) and/'(Y’) =
d(Y'). Therefore ifY is tight (bad) inG with respect ta- thenY” is tight (bad, respectively)
in G" with respect to’. Thus we may assume th@t) for any tight setX’ (bad setd’) with
| X'N{u,v, z} > 2 ({u,v,z} C M')the setsX’ andT" (M’ andT', respectively) are intersecting.

Consider case (a) first and assume, without loss of generality, that,that X for a tight
setX in G. SinceX U T cannot be tight byx), we haves(X U T) > 1. We apply Proposition
23toX andT. If (5) holds andX U T # V then, using the fact thaf' is tight, we get
04+0=s(X)+s(T)>s(XNT)+s(XUT) >0+ 1, acontradiction.

Thus (6) holds. In this case we haVer 0 = s(X) + s(T) > s(X —T) +s(T' — X) +
2d(s, X NT). Therefored(s, X NT) = 0, sou,v € X — T follows. We also get(X —T") = 0,
contradicting(«). This shows case (a) cannot hold.

Suppose now that case (b) holds, that is, there is a badl/sebntainingu, v and z in G.
Since M U T cannot be bad byx), we have that eithet/ UT = V ors(M UT) > 3. We
apply Proposition 2.3 td/ andT'. If (5) holds andM U T # V then, using the fact that is
tight, we ge2 + 0 > s(M) + s(T) > s(M NT) + s(M UT) > 0+ 3, a contradiction. Thus
(6) holds and we have+ 0 > s(M) + s(T) > s(M —T) + s(T — M) +2d(s, M N'T). This
showsd(s, M NT) < 1. Moreover, ifd(s, M NT) = 1 thens(M —T) = 0 must hold and hence
M — T is a tight set including two vertices from v, z, contradicting the fact that case (a) does
not hold. Thusi(s, M NT) = 0ands(M — T') < 2. This contradictgx). o

5 The case wherf = (3,3, ...,3)

In this section we assung= (3, 3, ..., 3) and show the existence of aradmissible and feasible
3-splitin G. This will complete the proof by Claim 3.3. First we consider the d&ge= 3. In
this case we can avoid tight set contractions. We use the following two claims instead.

Claim 5.1 Let X be a maximal tight set and |&t be tight withY — X = (). Thend(s, XNY') =
0.

Proof: We may assume& N'Y # () and apply Proposition 2.3 t& andY. If (5) holds
and X UY # Vthen0+0 = s(X)+s(Y) >s(XNY)+s(XUY) > 0+ 0 follows
and hences(X U Y) is also tight, contradicting the maximality of. Thus (6) applies. Then
0+0=s(X)+s(Y)>s(X-Y)+s(Y —X)+2d(s,XNY),and hencé(s, X NY)=0.e

Let su, sv, sz be distinct edges incident to. These three edges (and also the multiset
{u,v, z} of vertices) is called &gal tripleif there is no tight seX with | X N {u, v, z}| > 2.

9



Claim 5.2 Let K be a tight set and leL be a maximal bad set such théts, K N L) > 1 and
for a legal tripleu, v, z we haveu, v,z € L. ThenK C L.

Proof: We apply Proposition 2.3 t& and L. If (5) holds andK U L # V then, by the maximal-
ity of L, we get0+2 > s(K)+s(L) > s(KNL)+s(KUL) > 0+ 3, acontradiction. Thus (6)
applies. Theth +2 = s(K)+s(L) > s(K — L)+ s(L— K)+2d(s, KNL) > 04 0+2, since
d(s, K N L) > 1 by our assumption. This give&s, K N L) = 1 ands(L — K) = 0. Hence at
least two edges of the triple must go frento the tight setfl. — K. This contradicts the fact that
the triple is legal. °

Lemma 5.3 Let B = {By, By, B3}. Then everg-split sby, sby, sbs withb; € B; (i = 1,2,3) is
r-admissible and feasible.

Proof: By the choice ob; (i = 1,2, 3) and Claim 3.4 it is enough to prove tha8aplit of this
kind isr-admissible. To see thab,, sb,, sbs with b; € B; (i = 1, 2, 3) is r-admissible, by Claim
2.4 it is sufficient to show that the triple is legal and there is no badsetcludingb,, b, bs.

Suppose that there is a maximal tight 3éincludingb; andb,. By Lemma 3.5 eaclB; is
tight. Thus Claim 5.1 implie$B; U By) C X. Therefore, by Claim 3.2D = D + s(X) >
d(s,X) > 2D follows, contradicting the fact thdd > 2. Thus the triple is legal.

Now suppose there is a maximal bad &étncludingb,, by, bs. SinceM includes the endver-
tices of a legal triple and eadb,; is tight by Claim 3.5, Claim 5.2 impliegB3; U B, U B3) C M
and therefore by Claim 3.2 we get- D > s(M) + D > d(s, M) > 3D, a contradiction. e

In the rest of the proof we can assui®# € {0,2}. In this case we prove the existence of
the required-split with the help of the results of Section 4. In the following lemmas we shall
consider &2-edge-connected grapth = (V' + s, E) with degree specificatio§ = (dy, ..., d,)
for s where

every tight set is a singleton (9)

with respect to a proper requirement functiok 2.

Lemma 5.4 Suppose thatl = (V + s, E) satisfies (8), (9) and(s) > 2D. Letsu, sv be an
r-admissible-splitin H. Then there exists an edge for whichsu, sv, sz is a legal triple.

Proof: Suppose that some edge different fromsu, sv, does not form a legal triple witkw: and
sv. Since the paisu, sv is r-admissible, by Claim 2.4 there is no tight set containing hoéimd
v. Therefore a tight set includingand one ofu or v must exist. Now (9) implies that, without
loss of generalityg = v and{u} is tight. Thus by Claim 3.2(s,«) < D holds and hence there
exists an edgeb, different fromswv, with b # w. If the triple su, sv, sb is not legal either, then
we haveb = v and{v} is tight. Again,d(s,v) < D follows and hence, sinaés) > 2D, there
exists an edgez with z # u, v. This edgesz will do. .

In the next lemma we shall improve on Lemma 5.4 and prove that evadmissible2-split
su, sv is part of anr-admissible3-split unlessH has a special structure.
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A graph H = (V + s, FE) with d(s) = 6 is called a2-obstacle(with respect to a given
requirement function) if there exist two bad setd/,, M, in H’ such that (i)M; — M, and
M, — M are tight, (ii)d(s, My — M) = d(s, My N M) = d(s, My — M) = 2, and (iii) the
2-split su, sv is r-admissible for, v € M; N M. Itis easy to see that there is neadmissible
3-splitin a2-obstacle which contains the edges sv. On the other hand, aradmissible3, 3)-
detachment is easy to find irkeobstacle.

Lemmab5.5 Let H = (V + s, E) be a2-obstacle and suppose that (9) holds. ThHéras an
r-admissiblg 3, 3)-detachment.

Proof: It is enough to find am-admissible3-split in H. Let the (singleton) tight set&/; — M,
and M, — M, be vertices: andb, respectively. We claim that every tripka, su, sb forms an
r-admissible3-split. To see this notice that the triple is legal, siace, b are distinct and by (9).
Furthermore, a bad séf with a, u, b € N would haved(s, N) > 5, contradicting Claim 3.2. e

Lemma 5.6 Suppose that! = (V + s, ) satisfies (8), (9), and(s) = 3D. If H is not
a 2-obstacle then for every-admissible2-split su, sv in H there exists an edge: such that
su, sv, sz form anr-admissible3-split.

Proof: By Lemma 5.4 there exists an edgesuch thatsu, sv, sa is a legal triple. If this triple
forms anr-admissible3-split, we are done. Otherwise by Claim 2.4 there exists a maximal bad
setM containingu, v, a. Since, by Claim 3.2, we havés, M) < s(M) + D <2+ D and we
also haveD > 2, our assumptiod(s) = 3D implies that there exists an edgfewithb € V' — M.
Observe that:, v, b form a legal triple by (9). Thus eitheb is the desired edge or there exists a
maximal bad sed/’ containingu, v, b. Clearly, M and M’ are intersecting.

We apply Proposition 2.3 té7 and M. If (5) holds andM U M’ # V then we geR + 2 >
s(M)+s(M") > s(MNM")+s(MUM'’) > 243, a contradiction. Here we usedM NM') > 2
(sincesu, sv is anr-admissible2-split) ands(M U M’) > 3 (by the maximality ofM).

Thus we can assume that (6) holds. Dét=V — (M U M’). We obtain2 + 2 > s(M) +
s(M') > s(M—-M")+s(M'—M)+2d(N+s, MNM') > 2d(N +s, MNM"). The existence
of the edgesu, sv implies that the right-hand side is at ledstlIt follows that equality holds
everywhere, in particulat(M — M') = s(M' — M) = 0 andd(N + s, M N M') = 2 must hold.
ThereforeM — M’ andM’ — M are both tight and by Claim 3.2 we havgs, M — M), d(s, M'—
M) < D. In this casel(s, N) = 0 would imply2D + 2 > d(s) = 3D and henceD = 2. Thus
H would be &-obstacle (by takind/, = M andM, = M’ in the definition), a contradiction.

This showsi(s, N) > 1. Let us pick an edgec with ¢ € N. As above, it can be seen that
u, v, cis alegal triple and eithet is the desired edge or there is a maximal badigétontaining
u, v, c. In the latter case we can apply Proposition 2.3t@and )" and toM’ andM”, as above,
and conclude that/ — M"”, M" — M, M' — M", M" — M" are all tight. Since (9) holds and
these bad sets are pairwise distinct and maximal, it followsithat)M’ = M M” = M' N M"
andM UM UM"=MnM n0M"U{a,b,c}.

Claim 5.7 There is an edge it/ froma to M — a (and similarly fromb to M’ — b and fromc to
M" — ¢).
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Proof: Suppose that no such edge exists and first consider the case{hénis attained on a
pairz,y with x € M — a. In this caseR(M — a) > R(M) and sincel(a) > 2 we conclude that
d(M —a) < d(M)—2and hencel/ —a is tight. Sinceu, v € M —a, this contradicts the fact that
su, sv is anr-admissible2-split. In the other case, whe(M) = r(a, y) for somey € V — M,
we haveR(M) < R(a) < d(a) < d(M) —d(M —a) < R(M)+2—2 = R(M), and hence
d(M — a) = 2 must hold. Thus, since > 2, we haveR(M — a) > 2 and hence the sét/ — a

is tight. Sinceu,v € M — a, this contradicts the fact that tResplit su, sv is r-admissible. This
proves the claim. °

The edge froma to M"” —c = M NM’, which exists by Claim 5.7, implies thétc, M/NM') >
1. Together with the edges, sv this givesd(N + s, M N M') > 3, a contradiction. This proves
the lemma. °

By Claim 3.3 the proof is complete once we can show-aumissible and feasiblesplit in
G. If |B| = 3 then we are done by Lemma 5.3. Supp@sec {0, 2}. In this case, starting from
G, let us contract non-singleton tight sets as long as possible agd let (V' + s, E') andr’
denote the resulting graph and requirement function, respectively. By Lemmd daBisfies (8)
with respect td/’ andr’ and by construction (9) holds. Note that the degree specification for
in G and inG’ are the same (hend¥s) = 3D > 6).

Let us choose arradmissible2-split su, sv in G in such a way that andv are chosen from
distinct cores in the case whénhas precisely two cores. By Theorem 2.5 and by Lemma 3.6
this can be done. By Lemma 4.2 the correspon@isplit su’, sv’ is r’-admissible inG’. Thus
by Lemma 5.5 and Lemma 5.6 there exists-aadmissible3-split su’, sv’, sz’ in G'. Applying
Lemma 4.4 we can see that the correspondisplit su, sv, sz is r-admissible inG. By the
choice of the pairu, sv and by Claim 3.4 thig-admissible3-split in G is feasible as well. This
completes the proof of Theorem 3.1. °

6 Applications and corollaries

It is easy to see that in Theorem 2.5 it is sufficient to considedge-connected graphs. Thus
Theorem 2.5 follows immediately from Theorem 3.1 by takig= (2,2,...,2) andr = r,.
Note that in this case condition (7) is void.

The special case of Theorem 3.1, whes r, andS is arbitrary, was posed as a conjecture
by Fleiner [1]. In the same paper Fleiner proved the following ‘global edge-connectivity’ version
of our result. Let us call a detachméntadmissiblefor somek > 2 if it is r-admissible for the
uniform requirements(u, v) = k. This result is also an immediate corollary of Theorem 3.1.

Theorem 6.1 [1] Suppose thati = (V + s, F) is k-edge-connected i (for somek > 2) and
letS = (dy, ..., d,) be a degree specification with,_, d; = d(s) andd; > 2,1 < j < p. There
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exists ak-admissibleS-detachment of if and only ifG — s is y-edge-connected, where
y=k=>Y |d/2]. (10)
i=1

Theorem 6.1 extends a theorem of lage’[5] on edge splittings preserving global edge-
connectivity the same way as Theorem 3.1 extends Theorem 2.5. Another application of The-
orem 6.1, which was pointed out by Fleiner [1], is the following theorem of Nash-Williams
[8]. Given a collection of degree specificatiofis, one for each vertex of G, a simultane-
ous S-detachments obtained fromG by applying anS,-detachment at, for each vertex,
simultaneously.

Theorem 6.2 [8] Let G = (V, E) be a graph and let a degree specificatin = (dy, ..., d; )
be given for each vertex € V. ThenG has ak-edge-connected simultaneabisietachment if
and only ifG is k-edge-connected antf > k for everyv € V, 1 <i < p,, unlessk is odd and
eitherG has a cut-vertex with S, = (k, k), or V = {u,v} andS, = S, = (k, k).

It would be interesting to prove some kind of local edge-connectivity version of Theorem
6.2, using Theorem 3.1.

In what follows we apply Theorem 3.1 to deduce a new result. In local edge-connectivity
augmentation problem a gragh = (V, E') and a requirement functionw, v), u,v € V are
given, and the goal is to find a smallest gétof new edges for which the augmented graph
satisfies the requirements, that is, for whictGh= (V, E + F') we have\ (u,v) > r(u,v) for
each pain, v € V. This problem was solved, in terms of a min-max equality and a polynomial
algorithm, by Frank [3]. A possible extension of this problem has the same input, but instead of
adding edges (or equivalentttachingdegree-two vertices) the goal is to attach stars of some
given size. In such a ‘star-attachment’ the centers of the stars are required to be disjoiht from
and from each other and their leaves are incidemf.to

For convenience, we assum@u,v) > 2 for each pairu, v. Without this assumption one
has to deal with the so-called “marginal components’ as well, see [3]. The extension to arbitrary
requirements can be done following [3]. We leave these details to the reader.

Let G = (V, E) and a requirement function(u,v) be given along with a set of integers
di,....,d, (dj > 2). Let R(X) = max{r(u,v) : v € X,v € V — X} be defined for each proper
subsetX of V and letg(X) = R(X)—d(X). A component of7 is called anarginal component
if (W) < 0foreverylW C C andq(C) < 1 hold. For simplicity, we assum& has no marginal
components with respect io (The extension to arbitrary requirements can be done following
[3]. We leave these details to the reader.)

Theorem 6.3 Let a graphG = (V, E') and local edge-connectivity requirements, v), u,v €
V' be given such that there is no marginal componer@inThenG can be augmented to satisfy
the requirements(u, v) by attachingp stars with degrees,, ...,d, (d; > 2,1 < j < p) ifand
only if

t p

PINCORDI (11)

i=1
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holds for every subpartitiof X, ..., X;} of V-and Aq(u,v) > r(u,v) — >°7_, |d;/2] for every
pair u,v € V.

Proof: Let H be a properly augmented graph. By Menger’s theorem we mustdag) >
R(X) = d(X) + ¢(X) for every X C V. This shows (11) holds. Observe thdtcan be
obtained fromG by adding a new vertex, creating a grapli’ = (V + s, E’) that satisfies all
the requirements il and hasi(s) = >_%_, d;, and then executing anadmissible(d,, ..., d,)-
detachment at in G'. This gives rise to the second necessary condition.

Now we prove these conditions together are su1°ficientﬁ_et2§.’:1 d;. Sinced_q(X;) <
for every subpartitiod X1, ..., X;}, we can apply [3, Lemma 5.6] and conclude thatan be
extended to a grapi’ = (V + s, E’) by adding a new nodeand edges betweel ands so
that no edge incident tois a cut-edge irz" and\'(u, v) > r(u, v) holds for each pait, v € V.
It is easy to see that we may assume thas 2-edge-connected and thus we may asstrhe2.
Using the fact thak(u, v) > r(u,v)—>_|d, /2| for every pairu, v € V, we can apply Theorem
3.1 and obtain an-admissibleS-detachment of. This yields the required augmentation®f
[ ]

Based on Theorem 6.3 we can easily solve the following optimization problem: @lyen
r and an integetv, determine the minimum number of-stars that, by attaching them appro-
priately, can maké- satisfy all the local edge-connectivity requirements, v). If w = 2 (or
equivalently, ifd; = 2 for 1 < < pin Theorem 6.3), then we are back at Frank’s theorem [3].

Theorem 6.4 [3] Given a graphG = (V, E') and local edge-connectivity requirements:, v)
for each pairu,v € V such thatG has no marginal components, can be augmented to sat-
isfy the requirements(u, v) by addingp new edges if and only ¥ (¢(X;)) < 2p for every
subpartition{ X, ..., X;} of V.

7 Extensions and algorithmic remarks

In this section we show some extensions of Theorem 3.1 which apply even if we drop our previ-
ous assumptions (@) > 2, and (b)G is 2-edge-connected.

First letG = (V + s, E) andr be given as in Theorem 3.1 but suppose that in the degree
specificationS = (dy, ..., d,) we haved; = 1 for some (say, precisely) indicesl < i < p.
Condition (7) is clearly necessary to haveraadmissibleS-detachment in this case, too. Since
the degree-one vertices and the edges incident to them, created by some detachment, does not
influence the local edge-connectivity valuedinit is easy to see that @& has an--admissible
S-detachment then we can delétedges incident te in G in such a way thak(u, v) > r(u,v)
is maintained fom, v € V' and (7) is preserved. By Theorem 3.1 we can prove that the converse
also holds.

Theorem 7.1 There exists am-admissibleS-detachment irG = (V' + s, E) if and only if (7)
holds and>"'_, ¢(X;) < d(s) — b for every subpartitio X1, ..., X;} of V.
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Proof. (sketch) The theorem follows from Theorem 3.1 and the following result of Frank (cf. [3,
Lemma 5.6]): if there are no cut-edges incident to G then at leash edges incident te can be
deleted in such a way thatremains proper (that i} (X) > R(X) holds in the resulting graph

G’ for every() # X C V)ifand only if > q(X;) < d(s) — b for every subpartitiod X, ..., X;}

of V. °

In our problem of finding an-admissibleS-detachment of, if exists, we may clearly assume
that the input grapli- = (V' + s, E) is connected. In addition, if > 1 (that is, connectedness
has to be preserved) then we can assume that the cut-edges, if exist, are all incidémirtbat
follows we sketch how to handle these cut-edges. We shall assaimieand that- is proper.

Suppose that we havecut-edges incident te and letG = (V + s, E) denote the graph
obtained fromG by deleting all the cut-edges incident4@s well as those components of the
resulting graph that do not containLet # be the restriction of to V. 7 is either a single vertex
{s} oris2-edge-connected. The former case is trivial: either 1 or there is na--admissible
detachment. In the latter case we may assume 2. It can be seen that arradmissiblesS-
detachment exists it¥ if and only if G has anf-admissibleS = (fi1,..., fp)-detachment for
some integerg; with > f; = > d; —candl < f; < d;, 1 < i < p. The existence of such a
detachment (and more generally, the problem of finding’admissible detachment efwith
prescribed lower and upper bounds for each number of the possible degree specification) can be
solved by Theorems 3.1 and 7.1. We omit the detalils.

We do not attempt to describe an efficient algorithm for finding-amissibleS-detachment
in this paper. We note, however, that our proof is algorithmic and easily implies a polynomial
algorithm for this problem as well as for the problem of optimally augmenting a graph by attach-
ing stars of some given size. This follows from the fact that checking whethspét or 3-split
is r-admissible and feasible is easy by max-flow computations. For the special case of finding
ry-admissible2-splits (as in Theorem 2.5) Gabow [4] developed an efficient algorithm.
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