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Wavelet Based 3D Compression for Very
Large Volume Data Supporting Fast

Random Access

Flemming Friche Rodler

October 29, 1999

Abstract

We propose a wavelet based method for compressing volume-
tric data with little loss in quality. The method supports fast
random access to individual voxels within the compressed vol-
ume. Such a method is important since storing and visualising
very large volumes impose heavy demands on internal memory
and external storage facilities making it accessible only to users
with huge and expensive computers. This problem is not likely to
become less in the future. Experimental results on the CT dataset
of the Visible Human have shown that our method provides very
high compression rates with fairly fast random access.

1 Introduction

Volumetric datasets tend to demand enormous memory requirements. To
exemplify we introduce the Visible Human datasets which were acquired
around the mid 90’s by the National Library of Medicine’s (NLM). The
datasets consist of computerised tomography (CT), magnetic resonance
imaging (MRI) and colour cryosection images of representative male and
female cadavers [10]. The effort was done in order to create three di-
mensional representations of the human body to further development in
health, education, research and treatment applications. In the male data
set, 1871 cross-sectional images taken at 1mm intervals exist for each
modality (CT,MRI and cryosectional), making up about 15 Gbytes of
volumetric data. The cryosectional images of the Visible Female consist
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of images taken at one-third the spacing of the male resulting in a dataset
of about 40 Gbytes.

Because of memory issues, the working of volumes having these pro-
portions is not practical on ordinary workstations and personal comput-
ers, even taking the rapid development of larger memory and storage
capabilities into account. This makes the data available only to users
with access to huge and expensive computers. To mend this and in or-
der to make the data available to a wider audience, data compression
can be utilised to reduce not only external storage but also memory re-
quirements. What is needed is a method allowing the user to load a
compressed version of the volume into a small amount of memory and
enable him to access and visualise it as if the whole uncompressed vol-
ume was present. Such a compression scheme must necessarily allow fast
random access to individual voxels within the compressed volume.

Until recently, most of the research effort in lossy compression has
mainly been focusing on lossy compression of still images or time se-
quences of images such as movies. The aim of these methods is to obtain
the best compression rate while minimising the distortion in the recon-
structed images. Often this limits the random accessibility. The rea-
son being that often these compression schemes employ variable-bitrate
techniques such as Huffman (used in JPEG and MPEG) and aritmethic
coders [21] or differential encoders such as the adaptive differential pulse
code coder [21].

Recently, though, techniques dealing with the issue of compression
with fast random access in volumetric data have been emerging and in
this paper we propose a new novel method.

The rest of this report is divided as follows. In Section 2 we present
the necessary preliminaries which will explain the underlying wavelet
theory used throughout the paper. The theory will be presented by
means of multiresolution analysis, since this is a convenient framework
for describing not only wavelets and their properties but also how the
fast wavelet transform is computed. Section 3 contains a short survey of
previous work done in this area, while Section 4 presents our contribution
- a newly developed scheme that allows fast random access to individual
voxels within the compressed data. Finally we make concluding remarks
in Section 5.
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2 Preliminaries

In this section we present the underlying mathematical foundations of
wavelet theory and hierarchical decomposition. We start by present-
ing the multiresolution analysis (MRA) concept which can be used as a
method for describing hierarchical bases. This will lead to the definition
of wavelets and the fast wavelet transform.

2.1 Multiresolution Analysis

The theory of multiresolution analysis was initiated by Stéphane Mallat
[13] and Yves Meyer1.

2.1.1 Definition

Definition 1 (Multiresolution Analysis) A multiresolution analysis
(MRA) is a sequence (Vj)j∈Z of closed subspaces of L2(R) satisfying the
following five properties:

1. ∀j ∈ Z : Vj ⊂ Vj+1

2.
⋂

j∈Z Vj = {0}

3.
⋃

j∈Z Vj = L2(R)

4. f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1

5. ∃φ ∈ V0 such that {φ(x−k)}k constitutes an orthonormal basis for
V0.

The first and third property of the definition gives us the approximation
feature of the MRA. The third states that any function in L2(R) can
be approximated arbitrarily well by its projection onto Vj for a suitably
large j, i.e. if PVj

denotes the projection operator onto Vj then:

lim
j→∞

‖f − PVj
f‖ = 0. (1)

The first property is a causality property which guarantees that an ap-
proximation at a resolution 2j contains all the information necessary
to compute an approximation at a coarser resolution 2j−1. The second

1Yves Meyer, 1986 - Ondelettes, fonctions splines et analyses graduées. Lectures
given at the University of Torino, Italy
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property proves that as j tends toward −∞ the projection of f onto
Vj contains arbitrarily little energy, or stated differently we lose all the
details of f when the resolution 2j goes to zero:

lim
j→−∞

‖PVj
f‖ = 0. (2)

The aspect of MRA comes with the fourth property which tells us
that the resolution increases with j and that all the spaces are scaled
versions of each other2.

As a direct consequence of properties (4) and (5) we have that {φj,k =

2
j
2 φ(2jx − k)}k∈Z constitutes an orthonormal basis for Vj . Since the

orthogonal projection of f onto Vj is obtained by the following expansion:

PVj
f =

∞∑
k=−∞

〈f, φj,k〉φj,k, (3)

we have that

aj [k] = 〈f, φj,k〉, (4)

provides a discrete approximation of f at scale 2j. The functions φj,k

are called scaling functions. The requirement for the φj,k’s to generate
orthonormal bases for the Vj’s is a bit strict and it can be shown that we
need only require that they generate a Reisz basis for the MRA spaces,
see e.g. [4].

2.1.2 Example

As an example of a multiresolution analysis we introduce the Haar MRA
[7] where the approximations are composed as piecewise constant func-
tions. The MRA spaces are defined as Vj = {f ∈ L2(R) : ∀k ∈
Z , f |[k2−j,(k+1)2−j ] = Constant} and the scaling functions are gener-
ated from the box function 1[0,1]. The properties in the definition of a
MRA are easily verified.

2.2 Wavelets

The basic tenet of multiresolution analysis is that whenever there exists
a sequence of closed subspaces satisfying Definition 1 then there exists
an orthonormal wavelet basis {Ψj,k}j,k given by the following definition:

2Henceforth resolution and scale will be use interchangeably

4



Definition 2 (Wavelet) A wavelet is a function Ψ ∈ L2(R) chosen
such that the dyadic family:

Ψj,k(x) = 2
j
2 Ψ(2jx − k), k, j ∈ Z, (5)

of functions constitutes an orthonormal basis for L2(R). Ψ is often re-
ferred to as the mother wavelet since it generates the whole family.

This family of functions is called the dyadic wavelet family since it is
generated by dyadic dilates and translates of a single function Ψ. Given
the above definition we can write the dyadic wavelet transform as:

Cj,k = 〈f, Ψj,k〉 =

∫
R

f(x)Ψ∗
j,k(x)dx, k, j ∈ Z, (6)

with Ψ∗
j,k(x) denoting the complex conjugate of Ψj,k(x). The reconstruc-

tion formula becomes:

f(x) =
∑

j

∑
k

Cj,kΨj,k(x). (7)

The connection to multiresolution analysis arises because the function f
at scale 2j, i.e. PVj

f , can be written as:

PVj
f = PVj−1

f +
∑

k

〈f, Ψj,k〉Ψj−1,k, (8)

where Ψ is a wavelet and the summation describes the “detail” necessary
to go from the coarser space PVj−1

to the finer space PVj
. In the following

this will be formalised.

For every j ∈ Z we define the complement space Wj as the orthogonal
complement of Vj in Vj+1, i.e.: Wj = Vj+1 ∩ V ⊥

j . We can then write Vj+1

as

Vj+1 = Vj ⊕ Wj , (9)

where ⊕ is the orthogonal direct sum. By definition all of the spaces Wj

satisfy

Wj⊥Wj′ for j 6= j′, (10)
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since for j > j′ : Wj′ ⊂ Vj⊥Wj . By the definition of the complement
spaces and by iteration it follows that for J < j:

Vj = VJ ⊕
j−1⊕
l=J

Wl. (11)

Because VJ → {0} for J → −∞ in L2(R) this implies

Vj =

j−1⊕
l=−∞

Wl. (12)

Again by noticing that Vj → L2(R) when j → ∞ we get

L2(R) =

∞⊕
l=−∞

Wj , (13)

which by virtue of (10) implies that we have decomposed L2(R) into a
set of mutually orthogonal subspaces. Since it is easy to prove that the
complement spaces Wj inherit the scaling property:

f(x) ∈ Wj ⇔ f(2x) ∈ Wj+1, (14)

all we need to do in order to construct a wavelet basis is to find a function
Ψ ∈ L2(R) such that {Ψ(x − k)}k∈Z constitutes a basis for W0. Then
for a fixed j ∈ Z we have that {Ψj,k}k∈Z is an orthonormal basis for
Wj. Finally we have by means of (13) that {Ψj,k}(j,k)∈Z2 constitutes an
orthonormal basis for L2(R). Finding the functions φ and Ψ is generally
nontrivial and it requires some mathematical work.

2.2.1 Example

In the previous example we introduced the Haar MRA. The correspond-
ing Haar wavelet is given as:

Ψ(x) =




1 for 0 ≤ x < 1
2

−1 for 1
2
≤ x < 1

0 otherwise

(15)
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2.2.2 Properties

In compression and many other applications we use the ability of wavelets
to efficiently approximate many different signals with few nonzero wavelet
coefficients. Much of this ability can be attributed to the properties of
the wavelets given in the following list.

• Support: The support of a wavelet is given by the following clo-
sure:

supp(Ψ) = {x ∈ R : Ψ(x) 6= 0} (16)

If there exist a, b ∈ R such that supp(Ψ) ⊂ [a, b] then Ψ is said
to be compactly supported. There are two main reasons why a
wavelet with a small support is preferable in compression. Firstly
if the function f(x) that we want to compress has a singularity at
x′ within the support of Ψj,k then 〈f, Ψj,k〉 might have large mag-
nitude. Now if Ψ has compact support with width S then at each
scale j the support of Ψj,k will include x′ S times. This makes it
desirable to have S as small as possible. Secondly as we shall see
in section 2.3.2 a small support for the wavelet implies faster de-
composition and reconstruction algorithms. This is essential since
we are aiming for small reconstruction times.

• Vanishing moments: A function Ψ is said to have n vanishing
moments if the following holds true

∫
R

xkΨ(x)dx = 0 for k = 0, .., n− 1. (17)

Many signals can be approximated well piecewisely by low order
polynomials of degree p. So if the analysing wavelet has n > p
vanishing moments this results in wavelet coefficients close to zero.
Unfortunately vanishing moments come at the expense of wider
support ([14, p.241-245]). In fact, for orthogonal wavelets with n
vanishing moments the width of the support will be at least 2n−1.
The Daubechies wavelets are optimal in this respect. If we expect
our signals to be highly regular with only a few isolated singularities
then wavelets with many vanishing moments are preferable. On the
other hand wavelets with small support might be the better choice
if our signals are expected to contain many singularities.
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• Smoothness: The smoothness or regularity of a wavelet is usu-
ally measured in terms of the number of continuous derivatives it
has. Smooth wavelets are important in lossy compression of images.
In lossy wavelet based compression, errors are mostly introduced
during quantisation of the wavelet coefficients. We see from the
reconstruction formula:

f(x) =
∑
j,k

Cj,kΨj,k(x) (18)

that if the wavelet coefficient Cj,k is changed by ε the error εΨj,k will
be added to f(x). If Ψ is smooth the introduced artefact will also be
smooth and smooth artefacts are perceptually less annoying than
irregular ones. Smoothness comes at the expense of larger support
[14, pp 241-245].

• Symmetry: Wavelets that are symmetric or antisymmetric are
important for several reasons. The wavelet transform is a trans-
form over signals in L2(R). In order to transform a signal with
finite support (i.e. in L2([0, N ])) it must be extended to L2(R).
To this end several ways of performing the extension exist, many
resulting in boundary effects in the wavelet domain (i.e. high co-
efficients) near 0 and N. This is undesirable for many applications
especially compression. Symmetric or antisymmetric wavelets al-
low for (anti)symmetric extensions at the boundaries which partly
solves the problem.

Symmetric and antisymmetric wavelets are synthesised with filters
having linear phase. Wavelets and their synthesising filters are
introduced in section 2.3. The linear phase property of the filters
are important for some applications.

• Orthogonality: Daubeschies [4] proved that except for the Haar
basis there exists no symmetric or antisymmetric real orthogonal
compactly supported wavelet bases. By giving up orthogonality
and allowing for biorthogonal wavelet bases it is possible to con-
struct compactly supported (anti)symmetric wavelet bases [4, 14].

• Localisation: Wavelets with small support or rapid decay toward
zero are said to be well localised in the spatial domain. In contrast is
localisation in the spectral or frequency domain which is important
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for some applications. The Heisenberg uncertainty principle3 [8]
gives a bound on how localised a function can be simultaneously in
time and frequency:

σ2
t σ

2
ω ≥ 1

4
, (19)

where

σ2
t =

∫
R

(t − tc) |g(t)|2 dt σ2
ω =

∫
R

(ω − ωc) | ĝ(ω)|2 dω, (20)

denotes the standard deviation from the centres of gravity given
by:

tc =

∫
R

t |g(t)|2 dt ωc =

∫
R

ω | ĝ(ω)|2 dω. (21)

Thus good spatial localisation comes at the expense of poorer local-
isation in frequency. For a wavelet basis, which consists of scaled
versions of the mother wavelet, this means that high frequencies
(small scale) are analysed with good positional accuracy whereas
low frequencies (large wavelets) are analysed more accurately in
frequency. This adaption to frequency is contrary to other time-
frequency analysis methods such as the windowed Fourier trans-
form and it is an important property in e.g. sound processing and
analysis.

2.3 The Fast Wavelet Transform and its Inverse

The fast wavelet transform (FWT) decomposes the signal f in the wavelet
basis by recursively convolving the signal with filters H and G. Assume
that we have a function fJ ∈ VJ given by

fJ(x) =
∑

k

aJ,kφJ,k ∈ VJ , (22)

with

aJ,k = 〈fJ , φJ,k〉 =

∫
R

fJ(x)φ∗
J,k(x)dx. (23)

3The Heisenberg uncertainty principle originate from quantum mechanics, but is
in fact a general property of functions.
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The fast wavelet transform then computes the wavelet coefficients of the
discrete signal

aJ [k] = aJ,k, (24)

where each sample of aJ [k] according to (23) is a weighted average of f
around a neighbourhood of f with averaging kernel φJ,k. We will now
look at the FWT of a signal fJ .

We have fJ ∈ VJ = VJ−1⊕WJ−1 and thus there exist sequences aJ−1,k

and dJ−1,k such that:

fJ(x) =
∑

k

aJ−1,kφJ−1,k(x) +
∑

k

dJ−1,kΨJ−1,k(x). (25)

Because of property (1) of an MRA the sequences aJ−1,k and dJ−1,k can
be computed as:

aJ−1,k = 〈fJ , φJ−1,k〉 =

∫
R

f(x)φ∗
J−1,k(x)dx. (26)

dJ−1,k = 〈fJ , ΨJ−1,k〉 =

∫
R

f(x)Ψ∗
J−1,k(x)dx. (27)

Repeating on aJ−1,k the coefficients dJ−2,k, dJ−3,k, . . . , can be computed.
So the FWT successively decomposes the approximation PVj

f into a
coarser approximation PVj−1

plus the wavelet coefficients PWj−1
.

Unfortunately computing the wavelet coefficients by means of (26)
and (27) would not be very efficient. We find hope in the following
theorem, which is due to Mallat [13].

Theorem 1 (The fast orthogonal wavelet transform) For an or-
thogonal wavelet basis there exist filters H = {hn}n and G = {gn}n such
that:

aj−1,k =
∑

n

hn−2kaj,n. (28)

dj−1,k =
∑

n

gn−2kaj,n. (29)

Similarly the inverse computation is given by:

aj,k =
∑

n

hk−2naj−1,n +
∑

n

gk−2naj−1,n. (30)
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Proof: See [14, pp. 254-256].

Theorem 1 connects wavelets with filter banks. The convolution in
(28) and (29) can be interpreted as filtering the signal aj with filters
H and G respectively as illustrated in Figure 1. Note that because of
the 2k in the sum a dyadic downsampling takes place. This is important
since the downsampling ensures that the data is not doubled. The inverse
transform in (30) first upsamples by inserting zeros and then interpolates
by filtering its input signals aj−1 and dj−1 to obtain the reconstructed
signal aj.

H

G

2

2

H

G

2

2

j-1a

dj-1

j-2d

aj-2

aj

H

G2

2

H

G2

2

dj-1

aj

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Figure 1: A 3-channel filter bank for computing a two level wavelet decom-
position and its inverse.

2.3.1 Example

The Haar wavelet corresponds to two-tap filters given by H = [ 1√
2
, 1√

2
]

and G = [ 1√
2
,− 1√

2
]

2.3.2 Complexity

A finite signal aJ [k] cannot be decimated indefinitely. The iterative pro-
cess must at least terminate when there is only one approximation coef-
ficient a0 left. Normally, for compression purposes only a few iterations,
say 2 to 5, are applied. For L iterations the wavelet decomposition is
composed of the wavelet coefficients at scale 2J−L ≤ 2j < 2J plus the
remaining approximation coefficients at scale 2J−L. The time complexity
of the algorithm is easy to analyse. If we start with N samples and two
filters H and G having at most K filter coefficients then:

KN +
KN

2
+

KN

4
+ · · ·+ 1 ≤ 2KN,

is an upper bound on the number of additions and multiplications that
will be performed. Table 1 shows the filter length given the support of
some well known wavelets.

11



Wavelet family Haar Daubechies (dbN) Coiflets Symlets
Order 1 N N N

Support width 1 2N-1 6N-1 2N-1
Filter length 2 2N 6N 2N

Vanishing moments 1 N 2N N

Table 1: How filter length depends on the support of some well known wave
lets.

2.3.3 Initialisation

As mentioned in the beginning of section 2.3 the FWT computes the
wavelet coefficients of a discrete signal aJ [k] given by

aJ [k] = 〈f, φJ,k〉, (31)

meaning that aJ [k] is a local average of f ∈ VJ around k but not precisely
equal to f(k). So we need to find aJ [k] from f in order to start the
algorithm. Often this is omitted and the algorithm is applied directly on
a sampled version f [n] of f . Frequently f [n] is given as samples recorded
by a device of finite resolution such as a CCD camera or NMR scanner
that averages and samples an analog signal, so without information about
the averaging kernel of the sampling device, decomposing the samples
f [n] is justified.

2.4 Multidimensional Bases

The above constructions have been concerned with the task of decompos-
ing functions in L2(R). In order to analyse multidimensional functions
these techniques must be extended to L2(Rn). We now illustrate how this
extension is done for two dimensions, higher dimensions are analogous.

If {Vj}j is a MRA of L2(R) then the tensor spaces defined as {V 2
j =

Vj ⊗Vj}j∈Z constitute a separable two dimensional MRA for L2(R2) and
in the case where {φj,k}k∈Z is an orthonormal basis for Vj , the product
functions {φ2

j,k,l = φj,k(x)φj,l(x)}(k,l)∈Z2 form an orthonormal basis for
V 2

j . As for the one dimensional case this allows for the definition of the
complement spaces W 2

j . We have

V 2
j+1 = Vj+1 ⊗ Vj+1 (32)

= (Vj ⊕ Wj) ⊗ (Vj ⊕ Wj)

= V 2
j ⊕ [(Vj ⊗ Wj) ⊕ (Wj ⊗ Vj) ⊕ (Wj ⊗ Wj)].

12



This shows that

{Ψ2,λ
j,k,l : λ ∈ {v, h, d}}(k,l)∈Z2, (33)

with the mother wavelets

Ψ2,v = φ(x)Ψ(y) , Ψ2,h = Ψ(x)φ(y) , Ψ2,d = Ψ(x)Ψ(y), (34)

is an orthonormal basis for W 2
j and therefore {Ψ2,λ

j,k,l}(j,k,l)∈Z3 is a or-
thonormal basis for L2(R2).

The interpretation of the wavelets in terms of filters carries over from
the one dimensional case and we obtain separable 2D filters

h[x, y] = h[x]h[y] , gv[x, y] = h[x]g[y] (35)

gh[x, y] = g[x]h[y] , gd[x, y] = g[x]g[y].

Filtering with these corresponds to filtering first along the rows of the
discrete signal and then along the columns. After filtering downsampling
in each direction is performed. This is illustrated in Figure 2.

H

L LL

SubsampleFilterFilter

HH

HL

LH

Figure 2: One decomposition level of a 2D wavelet transform.

2.4.1 Example

Using the filters of the previous example we see that the two dimensional
Haar decomposition is given by

all = ((a1 + a2)/
√

2 + (a3 + a4)/
√

2)/
√

2 = (a1 + a2 + a3 + a4)/2,
(36)

dlh = ((a1 + a2)/
√

2 − (a3 + a4)/
√

2)/
√

2 = (a1 + a2 − a3 − a4)/2,
(37)

dhl = ((a1 − a2)/
√

2 + (a3 − a4)/
√

2)/
√

2 = (a1 − a2 + a3 − a4)/2,
(38)

dhh = ((a1 − a2)/
√

2 − (a3 − a4)/
√

2)/
√

2 = (a1 − a2 − a3 + a4)/2,
(39)
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where ai on the right side of the equations are coefficients in a 2 × 2
sub-block. all is the average and the dxx’s are the detail coefficients.
Reconstruction is given by

a1 = (all + dlh + dhl + dhh)/2, (40)

a2 = (all + dlh − dhl − dhh)/2, (41)

a3 = (all − dlh + dhl − dhh)/2, (42)

a4 = (all − dlh − dhl + dhh)/2. (43)

Instead of dividing by 2 in Equation (36)-(39) we can divide by 4. That
way the 2 in the reconstruction equation becomes 1 for easier computa-
tion.

2.5 Thresholding

In 2.2.2 we pointed out that the wavelet representation for many func-
tions is able to concentrate most of the energy in a small number of
wavelet coefficients with the rest of the coefficients being zero or close
to zero. By setting all the small valued coefficients to zero a very sparse
representation can be obtained and exploited for compression purposes.
For an orthonormal wavelet transform this thresholding of the coefficients
corresponds to a global optimal approximation in terms of the L2-norm
and the introduced error expressed as a mean square error (MSE) is given
by:

MSE =
1

N

∑
k

(xk − x̂k)
2 =

1

N
(x − x̂)T · (x − x̂) (44)

=
1

N
(W TW (x − x̂))T · (W T W (x − x̂))

=
1

N
((y − ŷ)T · WW T · ((y − ŷ)

=
1

N

∑
k

(yk − ŷk)
2,

where W is an orthonormal transform and the xk and x̂k are the original
and reconstructed signal and the yk and ŷk are the transform coefficients
before and after thresholding. As a consequence one can explicitly give
the exact error that occurs due to thresholding. For the case of biorthog-
onal bases property (44) fails. Note that if we want to divide by 4 in
(36)-(39) and by 1 in (41)-(43) the property also fails. Instead we can
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use equation (36)-(39) as is, and then after the thresholding do a rescaling
of the coefficients.

3 Survey of Previous Work

In [15, 16] Muraki introduced the idea of using wavelets to efficiently
approximate 3D data. The 2D wavelet transform was extended to 3D
and it was shown how to compute the wavelet coefficients. By setting
small coefficients to zero the author showed that the shape of volumetric
objects could be described in a relatively small number of 3D functions.
The motivation for the work was to obtain shape descriptions to be used
in for example object recognition and no results on storage savings were
reported. The potential of wavelets to reduce storage is evident, though.

Motivated by the need for faster visualisation, a method for both
compressing and visualising 3D data based on vector quantisation was
given by Ning and Hesselink [17]. The volume is divided into blocks of
small size and the voxels in each block are collected into vectors. The
vectors are then quantised into a codebook. Rendering by parallel projec-
tion is accelerated by preshading the vectors in the codebook and reusing
precomputed block projections. Since accessing of a single voxel is re-
duced to a simple table lookup in the codebook fast random access is
supported. Compressing two volumes of size 1283, a compression factor
of 5 was obtained with blocking and contouring artifacts being reported.

Burt and Adelson proposed the Laplacian Pyramid [2] as a compact
hierarchical image code. This technique was extended to 3D by Ghavam-
nia and Yang [6] and applied to volumetric data. Voxel values can be
accessed randomly on the fly by traversing the pyramid structure. Since
there is high computational overhead connected with the reconstruction,
the authors suggest a cache structure to speed up reconstructions during
ray casting. They achieve a compression factor of about 10 with the
rendered images from the compressed volume being virtually indistin-
guishable from the images rendered from the original data.

Several compression methods, both lossless and lossy, for compressing
and transmitting Visible Human images were presented and compared by
Thoma and Long [25]. Among the lossy schemes, which as expected out-
performed the lossless ones, the scheme based on wavelets did best. The
wavelet method that Thoma and Long suggest compresses the images
individually and consists of three steps comprised of a wavelet transform
followed by vector quantisation with Huffman or runlength coding of
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the quantisation indices. This makes it a traditional 2D subband coder
and compression factors of 20, 40 and 60 were reported with almost no
visible artifacts for a factor of 20. The coder does not allow for fast
random access to individual voxel as it was mainly designed for storage
and transmission purposes. Also there is no exploitation of interpixel
correlation/redundancies between adjacent slices.

The above methods all have in common that they support either high
compression ratios or fast random access, but not both. This situation
changed with the method proposed by Ihm and Park [12, 11]. This state
of the art algorithm is able to compress CT slices of the Visible Human
and compression ratios of up to 28 were presented, still with good fidelity
of the reconstructed slices. The algorithm utilises a 3D wavelet trans-
form setting insignificant wavelet coefficients to zero. This results in a
very sparse representation which is coded by dividing the transformed
volume into unit blocks and coding the blocks separately using a data
structure that takes the spatial coherency of the wavelet coefficients into
consideration.

As one of the three spatial dimensions can be considered as similar
to time, 3D compression can borrow good ideas from research in video
compression.

Chen and Said suggested to use a three-dimensional subband trans-
form to code video sequences [3]. After the transform and quantisation
has been applied the surviving wavelet coefficients are coded using the
zero-tree technique developed in [22] and further improved and refined
in [19, 20]. However, in [24] it is shown that better performance can
be realised if motion compensation is performed before the 3D trans-
form. These observations have led us to propose a new coding scheme
for wavelet based compression of very large volume data with fast random
access. In the following section we present this method.

4 New Coder

4.1 General Overview

First we present a black-box overview of both the encoder and the de-
coder, depicted in Figure 3, for our new compression scheme of volumetric
data. Detailed explanation of each step will be given afterwards. A new
observation making our coding strategy significantly different from the
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earlier methods is that even though the data is genuinely volumetric in
nature, we are not confined to treating it as such. Instead we can treat it
as a sequence of two dimensional slices in position or time and draw on
results developed in the area of video coding. A major issue in video cod-
ing is the removal or exploitation of temporal redundancy or correlation.
As mentioned in the previous section it was reported in [24] that combin-
ing a 3D wavelet transform with motion compensation techniques exploit
temporal correlation to a greater extent than a 3D transform alone.

Reconstruct
Prediction

Volume Decoder

Volume Encoder

Encoding

Wavelet
Indicies

Indicies
Residual

Prediction &
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Figure 3: Overview of the encoder and the decoder.

4.1.1 Volume Encoder

Figure 3 depicts the four basic stages of our encoder together with the
corresponding stages of the decoder. When designing our new coding
scheme we constantly have to consider the trade-off between compression
rate, distortion and decoding speed.

When coding the volume we assume that we have divided it into two-
dimensional slices in the z-direction. The first step of the encoder will
then be the removal of correlation along this z-direction. We call this
stage temporal prediction. Ideally the next step should then according
to [24], perform a three dimensional wavelet decomposition to further
remove correlations in both the spatial and temporal directions. Since
a 3D transform is computationally more expensive than a 2D transform
and under the assumption that the prediction stage has removed enough
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of the temporal correlation, we adopt a 2D wavelet transform to handle
the spatial redundancy as the next step. The third step, which is typi-
cal for a lossy subband coder, removes insignificant coefficients to make
the representation even sparser. This step also quantises the remaining
coefficients restricting these to a small number of possibilities. Finally
in the last stage the wavelet transformed data is encoded efficiently in a
way that allows fast retrieval of the data needed to reconstruct individual
voxels.

4.1.2 Volume Decoder

In general the decoder consists of the inverse stages of the encoder but in
reverse order. However there is a small but significant difference. Since
the decoder acts on input from the user or another program some of the
stages have to communicate in order to retrieve the desired voxels from
the encoded data. This it not necessary in the encoder since it encodes
the whole volume at once.

4.2 Test Data

The data that we have used for our experiments are the same as in [12]
and was kindly made available by Professor Insung Ihm. The dataset is
a volume of size 512× 512× 512 rebuilt from the fresh4 CT slices of the
Visible Human. Rebuilding the volume was necessary since the fresh CT
slices have varying pixel size and spacing. Each voxel is represented as
a 12 bit grayscale value in the interval [0,4095] and is stored in 16 bits
resulting in a total volume size of 256 Mbytes.

4.3 Temporal Prediction

Many different methods for motion estimation and motion compensation
have been reported and investigated in the literature. Among the most
popular are block-matching algorithms [5, 23], parametric motion models
[9, 18, 24], optical flow [23] and pel-recursive methods [23].

The scheme that we have chosen to adopt, depicted in Figure 4, is the
simplest possible, yet very effective. It corresponds to a best matching
neighbour scheme. Every F-th slice (called R-slices) is used as a reference
frame and is coded without temporal prediction. The prediction of a

4There exist both fresh and frozen CT and MRA images
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Figure 4: Ordering of R-Slices and I-slices.

frame in between two R-slices (called I-slices) is then chosen to be the
neighbouring R-frame giving the best match in terms of the Mean Square
Error. Finally the residual is constructed and sent to the next stage of the
coder for further processing. The voxel values of the original data resides
in the integer interval [0,4095] so the possible values of the residual lies in
the interval [-4095,4095]. By using both backward and forward R-slices in
the prediction, we effectively half the longest distance between an I-frame
and an R-frame. Experiments have shown this gives significantly better
compression results than just using forward prediction. The distance F
between two R-slices is chosen to be F = 2k for faster processing. The
issue of selecting a good value for k will be discussed in Section 4.7.

4.4 Wavelet Decomposition, Thresholding and

Quantisation

An important objective for our compression scheme is to code the volume
with high accuracy in a minimum number of bits. Wavelets have proven
to be very effective at achieving this goal. As mentioned in Section 2.2.2
they have the ability to efficiently concentrate the energy of a signal in few
wavelet coefficients with large magnitude creating a compact or sparse
representation and thus making it easier to code in a smaller amount of
bits.

When implementing the wavelet transform we have to decide which
wavelet to use and how many levels of decomposition to perform. Dif-
ferent wavelets correspond to filters of different length as described in
Section 2.3.2. Table 2 shows how the choice of wavelet and the number
of decomposition levels affects the number of wavelet coefficients that are
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used in the reconstruction.

Filter length
2 4 6 8

Level

1 4 16 36 64
2 7 31 71 127
3 10 46 106 190
4 13 61 121 253

Table 2: The influence of filter length and decomposition level on the number
of coefficients needed for reconstruction.

Even though the Haar wavelet does not perform so well in terms of
quality as other wavelets it certainly allows for faster reconstruction, only
being a two-tap5 filter, and thus it becomes our choice of wavelet. For
the number of decomposition levels we restrict ourselves to two levels,
despite the fact that in wavelet based compression it is common to per-
form three or four levels. With a slice size of 512 × 512 and two levels
of decomposition more than 93 percent of all the coefficients are already
decomposed into wavelet coefficients and according to Table 2 we only
need 7 coefficients to reconstruct a voxel in an R-slice (14 in an I-slice).

After applying the wavelet transform to each slice all wavelet coef-
ficients below a certain threshold are set to zero in order to make the
representation even sparser. The threshold is determined such that the
PSNR6 does not drop below a user determined value (see Figure 3). Ac-
cording to Section 2.5 the coefficients from all the slices should be sorted
and then in ascending order set to zero until the desired PSNR is ob-
tained. This would be similar to choosing a threshold τ that is ε greater
than the last coefficient that was set to zero. Unfortunately sorting the
coefficients for large volumes quickly becomes impractical. Instead we use
different thresholds for each slice with the thresholds being determined
by sorting as just described. This of course is not globally optimal for
the volume but it provides a reasonable solution to the problem. When
calculating the PSNR of each slice we use the global maximum of the
whole volume.

After thresholding we rescale as described in Section 2.5 and round the

5Tap is the term used to denote the filter length of a finite impulse response (FIR)
filter.

6PSNR = 10 log10(
max(x2

i )
MSE ) , xi being the original image
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remaining coefficients to the nearest integer. Rounding the coefficients is
negligible with respect to MSE since few coefficients are remaining. The
rescaling insures that the coefficients now lie in the interval [−4095, 4095],
i.e. use Equations (36)-(39) with division by 4 to see this. Rather than
use 13 bits to represent the values in this interval we quantise the nonzero
coefficients to the interval [0,255] so they fit into one byte. As it turns
out in the next section not all coefficients need to be quantised and those
that do come in blocks G of at most 64 coefficients. We use a uniform
scalar quantiser of the form

C̃ =

⌊
A − B

255
× x + 0.5

⌋
+ B, (45)

where A and B are 16 bit integer parameters to the quantiser, the byte x
is the quantisation value and C̃ is the reconstructed value. For all blocks
G: A, B and x can be determined as:

A = max
c∈G

(c), B = min
c∈G

(c), x =

⌊
255 × C − B

A − B
+ 0.5

⌋
. (46)

4.5 Encoding Wavelet Coefficients - Data Structure

The last stage of the compression process is the encoding of the remain-
ing wavelet coefficients. In addition we also need to encode the positional
information about the coefficients - this is often referred to as the sig-
nificance map. Shapiro [22] showed that the bits needed to code the
significance map is likely to consume a large part of the bit budget with
the situation becoming worse at low bitrates. In his article Shapiro pro-
posed a technique called zerotree coding for storing the significance map.
Although effective this method does not lend itself to fast retrieval of
individual wavelet coefficients. The same problem is true for run-length
coding, Huffman coding or arithmetic coding since they produce variable
length codes [21].

We now propose a method for storing the significant coefficients and
their significance map. The method is illustrated in Figure 5 and is
designed to fit preprocessed CT images of the Visible Human dataset
but is easily extended to other volumes.

Given that most of the wavelet coefficients have been set to zero
and the usually spatial coherence of a wavelet decomposed image (e.g.
see Figure 7 and 8 Appendix A) it is likely that the zero coefficients
appear in dense clusters. So the initial idea will be to split each slice into
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Figure 5: Datastructure used for encoding significant wavelet coefficie nts.

quadratic blocks of size (length) B and then use a bitmap to differentiate
between the blocks containing at least one nonzero coefficient (nonzero B
block) and the blocks having all coefficients equal to zero (zero B block).
Spending one bit on each block in the bitmap is optimal with respect
to first order entropy if the block size B is chosen such that the ratio
between zero blocks and nonzero blocks is one half. Table 3 shows the
percentage of nonzero blocks for different sized blocks and PSNR levels,
with a fixed R-slice spacing of F=4. From the table we notice that
B = 32 is the best choice.7 The bitmaps (Block 32 Significance Map) for

PSNR Level
43 46 49 52 53

Block
Size

4 5.5% 7.9% 10.6% 15.5% 22.9%
8 10.8% 14.7% 18.4% 24.5% 32.6%
16 19.8% 24.8% 29.3% 35.8% 43.7%
32 32.8% 38.4% 43.3% 50.0% 58.2%
64 55.8% 61.7% 66.0% 70.6% 78.0%

Table 3: Number of nonzero blocks in percent for different block sizes and
PSNR levels

each slice are collected into records called Slice Info, together with other
information which we explain shortly, and kept in an array. Retrieval of
a Slice Info record is then simple array lookup since each record has a

7B is a power of two for efficient processing.
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fixed size. For each of the nonzero 32 blocks, further information needs
to be stored and we allocate a new record (Block 32 Info) for each of
them. These records are also stored in a stream. Each slice contains
a variable number of nonzero 32 blocks, so in order to quickly find a
given Block 32 Info record in the stream we add the following offsets to
the Slice Info Record. Block 32 offset holds the index in the Block 32
stream of the first Block 32 Info record for that particular slice. The
Line Offset array contains counts of all nonzero 32 blocks that precede a
given line in the Block 32 Significance Map. In order to find the position
of some Block 32 record in the stream, we first compute where it is in
the bitmap. Then we count the number of bits that precedes it in the
respective bitmap-line. This count is then added to the Block 32 Offset
together with the correct Line Offset and the result is used for lookup.
Counting the number of bits in a bitmap line can be done efficiently by
using a precomputed table with 216 = 65536 entries. Following the same

PSNR Level
43 46 49 52 53

Block
Size

4 16.7% 20.6% 24.5% 31.0% 39.3%
8 33.1% 38.1% 42.4% 48.9% 56.0%
16 60.2% 64.5% 67.6% 71.5% 75.1%

Table 4: Empirical probability of a block being nonzero given that it is con-
tained in a nonzero block of size 32.

idea, the nonzero 32 blocks can be split into sub-blocks. Table 4 shows
the empirical conditional probabilities of a block with size 4, 8 or 16
being nonzero given that it is contained in a nonzero block of size 32.
It follows that a sub-block of size 8 is a good choice. The information
about these sub-blocks is stored in records (Block 8 Info) and kept in a
new stream (Block 8 Stream). Similar to the problem of addressing the
32 blocks we need offsets to quickly access a Block 8 Info record. To this
end we add a Block 8 Significance Map and a Block 8 offset to the Block
32 Info record. There are at most 5123

82 nonzero sub-blocks of size 8 in the
volume. To offset all of these we need at least 21 bits. We observe that
there are at most 5122

82 nonzero blocks of size 8 in each slice so instead of
using 32 bits in the Block 32 Info record8 we divide the offset in two using
32 bits in the Slice Info record and only 16 bits in the Block 32 record.
That way the total overhead of storing all the offsets is reduced. Finally

8Offsets are 8, 16 or 32 bits to ease programming.
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each nonzero 8 Block is divided into lines keeping a bitmap Zeroline Map
in the Block 8 Info record marking the lines which contain all zeros. For
all other lines containing at least one nonzero coefficient we keep one
byte as a Significance Map. This way we need between 0 and 8 bytes
for the map, hence we store them in a stream (Significance Map Stream)
introducing a new offset, the Significance Map Offset, which is similarly
divided between the three Info records for efficient storage. Table 5 shows
that dividing the sub-blocks into lines is a good idea since about half of
the lines in an 8 sub-block are zero. The Significance Maps give the

PSNR Level
43 46 49 52 53

Zerolines 60.7% 57.2% 53.6% 47.6% 40.1%

Table 5: Empirical probability of a line in a nonzero sub-block of size 8 being
all zero

positions of the significant coefficients.
In the following it will be explained how the coefficients are stored.

As stated in Section 4.4 the wavelet coefficients have been scaled and
rounded to the integer interval [-4095,4095] and we store them in a stream
(Byte Stream) pointed to by offsets Significance Offset located in all three
Info records. Inspired from [12, 11] we observe that the coefficients within
a size 8 sub-block are likely to be numerically close so whenever the
coefficients in a sub-block all belong to either the interval [θ, θ + 127] or
the interval [−θ−128,−θ], where θ is a two-byte offset, we code them by
storing θ in the Byte Stream followed by a signed displacement (1 byte)
for each coefficient. For all other sub-blocks not satisfying this property
we quantise as explained in Section 4.4, storing A and B in two bytes
and x in one byte.

How a coefficient is stored can be coded in 1 bit and placed in the
most significant bit (MSB) of the Byte Stream Offset in the Block 8 Info
record. This bit is free since there are only 322 = 1024 coefficients in
each 32 block and we use 16 bits for the offset. Similarly for all I-slices
we use the MSB of the Block 32 Offset in the Slice Info record to indicate
the direction of the prediction.

Looking at the sizes of the offsets used throughout the data structure,
it is quite easy to verify that they are large enough, except for the Byte
Stream Offset in the Block 32 Record. We need 18 bits to offset all
coefficients in a slice but we have only allocated 16 bits for the task. We
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put the last 2 MSB in the MSB of the Block 8 Offset.

4.6 Analysis of Performance

In this section we analyse the work needed for decoding a single voxel.
The reconstruction filter for the Haar wavelet is a two-tap filter. Per-
forming a two level reconstruction we therefore need 7 wavelet coefficients
(four for the first level and three for the second). If we are decoding a
voxel in an I-slice we must also decode the same number of coefficients
for the R-slice resulting in the retrieval of 14 wavelet coefficients. Table
6 shows average values for different R-slice spacings. It is observed that
the amount of information that needs to be retrieved and the number of
additions that must be performed is not critical with respect to the slice
spacing.

Weighted Average for a spacing
R-Slice I-Slice 4 8 16 32

Wavelet Coefficients 7 14 12.25 13.13 13.56 13.78
Additions 6 12 10.50 11.25 11.63 11.81

Table 6: Number of coefficients and additions needed for reconstruction of a
voxel.

For accessing a wavelet coefficient the approximate workload can be
assessed. First we look at the reconstruction algorithm:

function Wavelet coefficient(x, y, z)
S := Lookup Slice Info(z);

(1) if is in zero block(x, y, S) then return 0;

B32 := Lookup Block32 Info(S, Block 32 offset, offset, bitma p);
Calculate relative index (x′, y′) in B32;

(2) if is in zero block(x′, y′, B32) then return 0;

B8 := Lookup Block8 Info(B32, S, Block 8 offset, bitma p);
Calculate relative index (x′′, y′′) in B8;

(3) if is zeroline(y′′, B8) then return 0;

M := significance map(M, offsets);
(4) if bit(x′′, M) = 0 then return 0;

Access bytestream using offsets;
(5) return value;
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end;

The division of each slice into blocks and lines was designed so the
empirical probability of going from (1)→(2), (2)→(3), or (3)→(4) in the
reconstruction algorithm is roughly one half. Combining these probabil-
ities with the fact that less than 6 percent of the wavelet coefficients are
nonzero (see next section) we obtain the numbers in Table 7. From this

Stage 1 2 3 4 5
Probability 100% 50% 25% 12.5% 6%

Table 7: Empirical probability of reaching a certain stage in the algorit hm.

table we estimate that on average 1 + 1
2

+ 1
4

+ 1
8

+ 1
16

≈ 2 lookups in
the encoded data have to be performed. In addition, one lookup in the
bitcount table is performed on average.

According to the table, roughly 13 wavelet coefficients must be ex-
tracted from the compressed data in order to reconstruct a single voxel.
Observing from Equations (41)-(43) that 4 values can be reconstructed
from 4 wavelet coefficients this seems inefficient. Figure 6 shows how the
wavelet coefficients on different levels are related to the reconstructed
coefficients. If the voxels are accessed in some regular pattern increased
efficiency can be achieved by reconstructing all voxels in the 4× 4 neigh-
bourhood reusing the extracted coefficients. Furthermore the grouping of
the first level detail coefficients ensures that the information about each
group resides in the same Block 8 Info record resulting in fewer lookups
in the data structure.

Second Level First Level Reconstruction

Figure 6: Relationship between average, detail and reconstructed coeffi cients.
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4.7 Results

Before presenting the main results we first deal with the issue of selecting
a k such that the distance F = 2k between two R-slices is best possible.
Table 8 illustrates the size of the compressed volume for different choices
of k with a desired PSNR level fixed at 46. According to the table
selecting k = 2, resulting in R-slice spacings of 4, produces the best
result. This is quite surprising because it means that 1/4 of the slices are
coded without temporal prediction suggesting that a better prediction
scheme might prove fruitful. For the rest of this section we keep F = 4
fixed.

Spacing F = 2k Original 2 4 8 16 32
Compressed size (Mb) 256 7.11 6.01 6.28 7.14 8.24

Table 8: Compressed size for different R-slice spacings. The desired PSNR
level is 46.

The main results of our new coding scheme is presented in Table 9.
We tested with desired PSNR levels of 43.0, 46.0, 48.03, 51.6, and 55.8
achieving compression factors between 60.2 and 14.5. On average this
is about a 50% reduction in size compared with [12, 11] which were the
previously best known results. A complete comparison between our new
scheme and [12] is presented in Table 10. One of the main reasons for
achieving an increased compression rate is that our method succeeds in
setting more wavelet coefficients to zero for a given PSNR level, see Table
10.

We note, in Table 9, that the actual PSNR is not equal to the one
desired, but close. This is because thresholding stops before the desired
PSNR level is exceeded. Also rounding and quantisation of the coeffi-
cients introduce additional errors.

Desired lower bound on PNSR (dB)
43.0 46.0 48.3 51.6 55.8

Compression Factor 60.2 42.6 32.4 22.2 14.5
Size (Mb) 4.26 6.01 7.9 11.56 17.68

Errors

Actual PSNR 43.00 46.00 48.29 51.55 55.62
SNR 24.98 27.98 30.27 33.53 37.60
MSE 839.59 421.39 248.83 117.34 45.92

Table 9: Results on compression ratio and quality
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Desired lower bound on PNSR (dB)
43.0 46.0 48.3 51.6 55.8

Non-zero
coefficients

Old method 2.78% 4.57% 6.32% 8.94% 13.30%
New method 1.44% 2.13% 2.94% 4.62% 7.73%

Compressed size
(Mb)

Old method 9.08 13.25 17.01 22.17 29.99
New method 4.26 6.01 7.9 11.56 17.68
Improvement 53.1% 53.6% 53.6% 47.9% 41.0%

Table 10: Comparison between previously best known and new method.

Figure 9 shows sample slices from the original volume and from dif-
ferent compressed volumes9. It is observed that for a PSNR level of 43
some blockiness and loss of small level details occur. In all cases edges
are preserved extremely well. We have also generated ray-cast rendered
images from the original and compressed volumes. Figure 10 and 11 de-
picts rendered images of skin and bone. To generate the images we used
Volvis 2.1 [1]10. The images are essentially indistinguishable from the
original except for the volumes with PSNR level of 43 and 46. For these
two cases the introduced artefacts are pleasing and most of the details
are well preserved.

We evaluate the reconstruction overhead by loading, in turn, the un-
compressed and compressed data into memory and measure the time it
takes to access 1,000,000 randomly selected voxels in the volume. We
tested with different CPU speeds and cache sizes yielding the results in
Table 11. The machines used were all from SGI. It is observed that our
algorithm on average is about 3 to 5 times slower for the compressed
data. This corresponds only to a slight increase in the time needed to
reconstruct an arbitrary voxel compared with [12, 11]. Considering the
time it would take to access the voxels from a harddisk or over a network
this is a very small slowdown. Applications working with volumetric
data hardly make accesses purely at random. Instead accesses are done
in some regular way. As explained in Section 4.6 this might lead to more
efficient decoding. We have performed an experiment where voxels are
reconstructed in 4× 4× 4 blocks in the following way. A 4× 4× 4 block
is considered to contain voxels from 3 I-slices followed by an R-slice. We
start by decoding the 4× 4 voxels in the R-slice. Assuming that we have

9We refer to http://www.brics.dk/∼ffr for better viewing of all images
10The rendering system that we used only supports byte data, so the volumes were

uniformly quantised from 12 bits to 8 bits before rendering
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CPU
Speed

2nd level
Cache

Original
Data

Desired lower bound on PNSR (dB)
43.0 46.0 48.3 51.6 55.8

Random
180 1 Mbytes 3.05 9.82 10.85 11.66 13.10 15.01
180 2 Mbytes 2.87 8.77 9.75 10.72 11.82 13.67
250 4 Mbytes 1.99 6.01 6.59 7.06 8.11 9.35

Block
wise

180 1 Mbytes 20.37 48.63 50.22 51.90 54.75 59.13
180 2 Mbytes 13.67 47.05 48.72 50.13 52.97 57.29
250 4 Mbytes 10.07 34.60 36.16 36.75 38.81 41.92

Table 11: Results on voxel reconstruction times in seconds.

kept the R-slice voxel values from the block above the one we are recon-
structing we compute the 4× 4 voxels of each I-slice reusing the already
computed R-slice values. Results on reconstruction time for the whole
volume is shown in Table 11. Roughly an extra 30-40 seconds are spent
on the compressed volumes than on the original. This is an increase of
approximately 20-25 seconds compared to [12, 11]. Considering that the
images in Appendix C and D each took about 5 minutes to render we
find this acceptable.

5 Concluding Remarks

We have presented a wavelet based 3D compression scheme for very large
volume data supporting fast random access to individual voxels within
the volume. Experiments on the CT data of the Visible Human have
proven that our method is capable of providing high compression rates
with fairly fast decoding of random voxels. Similar to [11] our intension
is to provide a method that allows a wider range of users the ability of
working with and visualising very large volume data.

Some aspects of our coder need further research and attention. For
example we only employ a very simple prediction scheme. By using a
more advanced prediction method we might be able to reduce the num-
ber of slices that are coded without temporal prediction and thereby
increase the compression ratio. Also how other wavelet types will af-
fect compression ratio and quality must be evaluated. Since our method
only performs a 2D wavelet transform it scales better with respect to the
number of coefficients that is needed for reconstruction when the wavelet
filters become longer than methods using a 3D transform. This is at-
tractive since the number of coefficients that must be extracted directly
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affect the decoding speed. To make our compression method useful in an
interactive visualisation environment decoding speed must be improved,
either by developing an efficient cache structure temporary holding voxel
values or by adding redundancy to the data structure to decrease lookup
overhead. In the future we intend to investigate these issues. We will
also undertake an investigation as how to expand our method to colour
volumes.
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A Significance Map of Wavelet Decomposed

Slices

Figure 7: Significance map of thresholded wavelet decomposition of slice 344
with PSNR level 46.

Figure 8: Significance map of thresholded wavelet decomposition of slice 343
residual with PSNR level 46.
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B Decompressed Sample Slice

Figure 9: Sample slice (no. 345). From left to right and top to bottom
Original volume, Compressed volumes with PSNR levels of 55.8, 51.6, 48.3,
46.0 43.0.
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C Rendered Images - Skin

Figure 10: Rendered images. From left to right and top to bottom Original
volume, Compressed volumes with PSNR levels of 55.8, 51.6, 48.3, 46.0 43.0.
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D Rendered Images - Bone

Figure 11: Rendered images of bone. From left to right and top to bottom
Original volume, Compressed volumes with PSNR levels of 55.8, 51.6, 48.3,
46.0 43.0.

36



Recent BRICS Report Series Publications

RS-99-34 Flemming Friche Rodler. Wavelet Based 3D Compression for
Very Large Volume Data Supporting Fast Random Access. Oc-
tober 1999. 36 pp.
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