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1 Introduction

The importance of giving precise semantics to programming and specifica-
tion languages was recognized since the sixties with the development of the
first high-level programming languages (cf., e.g., [30, 206] for some early ac-
counts). The use of operational semantics — i.e., of a semantics that explic-
itly describes how programs compute in stepwise fashion, and the possible
state-transformations they perform — was already advocated by McCarthy
in [147], and elaborated upon in references like [142, 143]. Examples of full-
blown languages that have been endowed with an operational semantics are
Algol 60 [140], PL/I [173], and CSP [178].

Structural operational semantics (SOS) [177] provides a framework to
give an operational semantics to programming and specification languages.
In particular, because of its intuitive appeal and flexibility, SOS has found
considerable application in the study of the semantics of concurrent pro-
cesses, where, despite successful work by, among others, de Bakker, Zucker,
Hennessy, and Abramsky (see, e.g., [1, 31, 117, 120, 122, 125, 150]), the
methods of denotational semantics appear to be difficult to apply in gen-
eral. SOS generates a labelled transition system, whose states are the closed
terms over an algebraic signature, and whose transitions between states are
obtained inductively from a collection of so-called transition rules of the
form % A typical example of a transition rule is
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stipulating that if ¢ — ¢ holds for certain closed terms ¢ and ¢, then so
does t||u % t'||u for each closed term u. In general, validity of the premises
of a transition rule, under a certain substitution, implies validity of the
conclusion of this rule under the same substitution.

Recently, SOS has been successfully applied as a formal tool to estab-
lish results that hold for classes of process description languages. This has
allowed for the generalization of well-known results in the field of process
algebra, and for the development of a meta-theory for process calculi based
on the realization that many of the extant results in this field only depend
upon general semantic properties of language constructs. The concept of a
rule format has played a major role in the development of the meta-theory
of process description languages, and several such formats have been pro-
posed in the research literature. A principal aim of this chapter is to give
an exposition on existing rule formats. Each of the formats surveyed here
comes equipped with a rich body of results that are guaranteed to hold for
any process calculus whose SOS is within that format.

Predicates in SOS semantics can be coded as binary relations [111].
Moreover, negative premises can often be expressed positively using pred-
icates [27]. However, in the literature we see more and more that SOS
definitions are decorated with predicates and/or negative premises. For
example, predicates are used to express matters like (un)successful termi-
nation, convergence, divergence [10], enabledness [41], maximal delay, and
side conditions [165]. Negative premises are used to describe, e.g., deadlock
detection [137], sequencing [55], priorities [24, 65|, probabilistic behaviour
[139], urgency [58], and various real [136] and discrete time [23, 127, 223]
settings. Since predicates and negative premises are so pervasive, and often
lead to cleaner semantic descriptions for many features and constructs of
interest, we present the theory of SOS in a setting that deals explicitly with
these notions as much as possible. We hope that this makes this chapter a
useful reference guide to the literature on the use of SOS in process algebra.

The organization of this chapter is as follows. Sect. 2 presents the pre-
liminaries of SOS theory, and contains some standard SOS definitions that
serve as running examples. Sect. 3 gives an overview of the different ways
to give meaning to SOS definitions. Sect. 4 presents syntactic constraints
under which an extension of an SOS definition does not influence some prop-
erties of the original SOS definition. Sect. 5 studies a wide range of syntactic
formats for SOS definitions that guarantee that the semantics of a term is
determined by the semantics of its arguments, and focuses on the connec-
tion between SOS semantics and complete proof systems. Sect. 6 describes
a formalism to deal with variable binders explicitly. Finally, Sect. 7 pays



attention to the automatic generation of fully abstract denotational models
of process calculi from their SOS semantics.

On Terminology: Structural vs Structured Operational Seman-
tics As mentioned above, in this chapter we shall use the acronym SOS to
stand for Structural Operational Semantics. The adjective structural was
used by Plotkin in the title of his seminal set of lecture notes [177] as this
approach to giving formal semantics for programming and specification lan-
guages places great emphasis on defining the effect of running a program in
terms of its structure. Moreover, the term Structural Operational Semantics
is the most commonly used in the literature on semantics of programming
languages and in various textbooks on this topic (see, e.g., [113, 119, 168]).
The form of semantics we describe in this chapter is sometimes also called
“Plotkin-style” operational semantics because of the aforementioned influ-
ential DAIMI report of Plotkin [177] and several papers in which he used this
kind of specification. Some authors (see, e.g., [113]) prefer to use the term
transition semantics to emphasize that transitions between program states
are the main objects of study in this form of semantics. This terminology,
albeit more descriptive in this context than “structural” or “Plotkin-style”,
has the drawback of being applicable to a range of operational semantics—
such as those for automata and Petri nets [184]—that are rather different in
nature from those that we deal with in this chapter. In [110, 111}, Groote
and Vaandrager used the acronym SOS to stand for Structured Operational
Semantics. Their aim was to emphasize that a transition system specifi-
cation that leads to a transition system for which bisimulation equivalence
[171] is not a congruence should not be called structured, even though it is
possibly compositional on the level of concrete transition systems. We have
shunned from adopting their terminology as it is only used in the process
algebra literature, and may be construed as suggesting that other forms of
operational semantics are unstructured.

Disclaimer In this chapter, we focus on the results on the theory of SOS
that, we feel, have the most interest from the point of view of process alge-
bra. It is, however, a sign of the maturity of this field that SOS has found
applications in many other settings. The original motivation for the devel-
opment of SOS was to give semantics to programming languages, and the
success of this endeavour is witnessed by the growing number of real-life
programming languages that have been given usable semantic descriptions
by means of SOS (see, e.g., [43, 162, 173, 178, 185].) As other applications



of SOS, we limit ourselves to mentioning here that:

e the operational approach to type soundness, pioneered in [236], is now
the preferred choice over methods based upon denotational semantics;

e the correctness of hardware implementations of real-life programming
languages, and of compilation techniques, has been established using
SOS [43, 233];

e the fit between reasonable operational extensions for the language PCF
[175] and Scott’s original lattice model for it has been studied in [46]
within the framework of SOS;

e the derivation of proof rules for functional languages from their oper-
ational specifications has been investigated in [194], building upon the
work in [8] (cf. Sect. 5.4.5).

These are only a few of the many interesting examples of applications of
SOS that are not covered in this chapter. We hope that the reader will
be tempted to explore them, and possibly to contribute to this fascinating
research area.

Acknowledgments Our thoughts on the theory of SOS have been shaped
by the inspiring work of, and collaborations with, many researchers. We
cannot thank them all explicitly here. However, it will be evident to the
readers of this chapter that the theory we survey, and the presentation we
give of it, would not have been possible without the work of our colleagues.
In particular, the ideas and work of Bard Bloom, Robert De Simone, Rob
van Glabbeek (on whose work Sect. 3 is heavily based), Jan Friso Groote
and Frits Vaandrager have been most influential. We hope that the list of
references will prove useful in guiding the interested readers to the original
sources for our subject matter. Finally, we thank Davide Marchignoli, Si-
mone Tini and an anonymous referee for their thorough reading of a draft
of this chapter.

2 Preliminaries

In this section we present the basic notions from process theory that are
needed in the remainder of this chapter. The presentation is necessarily
brief, and the interested reader is warmly encouraged to consult the refer-
ences for much more information and motivation on the background material



to our subject matter. We hope, however, that the basic definitions and re-
sults mentioned in this section will help the reader go through the material
presented in this chapter with some ease.

2.1 Labelled Transition Systems

We begin by reviewing the model of labelled transition systems [134, 177],
which are used to express the operational semantics of many process calculi.
They consist of binary relations between states, carrying an action label, and
predicates on states. Intuitively, s — s’ expresses that state s can evolve
into state s’ by the execution of action a, while sP expresses that predicate
P holds in state s. For convenience of terminology, we refer to both binary
relations and predicates on states as transitions.

Definition 2.1 (Labelled transition system) A labelled transition sys-
tem (LTS) is a quadruple (Proc, Act, {iﬂ a€ Act}, Pred), where:

e Proc is a set of states, ranged over by s;
e Act is a set of actions, ranged over by a,b;

e %C Proc x Proc for every a € Act. As usual, we use the more sugges-
. . a 4 . . ’ a . a . a
tive notation s — s’ in lieu of (s,s') €=, and write s - if s — s’ for
no state s';

e P C Proc for every P € Pred. We write sP (resp. s—P) if state s
satisfies (resp. does not satisfy) predicate P.

Binary relations s = s' and unary predicates sP in an LTS are called tran-
sitions.

In what follows, we shall sometimes identify an LTS with the set of its
transitions. We trust that the meaning will always be clear from the context.

Definition 2.2 (Finiteness conditions on an LTS) An LTS is:

e finitely branching if for every state s there are only finitely many out-
going transitions s = s';

e regular if it is finitely branching and each state can reach only finitely
many other states;

e finite if it is finitely branching and there is no infinite sequence of
transitions Sq ! S1 L2



Remark: The conditions of regularity and finiteness defined above are usually
used at the level of process graphs, i.e., transition systems with a distinguished
initial state from which all other states are reachable in zero or more transitions.
In particular, the above definition ensures that an LTS is finite or regular if so are
all the process graphs obtained by choosing an arbitrary state as the initial one,
removing all the states that are unreachable from it, and restricting the transition
relations to the set of reachable states. Note that the notion of regularity defined
above is a purely “syntactic” one. For instance, the LTS defined by

nSn+1|neN}

is not regular according to the above definition, even though it is the unfolding of
the regular LTS 0 % 0. To define more semantic notions of regularity one has to
work modulo some notion of behavioural equivalence. (See the following section
and elsewhere in this handbook for information on behavioural equivalences over
states of LTSs.)

2.2 Behavioural Equivalences

LTSs describe the operational behaviour of processes in great detail. In or-
der to abstract away from irrelevant information on the way that processes
compute, a wealth of notions of behavioural equivalence (i.e., a relation that
is reflexive, transitive, and symmetric) and preorder (i.e., a relation that
is reflexive and transitive) over the states of an LTS have been studied in
the literature on process theory. A systematic investigation of these no-
tions is presented in [96, 99] (see also [95, Chapter 1] and elsewhere in this
handbook), where van Glabbeek presents the linear time/branching time
spectrum. This lattice contains all the known behavioural equivalences and
preorders over LTSs, ordered by inclusion. We investigate only a fragment of
this spectrum, which we now proceed to present for the sake of completeness.

Definition 2.3 (Simulation, ready simulation, and bisimulation)
Assume an LTS.

o A binary relation R on states is a simulation if whenever s R so:

- if 51 = s}, then there is a transition sy — s such that 8| R sh;
- if 1P, then soP.

o A binary relation R on states is a ready simulation if it is a simulation
with the property that, whenever s; R sa:

. a a
- if 81 =, then sg —;



- if 510 P, then so—P.
e A bisimulation is a symmetric simulation.

We write s1 g so (resp. s1 Srs s2) if there is a simulation (resp. a ready
sitmulation) R with s1 R so. Two states s1, so are bisimilar, written s1 <> s,
if there is a bisimulation relation that relates them. Henceforth the relation
<> s referred to as bisimulation equivalence.

Bisimulation equivalence [156, 171] relates two states in an LTS precisely
when they have the same branching structure. Simulation (see, e.g., [171])
and ready simulation (also known as % bisimulation) [55, 138] relax this
requirement to different degrees.

We present seven more preorders, which are induced by yet further ways
of abstracting away from the full branching structure of LTSs. They are
based on (decorated) versions of traces.

Definition 2.4 (Trace semantics) Given an LTS, a sequence
s=aj---a, € Act* ,

for n € N, is a trace of state sg if there exist states si,...,s, such that
s0 B3 B ... B, (abbreviated by sg ~ s,). Moreover, cP with ¢ € Act*
and P € Pred is a trace of state s if there exists a state s' such that s = §'P.
We write s 1 s’ if the set of traces of s is included in that of s'.

For a state s we define (here, and in what follows, we use the symbol £ to
stand for “equals by definition”):

initials(s) = {a € Act|3s’ € Proc(s 3 s')} U {P € Pred | sP} .
Definition 2.5 (Decorated trace semantics) Assume an LTS.

e Ready traces. A sequence Xoa1X1 -+ anX, (withn € N), where X; C
Act U Pred and a; € Act for i = 0,...,n, is a ready trace of state sg
ifso 3518 Bs, and initials(s;) = X; fori=0,...,n. We write
s Srr 8 if the set of ready traces of s is included in that of s'.

e Failure traces. For X be a subset of Act U Pred, we define sqg X sy if
so = s1 and initials(sg) N X = @. A sequence s € (ActU 2(ActuPred))*
is a failure trace of state sg if so — s1 for some state s1. We write
s Spr s if the set of failure traces of s is included in that of s'.



Readies. A pair (¢, X) with ¢ € Act® and X C ActUPred is a ready of
state so if sg — s1 for some state s1 with initials(s1) = X. We write
s Sg s if the set of readies of s is included in that of s'.

Failures. A pair (¢, X) with ¢ € Act* and X C Act U Pred is a failure
of state so if sg — s1 for some state s1 with initials(s)) N X = &. We
write s Sp s’ if the set of failures of s is included in that of s'.

Completed traces. ¢ € Act* is a completed trace of state sg if so — s1
for some state s with initials(s;) = @. Moreover, ¢ P with ¢ € Act”
and P € Pred is a completed trace of state sq if so ~ soP for some
state s1. We write s Sor s if the set of completed traces of s is
included in that of s'.

Accepting traces. Consider an LTS with \/ as one of its predicates.
¢ € Act* is an accepting trace of state s if so — s1+/ for some state
s1. We write s Sar s’ if the set of accepting traces of s is included in
that of s'.

The decorated trace semantics defined above take predicates into account.
However, most of the uses of these semantics in the literature on process
theory occur in settings without predicates. The notion of an accepting
trace is standard in formal language theory (see, e.g., [193]), but has not
received widespread treatment in the literature on process theory.

For ©® € {S,RS,CT,RT,FT,F,R,L,T}, the relation Sg is a preorder
over states in arbitrary LTSs. Its kernel is denoted by ~g; i.e., s ~g s iff
s Lo s’ and s’ Eg s. The following result is a standard one in process theory
(cf., e.g., [96]).

Proposition 2.6 In any LTS,

Ss Srr
a 4 N\
< — Ers — Err Er — Ser — Far
N\ a
SR

where a directed edge from one relation to another means that the source of
the edge is included in the target. Moreover,

Cs is included in Sar and S7, and

Cr is included in Sr.

10



The same inclusions hold for the kernels of the preorders.

All the inclusions presented in the previous proposition are proper if the
LTS under consideration includes, modulo bisimulation equivalence, the fi-
nite synchronization trees [153] (see also Sect. 7.1.3) used in the examples
presented in [96].

2.3 Hennessy-Milner Logic

Modal and temporal logics of reactive programs have found considerable
use in the theory and practice of concurrency (see, e.g., [78, 179, 210]).
One of the earliest and most influential connections between logics of reac-
tive programs and behavioural relations was given by Hennessy and Milner
[124], who introduced a multi-modal logic and showed that it characterized
bisimulation equivalence. We limit ourselves to briefly recalling the basic
definitions and results on Hennessy-Milner logic. The interested reader is
referred to, e.g., [124, 209] for more details and motivation. The following
definition is standard, apart from the use of atomic propositions to cater for
the presence of predicates in LT'Ss.

Definition 2.7 (Hennessy-Milner logic) The set of HML formulae is
given by the BNF grammar [18]

pu= true | P[—p | o1 Aps|(a)p
where a and P range over Act and Pred, respectively.

Given an LTS, the states s that satisfy HML formula ¢, written s = ¢, are
defined inductively by:

s = true
sEP < sP
sE-¢p <= mnotskEgp
sE@1Nps < skEprand s @
sk {a)p <= s = for some s’ such that s % s .

Using negation and conjunction in HML, one can define the other standard
boolean connectives. Two states s, s’ are considered equivalent with respect
to HML, written s ~pnmy, 8, iff for all HML formulae ¢: s | ¢ <= s’ E .
The following seminal result is due to Hennessy and Milner [124].

11



Theorem 2.8 The equivalence relations < and ~pgmi coincide over fi-
nitely branching LTSs.

The restriction to finitely branching LTSs in Thm. 2.8 can be dropped if
infinitary conjunctions are allowed in the syntax of HML.

2.4 Term Algebras

This section reviews the basic notions of term algebras that will be needed in
this chapter. We start from a countably infinite set Var of variables, ranged
over by x,v, z.

Definition 2.9 (Signature) A signature ¥ is a set of function symbols,
disjoint from Var, together with an arity mapping that assigns a natural
number ar(f) to each function symbol f. A function symbol of arity zero
is called a constant, while function symbols of arity one and two are called
unary and binary, respectively.

The arity of a function symbol represents its number of arguments.

Definition 2.10 (Term) The set T(X) of (open) terms over a signature X,
ranged over by t,u, is the least set such that:

e cach x € Var is a term;

o f(t1,-- - tar(p)) s a term, if f is a function symbol and t1,... ten(p)
are terms.

T(X) denotes the set of closed terms over ¥, i.e., terms that do not contain
variables.

For a constant a, the term a() is abbreviated to a. By convention, whenever
we write a term-like phrase (e.g., f(¢,u)), we intend it to be a term (i.e., f
is binary).

A substitution is a mapping o : Var — T(X). A substitution is closed if
it maps each variable to a closed term in T(X). A substitution extends to a
mapping from terms to terms as usual; the term o (t) is obtained by replacing

occurrences of variables x in ¢ by o(x). A context Clx1,...,z,] denotes an
open term in which at most the distinct variables z1,...,z, appear. The
term C|[ty,...,t,] is obtained by replacing all occurrences of variables z; in

Clzy,...,xy] by t;, fori=1,... n.

12



Definition 2.11 (Congruence) Assume a signature . An equivalence
relation (resp. preorder) R over T(X) is a congruence (resp. precongruence)

if, for all f € X,
tiRu; fori=1,...,ar(f) implies f(t1,. ., tar(r)) RF (UL, Uar(p)) -

2.5 Transition System Specifications

In the remainder of this chapter, the set Proc of states will in general consist
of the closed terms over some signature. We proceed to introduce the main
object of study in the field of SOS, viz. a transition system specification,
being a collection of inductive proof rules to derive the transitions over the
set of closed terms.

Definition 2.12 (Transition system specification) Let ¥ be a signa-
ture, and let t and t' range over T(X). A transition rule p is of the form
H/a, with H a set of positive premises t 5 t' and tP, and of negative
premises ¢ ~ and t—P. Moreover, the conclusion « is of the form t — t'
or tP. The left-hand side of the conclusion is the source of p, and if the
conclusion is of the form t < t', then its right-hand side is the target of p.
A transition rule is closed if it does not contain variables.

A transition system specification (TSS) is a set of transition rules. A
TSS is positive if its transition rules do not contain negative premises.

For the sake of clarity, transition rules will often be displayed in the form
g, and the premises of a transition rule will not always be presented using
proper set notation. The first systematic study of T'SSs may be found in
[199], while the first study of TSSs with negative premises appeared in [54].

We proceed to define when a transition is provable from a TSS. The
following notion of a proof from [102] generalizes the standard definition
(see, e.g., [111]) by allowing for the derivation of closed transition rules.
The derivation of a transition « corresponds to the derivation of the closed
transition rule H/« with H = @. The case H # & corresponds to the

derivation of o under the assumptions in H.

Definition 2.13 (Literal) Positive literals are transitions t — t' and tP,
while negative literals are expressions t ~ and t—P, where t and t' range
over the collection of closed terms. A literal is a positive or negative literal.

Definition 2.14 (Proof) Let T be a TSS. A proof of a closed transition
rule H/a from T is a well-founded, upwardly branching tree whose nodes
are labelled by literals, where the root is labelled by «, and if K is the set of
labels of the nodes directly above a node with label 3, then

13



1. either K = & and 8 € H,
2. or K/B is a closed substitution instance of a transition rule in T

If a proof of H/a from T exists, then H/« is provable from T, notation
T+ H/a.

2.6 Examples of TSSs

In this section we present some TSSs from the literature, which will serve as
running examples in sections to come. Abundant examples of the systematic
use of SOS can be found, e.g., in [28, 223] and elsewhere in this handbook.
Hartel [115] recently developed a tool environment LATOS for the animation
of such TSSs, based on functional programming languages.

2.6.1 Basic Process Algebra with Empty Process

The signature of Basic Process Algebra with empty process [229], denoted
by BPA,, consists of the following operators:

a set Act of constants, representing indivisible behaviour;

a special constant e, called empty process, representing successful ter-
mination;

a binary operator +, called alternative composition, where a term
t1 + to represents the process that executes either ¢1 or ts;

a binary operator -, called sequential composition, where a term t1 - to
represents the process that executes first ¢; and then #s.

So the BNF grammar for BPA, is (with a € Act):
t.= alﬁ‘tl—i-tgltl'tg .

The intuition above for the operators in BPA, is formalized by the transition
rules in Table 1 from [29], which constitute the TSS for BPA.. This TSS
defines transitions ¢t — ¢’ to express that term ¢ can evolve into term ¢’ by
the execution of action a € Act, and transitions ¢,/ to express that term ¢
can terminate successfully. The variables x, 2/, y, and 3’ in the transition
rules range over the collection of closed terms, while the a ranges over Act.
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ol e eV

y/ z = yv/ y=>y
r+yy zt+y>a z+yy z+y Sy

v yy  av ysy xS

Ty zy—>y  xoy—sz-y

Table 1: Transition Rules for BPA..

2.6.2 Priorities

The language BPA g is obtained by adding the priority operator 6 from [24]
to BPA.. This function symbol assumes a partial order < on Act. Intuitively,
the process A(t) is obtained by eliminating all transitions s — s’ from the

process t for which there is a transition s b ¢ with a < b. For example,
if a < b then 6(a + b) can execute the action b but not the action a. The
semantics of the priority operator is captured by the transition rules in Table
2. The TSS for BPA ¢ consists of the transition rules in Tables 1 and 2.

zy/ e %y xB fora<b
0(x)y/ 0(x) % 0(z")

Table 2: Transition Rules for the Priority Operator.

2.6.3 Discrete Time

Our final example is the TSS for an extension of BPA, with relative discrete
time, denoted by BPAJ* [23]. Time progresses in distinct time steps, where
a transition ¢ % #' denotes passing to the next time slice. The syntax of
BPA consists of the operators from BPA, together with a unary operator
o4 to represent a delay of one time unit. That is, a term o4(t) can execute
all transitions of ¢ delayed by one time step. A term t + t' can evolve
into the next time slice if ¢ or ¢ can evolve into the next time slice. The
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transition rules dealing with time steps are presented in Table 3. The TSS
for BPAY! consists of the transition rules in Tables 1 and 3.

ry/ y>y 52
o g /
oq(x) > x Ty —y Ty—1 -y

q

[N, a7 [ o o o
T — T y—y r— Y- Yy—y T -

r+y S +y  rt+ySa r+y Sy

Table 3: Transition Rules for Discrete Time.

3 The Meaning of TSSs

A positive TSS specifies an LTS in a straightforward way as the set of all
provable transitions (cf. Def. 2.14). However, as Groote [107, 108] pointed
out, it is much less trivial to associate an LTS with a TSS containing negative
premises. Several solutions were investigated in [56, 57, 107, 108], mostly
originating from logic programming. This section presents an overview of
how to associate one or more LTSs with a TSS. Our presentation here is
heavily based upon the excellent systematic analysis of the meaning of T'SSs
by van Glabbeek [100, 102], and we heartily refer the reader to op. cit. for
more details.

To see that it is sometimes unclear what the meaning of a TSS with
negative premises is, consider the T'SS 7} consisting of the constant a and
transition rules

CL‘\PQ a—|P1
CLP1 CLP2

Ty

T1 can be regarded as an example of a TSS that does not specify a well-
defined LTS. The above example suggests that some TSSs may indeed be
meaningless. Hence there are two questions to answer:

Which TSSs are meaningful, (1)

and which LTSs can be associated with them? (2)

The papers [100, 102] present several possible answers to these questions,
each consisting of a class of T'SSs and a mapping from this class to LTSs.
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Two such answers are consistent if they agree upon which LTS to associate
with a TSS in the intersection of their domains. Answer Sy extends answer
S1 if the class of meaningful TSSs according to Sy extends that of S7, and
the two are consistent.

The collection of answers proposed by van Glabbeek in op. cit. can be
grouped into those with a model-theoretic and those with a proof-theoretic
flavour. These we now proceed to present.

3.1 Model-Theoretic Answers

Answer 1 A first answer to questions (1) and (2) is to take the class of
positive T'SSs as the meaningful ones, and associate with each positive TSS
the LTS consisting of the provable transitions.

Since negative premises sometimes allow for a clean description of important
constructs found in programming and specification languages, the above
answer is not really satisfactory. More general answers to questions (1) and
(2) have been proposed in the literature. Before reviewing them, we recall
two criteria from [55, 56] that can be imposed on reasonable answers.

Definition 3.1 (Entailment) For an LTS L and a set of literals H, we
write L = H if:

- a € L for all positive literals o in H;
-t 5 ¢ & L for all negative literals t 4 in H and all closed terms t';

- tP & L for all negative literals t—P in H.

Definition 3.2 (Supported model) Let T be a TSS and L an LTS.

o L is a model of T if a« € L whenever there is a closed substitution
instance H/a of a transition rule in T with L = H.

e [ is supported by T if whenever o € L there is a closed substitution
instance H/a of a transition rule in T with L = H.

The first requirement, of being a model, says that L contains all transi-
tions for which T offers a justification. The second requirement, of being
supported, says that L only contains transitions for which T offers a justi-
fication. Note that the LTS containing all possible transitions is a model of
any TSS, while the LTS containing no transitions is supported by any TSS.

The following result is standard, and has its roots in the classic theory
of inductive definitions.
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Proposition 3.3 LetT be a positive TSS and L the set of transitions prov-
able from T. Then L is a supported model of T. Moreover, L is the least
model of T.

Starting from Prop. 3.3, there are two ways to generalize Answer 1 to TSSs
with negative premises.

Answer 2 A TSS is meaningful iff it has a least model.
Answer 3 A TSS is meaningful iff it has a least supported model.

Note that, in general, no unique least (supported) model may exist. A
counter-example is given by the TSS T3, which has two least models, namely
{aP1} and {aP»}, both of which are supported. Answers 2 and 3 are incom-
parable. For example, the TSS T below has {aP;} as its least model, but
no supported models. On the other hand, the TSS T35 has two least models,
namely {aP;} and {aP,}, of which only the first one is supported, and this
is its least supported model.

a—P; T a— Py
aP; 5 alPy

15

Answers 2 and 3 both extend Answer 1, but they are inconsistent with each
other. For example, the T'SS Ty below has a least model {aP;} and a least
supported model {aP;,aP,}.

CL—\Pl CLPQ CLP2

T s 2
4 CLP1 aP1 CLP2

In [54, 55] the following answer was proposed.
Answer 4 A TSS is meaningful iff it has a unique supported model.

The positive TSS T5 below has two supported models, viz. @ and {aP; }, so
Answer 4 does not extend Answer 1.

CLPl

T -
> CLPl

For the GSOS languages considered in op. cit. (cf. Sect. 5.4), Answer 4 coin-
cides with all acceptable answers mentioned in this section. Note, however,
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that the least supported model of T is also its unique supported model.
This seems to entail that Answer 4 is not satisfactory for T'SSs in general.

Fages [80] proposed a strengthening of the notion of support, in the
setting of logic programming. Being supported means that a transition
may only be present if there is a non-empty proof of its presence, starting
from transitions that are also present. These premises in the proof may
include the transition under derivation, thereby allowing for loops, as in
the case of Ty. The notion of a well-supported model is based on the idea
that the absence of a transition may be assumed a priori, provided that
this assumption is consistent, but the presence of a transition needs to be
proven, in the sense of Def. 2.14, building upon a set of assumptions that
only contains negative literals.

Definition 3.4 (Well-supported model) An LTS L is a well-supported
model of a TSS T if for each transition o in L, T proves a closed transition
rule N/a where N only contains negative literals and L = N.

A stable model, developed by Gelfond and Lifschitz [92] in the area of logic
programming, and adapted to T'SSs in [56, 57], only allows for transitions
that are well-supported.

Definition 3.5 (Stable model) An LTS L is a stable model of a TSS T
if a transition o is in L iff T proves a closed transition rule N/a where N
contains only negative literals and L |= N.

An LTS is a stable model of a TSS T iff it is a well-supported model of T’
[100, 102].

Answer 5 A TSS is meaningful iff it has a unique stable model.

Answer 5 extends Answer 1, and it improves upon Answers 3 and 4 by
rejecting the TSS Ty as meaningless. It also improves upon Answer 2 by
rejecting the T'SS T (whose least model was not supported). Furthermore,
Answer 5 gives meaning to perfectly acceptable TSSs that could not be
handled by Answers 1-4. As an example consider the TSS Ty below.

aP1 CL—|P1
aP1 CLP2

Ts

Since there is no compelling way to obtain aP;, we would expect that aP;
does not hold, and consequently that aP, holds. Indeed, {aP,} is the unique
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stable model of this T'SS. However, Ts has two least models, both of which
are supported, namely {aP;} and {aP»}.

A three-valued stable model, introduced by Przymusinski [183] in logic
programming, partitions the set of transitions into three disjoint subsets:
the set C of transitions that are certainly true, the set U of transitions for
which it is unknown whether or not they are true, and the set F' of remaining
transitions that are false.

Definition 3.6 (Three-valued stable model) A disjoint pair of sets of
transitions (C,U) constitutes a three-valued stable model for a TSS T if:

- a transition a is in C iff T proves a closed transition rule N/a where
N contains only negative literals and C UU = N;

- a transition o is in C U U iff T proves a closed transition rule N/
where N contains only negative literals and C' = N.

Each TSS has one or more three-valued stable models. For example, the
TSS T3 has ({aP1},9), ({aP2}, @), and (&, {aP1,aPs}) as its three-valued
stable models. Each TSS T affords an (information-)least three-valued stable
model (C,U), in the sense that the set U is maximal. Przymusinski [183]
showed that this least three-valued stable model coincides with the so-called
well-founded model that was introduced by van Gelder, Ross, and Schlipf
[90, 91] in logic programming.

Answer 6 A TSS is meaningful iff its least three-valued stable model does
not contain unknown transitions. The associated LTS consists of the true
transitions in this three-valued stable model.

Answer 6 extends Answer 1 and is extended by Answer 5, but it is inconsis-
tent with Answers 2—4. In particular, the TSSs 71, T5, and Ty are outside
its domain, while it associates {aP;} to T3, @ to T5, and {aP»} to Ts. In
Sect. 5, Answer 6 will stand us in good stead, as it allows for the formula-
tion of congruence results in the presence of negative premises (cf. Thm. 5.3,
Thm. 5.50, and Thm. 5.53), where Answers 1-5 would all be unsatisfactory.

3.2 Proof-Theoretic Answers

Note for the Reader. In this section only we extend the notion of negative
literals to expressions of the form ¢ ~ ¢'. Intuitively, this expression denotes
that term ¢ cannot evolve to term ¢’ by the execution of action a.
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This section reviews possible answers to questions (1) and (2) based on a
generalization of the concept of proof. van Glabbeek [102] proposed two
generalizations of the concept of a proof in Def. 2.14, to enable the deriva-
tion of negative literals. These two generalizations are based on the notions
of supported model (Def. 3.2) and well-supported model (Def. 3.4), respec-
tively.

Definition 3.7 (Denying literal) The following pairs of literals deny each
other:

-t S5 andt 5t

-t 5 ¢ and t 5

- tP and t—P.

Definition 3.8 (Supported proof) A supported proof of a literal o from
a TSS T is like a proof (see Def. 2.14), but with one extra clause:

3. B is negative, and for each closed substitution instance H' /v of a tran-
sition rule in T such that v denies (3, a literal in H' denies one in K.

We write T ks a if a supported proof of o from T exists.

Definition 3.9 (Well-supported proof) A well-supported proof of a lit-
eral o from a TSS T is like a proof (Def. 2.14), but with one extra clause:

3. B is negative, and for each set N of negative literals such that T = N/~
for v a literal denying B, a literal in N denies one in K.

We write T Fys a if a well-supported proof of a from T exists.

Clause 3 in Def. 3.9 allows one to infer ¢ - t’ or t—P whenever it is impossible
to infer ¢t = ¢/ or tP, respectively. Clause 3 in Def. 3.8 allows such inferences
only if the impossibility to derive t — ¢’ or ¢P can be detected by examining
all possible proofs that consist of one step only. As a consequence, for each
TSS, ks is included in Fs. The following results stem from [102].

Proposition 3.10 For each TSS, the induced relation b5 does not contain
denying literals.

Proposition 3.11 For any TSS T and literal o:
1. T+ a implies L = « for each supported model L of T';

2. T bys a implies L |= « for each well-supported model L of T'.
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Following [102], we now introduce the concept of a complete TSS, in which
every transition is either provable or refutable.

Definition 3.12 (Completeness) A TSS T is z-complete (x € {s,ws})
if for any transition t % t' (resp. tP) either T, t 5 t' (resp. T 4 tP) or
Thyt%t (resp. T, t=P).

Answer 7 A TSS is meaningful iff it is s-complete. The associated LTS
consists of the s-provable transitions.

Answer 8 A TSS is meaningful iff it is ws-complete. The associated LTS
consists of the ws-provable transitions.

From now on, by ‘complete’ we shall mean ‘ws-complete’.

A TSS is complete iff its least three-valued stable model does not contain
any unknown transitions (see [100]), so Answer 6 agrees with Answer 8.
Moreover, Answer 8 extends Answer 7. In [56], an example in the area of
process theory was given (viz. the modelling of a priority operator in basic
process algebra with silent step) that can be handled by Answer 8 but not
by Answer 7, showing that the full generality of Answer 8 can be useful in
applications.

We proceed to show how to associate an LTS with any TSS, using the
concept of a well-supported proof. As illustrated by the TSSs 77 and 75,
such an LTS cannot always be a supported model. Since being a model is
a basic requirement, van Glabbeek [102] proposed a universal answer that
gives up the requirement of supportedness. Let us examine T7. Since the
associated LTS should be a model, it must contain either aP; or aP,. By
symmetry, the associated LTS should include both transitions. As there
is no reason to include any more transitions, the LTS associated with T}
should be {aP;,aP,}. These considerations lead to the following proposal.

Answer 9 Any TSS is meaningful. The associated LTS consists of the
transitions for which none of the denying negative literals are ws-provable.

Answer 9 is inspired by the observation in [102] that for each TSS, the set of
transitions for which none of the denying negative literals are ws-provable
constitutes a model. Answer 9 extends Answer 8, but it is inconsistent with
Answers 2-5. Answer 9 associates the LTS {aP;,aP,} with 77, and the LTS
{aP,} with T5 and Ty.
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3.3 Answers Based on Stratification

Finally, we review two methods to assign meaning to TSSs based on the
technique of (local) stratification, as proposed in the setting of logic pro-
gramming by Przymusinski [182]. This technique was adapted to TSSs in
[107, 108].

Definition 3.13 (Stratification) A mapping S from transitions to ordi-
nal numbers is a stratification of a TSS T if for every transition rule H/o
in T and every closed substitution o:

o for positive premises 3 in H, S(c(5)) < S(o(a)); and

o for negative premises t + and t—P in H, S(o(t) % t') < S(o(a)) for
all closed terms t' and S(o(t)P) < S(o()), respectively.

A stratification is strict if S(o(8)) < S(o(a)) also holds for all the positive
premises 3 in H. A TSS with a (strict) stratification is (strictly) stratifiable.

In a stratifiable TSS no transition depends negatively on itself. An LTS
associated with such a TSS may be built one stratum of transitions with
the same S-value at a time. A transition with S-value zero is present only
if it is provable in the sense of Def. 2.14, and as soon as the validity of all
transitions with S-value no greater than  is known for some ordinal number
K, the validity of closed instantiations of negative premises that could occur
in a proof of a transition with S-value x4+ 1 is known, which determines the
validity of those transitions.

Let T be a TSS with a stratification S. The stratum L, of transitions,
for an ordinal number k, is defined thus (using ordinal induction):

a € L, iff S(a) = k and T proves a closed transition rule H/a with
UpenLy = H.

Similarly, for a TSS T with a strict stratification S, the stratum M, of tran-
sitions, for an ordinal number x, is defined thus (using ordinal induction):

a € M, iff S(a) = k and there is a closed substitution instance H/«
of a transition rule in T" with U,«.M, = H.

Groote [107, 108] proved that the sets U,L, and U,M, are independent
of the chosen (strict) stratification. This justifies the following answers to
questions (1) and (2).
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Answer 10 A TSS is meaningful iff it is stratifiable. The associated LTS
is Uk Ly.

Answer 11 A TSS is meaningful iff it is strictly stratifiable. The associated
LTS is U, M,.

Answer 10 extends Answer 1 and is extended by Answer 8. Answer 11 is
extended by Answers 7 and 10.

3.4 Evaluation of the Answers

We have presented several possible answers to the questions of which TSSs
are meaningful and which LTSs are associated with them.

Answer 1 (positive) is the classical interpretation of T'SSs without neg-
ative premises, and Answers 2 (least model) and 3 (least supported model)
are two straightforward generalizations. Answer 4 (unique supported model)
stems from [54], where it was used to ascertain that TSSs in GSOS format
(cf. Sect. 5.4) are meaningful. The TSS T4, however, shows that Answer 4
yields counter-intuitive results in general. Fortunately, TSSs in GSOS for-
mat are even strictly stratifiable, which is one of the most restrictive criteria
for meaningful T'SSs considered. For GSOS languages with recursion, how-
ever, it is no longer straightforward to find an associated LTS (see, e.g.,
[55]). A solution for this, involving a special divergence predicate, will be
discussed in Sect. 5.4.6.

Answer 5 (unique stable) is generally considered to be the most general
acceptable answer available. Answer 8 (complete) is the most general answer
without undesirable properties. Answer 8 is based on a concept of provability
incorporating the notion of negation as failure of Clark [63]. Answer 6
(no unknown transitions) agrees with Answer 8; i.e., a TSS is complete iff
its least three-valued stable model does not contain unknown transitions.
Answer 7 (complete with support) only yields unique supported models.
Moreover, it is based on a notion of provability that is somewhat simpler to
apply, and only incorporates the notion of negation as finite failure [63].

Answer 9 (irrefutable), which gives a meaning to each TSS, has the dis-
advantage that it sometimes yields unstable models, and even unsupported
models. A good example from process algebra of a TSS without supported
models is BPA with the priority operator, unguarded recursion, and renam-
ing, as defined in [107, 108]. Although Answer 9 gives a meaning to this
TSS, it appears rather arbitrary and not very useful. In particular, recur-
sively defined processes do not satisfy their defining equations—a highly
undesirable feature by all accounts.
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Answer 10 (stratification) is perhaps the best known answer in logic
programming. A variant that only allows T'SSs with a unique supported
model is Answer 11 (strict stratification). Answers 10 and 11 are of practical
importance, because they are extended by Answer 8. Thus, giving a (strict)
stratification is a useful tool for showing that a TSS is complete, and this
technique is applied in several examples in the remainder of this chapter.

3.5 Applications

We show that the three TSSs from Sect. 2.6 are complete, using a stratifi-
cation. We use the fact that Answer 8 extends Answers 1 and 10.

BPA with Empty Process The TSS for BPA, is positive.

Priorities The TSS for BPAg is complete, which can be seen by giving a
suitable stratification S, counting the number of occurrences of the priority
operator in the left-hand side of a transition. That is, if the closed term ¢
contains n occurrences of 6, then S(t % ') = n and S(t/) = n. Consider
for instance the second transition rule in Table 2:

T —T :vvbe fora<b
H(x)iﬁ(:v')

Clearly S(t % t/) < S(0(t) % 6(t')) and S(t > u) < S(O(t) % 6(t')) for
all closed terms ¢, t', and u, because 6(t) contains one more occurrence of
the priority operator than ¢. In a similar fashion it can be verified for the
other transition rules of BPA that S is a stratification. Hence, the TSS
for BPA .y is complete.

Discrete Time The TSS for BPA% is complete, which can be seen by
giving a suitable stratification S, counting the occurrences of alternative
composition on the left-hand side of a timed transition. That is, if the
closed term t contains n occurrences of +, then S(t % t') = n. Moreover,
S(t % ') = 0 for a € Act. Consider for instance the last transition rule in
Table 3:
y >y x5
T+y N y'

Clearly S(u % ') < S(t+u 2> «') and S(t > t') < S(t +u > ') for all
closed terms ¢, ¢, u, and u/, because t + u contains more occurrences of the
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alternative composition than ¢t and u. In a similar fashion it can be verified
for the other transition rules of BPAYt that S is a stratification. Hence, the
TSS for BPAZ® is complete.

4 Conservative Extension

Over and over again, process calculi such as CCS [158], CSP [187], and
ACP [29] have been extended with new features, and the original TSSs,
which provide the semantics for these process algebras, were extended with
transition rules to describe these features; see, e.g., [28] for a systematic
approach. A question that arises naturally is whether or not the LTSs
associated with the original and with the extended TSS contain the same
transitions ¢t — ' and tP for closed terms ¢ in the original domain. Usually
it is desirable that an extension is operationally conservative, meaning that
the provable transitions for an original term are the same both in the original
and in the extended TSS.

Groote and Vaandrager [111, Thm. 7.6] proposed syntactic restrictions
on a TSS, which automatically yield that an extension of this TSS with
transition rules that contain fresh function symbols in their sources is op-
erationally conservative (cf. the notion of a disjoint extension from [8] in
Def. 5.32). Bol and Groote [57, 108] supplied this conservative extension
format with negative premises. Verhoef [227] showed that, under certain
conditions, a transition rule in the extension can be allowed to have an
original term as its source. D’Argenio and Verhoef [69, 70] formulated a
generalization in the context of inequational specifications. Fokkink and
Verhoef [87] relaxed the syntactic restrictions on the original T'SS, and lifted
the operational conservative extension result to higher-order languages (see
Sect. 6.4).

Operational conservative extension seems such a natural notion that in
the literature this property is often a hidden assumption: its formulation
and proof are omitted without justification. For example, this happens in
the design of process algebras, and in applications of a strategy to prove
w-completeness mentioned in Sect. 4.3.3. Paying attention to operational
conservative extension not only leads to more accurate contemplations on
concurrency theory, but is also beneficial in other respects. Namely, oper-
ational conservative extension can be applied to obtain results in process
algebra that are much harder to obtain using more classical term rewriting
approaches or customized techniques.

The organization of this section is as follows. Sect. 4.1 presents syntactic
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constraints to ensure that an extension of a TSS is operationally conserva-
tive. Sect. 4.2 studies the relation between the three-valued stable models
of a TSS and of its operational conservative extension. Sects. 4.3 and 4.4
show how operational conservative extension can be applied to derive useful
properties concerning axiomatizations and term rewriting systems.

4.1 Operational Conservative Extension

Often one wants to add new operators and rules to a given T'SS. Therefore,
a natural operation on TSSs is to take their componentwise union. The
following definition stems from [111].

Definition 4.1 (Sum of TSSs) Let Ty and T be TSSs whose signatures
Yo and X1 agree on the arity of the function symbols in their intersection.
We write 39 @ %1 for the union of ¥¢ and Xy.

The sum of Ty and Ty, notation To®T1, is the TSS over signature XgH 3
containing the rules in Ty and T7.

An operational conservative extension requires that an original TSS and
its extension prove exactly the same closed transition rules that have only
negative premises and an original closed term as their source. This notion
of an operational conservative extension is related to an equivalence no-
tion for TSSs in [85, 100] (see also Thm. 5.6): two TSSs are equivalent if
they prove exactly the same closed transition rules that have only negative
premises. Such a definition is inspired by the notion of a well-supported
proof in Def. 3.9.

Definition 4.2 (Operational conservative extension) A TSS Ty & Ty
is an operational conservative extension of T'SS Ty if for each closed transi-
tion rule N/ such that:

- N contains only negative literals;
- the left-hand side of « is in T(Xg);
-TodTh+ N/a;

we have that Ty F N/«a.

We proceed to define the notion of a source-dependent variable [87, 98],
which will be an important ingredient of a rule format to ensure that an
extension of a TSS is operationally conservative (see Thm. 4.4). In order
to conclude that an extended TSS is operationally conservative over the
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original TSS, we need to know that the variables in the original transition
rules are source-dependent. In the literature this criterion is sometimes
neglected. For example, in [167] an extended TSS is considered in which
each transition rule in the extension contains a fresh operator in its source,
and from this fact alone it is concluded that the extension is operationally
conservative. In general, however, this characteristic is not sufficient, as is
shown in the next example.

Example: Let a and b be constants. Consider the TSS over signature
{a} that consists of the transition rule xP/aP. Extend this T'SS with the
TSS over signature {b} that consists of the transition rule @/bP, which
contains the fresh constant b in its source. The transition aP can be proven
in the extended TSS, but not in the original one, so this extension is not
operationally conservative. ([

Definition 4.3 (Source-dependency) The source-dependent variables in
a transition rule p are defined inductively as follows:
- all variables in the source of p are source-dependent;

- ift 3t is a premise of p and all variables in t are source-dependent,
then all variables in t' are source-dependent.

A transition rule is source-dependent if all its variables are.

Note that the transition rule xP/aP from the example above is not source-
dependent, because its variable x is not.

Thm. 4.4 below, which stems from [87], formulates sufficient criteria for
a TSS Ty @& 11 to be an operational conservative extension of T'SS 1. We
say that a term in T(Xo @ %) is fresh if it contains a function symbol from
¥1\X¥o. Similarly, an action or predicate symbol in 77 is fresh if it does not
occur in Tj.

Theorem 4.4 Let Ty and T7 be TSSs over signatures ¥y and X1, respec-
tively. Under the following conditions, To®T] is an operational conservative
extension of Ty.

1. Each p € Ty is source-dependent.
2. For each p € T,

e cither the source of p is fresh,

28



e or p has a premise of the form t 5 ¢ or tP, where:
— teT(Xo);
— all variables in t occur in the source of p;
— t', a, or P is fresh.

We apply Thm. 4.4 to our running examples from Sect. 2.6.

BPA with Empty Process The transition rules for BPA, are all source-
dependent. For example, consider the third transition rule for sequential
composition in Table 1:
z %
roy—>a -y
The variables x and y are source-dependent, because they occur in the
source. Moreover, since z is source-dependent, the premise z — 2’ ensures
that z’ is source-dependent. Since the three variables z, 2/, and y in this
transition rule are source-dependent, the transition rule is source-dependent.

BPA with Empty Process and Silent Step The process algebra BPA;
is obtained by extending the syntax of BPA. with a fresh constant 7 called
the silent step (see Sect. 5.5 for details on the intuition behind this constant).
The TSS for BPA, is the TSS for BPA,. in Table 1, with the proviso that
a ranges over ActU {7}. We make the following observations concerning the
extra transition rules in the TSS for BPA,:

e the source of the transition rule 7 — € for the silent step contains the
fresh constant 7;

e each transition rule for alternative or sequential composition with 7-
transitions, such as
r 5
T4y S
contains a premise with the fresh relation symbol — and with as left-

hand side a variable from the source.

Hence, since the transition rules for BPA. are source-dependent, Thm. 4.4
implies that BPA,, is an operational conservative extension of BPA..
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Priorities The two transition rules for the priority operator in Table 2
contain the fresh function symbol 6 in their sources. Hence, since the tran-
sition rules for BPA, are source-dependent, Thm. 4.4 implies that BPA.g is
an operational conservative extension of BPA..

Discrete Time As for the TSS for BPAYt in Table 3, we make the follow-
ing observations. First, the transition rule for the delay operator contains
the fresh operator o4 in its source. Second, the transition rules for sequen-
tial composition and the three transition rules for alternative composition
(which do not have a fresh operator in their sources) all contain the premise
z 2z’ or y > v/, where the relation symbol = is fresh and the variable on
the left-hand side occurs in the source. Hence, since the transition rules for
BPA, are source-dependent, Thm. 4.4 implies that BPA‘Git is an operational
conservative extension of BPA..

4.2 TImplications for Three-Valued Stable Models

In [87] it was noted that the operational conservative extension notion as
formulated in Def. 4.2 implies a conservativity property for three-valued
stable models (cf. Def. 3.6). If an extended TSS is operationally conservative
over the original TSS, in the sense of Def. 4.2, and if a three-valued stable
model of the extended TSS is restricted to those transitions that have an
original term as left-hand side, then the result is a three-valued stable model
of the original TSS.

Proposition 4.5 Let Ty & 11 be an operational conservative extension of
To. If (C,U) is a three-valued stable model of Ty & T4, then

C/
Ul

{a € C| the left-hand side of o is in T(Xg)}
{a € U| the left-hand side of a is in T(Xg)}

A
=

s a three-valued stable model of Ty.

The converse of Prop. 4.5 also holds, in the following sense. If an extended
TSS is operationally conservative over the original T'SS, then each three-
valued stable model of the original TSS can be obtained by restricting some
three-valued stable model of the extended T'SS to those transitions that have
an original term as left-hand side.
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Proposition 4.6 Let To®T be an operational conservative extension of 1.
If (C,U) is a three-valued stable model of Ty, then there exists a three-valued
stable model (C",U") of Ty ® T such that

C
U

{a € C" | the left-hand side of « is in T(3g)}
{a € U’ | the left-hand side of a is in T(Xg)} .

> 11

Corollary 4.7 Let Ty & 11 be an operational conservative extension of Tj.
If (C,U) is the least three-valued stable model of Ty & Ty, then

C/
U/

{a € C'| the left-hand side of o is in T(Xg)}
{a € U | the left-hand side of o is in T(Xg)}

> 1

is the least three-valued stable model of Ty.

It is easy to see that Prop. 4.5 also holds for stable models (cf. Def. 3.5). The
following example, however, shows that Prop. 4.6 does not hold for stable
models.

Example: Let T be the empty TSS. Obviously, the empty LTS is a stable
model of Tj. Let a be a constant, and let T} consist of the single transition
rule a—P/aP. According to Thm. 4.4, Ty & T} is an operational conservative
extension of Ty. However, Ty @ T does not have a stable model (but only

the three-valued stable model (&, {aP})). O

4.3 Applications to Axiomatizations

This section discusses how operational conservative extension can be used to
derive that an extension of an axiomatization is so-called axiomatically con-
servative, or that an axiomatization is complete or w-complete with respect
to some behavioural equivalence.

4.3.1 Axiomatic Conservative Extension

Definition 4.8 (Axiomatization) A (conditional) axiomatization over a
signature . consists of a set of (conditional) equations, called axioms, of the
formtg =ug <=t =uq,...,t, = uy with t;,u; € W(X) fori=0,...,n.

An axiomatization gives rise to a binary equality relation = on T(X) thus:

o if tg =ug <= t1 = uq,...,t, = u, is an axiom, and o a substitution
such that o(¢;) = o(u;) for i = 1,...,n, then o(tg) = o(up);
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e the relation = is closed under reflexivity, symmetry, and transitivity;

e if f is a function symbol and u = u/, then
f(tla cestic, Uy iy, . ’ta'r(f)) = f(tl’ oo ati—laulati-i-l’ o ’ta'r(f))‘

Definition 4.9 (Soundness and completeness) Assume an aziomatiza-
tion £, together with an equivalence relation ~ on T(X).

1. &€ is sound modulo ~ iff t = u implies t ~ u for all t,u € T(X).
2. & is complete modulo ~ iff t ~ w implies t = u for all t,u € T(X).

Note that the above definitions of soundness and completeness, albeit stan-
dard in the literature on process algebras, are weaker than the classic ones
in logic and universal algebra, where they are required to apply to arbitrary
open expressions.

Definition 4.10 (Axiomatic conservative extension) Let &y and & be
axiomatizations over signatures g and Xg @ X1, respectively. Their union
& U & is an axiomatic conservative extension of & if every equality t = u
with t,u € T(Xg) that can be derived from E U &y can also be derived from
&.

The next theorem from [227] can be used to derive that an extension of an
axiomatization is axiomatically conservative.

Theorem 4.11 Let ~ be an equivalence relation on T(Xg @ X1). Assume
axiomatizations & and &1 over Yy and Yo D Xy, respectively, such that:

1. & U & is sound over T(Xg @ 1) modulo ~;
2. & is complete over T(Xg) modulo ~.

Then & U &1 is an axiomatic conservative extension of &.

The idea behind Thm. 4.11 is as follows. Suppose that ¢ = u can be derived
from & U & for t,u € T(Xg). Soundness of & U &; (requirement 1) yields
t ~ u. Hence, completeness of & (requirement 2) yields that ¢ = u can be
derived from &.

Thm. 4.11 is particularly helpful in the case of an operational conserva-
tive extension of a TSS. Namely, assume TSSs T and T} over signatures
Yo and Xy @ X, respectively, where Ty ¢ T} is an operational conservative
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extension of Ty. Moreover, let ~ be an equivalence relation on states in
LTSs. Since the states in the LTSs associated with T and Ty @& 17 are closed
terms, the equivalence relation ~ carries over to T(Xg) and T(X¢ @ %4),
respectively. Owing to operational conservativity, the equivalence relation
~ on T(Xp) as induced by Tj agrees with this equivalence relation on T(X)
as induced by Tp @ T7. Applications of Thm. 4.11 in process algebra, in the
presence of an operational conservative extension of a TSS, are abundant in
the literature; we give a typical example.

Example: Using Thm. 4.4 it is easily seen that the process algebra ACPy
[24] is an operational conservative extension of ACP. Baeten, Bergstra,
and Klop presented in op. cit. an axiomatization & that is complete over
ACP modulo bisimulation equivalence, and an axiomatization & U&7 that is
sound over ACPy modulo bisimulation equivalence. Hence, Thm. 4.11 says
that & U & is an axiomatic conservative extension of &. (In [24], fifteen
pages were needed to prove this fact for the more general case of open terms,
by means of a term rewriting analysis.) O

4.3.2 Completeness of Axiomatizations

The next theorem from [227] can be used to derive that an axiomatization
is complete.

Theorem 4.12 Let ~ be an equivalence relation on T(Xg @ X1). Assume
axiomatizations & and &1 over Xy and Yo D Xy, respectively, such that:

1. & U & is sound over T(Xg @ 1) modulo ~;
2. & is complete over T(Xg) modulo ~;

3. for each t € T(Xo @ X1) there is at' € T(Xg) such that t =t can be
derived from & U & .

Then E U & is complete over T (3¢ @ ¥1) modulo ~.

The idea behind Thm. 4.12 is as follows. Let ¢t,u € T(Xo @ ¥1) with ¢ ~
u. There exist terms t',u’ € T(X() such that & U & proves t = t' and
u = u’ (requirement 3). Soundness of & U &; (requirement 1) yields ¢ ~ ¢/
and u ~ v/, which together with ¢ ~ w implies ' ~ u/. Finally, owing to
completeness of & over T(X) (requirement 2), we may derive ¢ = v/, and
thus t =t =o' = w.
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Similar to Thm. 4.11, Thm. 4.12 is particularly helpful in the case of
an operational conservative extension of a TSS. In order to clarify the link
between Thm. 4.12 and operational conservative extensions, we reiterate the
following observation from Sect. 4.3.1. Assume TSSs T and T} over signa-
tures Yo and Xy b X1, respectively, where Ty @ T} is an operational conserva-
tive extension of Tj. Moreover, let ~ be an equivalence relation on states in
LTSs. Since the states in the LTSs associated with T and Ty @& 17 are closed
terms, the equivalence relation ~ carries over to T(Xg) and T(X¢ @ %4),
respectively. Owing to operational conservativity, the equivalence relation
~ on T(X) as induced by Ty agrees with this equivalence relation on T(X)
as induced by Tp @ T7. Applications of Thm. 4.12 in process algebra, in the
presence of an operational conservative extension of a T'SS, are abundant in
the literature; we give a typical example.

Example: Using Thm. 4.4 it is easily seen that the process algebra ACP [37]
is an operational conservative extension of BPAs. Bergstra and Klop pre-
sented in op. cit. an axiomatization & that is complete over BPAs mod-
ulo bisimulation equivalence, and an axiomatization & U &; that is sound
over ACP modulo bisimulation equivalence, and that satisfies requirement
3 above. Hence, Thm. 4.12 says that & U &7 is complete over ACP modulo
bisimulation equivalence. O

For the precise proofs of Thm. 4.11 and Thm. 4.12, and for more detailed
information such as generalizations of these results to axiomatizations based
on inequalities, the reader is referred to [69, 70, 227].

4.3.3 w-Completeness of Axiomatizations

Definition 4.13 (w-completeness) An aziomatization € over a signature
Y is w-complete if an equation t = u with t,u € T(X) can be derived from &
whenever o(t) = o(u) can be derived from & for all closed substitutions o.

Milner [159] introduced a technique to derive w-completeness of an axiom-
atization using SOS. The idea is to give a semantics to open (as opposed to
closed) terms; in particular, variables need to be incorporated in the transi-
tion rules. See, e.g., [9, 97] for further applications of this technique in the
realm of process algebra.

The next theorem can be used to derive that an axiomatization is w-
complete.
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Theorem 4.14 Let ~ be an equivalence relation on T(X). Suppose that for
all t,u € T(X), t ~ u whenever o(t) ~ o(u) for all closed substitutions o. If
£ is an axiomatization over % such that

1. & is sound over T(X) modulo ~, and

2. &€ is complete over T(X) modulo ~,

then £ is w-complete.

The idea behind Thm. 4.14 is as follows. Let t,u € T(X) and suppose that
o(t) = o(u) can be derived from & for all closed substitutions o. Soundness
of £ over T(X¥) modulo ~ (requirement 1) yields o(t) ~ o(u) for all closed
substitutions o, so ¢ ~ u. Then completeness of £ over T(X) modulo ~
(requirement 2) yields that ¢ = u can be derived from &.

Thm. 4.14 is particularly helpful in the case of an operational conserva-
tive extension of a TSS. Namely, assume a T'SS T over a signature X, and
let Ty be extended with a T'SS 77 that provides semantics to variables; thus,
To © T gives semantics to open terms in T(X). Suppose that Tp @ T} is an
operational conservative extension of Ty. Moreover, let ~ be an equivalence
relation on states in LTSs. Since the states in the LTSs associated with T}
and Ty @711 are closed and open terms, respectively, the equivalence relation
~ carries over to T(X) and T(X). Owing to operational conservativity, the
equivalence relation ~ on T(X) as induced by T agrees with this equiva-
lence relation on T(X) as induced by Ty @ 7). Applications of Thm. 4.14 in
process algebra are abundant in the literature; we give a typical example.

Example: Extend the TSS for BPA, in Table 1 by letting the symbol a
range not only over the set Act of actions, but also over the set Var of
variables. In a sense this means that variables are considered to be constants.
This extension is operationally conservative, which follows from Thm. 4.4
by the following facts:

e the transition rules for BPA, are source-dependent;
e the sources of transition rules z = € for variables z are fresh;

e each transition rule for alternative or sequential composition with z-
transitions, such as
xS
T4y S
contains a premise with the fresh relation symbol = and as left-hand
side a variable from the source.

35



Furthermore, the following properties can be derived for the axiomatization
& of BPA, in [229]:

1. £ is sound over BPA, modulo bisimulation equivalence;

2. open terms t and u in BPA, are bisimilar whenever o(t) and o(u) are
bisimilar for all closed substitutions o;

3. & is complete over the open terms in BPA,. modulo bisimulation equiv-
alence.

So Thm. 4.14 implies that £ is w-complete over BPA,. modulo bisimulation
equivalence. O

4.4 Applications to Rewriting

This section discusses how operational conservative extension can be used to
derive that an extension of a conditional term rewriting system is so-called
rewrite conservative, or that a conditional term rewriting system is ground
confluent.

4.4.1 Rewrite Conservative Extension

Definition 4.15 (Conditional term rewriting system) Assume a sig-
nature 3. A conditional term rewriting system (CTRS) [17, 38] over ¥
consists of a set of rewrite rules

to — ug =11 —>*u1,...,tn —>*un
with ti,u; € T(X) fori=0,...,n.

Intuitively, a rewrite rule is a directed axiom that can only be applied from
left to right. A CTRS induces a binary rewrite relation —* on terms, similar
to the way that an axiomatization induces an equality relation on terms (the
only difference is that the rewrite relation is not closed under symmetry),
thus:

e if tg > uyg < t1 =" uq,...,t, =% u, is a rewrite rule, and o a
substitution such that o(t;) —* o(u;) for i = 1,...,n, then o(tg) —*
o (uo);

e the relation —* is closed under reflexivity and transitivity;
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e if f is a function symbol and u —* u/, then
f(tl, ceytic, Uy tig1, 7tar(f)) —* f(tl, R ,tifl,’u,/,tlurl, c. 7tar(f))‘

Definition 4.16 (Rewrite conservative extension) Let Ry and Ry be
CTRSs over signatures Yo and g @ X1, respectively. Their union Ry ® Ry
is a rewrite conservative extension of Ry if every rewrite relation t —* u
with t € T(Xg) that can be derived from Ry @ Ri can also be derived from
Ry.

The conservative extension theorem for TSSs, Thm. 4.4, applies to CTRSs
just as well; see [88] for more details, and for applications of this result in
the realm of software renovation (see, e.g., [222]). Note that the definition
of source-dependent variables in transition rules, Def. 4.3, also applies to
rewrite rules (where, in a rewrite rule tg — ug < t1 =" uy, ..., tn = Uy,
the expression ty — wug is the conclusion and the t; —* u; fori =1,...,n
are the premises).

Theorem 4.17 Let Ry and R be CTRSs over signatures Yo and Yo D X1,
respectively. Under the following conditions, Ro® Ry is a rewrite conserva-
tive extension of Ry.

1. FEach p € Ry is source-dependent.
2. For each p € 11,

e cither the source of p is fresh,

e or p has a premise of the form t — t' where:
—teT(Xo);
— all variables in t occur in the source of p;
— t' is fresh.

4.4.2 Ground Confluence of CTRSs

A CTRS is ground confluent if for all ¢,tg,t; € T(X) with ¢ —* ¢o and
t —* t; there is a u € T(X) with ¢y =* uw and t; —* u. Ground confluence
is an important property, for instance, to prove that an axiomatization is
complete modulo some behavioural equivalence relation.

The next theorem from [227] can be used to derive that a CTRS is ground
confluent. We say that a CTRS R is sound modulo an equivalence relation
~ on T(X) if ¢t —* u implies ¢t ~ u for all ¢t,u € T(X).
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Theorem 4.18 Let ~ be an equivalence relation on T(Xg @ X1). Assume
CTRSs Ry and Ry over ¥g and Yo @ X1, respectively, such that:

1. Ry & Ry is sound over T(X¢ @ ¥1) modulo ~;

2. ift,t' € T(Xg) with t ~t', then there is a u € T(Xg) such that t =* u
and t' —* u can be derived from Ry;

3. for each t € T(Xo @ Xy) there is at’ € T(Xo) such that t —* t' can be
derived from Ro ® Ry.

Then Ry ® Ry is ground confluent over T(Xy @ X1).

The idea behind Thm. 4.18 is as follows. Let t € T(X¢ & X1) such that
t —* to and t —* ¢1 can be derived from Ry ® R;y. There exist ¢, t} € T(Zo)
such that ¢ty —* t; and t; —* t| can be derived from Ry & R; (requirement
3). Soundness of Ry @ R; (requirement 1) yields ¢ ~ to ~ ¢ and t ~ t1 ~ t],
so ty ~ t}. Then there exists a u € T(Xy) such that t; —* u and t] —* u
(requirement 2). Hence, tg —* u and t; —* u.

Similar to Thm. 4.11 and Thm. 4.12, Thm. 4.18 is particularly helpful
in the case of an operational conservative extension of a TSS. In order to
clarify the link between Thm. 4.18 and operational conservative extensions,
we reiterate the following observation from Sect. 4.3.1. Assume TSSs Tj
and T3 over signatures >y and g @ X1, respectively, where Ty @ 17 is an
operational conservative extension of Ty. Moreover, let ~ be an equivalence
relation on states in LTSs. Since the states in the LTSs associated with
Ty and Ty @ T are closed terms, the equivalence relation ~ carries over to
T(Xp) and T (3¢ @ X1), respectively. Owing to operational conservativity,
the equivalence relation ~ on T(X() as induced by T agrees with this equiv-
alence relation on T(Xy) as induced by To@®T;. Applications of Thm. 4.18, in
the presence of an operational conservative extension of a T'SS, are abundant
in the literature; we give a typical example.

Example: Using Thm. 4.4 it is easily seen that the process algebra ACP
[37] is an operational conservative extension of BPAs. Bergstra and Klop
presented in op. cit. an (unconditional) CTRS Ry® R; for the process algebra
ACP, which reduces each closed term in ACP to a closed term in BPAj.
Moreover, Ro® R; is sound over ACP modulo bisimulation equivalence, and
it is easily shown that Ry can reduce bisimilar closed terms in BPAs to the
same closed term in BPAs. Hence, Thm. 4.11 says that Ry & R; is ground
confluent. (In [37, p. 122], an analysis of about 400 cases was needed to
prove this fact for the more general case of open terms.) O
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5 Congruence Formats

The development of process theory in the 1980s led to several process de-
scription languages and a large body of results. As the field of process
theory matured, it became apparent that many similar results proven for
different languages in different papers in the research literature were, in
fact, instances of more general theorems which are independent of the cho-
sen process description language. This realization paved the way to the
development of a meta-theory of process description languages in which one
can prove theorems for whole classes of languages at the same time. Indeed,
as it is the case in science and mathematics, when asked to produce one
or more results, it is usual to generalize the problem, and to consider these
results as specific instances of more general problems. In following such a
more abstract approach to the development of our theories, we have two
obligations:

1. to be very specific as to how we generalize, i.e., we have to choose the
wider class of problems carefully and to define it explicitly, because
our arguments must apply to the whole class;

2. to choose a generalization that is helpful to our purpose.

Process description languages are often equipped with an SOS. Thus, this
way of giving operational semantics to terms has been a natural handle to
establish results that hold for all process calculi whose transition rules fit a
certain rule format, imposing syntactic constraints on the form of the allowed
rules. Rule formats have proven to be suitable tools for the generalization
of specific results in process theory. A central issue in the area of SOS is
to define rule formats ensuring that a behavioural equivalence relation is a
congruence, meaning that each function symbol respects this equivalence.
This section presents an overview of the congruence formats for TSSs that
have been studied in the literature, and hints at results that have been
proven for them.

The most basic rule format to guarantee that bisimulation equivalence
is a congruence is the De Simone format [201]. The GSOS format [54,
55] allows negative premises but no look-ahead, and the tyft/tyxt format
[110, 111] allows look-ahead but no negative premises. The positive GSOS
format is, so the speak, the greatest common divisor of the GSOS and
the tyft/tyxt format. The ntyft/ntyxt format [108] extends the tyft/tyxt
format with negative premises. Finally, the path format [27] generalizes the
tyft/tyxt format with predicates, while the panth format [226, 228] extends
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Figure 1: Lattice of Congruence Formats

the ntyft/ntyxt format with predicates. Figure 1 presents the lattice of
congruence formats for bisimulation equivalence. An arrow from one rule
format to another indicates that all transition rules in the first format are
also in the second format. If there are no arrows connecting two rule formats,
then they are (syntactically) incomparable.

If a TSS is both panth and (ws-)complete (in the sense of Def. 3.12),
then bisimulation equivalence is a congruence with respect to all the func-
tion symbols in the signature. The panth format is the most general known
syntactic format to guarantee that bisimulation equivalence is a congru-
ence. However, more restrictive rule formats such as De Simone and GSOS
guarantee other nice properties. Therefore, these rule formats are treated
separately in this section.

For each TSS in panth format there exists an equivalent TSS in ntree
format [85]. This result facilitates reasoning about the panth format, be-
cause it is often much easier to prove a theorem for TSSs in ntree format
than for T'SSs in panth format. For example, this is the case for the congru-
ence theorem for bisimulation equivalence itself. Furthermore, the reduction
of panth to ntree made it possible to remove the well-foundedness criterion
on premises from an earlier version of the congruence theorem, owing to
the fact that TSSs in ntree format satisfy this well-foundedness criterion by
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default; see [85].

For the sake of presentation, the lattice in Figure 1 focuses on the rule
formats that are of practical importance; that is, we left out the ntree format
and its derived (unnamed) formats that disallow predicates and/or negative
premises. Other rule formats that are not mentioned in Figure 1 are those
that deal with silent actions explicitly. Of particular interest here are the
rule formats presented in, e.g., [51, 84, 215, 218|.

The organization of this section is as follows. Sect. 5.1 presents the
panth format, while Sect. 5.2 deals with the equally expressive ntree for-
mat. Sects. 5.3 and 5.4 study De Simone languages and GSOS languages,
respectively. Sect. 5.5 introduces a congruence format in the presence of
silent actions, while Sect. 5.6 presents congruence formats for a wide range
of behavioural preorders. Finally, Sect. 5.7 studies the completed trace con-
gruence induced by a number of congruence formats.

5.1 Panth Format

This section presents the panth format, and states a congruence theorem
(cf. Def. 2.11) from [57, 111, 228] with respect to bisimulation equivalence
(cf. Def. 2.3).

Definition 5.1 (Panth format) A transition rule p is in panth format if
it satisfies the following three restrictions:

1. for each positive premise t — t' of p, the right-hand side t' is a single
variable;

2. the source of p contains no more than one function symbol;

3. the variables that occur as right-hand sides of positive premises or in
the source of p are all distinct.

A TSS is in panth format if it consists of panth rules only.

The three subformats path, ntyft/ntyxt, and tyft/tyxt of the panth format
do not allow for negative premises and/or predicates.

Definition 5.2 (Path, ntyft/ntyxt, and tyft/tyxt format) A TSS is
in path format if it is in panth format and positive.

A TSS is in ntyft /ntyxt format if it is in panth format and its transition
rules do not contain predicates.

A TSS is in tyft/tyxt format if it is both path and ntyft/ntyct.
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A TSS is in tyft format if it is tyft/tyzt and the source of each rule
contains exactly one function symbol.

Theorem 5.3 If a TSS is complete and panth, then bisimulation equiva-
lence is a congruence with respect to the LTS associated with it.

The interested reader is referred to [85, 111, 228] for a proof of Thm. 5.3.
Groote and Vaandrager [111] presented a string of examples of T'SSs which
show that all syntactic requirements of the panth format are essential for
the congruence result in Thm. 5.3. We give an example to show that the
restriction in Thm. 5.3 to complete T'SSs is essential. In particular, it cannot
be relaxed to T'SSs that have exactly one (not necessarily least) three-valued
stable model that does not contain unknown transitions. The example is
derived from [57, Ex. 8.12].

Example: Let the signature consist of constants a, b and of a unary function
symbol f. Moreover, let P, 1, and ()2 be predicates. Consider the following
TSS in panth format:

L zP f(x)-Q1 f(a)-Q2 zP f(z)-Q2 f(b)—CQ1
aP  bP f(2)Q2 F(2)Qq

Its least three-valued stable model contains the following unknown transi-
tions: f(a)Q1, f(a)Q2, f(b)Q1, and f(b)Q2. So the TSS is not complete.
However, the T'SS does have a three-valued stable model in which the set
of unknown transitions is empty, and aP, bP, f(a)Q1, and f(b)Q2 are the
true transitions. a < b but f(a) <4 f(b) with respect to this three-valued
stable model. O

van Oostrom and de Vink [169] generalized the tyft/tyxt format (so in the
absence of predicates and negative premises) to the stalk format, by some-
what relaxing the constraint that sources of transition rules can contain no
more than one function symbol. They proved that the congruence result in
Thm. 5.3 holds for the stalk format.

We apply the congruence theorem for the panth format to the running
examples from Sect. 2.6.

Basic Process Algebra The TSS for BPA. in Table 1 is panth. For
example, the transition rule



for sequential composition is panth, because the right-hand side of its premise
is a single variable 2/, its source contains only one function symbol (sequen-
tial composition), and the variables in the right-hand side of its premise (z’)
and in its source (z and y) are distinct. It is left to the reader to verify that
the remaining transition rules in Table 1 are panth.

The TSS for BPA, is positive, so it is complete. Since this TSS is both
panth and complete, Thm. 5.3 says that bisimulation equivalence is a con-
gruence with respect to BPA..

Priorities It is not hard to check that the TSS for BPA. in Table 2 is
panth. Furthermore, it was noted in Sect. 3.5 that the TSS for BPA.y is
complete. Hence, by Thm. 5.3, bisimulation equivalence is a congruence
with respect to BPA.

Discrete Time It is not hard to check that the TSS for BPAYt in Table 3
is panth. Furthermore, it was noted in Sect. 3.5 that the TSS for BPA;1t is
complete. Hence, by Thm. 5.3, bisimulation equivalence is a congruence
with respect to BPAY®,

5.2 Ntree Format

In this section we present a result from [82, 85] to the effect that for each
TSS in panth format there exists an equivalent T'SS in the more restrictive
ntree format. The following terminology originates from [55, 111].

Definition 5.4 (Variable dependency graph) The variable dependency
graph of a set S of premises is a directed graph, with the set of variables as
vertices, and with as edges the set

{{(x,y) | there is at % t' in S such that x occurs int and y int'} .

S is well-founded if any backward chain of edges in its variable dependency
graph is finite.

A transition rule is pure if its set of premises is well-founded and more-
over each variable in the rule occurs in the source or as the right-hand side
of a positive premise.

Typical examples of sets of premises that are not well-founded are {y % y},

b .
{y1 % 2, y2 = w1}, and {yis1 = y; | i € N}
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Definition 5.5 (Ntree format) A transition rule p is an ntree rule if it
satisfies the following three criteria:

1. p is panth;
2. p s pure;
3. the left-hand sides of positive premises in p are single variables.

A TSS is in ntree format if it consists of ntree rules only.

For example, the TSSs for BPA,, BPA .y, and BPAY® from Sect. 2.6 are in
ntree format. The following theorem originates from [85].

Theorem 5.6 For each TSS T in panth format there exists a TSS T’ in
ntree format such that for any closed transition rule N/a where N contains
only negative literals, T+ N/a < T' - N/a.

5.3 De Simone Format

A De Simone language [199, 201] consists of a signature together with a TSS
whose transition rules are in De Simone format, extended with transition
rules for recursion. Most process description languages encountered in the
literature, including CCS [158], SCCS [156], CSP [187], ACP [29], and MELJE
[16], are De Simone languages.

5.3.1 De Simone Languages

For consistency with subsequent developments, amongst the various defini-
tions of De Simone languages presented in the literature we adopt the one
given by Vaandrager [221].

Definition 5.7 (De Simone format) Let ¥ be a signature. A transition
rule p is in De Simone format if it has the form

{.Ti ﬂ)yi ‘ 1€ I}
f(xl,...,:par(f)) ﬂ)t

where I C {1,...,ar(f)} and the variables z; and y; are all distinct and
the only variables that occur in p. Moreover, the target t € T(X) does not
contain variables x; for i € I and has no multiple occurrences of variables.
We say that f is the type and a the action of p.
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In conjunction with the signature ¥, we assume a countably infinite set of
recursion variables, ranged over by X,Y. The recursive terms over X are
given by the BNF grammar

tu= X[ f(tr, . tarn) | ix(X =1)

where X is any recursion variable, f any function symbol in ¥, and fix a
binding construct. The latter construct gives rise to the usual notions of free
and bound recursion variables in recursive terms. We use t[u/X] to denote
the recursive term t in which each occurrence of the recursion variable X has
been replaced by u (after possibly renaming bound recursion variables in ¢).
For every recursive term fix(X = t¢) and action a, we introduce a transition
rule
tiix(X =)/ X] Sy
fix(X =t) Sy

The reader is referred to Sect. 6 for a formal treatment of such transition
rules that incorporate binding constructs. A De Simone language is a set of
De Simone rules, extended with the transition rules above for recursion.

Remark: In De Simone’s original definition for his rule format (cf. [201, Def. 1.9]),
transition rules carried side conditions Pr(as,...,a,) where Pris a predicate on
actions (not to be confused with the predicates on states allowed in LTSs). No
particular syntax for such predicates was considered in De Simone’s work, but
natural computability restrictions were imposed on the allowed sets of tuples. Most
subsequent literature on rule formats for transition rules has abstracted from such
predicates.

5.3.2 [Expressiveness of De Simone Languages

The main original motivation for the development of the De Simone format
was to gain insight into the expressive power of the process calculi SCCS and
MELE, in the semantic realm of LTSs. In particular, what De Simone was
aiming at in his seminal papers [199, 201] was an expressive completeness
result for the aforementioned process calculi that would fully justify the
choice of basic operators made by their developers. After all, the motivation
for the study of foundational calculi for concurrency stems from Milner’s
idea that for a proper understanding of the basic issues in the behaviour
of concurrent systems it would be helpful to look for a simple language
“with as few operators or combinators as possible, each of which embodies
some distinct and intuitive idea, and which together give completely general
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expressive power” [156, p. 264]. Before embarking on such an investigation,
however, one has to choose an appropriate measure of expressiveness for a
calculus. As argued by Vaandrager [221], there are at least three different
ways in which a language can have completely general expressive power:

1. each Turing machine can be simulated in lock step;

2. each recursively enumerable LTS can be specified up to some notion
of behavioural equivalence;

3. each operation in a “natural” class of operations is realizable by means
of the primitive operations in the language up to some notion of be-
havioural equivalence.

Since most languages that have been proposed in the literature are com-
pletely expressive in the first sense, this criterion does not offer a useful
means to classify the expressiveness of languages. (This is what Meyer [149]
calls the “Turing tarpit”.) The remaining two criteria have been investi-
gated by De Simone in op. cit., and, since then, by several other authors.
Indeed, this kind of expressiveness results has, to the best of our knowledge,
only been developed for De Simone languages, and similar investigations
are lacking for more general rule formats. For this reason, the rest of this
section is devoted to a brief review of such results. The other results that
have been developed for this format are instances of theorems for the more
general formats we survey.

The question of whether there exists a process description language
which is completely expressive with respect to the collection of operations
definable by means of De Simone rules has been addressed by several au-
thors since De Simone’s original work. In op. cit., De Simone showed the
following result.

Theorem 5.8 Let Act be a finite set of actions, and f the type of only
finitely many De Simone rules. Then f can be expressed, up to bisimulation
equivalence, in the calculi SCCS and MELJE.

As a corollary of this expressiveness result pertaining to the class of oper-
ators specifiable in SCCS and MELJE, De Simone was able to prove that
the calculi SCCS and MEWJE, and, a fortiori, reasonably expressive De Si-
mone languages, can denote every recursively enumerable LTS up to graph
isomorphism.

Definition 5.9 (Properties of LTSs) An LTS is:
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e countably branching if for every state s there are at most countably
many outgoing transitions s 4 ;

e recursively enumerable if there exists an algorithm enumerating all
oy Q
transitions s — s';

e decidable if there exists an algorithm that determines for every tran-
sition whether it is in the LTS;

e computable [25] if there exists an algorithm that computes for every
state s its complete finite list of outgoing transitions s — s';

e primitive recursive [180] if there is such an algorithm that is primitive
recursive.

Note that “computable” is a stronger requirement than “decidable and
finitely branching” (cf. Def. 2.2). The following result is from [201, Thm. 3.2].

Theorem 5.10 FEvery recursively enumerable LTS can be realized by a re-
cursive term in SCCS-MELJE up to graph isomorphism.

Several variations on Thm. 5.10 have been presented in the literature. Be-
fore stating some of these results, we need to introduce some preliminary
definitions from [221].

Definition 5.11 (Testing arguments) Assume a De Simone language.
A function symbol f tests its ith argument if one of the De Simone rules
has a source f(z1,...,Tqr(s)) and a premise x; Xy

Definition 5.12 (Guardedness) Assume a De Simone language. For re-
cursive terms t, the sets U(t) of unguarded recursion variables are defined
thus:

>

U(X) {X}
U(f(t1,-star(p)) Ultiy)U---UU(t;,) if f tests arguments iy,... i
Ufix(X =t)) = U@®)\{X} .

1>

A recursive term t is guarded if for every subterm fix(X =t') of t we have
X ¢U({).
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In particular, if a function symbol f tests none of its arguments, then owing
to the second clause in Def. 5.12 no recursion variable is unguarded in a
recursive term of the form f(t1,...,tu(5))-

Guarded recursive specifications in any De Simone language have unique
solutions up to bisimulation equivalence. That is, let ¢t be a guarded recur-
sive term with no other free recursion variables than X, and let v and '
be recursive terms without free recursion variables. If u « t[u/X] and
u < tlu'/X], then u < o’ (cf. [158, Sect. 4.5]).

It is interesting to remark here that the proof of Thm. 5.10 makes an
essential use of unguarded recursive terms in SCCS and MEUE (cf. [101, 221]
for detailed comments on this issue). The use of infinite summations vis-a-
vis that of unguarded recursive definitions is addressed in [200].

Definition 5.13 (Trigger of a rule) Consider a De Simone rule p with
the term f(zi,...,Tar(s)) as source and premises {x; Xy | i eI}, The
trigger of p is the tuple (I1,...,lor(s)), with l; S ifi el andl; = %
otherwise.

We say that a signature X is decidable if there is an algorithm that answers
yes if the input is the encoding of a function symbol in 3, and no for all other
inputs (see, e.g., [186]). The following classification of De Simone languages,
and the subsequent result, stem from [101].

Definition 5.14 (Properties of De Simone languages) A De Simone
language over a signature 3 is:

e recursively enumerable if ¥ is decidable and the set of De Simone rules
s recursively enumerable;

e bounded [221] if only guarded recursion is allowed and for each type
and trigger the set of corresponding De Simone rules is finite;

o effective [221] if ¥ is decidable, only guarded recursion is allowed, and
there exists a total recursive function associating with each type and
trigger the finite set of corresponding De Simone rules;

o coeffective if X is decidable, only guarded recursion is allowed, and
there exists a total recursive function associating with each type, ac-
tion, and target the finite set of corresponding De Simone rules;

e primitive effective if X is primitive decidable, only guarded recursion
is allowed, and there exists a primitive recursive function associating
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with each type and trigger the finite set of corresponding De Simone
rules;

e primitive coeffective if ¥ is primitive decidable, only guarded recursion
is allowed, and there is a primitive recursive function giving for each
type, action, and target the finite set of corresponding De Simone rules.

Proposition 5.15 In a De Simone language with a property on the left,
each recursive term gives rise to an LTS with the corresponding property on
the right.

countable countably branching
recursively enumerable | recursively enumerable
bounded finitely branching
effective computable

coeffective decidable

primitive effective primitive recursive
primitive coeffective primitive decidable

5.3.3 De Simone Languages and Process Algebras

The process algebra aprACPr [22] is a variant of ACP [36], containing prefix
multiplication [158] in lieu of general sequential composition, where the first
argument is restricted to actions, and a relational renaming operator pg for
any binary relation R C Act x Act. We use aprACPp for the sublanguage
of aprACPp that only contains functional renamings like those considered
in, e.g., CCS, ACP, and many other standard process calculi. (Exceptions
are CSP [60], because of its inverse image operator, and the less standard
calculus PC [221].) Suppose that Act contains actions a,, and b, for n € N,
and that there is an inert constant 0 for which there are no transition rules.
Let U denote the process that consists of the alternative composition of the
terms a,-b,-0 for n € N; i.e., U can execute action a, followed by action
b, to end up in 0. Adding this process as a special “constant” U to the
language aprACPr yields the language aprACPy.

van Glabbeek [101] obtained several results concerning the expressibility
of arbitrary De Simone languages in aprACPg. In order to state these
expressiveness results, more properties of De Simone languages need to be
defined.

Definition 5.16 (Operator dependency) Let T be a TSS. Operator de-
pendency is the smallest transitive binary relation between function symbols
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such that f depends on g if there is a transition rule in T with type f and
with g occurring in its target.

Definition 5.17 (Properties of De Simone languages IT) A De Simo-
ne language is:

width-finitary if for each type there are only finitely many correspond-
ing targets (such that there is a De Simone rule with that type and
target);

(primitive) width-effective if there exists a (primitive) recursive func-
tion giving for each type the finite set of corresponding targets;

finitary if

— each function symbol depends on only finitely many function sym-
bols, and
— for each type there are only finitely many corresponding targets;

image-finite if for each type and trigger the matching set of transition
rules is finite;

functional if there exists a finite upper bound on the number of tran-
sition rules with any given type and trigger.

A language is finitary if the behaviour of each recursion-free term can be
deduced by considering only finitely many transition rules. Thus a finitary
De Simone language can be obtained as the combination of a number of
De Simone languages with finitely many transition rules, each of which is
trivially primitive width-effective. The following proposition originates from

[101].

Proposition 5.18 Any De Simone language satisfying certain properties
at the left side is expressible in aprACPgr with the corresponding features at
the right.

finitary with guarded recursion
image-finite with image-finite renaming
functional with functional renaming

- recursively enumerable
primitive width-effective | primitive effective
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In what follows we use two superscripts. The superscript r.e. denotes the
recursively enumerable version of a language, i.e., its version that only in-
cludes a partial recursive communication function (see [101, Sect. 3.4] for
details). The superscript p.e. denotes the primitive effective version of a
language (see [101, Def. 15] for details). Prop. 5.18 establishes several ex-
pressiveness results. Since virtually all De Simone languages encountered in
practice are finitary, the most significant of these results are the following.

1. Any finitary De Simone language is expressible in aprACPr with
guarded recursion.

2. Any finitary image-finite De Simone language is expressible in aprACP g
with guarded recursion and image-finite renamings.

3. Any finitary functional De Simone language is expressible in aprACP g
with guarded recursion.

4. Any finitary recursively enumerable De Simone language is expressible
in aprACP%* with guarded recursion.

5. Any finitary recursively enumerable image-finite De Simone language
is expressible in aprACP%® with guarded recursion and image-finite
renamings.

6. Any finitary recursively enumerable functional De Simone language is
expressible in aprACP%* with guarded recursion.

7. Any finitary primitive effective De Simone language is expressible in
aprACPL® with guarded recursion.

8. Any finitary primitive effective functional De Simone language is ex-
pressible in aprACP%e' with guarded recursion.

Result 4 in the above list generalizes the original theorem by De Simone,
saying that any finitary recursively enumerable De Simone language with
recursion is expressible in the recursively enumerable version of MEIJE with
recursion. The generalization is that, under the assumption that the source
languages have only guarded recursion, the target language (now aprACPRg)
can be required to use only guarded recursion as well.

Using the constant U yields an even stronger result for recursively enu-
merable De Simone languages, viz. without requiring finitariness. This result
from [101] has no effective counterpart.

Theorem 5.19 Assume a recursively enumerable De Simone language T.
Every closed recursive term in the LTS associated with T s bisimilar to a
closed guarded recursive term in the LTS associated with aprACPy .
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CSP (and SCCS and Meije) can specify infinitely branching processes. To
do so in CSP, one uses the inverse image operation, which is similar to the
relational renaming operator. The following result, to the effect that the
process algebra CSP [60] is completely expressive with respect to operations
definable using De Simone rules, stems from [131].

Theorem 5.20 Assume a De Simone language T. Every closed recursive
term in the LTS associated with T is bisimilar to a closed CSP term in the
LTS associated with CSP.

The interested reader will find further expressiveness results for variations
on De Simone languages and several notions of “expressiveness” in, e.g.,
[20, 71, 77, 101, 172, 221].

We end this section with a congruence result for trace equivalence (see
Def. 2.4) with respect to De Simone languages.

Theorem 5.21 If a TSS is in De Simone format, then trace equivalence is
a congruence with respect to the LTS associated with it.

5.4 GSOS Format

This section introduces one of the most thoroughly studied rule formats,
viz. the GSOS format of Bloom, Istrail, and Meyer [55]. We present some
of the many results that have been developed for this rule format, focusing
on its sanity properties, and its connections with axiomatizations modulo
bisimulation equivalence.

5.4.1 GSOS Languages

Definition 5.22 (GSOS format) A transition rule p is in GSOS format
if it has the form

{0 Wy |1<i<ar(f),1<j<m}U{e 8] 1<i<ar(f),1 <k <ng}

f((El, ‘e amar(f)) _c} t

where m;,n; € N, and the variables x; and y;; are all distinct and the only
variables that occur in p.

A (finitary) GSOS language is a finite set of GSOS rules over a finite
signature, and a finite set Act of actions.
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Every De Simone rule is also a GSOS rule. Unlike De Simone rules, however,
GSOS rules allow for negative premises, as well as for multiple occurrences
of variables in left-hand sides of premises and in the target.

An example of a GSOS rule with negative premises is the second tran-
sition rule for the priority operator 6; see Table 2 in Sect. 2.6. For actions
a that are not a supremum with respect to the ordering on Act, the sec-
ond transition rule for # contains negative premises. The priority operator
cannot be expressed, up to bisimulation equivalence, using De Simone rules.
Namely, 6 does not preserve trace equivalence, unlike any operator express-
ible using De Simone rules (cf. Thm. 5.21). For example, a-(b + ¢) and
a-b + a-c are trace equivalent, but 6(a:(b + ¢)) and 6(a-b + a-c) are not, if
c>b.

A notable example of a GSOS rule that uses the same variable in the
left-hand side of a premise and in the target is a transition rule for the binary
Kleene star [135]:

z %

gty 5 ' (a*y)
This operator has been studied in the realm of process algebra in, e.g.,
[34, 89, 157] (see also elsewhere in this handbook).

Each GSOS language allows a stratification (cf. Def. 3.13), and is there-
fore complete (cf. Def. 3.12). LTSs associated with GSOS languages are
computable (cf. Def. 5.9) and finitely branching (cf. Def. 2.2). By contrast,
there exist T'SSs in tyft/tyxt format (cf. Def. 5.2), consisting of only finitely
many transition rules with only finitely many premises, such that the as-
sociated LTSs are neither computable (see [45, 71]) nor finitely branching
(see [111, p. 258]). It is not straightforward to associate LTSs to GSOS lan-
guages with recursion (see, e.g., [55]). A solution for this problem, involving
a special divergence predicate 7, is discussed in Sect. 5.4.6.

5.4.2 Junk Rules

The definition of a GSOS language does not exclude junk rules, i.e., transi-
tion rules that support no transitions in the associated LTS. For example,
the transition rule

Q a
T —y T
)

flz) > fly
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has contradictory premises, so under no closed substitution do these premises
both hold. Furthermore, the seemingly innocuous transition rule

z > Y
fl@) % )

does not support any transition if the associated LTS does not contain a-
transitions. We present an unpublished result by Aceto, Bloom, and Vaan-
drager [6] to the effect that it is decidable whether a transition rule in a
GSOS language is junk. This decision procedure for “rule junkness” allows
a language designer to check whether or not any of the transition rules de-
scribing some language features are used. Since this result has not appeared
in the literature before, we present its proof here.

Theorem 5.23 It is decidable whether a transition rule p in a GSOS lan-
guage T is junk.

Proof: Let X denote the signature. It is not hard to determine which GSOS rules
in T are junk once we have computed the set

initials(T(X)) = {initials(¢) | t € T(2)}

where we recall from Sect. 2.1 that initials(t) denotes {a € Act | 3t' € T(Z) (t >
t')}. The premises of a GSOS rule as in Def. 5.22 are satisfiable iff there exist
closed terms ty,...,tq.(r) € T(X) such that {a;; | j = 1,...,m;} C initials(¢;) and
{bi | k=1,...,n;} Ninitials(¢;) = @ for i = 1,..., ar(f).

So we are left to give an effective way of computing the set initials(T(X)) for
any GSOS language. Note that each function symbol f determines a computable
function

]?:2Act W e x QACE _y gAct
—_— —————

ar(f) times

by f(Sl,...,SaT(f)) £ S, where for all ¢ € Act, ¢ € S iff there exists a GSOS
rule as in Def. 5.22 (with type f and action ¢) such that, for ¢ = 1,...,ar(f),
{a;j|j=1,...,m;} C S;and {bix |1 <k <n;} NS; = 3. Now, for each S C 2/,
let G(S) be given by
g(S) é {fA(Slw",Sa'r‘(f)) |f€27 Sl?"',sa'r‘(f) ES} .

For each S C 2A° the set G(S) can be effectively computed, and S C &’ implies
g(8) € g(s").

The set initials(T(X)) can be computed by dividing T(X) into sets U; of closed
terms that contain no more than ¢ function symbols, and computing the non-

decreasing sequence
initials(U7) C initials(Uz) C - - -

o4



until it stabilizes. Obviously, this sequence stabilizes in a finite number of steps, as
Act is finite.

The set of terms Uy is empty, so initials(Uy) = &. Now suppose that we
want to compute initials(U;4+1), given that we already have initials(U;). We claim
that initials(U;11) = G(initials(U;)). In fact, each term in U;y; is of the form
f(t1,... tar(s)), where the t;’s are all in U;. Thus we know initials(;) for all
i =1,...,ar(f), and that is exactly what is needed to determine for each tran-
sition rule of type f under which closed instantiations its premises hold. Hence we
can compute initials(U;), and each initials(U;4+1) can be computed from initials(U;)
using the monotonic and effective operation G. O

Clearly, junk rules can be removed from a GSOS language T' without altering
the associated LTS. Note, moreover, that it is legitimate to eliminate all the
junk rules from T at once. This is because whenever p; and py are junk
rules in 7', then ps is still junk in the GSOS language obtained from T' by
removing p1, as the two GSOS languages are associated with the same LTS.

5.4.3 Coding a Universal 2-Counter Machine

Despite the finiteness restrictions imposed on GSOS languages, they are a
Turing powerful model of computation. We exhibit a GSOS language with,
for each n, a term U2CM,, that behaves as a universal 2-counter machine
on input n. Then U2CM,, & a*, where a¥ — a*, iff the 2-counter machine
diverges on input n, a prototypical undecidable problem.

Suppose that the 2-counter machine has code of the form:

ly: if I=0 goto I5
lg: inc I

l3: dec J

ly: goto Iy

l: halt

We assume a toy process algebra containing the inactive constant 0 and
the unary prefix multiplication operators zero - _ and succ - _, while Act 2
{a, succ, zero}. Since 0 does not exhibit any behaviour, it does not have any
transition rules. The transition rules for prefix multiplication are

SU V49
succ-r — T ZET0-Tr — I
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Intuitively, succ and zero represent the successor function and the zero for
the counters: a natural number n is encoded by the term succ™ zero-0 (where

succ™ denotes n nestings of the prefix multiplication function succ). Thus,

if a closed term ¢ codes n and t “5° ¢, then n > 0 and #' codes n — 1. Also,

if t codes n, then t #2490 iff n = 0. The action a is the pulse emitted by a

process as it performs a computation step.

Finally, the syntax also contains binary function symbols Iy,...,l; to
code the states of the 2-counter machine: [;(succ™-zero-0, succ™-zero-0) codes
the machine at label [;, with the two counters I = m and J = n. The
transition rules for these function symbols are as follows.

e If the 7th instruction is of the form if I=0 goto /;, then

zero succ
r — X r — T
Li(z,y) = 1j(zero-a’,y) Li(m,y) = Ly (sucea’,y)

e If the 7th instruction is goto /;, then

lz(may) i> l](ilf,y)

e If the ith instruction is inc I, then

Li(z,y) = lip1(sucez,y)

e If the ith instruction is dec I, then

zero succ
Li(z,y) = lig1(zero-a’, y) li(z,y) = liqa (2, y)

Commands that deal with the other counter J are similar. There are no
transition rules for labels of halt commands, as these cause the automaton
to halt. We define U2CM,, = I1(succ™ zero-0, zero-0). The reader will not
find it hard to see that U2CM,, < a* iff the universal machine diverges on
input n.
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5.4.4 Infinitary GSOS Languages Inducing Regular LTSs

Regular LTSs (cf. Def. 2.2) may be used to describe many interesting concur-
rent systems — e.g., several communication protocols and mutual exclusion
algorithms [230] — and form the basis of semantic-based automated ver-
ification tools like those presented in, e.g., [66, 81, 202]. As (subsets of)
programming languages that can be given semantics by means of regular
LTSs are, at least in principle, amenable to automated verification tech-
niques, it is interesting to develop techniques to check whether languages
give rise to regular LT'Ss. Moreover, since such a property is in general
undecidable, it is useful to single out sufficient syntactic restrictions on the
transition rules in a TSS, to ensure regularity of the associated LTS.

We saw in Sect. 5.4.3 that GSOS languages can specify a universal 2-
counter machine, and are therefore Turing powerful. In this section, we
study an infinitary version of GSOS languages, in which the finiteness re-
strictions on the signature, set of actions, and transition rules are (temporar-
ily) relaxed to countability restrictions. We present a restricted version of
infinitary GSOS languages, which are guaranteed to give rise to regular
LTSs.

Definition 5.24 (Infinitary GSOS) An infinitary GSOS language is a
countable set of GSOS rules over a countable signature and a countable set
of actions.

In order to ensure that the associated LTSs are regular, it is necessary to
impose restrictions on the class of infinitary GSOS languages, ensuring that
the LTS is finitely branching and that the set of closed terms reachable from
any closed term is finite. We recall that the LTS associated with a finitary
GSOS language is finitely branching. However, an infinitary GSOS language
such as @/ag % a; for i € N gives rise to an LTS that is infinitely branching.

Definition 5.25 (Positive trigger) The positive trigger of a GSOS rule
as in Def. 5.22 is a tuple (e1,...,eqr(s)) of subsets of Act, where

e ={ay[1<j<m}  (fori=1,...,ar(f)) .

Definition 5.26 (Boundedness) Assume a function symbol f in the sig-
nature of an infinitary GSOS language. We say that:

e f isbounded if for each positive trigger, the corresponding set of GSOS
rules of type f is finite.
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e f is uniformly bounded if there exists a finite upper bound on the
number of GSOS rules of type f having the same positive trigger.

As far as we know, all standard operations in process algebras that occur
in the literature are uniformly bounded. The notion of a bounded function
symbol was originally developed by Vaandrager [221] for De Simone lan-
guages (see Def. 5.14), and was extended to infinitary GSOS languages in
[5]. The notion of a uniformly bounded function symbol stems from [4], and
will reoccur in the definition of a regular GSOS language (see Def. 5.39).
The following result is from [5].

Proposition 5.27 If each function symbol in the signature of an infinitary
GSOS language is bounded, then the associated LTS is finitely branching.

We introduce a further restriction on infinitary GSOS languages from [5], to
ensure that in the associated LT'Ss each state can reach only finitely many
other states.

Definition 5.28 (Simple GSOS) A GSOS rule is simple if its target con-
tains at most one function symbol. A GSOS language is simple if each of
its transition rules is.

Rule formats similar to the simple GSOS rules have emerged in work by
several researchers, e.g., [20], [71, p. 230], and [172, Def. 13]. Most of the
standard operations in process algebras are given operational semantics by
means of simple GSOS rules. An exception is the binary Kleene star, which
was discussed in Sect. 5.4.1. Two further exceptions are the “desynchroniz-
ing” A operation present in the early versions of Milner’s SCCS [156] studied
in [116, 155], and the parallel composition operation in the m-calculus [161].
The A operation has GSOS rules

a1
Tr — T

Az 5 §Ax

for a € Act, where § is the delay operation of SCCS. The GSOS rules for
the parallel composition operation of the w-calculus dealing with so-called
scope extrusion (see [161, part II]) take the form




where (w) denotes the restriction operation of the m-calculus and 7 a silent
step (cf. Sect. 5.5).

The following result can be shown by structural induction on closed
terms, following the lines of [5, Thm. 5.5].

Theorem 5.29 Assume a simple infinitary GSOS language. If each func-
tion symbol in its signature is bounded and depends on only finitely many
function symbols (cf. Def. 5.16), then the associated LTS is regular.

The above result would not hold if we allowed GSOS rules with more than
one function symbol in their targets, as the following example shows.

Example: Consider a GSOS language with action a, constants b and ¢, a
unary function symbol f, and transition rules

Sy
Q Q Q Q
c=b e fle) fl@)=z fl@) > fy)
Note that the second transition rule of type c is not simple, as its target
carries two function symbols. It is not hard to see that ¢ can reach infinitely

many states f(c) and f"(b) for n € N, because f"(c) % f"(c) and
f™(c) > f™(b). Moreover, these states are all non-bisimilar. O

Madelaine and Vergamini [144] studied syntactic conditions on De Simone
rules [199, 200] to ensure that the associated LTS is regular. They identify
two classes of well-behaved function symbols, which they call non-growing
operations and sieves. Intuitively, non-growing operations are function sym-
bols which, when fed with (terms denoting) regular LTSs, build regular
LTSs. Sieves are a special class of unary non-growing operations whose
transition rules have the form

xS
flz) % f(a!)

For example, standard process algebra operations like CCS restriction and
renaming [158] and CSP hiding [128] are sieves. Note that transition rules for
sieves are simple. In view of Thm. 5.29, all function symbols in an infinitary
GSOS language given by means of simple transition rules are non-growing
in the sense of Madelaine and Vergamini.

The syntactic condition used by Madelaine and Vergamini to establish
that some operations are non-growing is based on term rewriting techniques,
to find a so-called simplification ordering over terms (see [146, Def. 4]). This
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is similar in spirit to showing that linear GSOS languages (see Def. 5.35) are
syntactically well-founded (see Def. 5.36); the interested reader is referred
to Sect. 5.4.5 and [8, Sect. 6] for more information. Unfortunately, the
existence of a simplification ordering compatible with a set of rewrite rules
is not decidable even for finitary GSOS languages.

Specialized techniques which can be used to show that certain closed
terms can reach only finitely many other closed terms have been proposed
for CCS and related languages. The interested reader is invited to consult
[74] and the references therein. Not surprisingly, these specialized meth-
ods tend to be more powerful than general syntactic ones, as they rely on
language-dependent semantic information. For instance, a method to check
the regularity of a large set of CCS terms based on abstract interpretation
techniques (see, e.g., [2]) has been proposed in [74].

5.4.5 Turning GSOS Rules into Equations

There are several methods for specifying and verifying processes behaviour,
e.g. modal formulae [209] and variants of Hoare logic [170, 208]. A fairly
successful verification technique is to approximate the specification by a
(not necessarily implementable) term in some process algebra. In this set-
ting, a set of axioms can be applied to try and show that the term is be-
haviourally equivalent to, or in some other sense a suitable approximation
of, the required specification. Indeed, one of the major schools of theoretical
concurrency and its applications, that of ACP [21, 29], takes the notion of
behavioural equivalence as primary, and defines operational semantics to fit
its axioms.

A logic of programs is complete (relative to a programming language) if
all true formulas of the language are provable in the logic. As properties of
interest are generally non-recursive, we are often obliged to have infinitary
or other non-recursive rules in our logics to achieve completeness.

This section presents results from [7, 8], which offer an algorithmic so-
lution to the problem of computing a sound and complete axiomatization
(possibly including one infinitary conditional axiom) for any GSOS language,
modulo bisimulation equivalence. That is, two closed terms can be equated
by the axiom system iff they are bisimilar in the associated LTS (cf. Def. 4.9).
The procedure introduces fresh function symbols as needed. Completeness
results for axiomatizations have become rather standard in many cases. The
generalization of extant completeness results given in [8] shows that, at least
in principle, this burden can be completely removed if one gives GSOS rules
for a process algebra. Of course, this does not mean that there is noth-
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ing to do on specific process algebras. For instance, sometimes it may be
possible to eliminate some of the auxiliary function symbols (we will see an
example of this later on in this section), or the infinitary conditional axiom.
(The interested reader will find many results on complete axiomatizations
of behavioural equivalences over several process algebras elsewhere in this
handbook.)

We first define the GSOS language TriNTREE, Which is a fragment of CCS
suitable for expressing finite LTSs (cf. Def. 2.2). Its signature XpnTREE
consists of:

- the constant 0, denoting the inactive process;

- binary alternative composition x+y, which chooses non-deterministical-
ly between x and y;

- unary prefix multiplication a-z for a € Act, which executes action a
and thereafter behaves as x.

The constant 0 does not exhibit any behaviour and consequently does not
have any transition rules. The transition rules of alternative composition
and prefix multiplication have been formulated earlier in this chapter (see
Table 1 in Sect. 2.6, and Sect. 5.4.3, respectively). Most process algebras
contain the function symbols above, either directly or as derived operations.
The following completeness result (cf. Def. 4.9) is well-known [123, 158].

Proposition 5.30 Let EpnTrReEE denote the aziomatization

T+y = y+zw (3)
(x+y)+z = z+(y+2) (4)
r+zxr = x (5)
r+0 = =z (6)

ERINTREE 18 sound and complete modulo bisimulation equivalence as induced
by TrINTREE-

Following [8], we show how to find for any GSOS language T' extending
TrINTREE, an axiomatization £, extending ErNTREE, that is sound and com-
plete modulo bisimulation equivalence. That is, two closed terms are bisim-
ilar as states in the LTS associated with 7' iff they can be equated by &.
Moller [163] has shown that bisimulation equivalence over a subset of
CCS with the interleaving operation ||, which can be defined in GSOS, can-
not be completely characterized by any finite unconditional axiomatization
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over that language. Thus, the algorithm to produce £ may require the ad-
dition of auxiliary function symbols to the signature, and of GSOS rules for
these auxiliary function symbols to T

We start with a typical example of the way in which the completeness
result for TrnTREE I Prop. 5.30 is used.

Example: Consider the GSOS language T that is obtained by extending
the signature of TrnTREE With unary function symbols 8}{ [22], where H is
a finite set of actions, and adding the transition rules

x5y
—— a¢H
Oy () =y
In other words, the process 9% (t) behaves like t, except that it cannot do
any actions from H in its first move. Note that 8}, is different from the CCS
restriction operation, as CCS restriction is persistent while 6}{ disappears
after one transition.

The following result, whose proof may be found in [8], is a corollary of
Thm. 4.12 on completeness of axiomatizations over extended signatures, and
a blueprint for developments to follow. The idea is that, using the axioms
below, the completeness problem for a super-language of TrnTREE Can be
reduced to the completeness problem for TrnTREE, Which has been solved in
Prop. 5.30.

Proposition 5.31 Let Eg1 be the axiomatization that extends EpnTREE With
the axioms

Op(z+y) = Oy(x)+9u(y)
0% (a - x) T ifa ¢ H
0%(a - x) ifae H
oh(0) —

Eg1 1s sound and complete modulo bisimulation equivalence as induced by
To.

[N

Prop. 5.31 follows from Thm. 4.12, owing to the observations that Ty is
an operational conservative extension (cf. Def. 4.2) of TgnTree (this follows
from Thm. 4.4), £y is sound over the extended signature, EpnTREE 1S cOm-
plete over YgnTree (Prop. 5.30), and each closed term over the extended
signature can be equated to a closed term over XpnTrRee by means of the
axiomatization Ey. (]
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The approach that yielded a sound and complete axiomatization for Ts
modulo bisimulation equivalence can be generalized to arbitrary GSOS super-
languages of TrnyTrREe. That is, we want to find axioms, on top of EfNTREE,
that allow us to eliminate all extra function symbols from closed terms. This
requires a variety of methods, in which Prop. 5.31 plays an important role,
because the 8}{ operator can be used to encode negative premises.

The following notion from [8] is needed in presenting the main result
on the automatic generation of axiomatizations modulo bisimulation equiv-
alence for GSOS languages.

Definition 5.32 (Disjoint extension) A GSOS language T} is a disjoint
extension of a GSOS language Ty if the signature and transition rules of Ty
include those of Ty, and the types of transition rules in Ty, which were not
present in Ty, are not in the signature of Tj.

Note that disjoint extension is a partial order. If 77 disjointly extends Tp,
then Ty @ T3 is an operational conservative extension (see Def. 4.2) of Tj.
This follows immediately from Thm. 4.4, owing to the fact that GSOS rules
are by default source-dependent (cf. Def. 4.3 and Def. 5.22), and the sources
of transition rules in T; are fresh.

Before presenting the main results of [8], we need to discuss a subtlety.
We want to know that the axioms in EfnTREE are sound modulo bisimulation
equivalence as induced by any disjoint extension T’ of TrnTREE- In general
it is not the case that validity of axioms is preserved by taking disjoint
extensions. For instance, consider the trivial GSOS language Ty consist-
ing of the constant 0 and no transition rules. The axiom =z = y is sound
modulo bisimulation equivalence as induced by Ty, but clearly this law is
not sound modulo bisimulation equivalence as induced by TrNTREE, €ven
though TrnTREE is a disjoint extension of Tyj.. Fortunately, soundness of
the axioms in EFNTREE, and also all the other axioms that are needed in the
developments of [8], is preserved by taking disjoint extensions of TrNTREE-

Semantically Well-Founded GSOS Languages We start with the gen-
eration of sound and complete axiomatizations modulo bisimulation equiv-
alence for the limited class of semantically well-founded GSOS languages,
generating finite LT'Ss (cf. Def. 2.2). For such languages we can do without
infinitary conditional axioms.

Definition 5.33 (Semantic well-foundedness) A GSOS language is se-
mantically well-founded if its associated LTS is finite.
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The class of semantically well-founded GSOS languages contains the recursion-
free finite-alphabet sublanguages of most of the standard process algebras.

In [8] an algorithm is presented that, given a disjoint extension 7' of
TrINTREE, constructs a disjoint extension T” of T and Ty, and a finite (un-
conditional) axiomatization £ that is sound modulo bisimulation equivalence
as induced by T”, such that each closed term over the signature of 7" can be
equated by € to a closed term of the form a;-t1+- - -+ay-t, (where the empty
sum represents 0). For semantically well-founded GSOS languages it is pos-
sible to iterate this reduction a finite number of times, thereby eliminating
all function symbols that are not in XrnTrRee. As in the completeness proof
for Ty, this reduces completeness of £ with respect to T to completeness
of EpnTREE With respect to TrnTREE, Which has been solved in Prop. 5.30.
Thus we obtain the following result.

Theorem 5.34 There is an algorithm that, given a GSOS language T,
which is a semantically well-founded disjoint extension of TrNTREE, cOnN-
structs a disjoint extension T' of T and Ty, and a finite unconditional
axiomatization &, such that £ is sound and complete modulo bisimulation
equivalence as induced by T'.

The requirement that T is a disjoint extension of TrNTREE IS necessary
in Thm. 5.34, because otherwise the quoted algorithm might not preserve
semantic well-foundedness. Namely, the combination of a semantically well-
founded GSOS language with TrNTREE 1S in general not semantically well-
founded; see [8].

Example: An operation found in many process algebras is the parallel
composition without communication, which is defined by the transition rules

a1 a
Tr — X y—)y

zllySay zllySaly

for @ € Act. This is an intuitively reasonable definition of parallel compo-
sition, and the transition rules are easy to explain. It is somewhat harder
to see how to describe it equationally. Some axioms are clear enough—
the operation || is commutative and associative, and the stopped process is
its identity—but the first finite equational description did not appear until
[35]. This equational characterization required an additional function sym-
bol “left merge” Il. Intuitively, ¢l u behaves as t||u except that its first move
must be taken by t. For each a € Act, left merge has a transition rule

a
T =T
a:LLyinv’Hy

64



The axioms for || and L are:

zlly = (zly)+(yla)
(x+y)llz = (zllz)+ (ylz)
(a-z)ly = a- (z]vy)
olz = 0

These axioms for || and [, together with the axioms in £y for 4, a-_, 0, and
0%, form a sound and complete axiomatization for the closed terms over
this signature modulo bisimulation equivalence.

TrinTrRee With parallel composition is a semantically well-founded GSOS
language and a disjoint extension of TrnTree. The auxiliary operator I,
and the axioms above for parallel composition and the left merge, are also
produced by the algorithm from [8] that was mentioned in Thm. 5.34. In
fact, due to the symmetric character of the parallel composition operator,
the algorithm from [8] actually produces two auxiliary operators [l and 1,
where t [lu behaves as t||u except that its first move must be taken by wu.
Parallel composition is then axiomatized by

zlly = (zlly) + (zly) .

However, since t llu <> ullt, the right merge Il can be expressed by means of
the left merge IL. O

Syntactic Well-Foundedness Since GSOS languages are Turing power-
ful, it is undecidable whether a GSOS language is semantically well-founded.
However, for an interesting subclass of GSOS languages there exist effective
syntactic constraints on GSOS rules that ensure semantic well-foundedness.

Definition 5.35 (Linear GSOS) A GSOS rule as in Def. 5.22 is linear
if each variable occurs at most once in the target t and, for each argument
i that is tested positively (cf. Def. 5.11), x; does not occur in the target and
at most one of the y;;’s does.

A GSOS language is linear if all its transition rules are.

As far as we know, all transition rules for standard process algebras are
linear.
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Definition 5.36 (Syntactic well-foundedness) A GSOS language is syn-
tactically well-founded if there exists a weight mapping w from function
symbols to natural numbers such that, for each GSOS rule p with type f and
target t:

e if p has no positive premise then W (t) < w(f), and
o W(t) <w(f) otherwise,

where W (t) adds the weights of all function symbols in t:

0
w(g) + W(t1) + -+ Witan(g)) -

W(g(tl’ cee ’tar(g)))

> 1>

Proposition 5.37 If a GSOS language is linear and syntactically well-
founded, then it is semantically well-founded. Moreover, it is decidable
whether a GSOS language is syntactically well-founded.

General GSOS Languages It follows from some recursion theoretic con-
siderations, discussed in [8] and based upon the programming exercise in
Sect. 5.4.3, that the extension of the completeness result given in Theo-
rem 5.34 to general GSOS languages requires some proof rules beyond purely
equational logic. However, it is possible to extend the completeness result
to the whole class of GSOS languages in a rather standard way. Bisimula-
tion equivalence over finitely branching L'T'Ss supports a powerful induction
principle, known as the Approximation Induction Principle (AIP) [39, 94].
Since the LTS associated with a GSOS language is finitely branching, ATP
applies.

We introduce a family of unary function symbols m,(_) for n € N, with
transition rules .

Ty
Tpt1() = T (Y)

for a € Act. These function symbols are known as projection operations in
the literature on ACP [29]. Intuitively, m,(¢) allows ¢ to perform n moves
freely, and then stops it. AIP is the infinitary conditional axiom

AIP Vn e N(m(x) =mp(y) = z=y .

Intuitively, this proof rule states a “continuity” property of bisimulation
equivalence over finitely branching LTSs: if two states are bisimilar at any
finite depth, then they are bisimilar.
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The projection operators are somewhat heavy-handed, as there are in-
finitely many of them, and GSOS languages are defined to be finite. It is,
however, possible to mimic the projection operations by means of a binary
function symbol _/_. Intuitively, a closed term t/u executes ¢t (where u also
silently takes a step) until the “hourglass” process u runs out and halts the
execution. That is, for all actions a,b € Act we have the following transition
rule for _/_:

[ / b /
r—x y—y (7)
A
zly = @'y
For each n € N, 7,(t) < t/c" with ¢ an arbitrarily chosen action. In this
formulation, we may rephrase AIP as follows:

ATP’ VneN(z/c" =y/c") = z=y .

Now we are ready to formulate the analogue of Thm. 5.34 for GSOS lan-
guages that need not be semantically well-founded.

Theorem 5.38 There is an algorithm that, given a GSOS language T', con-
structs a disjoint extension T of T, Ta1, and the operation _/_ defined by
(7), and a finite unconditional aziomatization &, such that € and AIP to-
gether are sound and complete modulo bisimulation equivalence as induced
by T'.

Term rewriting properties of the axiomatizations generated by (variations
on) the methods we have just surveyed have been studied by Bosscher [59].
Ulidowski [216] proposed a modification of the approach in [8] that produces
complete axiomatizations for a subclass of the De Simone languages, modulo
the refusal simulation preorder from [215] that takes into account the silent
step 7 (cf. Sect. 5.5).

Regular GSOS Languages In [4] it was shown that for a subclass of
infinitary recursive GSOS languages generating regular L'T'Ss it is possible to
obtain sound and complete axiomatizations modulo bisimulation equivalence
that do not rely on infinitary proof rules like AIP. The following definition
introduces the class of regular GSOS languages that is considered in op. cit.,
which is a subclass of the simple infinitary GSOS languages (cf. Def. 5.28).

Definition 5.39 (Regular GSOS) A simple infinitary GSOS language is
regular if for each function symbol f in its signature:

1. f is uniformly bounded (cf. Def. 5.26);
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2. f depends on only finitely many function symbols (cf. Def. 5.16);

3. there is a finite upper bound on the number of positive premises in
transition rules with type f.

Most of the T'SSs for standard process algebras in the literature are regular.
It follows immediately from the theory outlined in Sect. 5.4.4 that every
regular GSOS language induces a regular LTS. In [4] it was shown how to
reduce the completeness problem for regular GSOS languages to that for
regular LTSs, which was solved earlier in [40, 157].

We recall from Sect. 5.3.1 on De Simone languages that the recursive
terms over a signature ¥ are given by the BNF grammar

tu=X | f(t1,- s tar(p) | iX(X =1)

where X ranges over a countably infinite set of recursion variables, f ranges
over the signature Y, and fix is a binding construct. The latter construct
gives rise to the usual notions of free and bound recursion variables in re-
cursive terms. For every recursive term fix(X = ¢) there is a transition
rule
tiix(X =1)/X] Sy
fix(X =t) Sy

We consider the subset of guarded recursive terms (cf. Def. 5.12) without
free recursion variables.

Bisimulation equivalence over guarded recursive terms has been com-
pletely axiomatized by Milner [157] and Bergstra and Klop [40]. The follow-
ing proof rules, called the Recursive Definition Principle (RDP) and the Re-
cursive Specification Principle (RSP), play a key role in these completeness
proofs. Let t denote a guarded recursive term with no other free recursion
variables than X, and let u denote a guarded recursive term without free
recursion variables:

RDP  fix(X =t) = t[fix(X =1t)/X]
RSP u = tu/X] = u=fix(X=t).

Theorem 5.40 There is an algorithm that, given a reqular GSOS language
T, constructs a disjoint extension T' of T over guarded recursive terms, and
an unconditional axiomatization £, such that £, RDP, and RSP together are
sound and complete modulo bisimulation equivalence as induced by T".

The algorithm used in the proof of Thm. 5.40 does not work for GSOS
languages that are not regular; see [4] for details.
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Apart from the work we have just reviewed, the automatic generation of
complete axiomatizations from TSSs has received a good deal of attention
in the literature. Further results on this line of research may be found in,
e.g., [12, 51, 217].

5.4.6 From Recursive GSOS to LTSs with Divergence

This section considers GSOS languages for recursive terms (cf. Sect. 5.3.1
and the end of the previous section) over a signature ¥. Let CREC(X) denote
the set of recursive terms that do not contain free recursion variables.

We recall that, in the absence of recursion, GSOS languages are strictly
stratified (cf. Def. 3.13), yielding one of the most restrictive criteria for mean-
ingful T'SSs considered in Sect. 3. For recursive GSOS languages, however,
it is no longer straightforward to find an associated LTS. In this section it is
shown how this problem can be overcome by the use of a special divergence
predicate in the definition of LTSs. The interested reader is referred to, e.g.,
[116, 126, 154, 231] for motivation and more information on (variations on)
this semantic model for reactive systems.

Definition 5.41 (LTS with divergence) An LTS with divergence is an
LTS, in the sense of Def. 2.1, whose only predicates are the divergence pred-
icate T and the convergence predicate | .

In [11, 12] it is shown how a recursive GSOS language specifies an LTS
with divergence over CREC(X). The recursive GSOS languages considered
in op. cit. contain a special constant {2 that is akin to the constant O from
CCS; i.e., there are no transition rules of type 2. (The difference between
0 and 2 is that whereas the former denotes the convergent process with-
out transitions, the latter stands for the divergent stopped process.) The
transition rules in a recursive GSOS language are used to define a diver-
gence (or under-specification) predicate on CREC(X). In fact, as is common
practice in the literature on process algebras, we first define the notion of
convergence, and use it to define the divergence predicate.

Definition 5.42 (Convergence) Assume a recursive GSOS language over
a signature . The convergence predicate | is the least predicate over the
set of closed recursive terms CREC(X) that satisfies the following clauses:

1. f(tla <. 7ta7‘(f)) 1if
(a) £ 49, and

69



(b) for every argument i of f, if f testsi (cf. Def. 5.11) then t; |;
2. fix(X =1t) | if t[fix(X =¢)/X] |.
We write t 1 if it is not the case that t |.

The motivation for the above definition is the following: a term ¢ is divergent
if its initial transitions are not fully specified. This occurs either when the
initial behaviour of term ¢ depends on under-specified arguments like 2,
or in the presence of unguarded recursive definitions (cf. Def. 5.12). For
example, the terms fix(X = X) and fix(X = a.0 + X) are not convergent,
as the initial behaviours of these terms depend on themselves. We remark
here that, when applied to SCCS [156] and the version of CCS considered in
[231], the above definition delivers exactly the convergence predicates given
by Hennessy [116] and Walker [231], respectively.

We hint at how an LTS with divergence can be associated with a re-
cursive GSOS language — the interested reader is referred to [11, 12] for
full technical details. We want the LTS with divergence to be at least a
supported model in the sense of Def. 3.2. Moreover, reminiscent of posi-
tive TSSs, we want to associate the least such LTS with the recursive GSOS
language in question. As described in, e.g., [55], this is not possible in the ab-
sence of divergence. However, the extra structure given by the convergence
predicate can be put to good use in giving a simple way of constructing
the desired LTS with divergence over CREC(X), in two steps. First, the
transitions emanating from convergent terms are derived by induction on
the convergence predicate. This is done according to the standard approach
for GSOS languages outlined in Sect. 5.4, and using the transition rule for
recursion to derive the transitions of recursive terms. Next, the information
about the transitions that are possible for convergent terms is used to de-
termine the outgoing transitions for all terms in CREC(X). The key point
in the construction of the associated LTS is that negative premises can be
satisfied by convergent terms only. Intuitively, to know that a closed term
cannot initially perform a given action, we need to find out precisely all the
initial actions that it can perform. If a closed term is divergent, then its set
of initial actions is not fully specified; thus we cannot be sure whether such
a term satisfies a negative premise or not.

The reader familiar with the literature on Hennessy-Milner logics (cf.
Def. 2.7) for prebisimulation-like relations (cf. Def. 7.2 to follow) may have
noticed that the notion of satisfaction for negative premises discussed above
is akin to that for formulae of the form [a]e given in, e.g., [1, 10, 154, 207,
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209]. In those references, the new interpretation is necessary to obtain mono-
tonicity of the satisfaction relation with respect to the appropriate notion of
prebisimulation. The intuitionistic interpretation of negative premises given
in [11, 12] is crucial to obtain operations that are monotonic with respect to
the notion of prebisimulation < presented in Def. 7.2. Basically, it ensures
that, for a closed term t, the transition formula ¢ - holds iff v + holds for
every closed term u with ¢ < u.

The following result is from [11, 12], where the details of the construction
of the desired LTS with divergence may be found.

Proposition 5.43 For every recursive GSOS language with the inert con-
stant 2, there exists a least sound and supported LTS with divergence over
CREC(Y).

Example: Consider the term fix(X = odd(X)), where the unary function
symbol odd is defined by the transition rule

a
X —~

odd(z) %0

This operation is a standard example used in the literature to show that
negative premises and unguarded recursive definitions can lead to inconsis-
tent specifications (see, e.g., [45]). The reason for this phenomenon is that,
if we follow the standard GSOS approach, the recursive equation

X = odd(X)

does not have any solution modulo bisimulation equivalence. In fact, with
the standard operational interpretation of GSOS languages and general T'SSs
with negative premises, a term ¢ solving the above recursive equation mod-
ulo bisimulation equivalence (i.e., t <> odd(t)) would have to exhibit an
initial a-transition iff it does not have one. In the approach of [11, 12],
instead, the above recursive equation has a unique solution modulo pre-
bisimulation equivalence (see Def. 7.2). Namely, fix(X = odd(X)) is a di-
vergent term. Since negative premises are interpreted over convergent terms
only, the above transition rule cannot be applied to derive a transition for
fix(X = odd(X)), so this term is prebisimilar to the inert constant Q2. Thus
(2 is the unique solution of X = odd(X) modulo prebisimulation equivalence.

O
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5.4.7 Other Results for GSOS Languages

The theory of GSOS languages is rather rich in results, and we have only
presented a sample of the body of work documented in the literature on this
rule format. We end this overview of the work on GSOS languages with
pointers to other interesting results.

Ruloids Bloom, Istrail, and Meyer [55] observed that the behaviour of
each open term Cfzi,...,xy] is completely determined by a finite set of
derived transition rules of the form

{2 Sy, 251 <i<N,1<j<mil<k<n)

C[:L‘l,...,.TN] i)t

These derived transition rules are referred to as ruloids, to distinguish them
from the GSOS rules defining the operational semantics of the language
under consideration. Ruloids facilitate the development of theory for SOS.
For instance, the use of ruloids simplifies the proof of the congruence result
for TSSs, Thm. 5.3, in the restricted case of GSOS languages. The following
result may be found in [55, Thm. 7.6].

Theorem 5.44 LetT be a GSOS language. For every open term C[x1,...,xN]
there exists a finite set R of ruloids such that:

- every ruloid in R has C[z1,...,xN] as its source;
- the LTS associated with T is a model of R (cf. Def. 3.2);
- if C[t1,...,tN] = u, then there exists a ruloid in R supporting that

transition in the sense of Def. 3.2.

Example: Consider the process algebra BPA with the priority operator 6
from Sect. 2.6. The set of ruloids determining the operational semantics of
the term 6(a.z + y) consists of

y—?»forb>a y =y y—eﬁforb>c
O(a.x +y) = 0(x) 0(a.x +y) = 0(y)

where the second ruloid is only present for actions ¢ that are not smaller
than a. O
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Protean Specification Languages Case studies in the literature on pro-
cess algebras often use mechanisms to define new operations on terms. Vaan-
drager [219] formulated the “fresh atom principle” to formalize a standard
practice in process algebra proofs, namely, the introduction of fresh con-
stants. Verhoef [224, 225] introduced the “operator definition principle”
(similar to RDP as discussed at the end of Sect. 5.4.5) to facilitate the
specification of new unary function symbols in process algebra.

Bloom, Cheng, and Dsouza [52, 53] advocated the use of “Protean”
languages to enhance the expressiveness, and ease of use, of specification
languages. Intuitively, when writing specifications by means of a process
algebra, one is often faced with the choice between the use of a few basic
operations with a clear semantics, or the introduction of ad hoc operations
that simplify the writing of specifications and enhance their readability, but
which complicate reasoning about the resulting high-level description of the
behaviour. The aforementioned paper argues that the use of SOS, combined
with the theory presented in this overview work, allows for the systematic
extension of process algebras in a way that is guaranteed to preserve the
semantic properties of the original language.

Compositional Proof Systems for HML Proof systems for modal log-
ics enable to give formal proofs that (states in) LTSs satisfy certain require-
ments. A desirable feature of such proof systems is that they should allow
for a compositional style of proof development. Informally, a proof system
is compositional if it builds a proof for a property of an LTS out of proofs
for properties of certain sub-LTSs.

The work presented in [203] is based upon the realization that, in the
context of pure first-order logic, the issue of compositionality was addressed
by Gentzen [93] in his work on the sequent calculus. There, compositionality
is obtained via cut-elimination. In [203], Simpson developed a sequent cal-
culus for showing that closed terms in a process algebra with its operational
semantics specified in the GSOS format satisfy assertions of the modal logic
HML (see Sect. 2.3). Such process algebras provide interesting examples,
because of the well-known difficulties in giving proof rules for flavours of
parallel composition [207, 234]. As usual, the benefit of working with an
arbitrary GSOS language is that one obtains a generic proof system that is
applicable to a wide class of process algebras.

Binary Decision Diagrams from GSOS Languages Binary decision
diagrams [62] are widely used to represent LTSs symbolically in the second
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generation of verification tools for concurrent processes — see, e.g., McMil-
lan’s textbook on the model checker SMV [148]. A binary decision diagram
for such an application is often generated from an LTS over the closed terms
in some process calculus, which in turn is generated using the transition rules
defining the operational semantics of this calculus. Such a two-step approach
can be avoided by using a direct construction of the binary decision diagram
from the transition rules. This is the approach followed in [76] for GSOS
languages. The results in op. cit. suggest that this general procedure yields
binary decision diagrams that are of comparable quality to those generated
for specific process calculi by ad hoc methods (cf., e.g., [79]).

5.5 RBB Safe Format

In order to abstract away from internal actions, Milner [153] introduced
a special action 7, called the silent step. The relation symbol — intu-
itively represents an internal computation. A number of equivalence notions
have been developed to identify states in LTSs that incorporate silent steps,
such as weak bisimulation [124] and branching bisimulation [104, 105]. In
[51, 215, 218] rule formats have been introduced to ensure that weak and
branching bisimulation equivalence are a congruence (cf. Def. 2.11). How-
ever, in general such equivalences are not a congruence with respect to most
process algebras, because of the pre-emptive power of silent steps (see, e.g.,
[158, Sect. 2.3] for an intuitive discussion of this phenomenon). For this
reason it has become standard practice to impose a rootedness condition on
equivalences for the silent step [158].

Bloom [51] presented a rule format to ensure that rooted branching
bisimulation is a congruence, imposing additional requirements on the GSOS
format. The rule format recognizes so-called patience rules, via which a
closed term can inherit the 7-transitions of its arguments. The RBB safe
format [84] relaxes some syntactic restrictions of Bloom’s rule format, im-
posing additional requirements on the panth format. Notably, certain argu-
ments of function symbols are labelled ‘wild’, and this labelling is used to
restrict occurrences of variables in targets and in left-hand sides of premises.
If a TSS is complete (cf. Def. 3.12) and satisfies the syntactic restrictions
of the RBB safe format, then rooted branching bisimulation with respect to
the associated LTS is a congruence.

Rooted Branching Bisimulation We assume that Act is extended with
a special action 7, representing the silent step. The reflexive and transitive
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closure of the relation — is denoted by —». First, we define the notion of
branching bisimulation [104, 105].

Definition 5.45 (Branching bisimulation) Assume an LTS. A binary
relation B on states is a branching bisimulation if it is symmetric and,
whenever s1 B sa:

- if 51 % 8|, then either

1. a=7 and s| B sy, or

oy g a,
2. there are transitions sy — sy — sy such that s; B sy and s} B sy;
. .y 3
- if s1 P, then there are transitions so — 3’2P such that s1 B 5'2.

Two states s1,ss are branching bisimilar, written s1 < s, if there exists
a branching bisimulation relation that relates them.

Branching bisimulation is an equivalence relation; see [33]. However, branch-
ing bisimulation equivalence is not a congruence with respect to some stan-
dard operations in process algebras. For example, in BPA., (see Sect. 2.6)
with constants a an ¢, a < p a and ¢ < 7¢, but a + ¢ and a + 7c are not
branching bisimilar. Therefore, we introduce a rootedness condition.

Definition 5.46 (Rooted branching bisimulation) Assume an LTS. A
binary relation R on states is a rooted branching bisimulation if it is sym-
metric and, whenever s R sa,

- if 51 = s}, then there is a transition sy — s such that | < , sh;
- if 1P, then soP.

Two states s1, s2 are rooted branching bisimilar, written s1 < . So, if there
exists a rooted branching bisimulation relation that relates them.

Since branching bisimulation is an equivalence relation, it is easy to see that
rooted branching bisimulation is also an equivalence relation.

RBB Safe We proceed to present a congruence format for rooted branch-
ing bisimulation equivalence from [84]. Let C[| denote a context, viz. a term
with one occurrence of the context symbol [] (cf. Sect. 2.4). We assume that
every argument of each function symbol is labelled either tame or wild. A
context is wild-nested if the context symbol occurs inside a nested string of
wild arguments.
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Definition 5.47 (Wild-nested context) The set of wild-nested contexts
over a signature ¥ is defined inductively by:

1. [] is wild-nested;

2. if C] is wild-nested, and argument i of function symbol f € ¥ is wild,
then f(t1,...,tie1,Cll,tiv1, .- tar(y)) is wild-nested.

A patience rule for an argument i of a function symbol f implies that a
closed term f(t1,...,tq()) inherits the 7-transitions of its argument ¢;.

Definition 5.48 (Patience rule) A patience rule for the ith argument of
a function symbol f is a GSOS rule of the form

Ty =Y

f(mla‘ .- 7xar(f)) 5 f(mla‘ sy i1, Y Tl - - amar(f))

Now we are in a position to present the RBB safe format, which imposes
additional restrictions on the panth format (cf. Def. 5.1).

Definition 5.49 (RBB safe) A T'SS T in panth format is RBB safe if
there exists a tame/wild labelling of arguments of function symbols such that
each of its transition rules p is

1. either a patience rule for a wild argument of a function symbol,

2. or a rule with source f(x1,...,%4(f)) for which the following require-
ments are fulfilled:

e right-hand sides of positive premises do not occur in left-hand
sides of premises of p;

o if argument i of f is wild and does not have a patience Tule in T,

then x; does mot occur in left-hand sides of premises of p;

o if argument i of f is wild and has a patience rule in T, then x;
occurs no more than once in the left-hand side of a premise of p,
where this premise

— 18 positive,
— does not contain the relation symbol =, and
— has left-hand side x;;

e right-hand sides of positive premises and variables x; for i a wild
argument of f only occur at wild-nested positions in the target of
0.
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Theorem 5.50 If a complete TSS is RBB safe, then the rooted branching
bistmulation equivalence that it induces is a congruence.

See [84] for a string of examples of complete TSSs to show that all syntactic
requirements of the RBB safe format are essential for the congruence result
in Thm. 5.50.

Computation of Tame/Wild Labels The crux in determining whether
a TSS T is RBB safe is to find a suitable tame/wild labelling of arguments
of function symbols. Assuming that the signature ¥ is finite, there exists an
efficient procedure that computes a tame/wild labelling A witnessing that
T is RBB safe if and only if one such a labelling exists.

Procedure “Compute Wild Labels for ¥ and T7:

The red/green directed graph G consists of vertices (f,i) for f € X
and 1 <14 < ar(f). There is an edge from (f,i) to (g,7) in G iff there
is a transition rule in 7" with its conclusion of the form

f(.%‘l,. .. ,.Tar(f)) 4 C[g(tl, e ,tj_l,D[:L‘Z'],tj+1, e atar(g))] .

A vertex (g, j) is red iff there is a transition rule in 7" with its target
of the form

C’[g(tl, syt D[y], tivt,--- atar(g))]
where y is the right-hand side of a positive premise of this rule. All

other vertices in G are coloured green.

The procedure turns green vertices in G red as follows. If a vertex
(f,1) is red, and there exists an edge in G from (f, ) to a green vertex
(g,7), then (g,7) is coloured red.

The procedure terminates if none of the green vertices can be coloured
red anymore, at which point it outputs the red/green directed graph.

A labels argument i of function symbol f ‘wild’ iff the vertex (f,7) in the
output graph of the procedure above is red.

We proceed to apply Thm. 5.50 to two of the TSSs from Sect. 2.6, extended
with the silent step.
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BPA with Empty Process and Silent Step The process algebra BPA.;
is obtained from BPA. by extending Act with the silent step 7. The TSS for
BPA. is the TSS for BPA, in Table 1, with the proviso that a ranges over
ActU {7}.

It was noted in Sect. 5.1 that the TSS in Table 1 is panth. The procedure
to calculate a tame/wild labelling for T'SS produces the following result: the
first argument of sequential composition is wild (because of the target 2’y in
the third transition rule for sequential composition), while both arguments of
alternative composition and the second argument of sequential composition
are tame. The TSS in Table 1, with a ranging over Act U {7}, is RBB
safe with respect to this tame/wild labelling. As an example, for sequential
composition we have that:

- its third transition rule with a = 7 constitutes a patience rule for the
first argument of sequential composition;

- in its first two transition rules, and in its third transition rule with
a # T, the variable x in the wild argument of the source occurs as
the left-hand side of one positive premise, which does not contain the
relation symbol —;

- in its third transition rule, the variable z’ in the right-hand side of the
premise occurs in a wild-nested position of the target.

It is left to the reader to verify that the remaining transition rules in Table 1
are RBB safe. It was proven in Sect. 3.5 that the T'SS in Table 1 is complete.
Hence, according to Thm. 5.50 rooted branching bisimulation equivalence is
a congruence with respect to BPA,.

Priorities with Silent Step In general, rooted branching bisimulation
equivalence is not a congruence with respect to the priority operator. For
example, suppose that b < ¢; then a-(7:(b + ¢) + b) and a-(b + ¢) are
rooted branching bisimilar, but é(a-(7-(b + ¢) + b)) and 6O(a-(b + ¢)) are
not rooted branching bisimilar. Consequently, in view of Thm. 5.50, the
TSS for BPA ;¢ in Table 2 (with a and b ranging over ActU {7}) cannot be
in the RBB safe format.

Since the second transition rule in Table 2 has target 6(z’), the procedure
in Sect. 5.5 labels the argument of # wild. So, assuming there are one or
more actions b greater than action a with respect to the ordering on Act, the
wild argument x in the source of this transition rule occurs as the left-hand

side of the negative premises x .. This violates the RBB safe format.
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5.6 Precongruence Formats for Behavioural Preorders

The literature on SOS is particularly rich in results on (pre)congruence
formats for behavioural equivalences and preorders, mostly in the absence
of predicates. This section presents precongruence formats for simulation
and ready simulation from [98], for readies preorder from [48], for failures
preorder from [220], for accepting trace preorder from [83], and for trace
preorder from [50, 220]. Vaandrager [220] moreover showed that the De
Simone format constitutes a precongruence format for the external trace,
external failure, and must [75, 118] preorders. van Glabbeek [98] sketched a
congruence format for ready trace equivalence. We note that if a preorder
is a precongruence, then its kernel is a congruence.

5.6.1 Simulation

Path (cf. Def. 5.2) is a precongruence format for simulation preorder (cf.
Def. 2.3). (According to van Glabbeek [98], path is actually a congruence
format for all n-nested simulation equivalences [111].)

Theorem 5.51 If a TSS is in path format, then the simulation preorder
that it induces is a precongruence.

For example, since the TSS for BPA,. from Sect. 2.6 is in path format,
Thm. 5.51 implies that simulation preorder is a precongruence with respect
to BPA..

5.6.2 Ready Simulation

A precongruence format for ready simulation preorder (cf. Def. 2.3) is ob-
tained by disallowing look-ahead in panth rules; i.e., right-hand sides of
positive premises of a transition rule are not allowed to occur in left-hand
sides of premises of this rule.

Definition 5.52 (Ready simulation format) A panth rule is in ready
simulation format if the variables at the right-hand sides of its positive
premises do not occur in the left-hand sides of its premises.

A TSS is in ready simulation format if all its transition rules are.

Theorem 5.53 If a complete TSS is in ready simulation format, then the
ready simulation preorder that it induces is a precongruence.
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For example, the TSS for BPA, from Sect. 2.6 is positive and so complete.
Furthermore, it is in path format, and none of its transition rules contains
look-ahead. Hence, Thm. 5.53 implies that ready simulation preorder is a
precongruence with respect to BPA..

The following counter-example shows that the omission of look-ahead
from the ready simulation format is essential.

Example: Let Act = {a, b, c} and let f be a unary function symbol. Extend
the TSS for BPA, with

5y T—=yY Yy—z
f@) = f(y) flz)v

Note that the premises of the second transition rule contain look-ahead.
Clearly, a-(b+ b-c) + a-b and a-(b+ b-c) are ready simulation equivalent.
However, f(a-(b+ b-c) + a-b) and f(a:(b + b-c)) are not ready simulation
equivalent. Namely, the transition f(a-(b+ b-c) + a-b) = f(b) can only be
simulated by f(a-(b+ b-c)) = f(b+ b-c), but f(b) has no initial transitions
while f(b+ b-c)y/. O

5.6.3 Readies

This section presents a precongruence format for readies preorder (cf. Def. 2.5)
from [48], which re-uses the notion of a wild-nested context (cf. Def. 5.47).

Definition 5.54 (F-winterized) A GSOS language T is F-winterized if
there exists a tame/wild labelling of arguments of function symbols such that
for each of its transition rules p, with source f(z1,...,Tq.(p)), the following
requirements are fulfilled:

e right-hand sides of positive premises do not occur in left-hand sides of
premises of p;

o if argument i of f is wild and there is a positive premise x; — y in p
where y occurs in the target, then this is the only premise in p to have
x; as its left-hand side;

e right-hand sides of positive premises and variables x; for i a wild ar-
gument of f only occur at wild-nested positions in the target of p;

o the target of p has no multiple occurrences of variables.
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Theorem 5.55 If a TSS is F-winterized, then the readies preorder that it
induces is a precongruence.

Since the GSOS format does not cater for TSSs with predicates, we refrain
from applying the above precongruence theorem to our running examples.
The interested reader is referred to [48] for applications of Thm. 5.55, and for
counter-examples to show the importance of each of the syntactic restrictions
on F-winterized TSSs.

5.6.4 Ready Traces

Definition 5.56 A panth rule p is in ready trace format if:

1. right-hand sides of positive premises do not occur in left-hand sides of
premises of p;

2. each pair of variables that occur at distinct positions in the target of p
are not connected in the symmetric closure of the variable dependency
graph of the premises of p (cf. Def. 5.4).

A TSS is in ready trace format if all its transition rules are.

Theorem 5.57 If a complete TSS is in ready trace format, then the ready
trace preorder that it induces is a precongruence.

Example: The TSS for BPA, from Sect. 2.6 is in path format and thus
complete. Note that none of its transition rules contain look-ahead. Fur-
thermore, the only non-variable target in this TSS, in the third transition
rule for sequential composition, contains two variables ' and y, which are
not connected in the variable dependency graph {(z,z’)} of the premises of
this rule. Hence, Thm. 5.57 implies that ready trace preorder is a precon-
gruence with respect to BPA.. O

The following counter-example shows that the non-connectedness restriction
on variables in targets is essential for the ready trace format.

Example: Let Act = {a,b,c,d}, f a unary, and g a binary function symbol.
Extend the TSS for BPA, with
b b c d
T =Y Ty T Y2 T1— Y1 T2 = Y2

flx) = fy) f(z) LN 9(y1,y2) g(w1,22)/
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Note that the variables y; and s in the target of the second transition rule
are connected in the symmetric closure of the variable dependency graph of
the premises of this rule.

Clearly, a-(b-c + b-d) and a-b-c + a-b-d are ready trace equivalent. How-
ever, f(a-(b-c+ b-d)) and f(a-b-c + a-b-d) are not ready trace equivalent:
{a} a{b}b{\/} is a ready trace of f(a-(b-c+0b-d)), but not of f(a-b-c+a-b-d).

O

5.6.5 Failures

Vaandrager [220] showed that the De Simone format (cf. Def. 5.7) is a pre-
congruence format for failures preorder (cf. Def. 2.5). (van Glabbeek [98]
sketched a more general congruence format for failures equivalence; that
format, however, is flawed [103].)

Theorem 5.58 The failures preorder induced by a De Simone language is
a precongruence.

For example, the TSS for BPA, from Sect. 2.6 is in De Simone format, so
Thm. 5.58 implies that failures preorder is a precongruence with respect to
BPA..

The following counter-example shows that the restriction of the De Si-
mone format that a variable cannot occur both as a left-hand side of a
premise and in the target is essential for the failures format.

Example: Let Act = {a,b,c}, while f and g are unary function symbols.
Extend the TSS for BPA, with

a b c

f@) = f(y) f(x) LN g(z) g(z) S e

Note that in the second transition rule, the variable x occurs both as the
left-hand side of the premise and in the target.

Clearly, a-(b+c)+a-b+a-c and a-b+a-c are failures equivalent. However,
fla-(b+c¢)+ ab+ac)and f(ab+ a-c) are not failures equivalent: abc@ is
a failure of f(a-(b+ ¢) + a-b+ a-c), but not of f(a-b+ a-c). O

5.6.6 Accepting Traces

Similar to the RBB safe format, a precongruence format for accepting trace
preorder (cf. Def. 2.5) from [83] is based on a tame/wild labelling of argu-
ments of function symbols.
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Definition 5.59 (L cool) A TSS in path format is L cool if there exists a
tame/wild labelling of arguments of function symbols such that each of its
transition rules p satisfies the following syntactic restrictions:

e cach wvariable in p that occurs in a wild argument of the source, or
as the right-hand side of a premise, occurs exactly once either as the
left-hand side of a premise or at a wild-nested position (see Def. 5.47)
in the target of p;

e the variable dependency graph (see Def. 5.4) of the set of premises of
p does not contain an infinite forward chain of edges.

Theorem 5.60 If a TSS is in L cool format, then the accepting trace pre-
order that it induces is a precongruence.

The following counter-example shows that the L cool format cannot allow
for an infinite forward chain of edges in the variable dependency graph of
the premises of a transition rule.

Example: Let Act = {a}, f a unary function symbol, and b and ¢ constants.
Consider the TSS

{:Ui i):]:iﬂ |’L'€ N}

b% b f(zo)y/

Note that the edges (z;,x;41) for ¢ € N in the variable dependency graph of
the premises of the second transition rule form an infinite forward chain.
The terms b and c are accepting trace equivalent, because they both have
no accepting traces. However, f(b) and f(c) are not accepting trace equiv-
alent, as f(b) has the accepting empty trace € while f(c) has no accepting
traces. ([

See [83] for further examples of TSSs showing that all the syntactic require-
ments of the L cool format are essential for the precongruence result in
Thm. 5.60. Similar to the procedure for the RBB safe format in Sect. 5.5,
there exists an efficient procedure to compute a tame/wild labelling A wit-
nessing that 7" is L cool if and only if such a labelling exists; see [83].

Example: The TSS for BPA, from Sect. 2.6 is in path format, and for each
transition rule the variable dependency graph of its premises does not con-
tain an infinite forward chain of edges. Take the first argument of sequential
composition to be wild, and the two arguments of alternative composition
and the second argument of sequential composition to be tame. It is not
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hard to see, for the TSS of BPA,, that if a variable occurs in a wild argu-
ment of the source or as the right-hand side of a premise of a transition rule,
then it occurs exactly once either as the left-hand side of a premise or at a
wild-nested position in the target of this transition rule. Hence, Thm. 5.60
implies that accepting trace preorder is a precongruence with respect to
BPA.. O

5.6.7 Traces

Bloom [50] formulated a congruence format for trace equivalence (cf. Def. 2.4),
generalizing an earlier precongruence format for trace preorder by Vaan-
drager [220].

Definition 5.61 A finite T'SS in tyft format (cf. Def. 5.2) is in trace format
if each transition rule satisfies the following three restrictions:

- it contains finitely many premises;

- each variable occurs either as the right-hand side of a premise or in
the source;

- no variable occurs more than once in the left-hand sides of the premises
and in the target.

Theorem 5.62 If a TSS is in trace format, then the trace equivalence that
it induces is a congruence.

The example in Sect. 5.6.5 shows that the trace format cannot allow multiple
occurrences of variables at the left-hand sides of the premises and in the
target. Namely, trace equivalence induced by the TSS in that example is
not a congruence. For instance. a-(b+ ¢) + a-b+ a-c and a-b + a-c are trace
equivalent, but f(a-(b+ ¢) + a-b+ a-c) and f(a-b+ a-c) are not. Note that
the variable z in the second transition rule of that example occurs both as
the left-hand side of the premise and in the target.

Although the definition of completed trace equivalence (cf. Def. 2.5) is
closely related to that for (accepting) trace equivalence, the L cool and trace
formats do not constitute congruence formats for completed trace equiva-
lence. The following counter-example, featuring the encapsulation operator
[37, 153], shows that one cannot really hope to formulate a general congru-
ence format for completed trace equivalence (see also [220]).
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Example: Let Act = {a,b,c}, and add the unary encapsulation operator
O(cy to BPA.. The LTS for a term Oy (t) is obtained from the LTS for ¢
by excluding all c-transitions. This is expressed by three transition rules for
Ofcy, which are added to the TSS for BPA.:

a b
T —y T =y xy/
01}(2) 2 03(W)  Bpy(a) By ly)  F@V

Clearly, a-b + a-c and a-(b + ¢) are completed trace equivalent. However,
Ofcy(a-b+a-c) and Oy (a-(b+ c)) are not completed trace equivalent: a is a
completed trace of 9y (a-b+ a-c), but not of 9y (a-(b + c)). O

5.7 Trace Congruences

One of the original aims for the development of the theory of GSOS lan-
guages was to characterize the observational congruence induced by a rea-
sonable notion of CCS-like operations, under the assumption that what we
can directly observe from the behaviour of a process is its set of completed
traces (see Def. 2.5 for the definition of completed trace equivalence ~¢7).
Intuitively, two closed terms ¢ and u are completed trace congruent with
respect to a TSS if, for every context C[x], the completed traces of C[t] and
Clu] in the associated LTS coincide. We proceed to formulate the notion of
completed trace congruence induced by a rule format.

Definition 5.63 (Completed trace congruence) LetF be some rule for-
mat and Ty a TSS in F format over a signature Xg. Two closed terms t
and u are completed trace congruent with respect to Ty and F, notation

:JgT w, if for every TSS Ty in F format over some signature X1 that can
be added in an operationally conservative fashion to Ty (cf. Def. 4.2), and
for every context C[] over o @ 31, the LTS associated with Ty & Ty yields
C[t] ~cr Clul.

Bloom, Istrail, and Meyer [54, 55] characterized the completed trace congru-
ence induced by the GSOS format in terms of the equivalence corresponding
to the following sublanguage of the modal logic HML (cf. Def. 2.7).

Definition 5.64 (Denial formula) The set D of denial formulae over Act
is given by the following BNF grammar, with a € Act:

p = true| @1 Ay | (a)p | ={a)true .
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In particular, a state satisfies formula —(a)true iff a is not one of its initial
actions. The equivalence relation ~p is defined over states in LTSs in a
similar fashion as the equivalence relation ~pp\pp, (see Sect. 2.3): s ~p s iff
for all denial formulae ¢ we have s |= ¢ < §' | ¢.

Theorem 5.65 Let T be a GSOS language. The equivalence relation ~p
induced by the LTS associated with T coincides with the completed trace
congruence :g%os with respect to T' and the GSOS format.

The interested reader is referred to op. cit. and [111] for proofs of the above
result, and further discussion. Here we limit ourselves to remarking that,
perhaps surprisingly, negative premises do not add anything to the discrim-
inating power of the GSOS format. In fact, the GSOS operators used in
the aforementioned references for testing denial formulae do not make use
of negative premises at all. Indeed, the use they make of copying in either
the premises or the conclusions of transition rules is rather minimal. The
reader might also recall that negative premises were not used in the coding
of a universal 2-counter machine presented in Sect. 5.4.3.

Larsen and Skou [138] gave the following characterization of denial equiv-
alence, which provides additional insight into the behavioural nature of the
completed trace congruences induced by GSOS languages.

Theorem 5.66 In every finitely branching LTS (cf. Def. 2.2), two states
are ready simulation equivalent (cf. Def. 2.3) iff they satisfy exactly the same
denial formulae.

Thus the GSOS completed trace congruence is the equivalence induced by
the ready simulation preorder, which prompted the authors of [55] to coin the
slogan “bisimulation can’t be traced”. The following result, due to Groote
[108], shows that bisimulation equivalence can indeed be traced, provided
that the power of negative premises offered by the pure ntyft/ntyxt format
(cf. Def. 5.2 and Def. 5.4) is available.

Theorem 5.67 Assume a stratifiable TSS (cf. Def. 3.13) in pure ntyft/ntyzt
format containing at least one constant in its signature. Then, for every pair
of closed terms t,u,

__pure ntyft /ntyxt
t~cr U

<~ t~HML U .

In view of Thm. 2.8 this means that the completed trace congruence induced
by the pure ntyft /ntyxt format coincides with bisimulation equivalence if the
LTS associated with the TSS in question is finitely branching.
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The use of negative premises appears to be necessary in order to test
for bisimulation equivalence. Indeed, Groote and Vaandrager [111] char-
acterized the completed trace congruence induced by the tyft/tyxt format
thus.

Theorem 5.68 Assume a TSS in pure tyft/tyzt format whose associated
LTS is finitely branching. Then, for every pair of closed terms t,u,
f . . .
t Eg}}re tyft/tyxt u <= t and u are 2-nested simulation equivalent .
We refer the interested reader to op. cit. (and elsewhere in this handbook)

for the definition of 2-nested simulation equivalence, and for more details on
completed trace congruences.

6 Many-Sorted Higher-Order Languages

This section presents a formal framework to describe TSSs in the style of
Plotkin, allowing one to express many-sortedness, general binding mech-
anisms, and substitutions. Such variable binding mechanisms are widely
used in SOS semantics for, e.g., concurrent and functional programming
languages [32, 162, 178, 185, 197], the w-calculus [161], value-passing pro-
cess algebras [109, 121, 122], process algebras with recursion [128, 158], and
timed process algebra [86].

Several concepts in the setting of operational semantics with variable
binding, which seem to be intuitively clear at first sight, turn out to be
ambiguous when studied more carefully. In order to obtain a formal frame-
work in which transition rules with a variable binding mechanism can be
expressed rigorously, we distinguish between actual and formal variables,
following conventions from programming languages, and formalize the bind-
ing construct t[u/x] in transition rules. In many programming languages
there are actual parameters and formal parameters. The formal parameters
are used to define procedures or functions; the actual parameters are the
“real” variables to be used in the main program. In the main program the
formal parameters are bound to the actual parameters. When discussing
procedures on a conceptual level, it is often useful to introduce a notational
distinction between formal and actual parameters; see for instance [232]. A
transition rule can be thought of as a procedure to establish a transition
relation by means of substituting (actual) terms for the (formal) variables.
The following example illustrates that it is useful to make a notational dis-
tinction between actual and formal variables.

87



Example: Consider the transition rule

ylz/z] Py
yP

where x,y, z are variables and y[z/xz] is a standard notation that binds the
x in y and replaces it by z. Application of a substitution ¢ to this transition
rule yields
o(y)lo(z)/x]| Py
o(y) P2

The example above highlights two matters.

1. The expression y[z/z] is not a substitution (for then it would equal
y), but a syntactic construct with a suggestive form, called a substi-
tution harness. Only after application of a substitution o, the result
o(y)lo(z)/x] can be evaluated to a term.

2. Substitutions only apply to part of the variables that occur in a tran-
sition rule. In order to distinguish such formal variables in a transition
rule, they are marked with an asterisk.

Hence, the transition rule above takes the form

y*[z"/z] Py
Y P

The use of formal variables in SOS with variable binding was proposed in,
e.g., [87, 129, 195].

The organization of this section is as follows. Sect. 6.1 introduces ac-
tual terms, while Sect. 6.2 introduces formal terms. Sect. 6.3 describes the
framework for many-sorted higher-order SOS definitions. Finally, Sect. 6.4
explains how the operational conservative extension format from Thm. 4.4
carries over to this higher-order setting.

Binding mechanisms exist in many and diverse forms. Here, these mech-
anisms are described using a notational approach, based on [15], for the
Nuprl proof development system [67]. An alternative formalism would of
course be the A-calculus [32].
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6.1 The Actual World

We assume a set of sorts together with a countably infinite set Var of sorted
actual variables. The actual world contains actual terms, actual substitu-
tions, and so forth. Let O denote a sequence O7 --- Oy, and O; a sequence
O;i1 - Ojk, with k € N.

Definition 6.1 (Many-sorted higher-order signature) A many-sorted
higher-order signature ¥ is a set of function symbols

f : gl.Sl X e X §M(f).3ar(f) — S,
where the S;j, the S;, and S are sorts.

The intuitive idea embodied by the above definition is that a function symbol
f denotes an operation that takes functions of type S; — S; as arguments,
and delivers a result of sort S.

Definition 6.2 (Actual term) Let ¥ be a many-sorted higher-order sig-
nature. The collection A(X) of actual terms over X is the least set satisfying:

e cach actual variable from Var is in A(X);

e for each function symbol f : S1.81 % -+ x gar(f).SaT(f) — S, the ex-
pression f(T1.t1,..., Tor(f)-tar(s)) 18 an actual term of sort S, if

- the t; are actual terms of sort S;, and

- each sequence X; consists of distinct actual variables in Var of
sorts S;.

Free occurrences of actual variables in actual terms are defined inductively
as expected:

e 1 occurs free in x for each x € Var;

e if x occurs free in ¢;, and x does not occur in the sequence Z;, then x
occurs free in f(Z1.t1,. .., Zor(p) tar(s))-

An actual term is closed if it does not contain any free occurrences of actual
variables.

An actual substitution is a sort preserving mapping o : Var — A(X),
where sort preserving means that x and o(x) are always of the same sort.
An actual substitution extends to a mapping from actual terms to actual
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terms; the actual term o(t) is obtained by replacing free occurrences of
actual variables z in t by o(x). As usual, _[t/z] is the postfix notation for
the actual substitution that maps z to t and is inert otherwise. Such postfix
denoted actual substitutions are called explicit (as opposed to implicit actual
substitutions o).

In the definition of actual substitutions on actual terms there is a well-
known complication. Namely, consider an actual term o(t), and let x occur
free in t. After z in t has been replaced by o(z), actual variables y that oc-
cur in o(z) are bound in actual subterms such as f(y.u) of . A solution for
this problem, which originates from the A-calculus, is to allow unrestricted
substitution by applying a-conversion; that is, by renaming bound actual
variables. From now on, actual terms are considered modulo a-conversion,
and when an actual substitution is applied, bound actual variables are re-
named. Stoughton [213] presented a clean treatment of this technique.

6.2 The Formal World

We argued that it is a good idea to distinguish between formal and actual
variables when discussing transition rules with variable bindings and sub-
stitutions on an abstract level. A formal term ¢* is an actual term with
possible occurrences of formal variables and substitution harnesses.
Assume a many-sorted higher-order signature . The set Var® of formal
variables is defined as {z* | z € Var}, where z* and x are of the same sort.

Definition 6.3 (Formal term) The collection F(X) of formal terms over
a many-sorted higher-order signature Y is the least set satisfying:

e cach actual variable from Var is in F(X);
e cach formal variable from Var* is in F(X);

e for each function symbol f : S1.81 X -+ % gar(f)‘sar(f) — S, the ex-
pression f(Z1.t7,... ’far(f)'tzr(f)) is a formal term of sort S, if

- the t7 are formal terms of sort S;, and

- each T; consists of distinct actual variables in Var of sorts S;,

o if t* and u* are formal terms of sorts Sy and S1 respectively, and
x € Var is of sort S1, then t*[u* /x| is a formal term of sort Sp.

A formal substitution is a sort preserving mapping o* : Var* — A(X). It
extends to a mapping o* : F(X) — A(X), where the actual term o*(¢*)
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is obtained from the formal term t* as follows. First replace each formal
variable z* in t* by o*(2*). Then the substitution harnesses in t* become
explicit actual substitutions, so that the result evaluates to an actual term.

Example: An example of a formal term is y*[z*/x], which evaluates to
the actual constant a after application of a formal substitution o* with
0*(z*) = a and o*(y*) = z. Namely, the implicit formal substitution o*
turns the substitution harness y*[2*/z] into the actual term z[a/z|, where
_la/x] is an explicit actual substitution, which evaluates to a. O

We summarize the various notions of substitutions, and briefly discuss their
differences. There are four notions in two worlds: implicit and explicit actual
substitutions (which are semantically the same), formal substitutions, and
substitution harnesses.

e Implicit actual substitutions o and explicit actual substitutions _[¢/x]
both denote mappings from actual variables to actual terms.

e Formal substitutions ¢* are mappings from formal variables to actual
terms.

e A substitution harness t*[u*/z] is not a substitution, but a piece of
syntax with a suggestive form. If a formal substitution ¢* is applied
to it, then the result is an expression o*(t*)[c*(u*)/z], containing an
explicit actual substitution, so that it can be evaluated to an actual
term.

Substitution harnesses are used to formulate in a precise way how a formal
substitution is to act on a transition rule. The formal and actual substitu-
tions are used to move from transition rules to a proof tree (cf. Def. 2.14).

6.3 Actual and Formal Transition Rules

Before presenting the basic definitions of SOS for higher-order languages,
we first consider as an example the recursive p-construct, which combines
formal variables, a binding mechanism, and a substitution harness. The
p-operator is similar to the construct fix(X = t) that was incorporated in
De Simone languages (cf. Sect. 5.3.1).

Example: Intuitively, a closed actual term px.t executes ¢ until it encoun-
ters an expression x, in which case it starts executing pz.t again. This
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intuition is expressed in the following transition rule, which we call the p-
rule:
Q

ylpry*/a] = 2
pr.y* = 2*

The transition pz.a-z — pz.a-z with a-_ the prefix multiplication operator
from CCS can be derived from the u-rule together with the standard tran-
sition rule for prefix multiplication: @/a-w* =% w* (cf. Sect. 5.4.3). Namely,
after application of the formal substitution o* to the p-rule with o*(y*) =
a-x and 0*(2*) = pz.a-z, the premise takes the form a-z[uz.a-x/x] % pr.a-x,
which evaluates to a-pz.a-x — pr.a-z. Since this is an instance of the tran-
sition rule for prefix multiplication, with uz.a-z for w*, we conclude that the
o*-instantiation of the conclusion of the p-rule is valid: pz.a-z = pz.a-x.
The proof of pz.a-x > px.a-x is depicted below.

1]
instance of prefixing rule ‘
a-pr.a-xr > pr.a-c
‘ instance of p-rule
PT.0-T > px.ax
O

Definition 6.4 (Actual transition rule) An actual transition rule is an
expression of the form H/a, where H is a set of literals (cf. Def. 2.13), and
a s a positive literal.

Actual transition rules are deduced by means of formal transition rules.
The formal transition rules are the ones that are presented in the literature;
they are the recipes that enable one to deduce an LTS. For instance, in the
example above, the actual transition rule

a-pT.a-T > pr.o-c

PT.0-T 5 px.a-x

was deduced from the p-rule, which is a formal transition rule.

92



Definition 6.5 (Formal transition rule) A formal transition rule is an
expression H* /a*, where:

o H* is a set of premises of the form t* 2 u*, t*P, t* %, and t*—P;
e a* is the conclusion of the form t* = u* or t*P;

where t*,u* € F(X), a € Act, and P denotes any predicate. A higher-order
TSS is a set of formal transition rules.

We give an intricate example of a formal transition rule PRE from the 7-
calculus [161], which incorporates bound variables and parameterized tran-
sition labels. Recall that actual terms are considered modulo a-conversion.

Example: Assume two sorts Port of port names and Process of processes.
For actual variables = and y of sort Port we have the formal transition rule

PRE  z(y).v* ") e

from [196], where v* is a formal variable of sort Process. The formal tran-
sition rule PRE expresses that process z(y).t sends the bound port name y
via port x, and proceeds as process t. There is a subtle distinction between
the two occurrences of y in PRE; in x(y).v* it is a binder of v*, while in the
transition label it is a free parameter. A notation for PRE in the vein of
this section would be

send(x,y.v") @)

From PRE we can deduce z(y).t =) t[w/y] for actual terms t of sort Process

that do not contain any free occurrences of the actual variable w of sort
Port, where _[w/y] is an explicit actual substitution. Namely, PRE yields

z(w).tlw/y] =) tlw/y], and if w does not occur free in ¢, then z(w).t{w/y]
is a-convertible to z(y).t. O

The example above shows that provability of an actual transition rule may
depend in an essential way on the fact that actual terms are considered
modulo a-conversion.

6.4 Operational Conservative Extension

Only few rule formats for higher-order languages have appeared in the liter-
ature. Notably, Howe [129] presented a congruence format for higher-order
TSSs with respect to bisimulation equivalence, which shows a strong resem-
blance with the tyft/tyxt format from Groote and Vaandrager (cf. Def. 5.2).
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Interestingly, Bernstein [42] showed that in many cases the semantics of a
higher-order language can be captured by a first-order TSS with terms as
transition labels. It appears that existing rule formats can be extended with
terms as transition labels in a straightforward manner; see [42, 87]. Thus,
it might be the case that current first-order rule formats are sufficient to
deal with higher-order languages. Another reference of interest in this area
is [49].

We proceed to present a generalization from [87] of the operational con-
servative extension format (see Sect. 4) to a higher-order setting. This gen-
eralization is based on an adaptation of the notion of source-dependency (cf.
Def. 4.3), requiring a distinction between occurrences of formal variables in-
and outside the substitution harnesses of a formal term. FV (¢*) denotes the
set of formal variables that occur in the formal term t*.

Definition 6.6 (FV (t*)) The sets FV (t*) are defined inductively by:

:L_*

FV(t) U+ UFV (5, )
FV(t*)UFV(s") .

FV(z*)
FV(f(@1.8], s Tar(p) an(p)
FV (t*[s*/z])

> f>

For example, FV (f(v.z*[y*/w])) = {*,y*}. By contrast, EV(t*) denotes a
more restricted set of formal variables in the formal term t*, which does not
take into account formal variables that occur inside a substitution harness.

Definition 6.7 (EV (t*)) The sets EV (t*) are defined inductively by:

EV(z*) = 2
BV(f(Z1 4], Zar(p) o)) = BEV(E) U UEV (5
EV(#*[s*/z]) & EV(*) .

For example, EV (f(v.x*[y*/w])) = {z*}. The sets FV(t*) and EV (t*) are
used in the definition of source-dependent variables in a formal transition
rule.

Definition 6.8 (Source dependency) For a formal transition rule p*,
the formal variables in p* that are source-dependent are defined inductively

by:

1. if t* is the source of p*, then all formal variables in EV (t*) are source-
dependent in p*;
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2. if t* 5 u* is a premise of p*, and all formal variables in FV (t*)
are source-dependent in p*, then all formal variables in EV (u*) are
source-dependent in p*.

A formal transition rule p* is source-dependent if so are all the variables in
FV(p").

Thm. 6.9 formulates sufficient criteria for a higher-order TSS Ty @71 to be an
operational conservative extension of Ty (see Def. 4.2); it extends Thm. 4.4
to higher-order languages. We say that a formal term in F(X;) is fresh if it
contains a function symbol from ¥;\¥( outside its substitution harnesses.
Similarly, an action or predicate symbol in 77 is fresh if it does not occur in
To.

Theorem 6.9 Let Ty and Ty be higher-order TSSs over many-sorted higher-
order signatures Yo and Yo @B X1, respectively. Under the following condi-
tions, Ty ® 11 is an operational conservative extension of Tp.

1. Each p* € Ty is source-dependent.
2. For each p* € 11,

e cither the source of p* is fresh,

e or p* has a premise of the form t; =Y t] or to P, where
— t5 € F(X0);
— FV(t;) € EV(u*), where u* denotes the source of p*;
— t3, a, or P is fresh.

Theorem 6.9 can be applied to extensions of higher-order TSSs such as
process algebra with time [86, 167] or data [109], where binding constructs
enable one to parameterize processes over the time or data domain, process
algebra with a recursive operator like the p-construct [118, 122, 197], the
m-calculus [161, 196], and the lazy A-calculus [120, 195].

7 Denotational Semantics

Following a bias towards operational methods in process theory that dates
back to Milner’s original development of the theory of CCS [153, 160], most
of the work in the field of the meta-theory of process description languages
reported in this chapter is concerned with operational and axiomatic seman-
tics for terms and the relationships between the two. In particular, it is by
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now clear that it is often possible to automatically translate an operational
theory of processes into an axiomatic one [8]. Moreover, in certain circum-
stances it is also possible to derive an SOS semantics from an axiomatic one,
as witnessed by the developments in [8, 132].

Axiomatic semantics and proof systems for programming and specifica-
tion languages are often closely related to denotational semantics for them,
particularly if the Scott-Strachey approach [198] is followed. A paradigmatic
example of the development of a semantic theory of processes in which op-
erational, axiomatic, and denotational semantics coexist harmoniously, and
may be used to highlight different aspects of process behaviours, is the the-
ory of testing equivalence developed by De Nicola and Hennessy [75, 118].
In this theory, a process can be characterized operationally by means of its
reaction to experiments, and denotationally as an acceptance tree [117]. Ac-
ceptance trees allow one to fully describe the behaviour of a process while
abstracting away from the operational details of its interactions with all the
possible testers. Moreover, the domain-theoretic properties of this model
allow one to establish properties of the behavioural semantics that would
be very difficult to derive using purely operational methods (see, e.g., the
results in [118, Sect. 4.5].)

To our mind, the coincidence of operational, axiomatic, and denota-
tional semantics enjoyed by the theory of processes presented in [118] does
not only reinforce the naturalness of the chosen notion of program seman-
tics, but allows one to make good use of the complementary benefits afforded
by these semantic descriptions in establishing properties of processes. How-
ever, developing these three views of processes for each process descrip-
tion language from scratch and proving their coincidence is hard, subtle
work; in addition, to quote from [149], giving denotational semantics to
programming languages using the Scott-Strachey approach “involves an ar-
mamentarium of mathematical weapons otherwise unfamiliar in Computer
Science”. It would therefore be beneficial to develop systematic ways of giv-
ing denotational semantics to process description languages, following the
Scott-Strachey approach, starting from their SOS descriptions. Of course,
this is only worthwhile if the denotational semantics produced by the pro-
posed techniques is automatically guaranteed to be in agreement with the
behavioural and axiomatic views of processes. In particular, we would like
to generate a denotational semantics that matches exactly our operational
intuition about process behaviour, i.e., that is fully abstract in the sense of
Milner and Plotkin [151, 152, 175, 212], with respect to a reasonable notion
of behavioural semantics.

This section reviews results from [11, 12], where it is shown how to gen-
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erate a fully abstract denotational semantics from a class of recursive GSOS
languages (cf. Sect. 5.4.5). Usually denotational semantics deals with recur-
sion implicitly, by setting up a framework within which reasoning about re-
cursion can be reduced to reasoning about recursion-free approximations. In
line with this approach, a denotational semantics is first given to recursion-
free terms from GSOS languages. Next, recursion-free approximations are
used to extend this result to recursive terms over recursive GSOS languages.

7.1 Preliminaries
7.1.1 Y-Domains

We assume familiarity with the basic notions of ordered and continuous al-
gebras (see, e.g., [112, 118, 130]); however, in what follows we give a quick
overview of the way a denotational semantics can be given to a recursive
language following the standard lines of algebraic semantics [112]. The in-
terested reader is invited to consult [118] for an explanation of the theory.

Let ¥ denote a signature, in the sense of Sect. 2.4, which includes a
distinguished constant 2. A X-algebra consists of a carrier set A, where for
each function symbol f € ¥ there is given an operator f4 : A7 () — A A
mapping ¢ : A — B between two X-algebras is a ¥-homomorphism if for
every f € ¥ and elements dy, ..., dg.(5) € A:

SO(fA(dla---adar(f))) = fB(SO(dl)a“wsO(dar(f))) :

We recall (from Sect. 2.4) that T(X) denotes the set of closed terms over 3.
We use T(X, RVar) to denote the set of closed terms over ¥ that may contain
occurrences from a countably infinite set RVar of recursion variables, ranged
over by X,Y.

A ¥-domain [118] (A,C 4) is a X-algebra whose carrier (A,C 4) is an
algebraic complete partial order (cpo) (see, e.g., [176]) and whose operations
are interpreted as continuous functions (in the sense of, e.g., [118, p. 123]).
We require that Q is | 4, viz. the least element in the algebraic cpo (A, C 4).
The notion of a ¥-poset (resp. X-preorder) may be defined in a similar way
by requiring that (LA, C 4) be a partially ordered (resp. preordered) set and
that the operators be monotonic. The notion of ¥-homomorphism extends
to the ordered Y-structures in the obvious way by requiring that such maps
preserve the underlying order-theoretic structure as well as the X-structure.

The interpretation A[-] of T(3, RVar) in a 3-algebra A associates each
term in T'(X, RVar) with a mapping from substitutions (going from recursion
variables to A) to .A. This interpretation is defined by induction as follows,
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where o is any mapping from recursion variables to A:

A[X]o = o(X)
Alf(ts, .. t)]o = fa(Alti]o, ..., Altn]o) ,

where n = ar(f). We recall that the recursive terms over 3 are given by
the BNF grammar

tu=X | f(tr,- s tar(p) | ix(X =1)

where X is any recursion variable, f any function symbol in ¥, and fix a
binding construct. The latter construct gives rise to the usual notions of
free and bound recursion variables in recursive terms. CREC(X) denotes the
set of recursive terms that do not contain free recursion variables. Further-
more, t[u/X] denotes the recursive term ¢ in which each occurrence of the
recursion variable X has been replaced by u. If A is a Y-domain, then the
interpretation A[-] extends to the set of recursive terms over X by

Alfix(X = t)Jo = YXd. Aft]o’

where Y denotes the least fixed-point operator, d is a metavariable ranging
over A, o/(X) 2 d, and o/(Y) 2 o(Y) for Y # X. Note that for each
t € CREC(X), A[t]o does not depend on o.

In what follows, we make use of some general results about the semantic
mappings defined above, which may be found in [68, 112, 118]. The first
result states that for any recursive term ¢ (possibly containing free recursion
variables) there is a sequence of finite approximations t, € T (X, RVar) for
n € N such that, for any Y-domain A,

Al = || Alta -
neN

(That is, the interpretation of the term ¢ in A is the least upper bound of
the interpretations of its finite approximations.) The second result states
that if <q is the least precongruence (cf. Def. 2.11) satisfying

fix(X =t) <q t[ix(X =1)/X]
thix(X =1)/X] <q fix(X =1)
Q < X

then t,, <q t for every n € N.
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For any binary relation R over CREC(X), the algebraic part of R, denoted
by R4, is defined as follows [118]:

tRY% < YneN3ImeN (t, Ruy) .

We say that R is algebraic if R is equal to R4. Intuitively, a relation is
algebraic if it is completely determined by how it behaves on recursion-free

terms. Every denotational interpretation A[-] induces a preorder C 4 over
CREC(X) by:

tCau < Aft] T Afu] .

The following result characterizes a class of denotational interpretations
which induce relations over terms that are algebraic.

Lemma 7.1 Let A be a X-domain. If A[t] is a compact element in A for
every t € T(X) (see, e.g., [118, p. 130]), then C 4 is algebraic.

In view of the above general lemma, the relations over the recursive terms
in CREC(Y) induced by a denotational semantics are always algebraic, pro-
vided that the denotations of the recursion-free terms in T(X) are compact
elements in the algebraic cpo A.

7.1.2 Prebisimulation

We consider LTSs with divergence from Def. 5.41, which include a special
divergence predicate 1. The convergence predicate | holds in a state iff
the divergence predicate does not hold in this same state (cf. Def. 5.42).
The behavioural relation over LTSs with divergence that we study in this
section is that of prebisimulation [116, 126, 154, 231] (also known as partial
bisimulation [1]). We recall (from Def. 2.1) that Proc and Act denote the sets
of states and actions, respectively, of the LTS with divergence in question.
Let Rel(Proc) denote the set of binary relations over Proc.

Definition 7.2 (Prebisimulation) Assume an LTS with divergence. The
functional G : Rel(Proc) — Rel(Proc) is defined as follows. Given a relation
R € Rel(Proc), we have s; G(R) sa whenever:

. Q, . ey . Q,
- if s1 — s}, then there is a transition sy — s4 such that s§ R sh;

- if 81, then s2 |;
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. a . ey a
- if 51 | and so — s, then there is a transition s; — s such that
s R sb.

A relation R is a prebisimulation iff R C G(R). We write s1 < so if there
exists a prebisimulation R such that s1 R so.

The relation < is a preorder over Proc; its kernel is denoted by ~. Pre-
bisimulation is similar in spirit to the notion of bisimulation (cf. Def. 2.3).
Intuitively, s1 < so if the behaviour of so is at least as specified as that of
s1, and s1 and ss can simulate each other when restricted to the part of
their behaviour that is fully specified. A divergent state s with no outgoing
transition intuitively corresponds to a process whose behaviour is totally
unspecified — essentially an operational version of the bottom element 1 in
Scott’s theory of domains [176, 198, 211].

The following precongruence result for < with respect to recursive GSOS
languages including the inert constant € originates from [11, 12].

Proposition 7.3 < is a precongruence with respect to the LTS with diver-
gence over CREC(X) associated with a recursive GSOS language including
the inert constant 2 (cf. Prop. 5.43).

7.1.3 Finite Synchronization Trees

A useful source of examples for LTSs with divergence is the set of finite
synchronization trees [153].

Definition 7.4 (Finite synchronization tree) The set of finite synchro-
nization trees over a set of actions Act, denoted by ST(Act), is defined in-
ductively by:

1. @ € ST(Act);
2. if S € ST(Act), then SU{L} € ST(Act);
3. ifay,...,an € Act and S1,...,S, € ST(Act), then

(a1, S1)s ... {an, Sp)} € ST(Act) .

The symbol L is used to represent that a finite synchronization tree is di-
vergent. The set of finite synchronization trees ST(Act) can be turned into
an LTS with divergence by stipulating that, for S € ST(Act):

o STiff L €S,
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o S % §iff (a,5") € S.

When relating behavioural semantics based upon bisimulation-like relations
with denotational semantics (usually based upon algebraic domains), one is
faced with the following mismatch:

1. on the one hand, in an algebraic domain d C e iff every compact
element smaller than or equal to d is also dominated by e;

2. on the other hand, there are closed terms that have the same finite
approximations, but that are not bisimilar.

This implies that bisimulation is not algebraic, and thus cannot be captured
in a standard domain theoretic framework. One way to address this prob-
lem is to study its finitary part. To this end, it is generally agreed upon
in the literature that finite synchronization trees are a natural operational
counterpart of compact elements.

In what follows, we are interested in relating the notion of prebisimula-
tion to a preorder on finite synchronization trees induced by a denotational
semantics given by means of an algebraic domain. As such preorders are
completely determined by how they act on finite processes, we are inter-
ested in comparing them with the “finitely observable”, or finitary, part of
the bisimulation in the sense of, e.g., [112, 116]. The following definition
from [1] is inspired by property 1 above for algebraic domains.

Definition 7.5 (Finitary preorder) The finitary preorder < is defined
on any LTS by

81§F82 <~ VSEST(ACt)(S§51:>S§SQ) .

Since it is, in general, technically difficult to work with <, it is common
practice to try and obtain an alternative characterization of the finitary
preorder (see, e.g., [13]). An alternative method for using the functional
G : Rel(Proc) — Rel(Proc) from Def. 7.2 to obtain a preorder is to apply it

inductively as follows:

e <) £ Proc x Proc
A
e Sn1=G(Sn)

and finally <, 2 Mhen Sne Intuitively, the preorder <, is obtained by

restricting the prebisimulation relation to observations of finite depth. The
preorders <, <., and < are related thus:

~) ~W)

Scsecsh.
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Moreover the inclusions are, in general, strict. The interested reader is
referred to [1] for a wealth of examples distinguishing these preorders, and
for a thorough analysis of their general relationships and properties.

The following comparison of preorders with respect to recursive GSOS
languages including the inert constant € originates from [11, 12].

Proposition 7.6 The preorders < and <, coincide over the LTS with
divergence associated with a recursive GSOS language including the inert
constant Q (cf. Prop. 5.43).

7.1.4 A Domain of Synchronization Trees

The canonical domain used in [11, 12] to give a denotational semantics to
a class of recursive GSOS languages is the domain of synchronization trees
over a countably infinite set Act of actions, as considered by Abramsky [1].
This is defined to be the initial solution D (in the category SFP, cf. [174])
of the domain equation

D=(1),&P[)_ D

a€Act

where ()| denotes lifting, 1 a one-point domain used to model 0, @& the
coalesced sum, ) a separated sum, and P[] the Plotkin powerdomain con-
struction (see [174, 176] for details on these domain theoretic operations).
Intuitively one constructs the least fixed-point D of the domain equation
above by starting with the one-point domain 1, and at the nth iterative
step building the finite synchronization trees of height n.

To streamline the presentation we abstract away from the domain theo-
retic description of D given by the domain equation above. Our description
of the domain of synchronization trees D follows the one given in [130], and
we rely on results presented in that reference showing how to construct D
starting from a suitable preorder on the set of finite synchronization trees
ST(Act). The reconstruction of D is given in three steps.

1. First, we define a preorder C on the set of finite synchronization trees
ST(Act). (This preorder is a reformulation of the Egli-Milner preorder
over ST(Act) presented in [130]; see Prop. 7.8.)

2. Next, we relate the poset of compact elements of D to the poset of
equivalence classes induced by (ST(Act), C).

3. Finally, we use the fact that D is the ideal completion of its poset of
compact elements to relate it to (ST(Act), C).
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This approach allows us to factor the definition of the continuous algebra
structure [106, 112, 118] on D in three similar steps.

Definition 7.7 (ST-preorder) L is the least binary relation over ST(Act)
such that the following conditions are satisfied if S1 E Ss:

1. if {a,S]) € S1, then S| C S} for some (a,S}) € Sa;
2. ifJ_ € Sy, then 1. € Sy;
3. if (a, Sh) € Sa, then either L € Sy or S} T SY for some (a,S7) € S.

The relation C so defined is easily seen to be a preorder over ST(Act). More-
over, it coincides with < over ST(Act). We proceed to relate the preorder
(ST(Act),C) with the poset of compact elements of D in a way that allows
us to define, in a canonical way, continuous operations on D from monotonic
ones on (ST(Act),C).

First of all, we recall from [1] that D is, up to isomorphism, the algebraic
cpo whose poset of compact elements (I(D), Ex(p)) is given as follows.

e KC(D) is defined inductively by:

@ € K(D)
- {1} e K(D)
acActANde K(D) = {(a,d)} € K(D)

—d,e € K(D) = Con(dUe) € K(D), where Con denotes the
convex closure operation (see, e.g., [1, p. 170]).

e Ly (p) is defined by:
dEIC(D)e i=4 d:{J_}\/dEEMe
where C gy denotes the Egli-Milner preorder (see, e.g., [1, Def. 3.3]).

From the above definitions it follows that IC(D) is a subset of ST(Act). Hence
it makes sense to compare the relations C and Ex(p) over it. The following
result from [11, 12] lends credence to our previous claims.

Proposition 7.8 For all d,e € K(D), d C e iff d Cxp) e.
As a consequence of this result, to ease the presentation of the technical

results to follow, from now on we use C as our notion of preorder on (D).
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7.2 From Recursive GSOS to Denotational Semantics

We now characterize a class of GSOS languages, incorporating the inert
constant €} for which there are no transition rules, that map finite LTSs
to finite LTSs (cf. Def. 2.2). The semantic counterparts of these function
symbols have the property of being compact in the sense of [130], i.e., of
mapping compact elements in the Plotkin powerdomain of synchronization
trees to compact elements. In view of Lem. 7.1, denotational interpretations
for the resulting languages induce preorders over terms that are algebraic.

Definition 7.9 (Compact GSOS) A GSOS language including the inert
constant § is compact if it is linear (cf. Def. 5.85) and syntactically well-
founded (cf. Def. 5.536).

For each function symbol f we introduce a mapping fsr, mapping ar(f)
finite synchronization trees to a finite synchronization tree.

Definition 7.10 (The operation fs;) Assume a compact GSOS language,
and consider a function symbol f. The operation fsr : ST(Act)“r(f) —
ST(Act) is defined inductively by stipulating that, for every Si,...,Sar(f) €
ST(Act):

o | €f(S1,...,8up)) iff f = or there is an argument i of f such
that f tests its ith argument (see Def. 5.11) and L € S;;

e (c,S) € £sr(S1,..., Sar(y)) iff there are a GSOS rule

{2 S yij, @ B 1< i <ar(f),1<j <mi1 <k <ny)

f(m17 v amar(f)) = C[mla <y Tar(f) Y11, - - 7yar(f)mar(f)]

and finite synchronization trees Sy, ..., S}, fori=1,... ar(f) such
that:

1. {aij, Si;) € Si fori=1,...,ar(f) and j =1,...,my;
2. ifn; > 0, then L € S; and (bj,S’) € S; for S’ € ST(Act) and

k=1,...,n4

8. Cor[S1, -3 Sar(f)s S11s -+ -5 S:M"(f)mw(f)] = S, where Cst denotes
the derived semantic operation associated with the target of the
GSOS rule.
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The above definition, which is discussed at length in [11, 12], endows the
preorder of finite synchronization trees ST(Act) with a X-preorder structure
(where ¥ is the signature under consideration), in the sense of [118]. Since
the poset of compact elements of the domain D is a substructure of the
preorder (ST(Act),C), this is enough to give a denotational interpretation
for the recursion-free terms in a compact GSOS language in terms of compact
elements in D.

Theorem 7.11 Assume a compact GSOS language. For all t,u € T(X),
t Sw u iff K(D)[t] E K(D)[u].

The above full abstraction result can be extended to the whole of the lan-
guage CREC(X), for any compact recursive GSOS language. In order to
define an interpretation of programs in CREC(X) as elements of D, we need
to define a continuous Y-algebra structure on D.

From the theory of powerdomains [130, 174, 205], we know that the do-
main of synchronization trees D is, up to isomorphism, the ideal completion
of the poset of compact elements (D). (The construction of the ideal com-
pletion of a poset and a discussion of its basic properties can be found in
[118, p. 139-145].) Let Cp be standard set inclusion on D. Since D is the
ideal completion of (D), the monotonic function fsr : (K(D),C)* () —
(K(D),C) for any function symbol f can be extended to a continuous func-
tion fD : (D, ED)‘"(f) — (D, ED) by:

fD(ela""ear(f)) = U{fST(dl’-" ’dar(f)) ’ dy €eq,... ’dar(f) € ear(f)} )

where ey, ..., eq(5) are ideals in (K(D), Ex(p)), and we identify an element
of (K(D), Ex(p)y) with the principal ideal it generates (see [118, p. 139]). The
interested reader is invited to consult, e.g., [118, Sect. 3.3] for a discussion of
the properties afforded by this canonical extension. By the general theory
of algebraic semantics we then have that, for all closed terms %, u,

D[t] Cp Plu] < K(D)[t] T K(D)[4] .

In view of Thm. 7.11, the desired full abstraction result follows if we prove
that the preorder <, is algebraic. Namely, owing to our constructions each
closed term ¢ is interpreted as a compact element of D, so Lem. 7.1 implies
that the relation Cp is algebraic. And two algebraic relations that coincide
over the collection of closed terms T(X) do, in fact, coincide over the whole
of CREC(Y).

The key to the proof of algebraicity of <, is the following general theo-
rem from [11, 12], providing a partial completeness result for < in the sense
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of Hennessy [10, 116] for arbitrary compact GSOS languages. This axioma-
tizability result uses the fact that < is a precongruence with respect to the
LTS with divergence associated with a recursive GSOS language including
the inert constant €); see Prop. 7.3.

Proposition 7.12 Let G be a compact recursive GSOS language. Then
there exists a compact recursive GSOS language H over a signature Y/,
being a disjoint extension (cf. Def. 5.32) of G and TenTReE (cf. Sect. 5.4.5),
together with a set T of inequalities between recursive terms over ¥/, such

that for all t € T(X") and u € CREC(Y'):

H inducest Suiff TFt<wu .

Apart from its intrinsic interest, the main consequence of Prop. 7.12 is the
following key result from [11, 12], essentially stating that, for any compact
GSOS language, finite synchronization trees are compact elements with re-
spect to the preorder <.

Proposition 7.13 Assume a compact recursive GSOS language. If S €
ST(Act) andt € CREC(X), then S <F t iff there exists a finite approzimation
tn of t such that S <F t,,.

The above result, in conjunction with Prop. 7.6, yields that <, is indeed
algebraic.

Proposition 7.14 <, is algebraic over the LTS with divergence associated
with a compact recursive GSOS language.

In light of Thm. 7.11 and Prop. 7.14, for any compact recursive GSOS
language the induced denotational semantics over CREC(X) is fully abstract
with respect to <.

Theorem 7.15 Assume a compact recursive GSOS language. For all t,u €
CREC(Y), t <w u iff D[t] Ep D[u].

When applied to the version of SCCS considered by Abramsky [1], the tech-

niques we have presented deliver a denotational semantics that is exactly
the one given in op. cit.
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Related Work The work reported in this section is by no means the only
attempt to systematically derive denotational models from SOS language
specifications. The main precursors to this work in the field of the meta-
theory of process description languages may be found in the work by Bloom
[47] and Rutten [189, 190, 191, 192]. In his unpublished paper [47], Bloom
gives operational, logical, relational, and three denotational semantics for
GSOS languages without negative premises and unguarded recursion, and
shows that they coincide. Bloom’s work is based on the behavioural no-
tion of simulation [124], and two of his denotational semantics are given
by means of Scott domains based on finite synchronization trees. On the
other hand, the work by Rutten [189, 190, 191] gives methods for deriv-
ing a denotational semantics based on complete metric spaces and Aczel’s
non-well-founded sets [14] for languages specified by means of subformats of
the tyft/tyxt format (cf. Def. 5.2). In particular, the reference [191] gives a
detailed and clear introduction to a technique, called “processes as terms”,
for the definition of operations on semantic models from transition rules.
Rutten’s general “processes as terms” approach could have been applied to
yield an equivalent formulation of the semantic operations on finite syn-
chronization trees given above. The work presented in the aforementioned
papers has been generalized by Rutten and Turi [192]. Ibidem it is shown
how TSSs in tyft/tyxt format induce a denotational semantics, and the es-
sential properties of semantic domains that make their definitions possible
are investigated in a categorical perspective.

Abramsky and Vickers [3] consider various notions of process observa-
tions in a uniform algebraic framework provided by the theory of quantales
(see, e.g., [188]). The methods developed in [3] yield, in a uniform fashion,
observational logics and denotational models for each notion of process ob-
servation they consider. Their work is, however, semantic in nature, and
ignores the algebraic structure of process expressions.

In the area of the semantics of functional programs, developments that
are somewhat similar in spirit to those given above are presented in [145,
204]. Those papers study natural notions of preorder over programs written
in a simple functional programming language, and show how any ordering
on programs with certain basic properties can be extended to a term model
that is fully abstract with respect to it.

The issue of defining abstract mathematical models for, rather than from,
operational semantics has also received some attention. We refer the inter-
ested reader to, e.g., [19, 214], and the references therein, for details on this
line of investigation.
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