
B
R

IC
S

R
S

-99-29
S

.R
iis:

A
C

om
plexity

G
ap

forTree-R
esolution

BRICS
Basic Research in Computer Science

A Complexity Gap for Tree-Resolution

Søren Riis

BRICS Report Series RS-99-29

ISSN 0909-0878 September 1999

Copyright c© 1999, Søren Riis.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/99/29/

A Complexity gap for tree-resolution

Søren Riis ∗

September 1999

Abstract

It is shown that any sequence ψn of tautologies which expresses the
validity of a fixed combinatorial principle either is “easy” i.e. has poly-
nomial size tree-resolution proofs or is “difficult” i.e requires exponential
size tree-resolution proofs. It is shown that the class of tautologies which
are hard (for tree-resolution) is identical to the class of tautologies which
are based on combinatorial principles which are violated for infinite sets.
Actually it is shown that the gap-phenomena is valid for tautologies based
on infinite mathematical theories (i.e. not just based on a single propo-
sition).

We clarify the link between translating combinatorial principles (or
more general statements from predicate logic) and the recent idea of using
the symmetrical group to generate problems of propositional logic.

Finally, we show that is undecidable whether a sequence ψn (of the
kind we consider) has polynomial size tree-resolution proofs or requires
exponential size tree-resolution proofs. Also we show that the degree of
the polynomial in the polynomial size (in case it exists) is non-recursive,
but semi-decidable.

Keywords: Logical aspects of Complexity, Propositional proof complexity,
Resolution proofs.

1 Outline

In this paper we introduce a new kind of result for propositional logic. It
is shown for a large class of uniform families of unsatisfiability problems
C1, C2, . . . , Cj , . . . that the family either has polynomial size tree-resolution
refutations or requires full exponential size tree-resolution refutations. For
non-uniform families (where, for example, each Cj might express a different

1Basic Research in Computer Science, Department of Computer Science, University
of Aarhus, Ny Munkegade, Building 540, 8000 Aarhus C, Denmark. Email: sm-
riis@daimi.au.dk Phone: +45 89 42 32 85

1

combinatorial principle) there is no complexity gap and any super-polynomial
but sub-exponential growth-rate can appear. Somewhat informally our main
result states that if the sequence Cj express the same combinatorial principle
for each j then there is a complexity gap for tree-resolution.

In the section further perspectives we show how it is possible to assign a
mathematical theory TP (f) to any given propositional proof system P and
any complexity f . This idea is new and places our main result in a larger
perspective. For any propositional proof system P one can ask about the
behaviour of TP (f) when the resources f increase. This question is completely
well defined and is closely linked to the complexity gap phenomena.

I hope the expert in propositional proof lower bound will seriously consider
this approach. The paper raises a number of questions related to the theory
TP . The paper also raises a number of problems which seem to lie just outside
the scope of current techniques.

The paper is however not only aimed at the expert. The major part of the
paper is intended for a broad audience with a primary interest in complexity
theory. We all know that a few complexities appear again and again, while
other complexities virtually never appear. This is folklore knowledge which
I think puzzles many of us from time to time. The present paper is partly
motivated by this phenomena. The paper shows that there are contexts where
it is possible to have a general complexity gap theorem. In the paper we focus
almost entirely on tree-resolution and the most basic version of the complexity
gap phenomena. This way we avoid any serious technical complications. More
ambitious gap-theorems ([29], [30] joint work with Meera Sitharam) lead to
highly interesting but also very serious technical problems. In the present
paper we consider the base case which undoubtly also has the greatest general
interest.

The reader who is interested in the resolution method (perhaps mostly for
predicate logic) might find some of our proofs interesting and stimulating. To
achieve our upper bound we show how it is possible to bring a given resolution
refutation (for predicate logic) on a special but very natural normal form. The
normal form allows one to read-off the unification directly from the abstract
proof form.

Finally I think that the method of generating unsatisfiability problems by
use of the symmetric group will be of general interest. This idea was introduced
in [28], but in the present paper we develop the idea somewhat further.

An important motivation for studying propositional proof systems is tied
up with the following basic question: Given a true statement (tautology) what
is the length of the shortest proof of the statement. Here the answer of course
depends on which axiomatic proof system is being used. From a Computer
Science perspective the question is particularly fundamental for propositional
logic. As formalised by Cook and Reckhow [13], there exists a propositional

2

proof system in which any tautology ψ has a proof of size bounded by p(|ψ|)
for a fixed polynomial p if and only if NP=co-NP. This question is far be-
yond current techniques. However Cook and Reckhow proposed a program
of research which systematically tries to obtain non-polynomial lower bounds
for stronger and stronger propositional proof systems. The hope is that this
eventually will lead to a separation of NP from co-NP. In the section further
perspectives we discuss this approach in the context of our results.

Tautologies expressing simple graph theoretic properties have been impor-
tant test cases for obtaining bounds for the length of propositional resolution
refutations. The first super-polynomial lower bound for resolution (satisfying
a restriction called regularity) was obtained by Tseitin [32]. Subsequent work
simplified Tseitin’s proof and improved the lower bounds for regular resolu-
tion [14], [33]. However great difficulty was experienced in extending Tseitin’s
arguments to unrestricted resolution (=dag-resolution). In [16] Haken man-
aged to give a super-polynomial lower bound for the pigeon-hole principle for
dag-resolution. Later this result was improved considerably by Ajtai [1], [2]
to a super-polynomial lower bound on bounded depth Frege proofs. Ajtai also
used his approach to show independence results from Bounded Arithmetic.
These results were later improved in various ways and generalities [3], [5], [8],
[25], [26].

Informally we can state our result as follows: Let ψn denote a sequence of
tautologies which expresses the validity of a fixed combinatorial principle Pcom.
Let Cn denote the negation of ψn on Conjunctive Normal Form. Our main
result states that for any such sequence Cn either the sequence has polynomial
size tree-resolution refutations or the sequence requires truly exponentially
sizeed tree-resolution refutations. Furthermore, exponential size is required
exactly when Pcom is false as a principle of infinitary combinatorics.

The reason we consider tree-resolution, rather than dag-resolution is mainly
technical. Ideally we would have preferred to have proved our results for dag-
resolution. Actually even stronger propositional systems might have complex-
ity gaps, but for most propositional systems any proof of such a complexity
gap would solve open problems which are beyond current techniques. In the
case of tree-resolution we avoid any serious technical complications.

As already pointed out, we consider uniform sequences Cn of unsatisfiability
problems. More specifically we consider uniformly Sn-generated sequences
Cn of unsatisfiable clauses (here Sn denotes the symmetric group consisting
of the permutations of {1, 2, . . . , n}). This approach was introduced in [28]
(see also below for more details). The idea is to select a finite collection of
generating clauses and then obtain Cn as the Sn-closure of the generating
clauses. This method is interesting in its own right because it provides a very
easy and feasible method for generating test problems for proof systems for
propositional logic. Also it is easy to organise and classify the test problems.

3

The class of Sn-generated unsatisfiability problems consists of highly uniform
sequences of unsatisfiability problems. How restrictive is this Sn-generated
uniformity?

The class of Sn-generated sequences of Cn is quite rich and wide. The
class is so rich that the decision problem of deciding whether a given Sn-
generated sequence Cn has polynomial size tree-resolutions, is undecidable.
Also the degree of the polynomial bounding the size might be tremendously
large. Actually for any fast-growing total recursive function F , e.g. the Acker-
man function, Fε0, FΓ0 etc. (see for example [31] for a survey on fast growing
functions), there exists a (small) finite list Cgen of generating clauses such that
the sequence Cn has polynomial size tree-refutations, but the degree of the
polynomial needed to bound the size of the smallest tree-refutations, is larger
than F (|Cgen|) (where |Cgen| denotes the number of symbols in Cgen).

Another question we have to address is to what extent the class of Sn-
generated unsatisfiability problems is relevant. It is certainly powerful enough
to generate the hardest unsatisfiability problems which are known. Actually
(assuming NEXP 6= co-NEXP) the method is rich enough to generate a univer-
sally difficult sequence Cn1 , Cn2 , . . . of unsatisfiable collections of clauses which
requires non-polynomial size refutations for any given propositional proof sys-
tem [28].

The proof complexity of Sn-generated sequences Cn, which are unsatisfiable
for all values of n, is open. We do not know whether there are propositional
proof systems which have polynomial size refutations of any such Sn-generated
sequence. We will return to this question in the section further perspectives
towards the end of the paper.

Let us briefly compare the Sn-generation method with the most commonly
used method of generating satisfiability problems. This method (which is out-
side the scope of this paper) is to consider randomly chosen 3-satisfiability
problems and to consider the case where the ratio c of clauses and variables
is kept constant, while the number of variables tends to infinity. Experiments
suggest that there is a phase transition near c = cphase ≈ 4.23.... Experimen-
tally it is found that virtually all problems with c > cphase are unsatisfiable,
while virtually all problems with c < cphase are satisfiable. Given a propo-
sitional refutation system P it seems to be possibile that there is a phase
transition (for some constant cP) in the following sense: For cphase < c < cP
almost certainly long (e.g. exponential size) refutations are required, while
for cP < c there are almost certainly short (e.g. polynomial size) refutation
size proofs. In such a case, where the threshold is sharp, it seems fair to say
that a complexity gap occurs. Of course the situation could be much more
complicated with various phase transitions and thresholds corresponding to
different complexity classes, etc.

The only propositional refutation system for which the situation is well

4

understood is the tree-resolution refutation system. It turns out that for this
system there is no sharp phase transition (see [6]) and that the expected
refutation complexity tails off very slowly as a function of c. This result does
not contradict the complexity gap we show in this paper. This is because
the Sn-generated test problems are very far from being random. I believe Sn-
generated test problems are much superior to random test problems when it
comes to discussing and analysing specific weaknesses of a given propositional
proof system. It is in my opinion not a coincidence that the strongest known
lower bounds - including Haken’s [16] (for resolution) and Beame et.al. [7]
(for bounded depth frege proofs) - can be achieved by Sn-generated problems,
rather than by random generated unsatisfiability problems.

Instead of considering randomly chosen unsatisfiability problems we con-
sider uniformly Sn-generated sequences Cn of unsatisfiable clauses. Later in
this paper we will notice how it is possible to assign a mathematical first-
order theory T to each uniformly Sn-generated sequence Cn of satisfiability
problems. We also have the converse (which also follows from [28]) that for
any first order theory (which might not be finitely axiomatisable and which
might be highly non-recursive) there is a natural translation procedure which
translates the question of whether T has a model of size n into a satisfiability
problem SATT,n. This satisfiability problem is uniformly Sn-generated.

This shows that uniformly Sn-generated satisfiability problems can be
viewed as being satisfiability problems (in propositional logic) which arise
from translating satisfiability problems in predicate logic. The idea is (in its
most general form) to take as input any first-order theory T , which then is
used to generate a sequence of propositional formulas ψ1, ψ2, . . . in which ψn
expresses that T does not have a model of size n. As already pointed out,
this method of generating tautologies (even when T only consists of a single
sentence) is very general. It covers a large and important class of sequences
of tautologies. Many natural sequences of tautologies which express a general
combinatorial principle belong to this class. The class also includes the tau-
tologies defined in [28]. Let krel

T denote the maximal arity of a relation symbol
in the language for T while kfun

T denote the maximal arity of a function sym-
bol in the language for T . For a given propositional proof system (refutation
system) P it is natural to try to understand which mathematical theories T
lead to difficult unsatisfiability problems. In the paper we show:

Theorem: (informal version) Let T be a first order theory (which might
not be finitely axiomatisable and which might be highly non-recursive). There
is a natural translation procedure which translates the question of whether T
has a model of size n into a satisfiability problem SATT,n. There are two
possibilities:

(1) For each value of n for which SATT,n is unsatisfiable, the smallest

5

tree-resolution refutations has size at least 2n/max(krel
T ,1+kfun

T)

(2) Asymptotically (i.e when n tends to infinity) SATT,n has polynomial size
(in n) tree-resolution refutations.

Possibility (1) happens if and only if T has an infinite model. The lower bound
in (1) also holds if SATT,n′ is satisfiable for some n′ > n.

In general - even when T only consists of a single sentence ψ - it is unde-
cidable whether SATψ,n has polynomial size tree-refutations or require expo-
nential size tree-refutations. The collection of ψ which have polynomial size
tree-refutations is recursively enumerable (but not recursive). There is no total
recursive function which given input ψ outputs u ∈ N such that if SATψ,n has
polynomial size tree-refutations then it has ≤ nu-size tree-refutations.

The theorem gives a complete classification of the theories T for which SATT,n

requires large tree-resolution refutations (if there are any at all - SATT,n could
be satisfiable). More specifically, a theory T leads to hard (for tree-resolution)
tautologies if and only if T has an infinite model.

Let me point out that the philosophy behind this result first was articulated
in [23] where it was shown (in the context of Bounded Arithmetic) that combi-
natorial principles which fail as infinitary combinatorics in a sense (which can
be made precise) are harder (to prove) than combinatorial principles which
also are valid as part of infinitary combinatorics. More specifically in [23] we
showed that combinatorial principles which fails for infinite sets never can be
proved on the first tree levels S1

2(α) ⊆ T 1
2 (α) ⊆ S2

2(α) of Sam Buss hierarchy
of Bounded Arithmetic, while such combinatorial principle in certain cases
can be proved on the fourth level T 2

2 (α). It is well known that provability
in fragments of Bounded Arithmetic is closely related to propositional proof
complexity (for more details see [17]). The results in the present paper are,
however, technically unrelated to the results in [23]. The proof technique in
the current paper is different from the rudimentary forcing technique which
was employed in [23]. Jan Krajicek has pointed out (personal communica-
tion) that our exponential lower bound follows by a modification of his proof
of Theorem 11.3.2 in [17] (which essentially is the main result in [23]). See
also Lemma 9.5.2 in [17] where this is stated explicitly.

I am aware of only one other result which gives a complexity gap between
polynomial complexity and exponential complexity. A beautiful result [15]
which relates the Vapnik-Chervonenkis (VC) dimension to the growth rate of
the complexity of learning the concept class C. It states that this growth rate
is either polynomial or exponential. Furthermore, it is polynomial if and only if
the VC-dimension of C is finite. The underlying mathematics in this result are
completely different from ours. It is however remarkable that the dichotomy
of finite versus infinite plays a crucial role in both the VC-complexity gap
theorem as well as in our complexity gap theorem.

6

2 Background and Notation

A literal is a propositional variable or the negation of a propositional variable.
A clause C := {l1, l2, . . . , lu} is a collection of literals, and it is satisfied if
l1∨ l2∨ . . .∨ lu holds. In the famous NP-complete problem 3-SAT, the decision
problem is to decide if a given collection of clauses (which each contain at most
3 literals) is satisfiable.

Resolution is a refutation system designed to provide certificates (i.e. proofs)
that a system of clauses is unsatisfiable. A given formula is shown to be a tau-
tology by showing that its negation, put into conjunctive normal form (i.e.
clausal form) is unsatisfiable. This is done by means of the resolution rule

Resolution rule :
C1 ∪ {p} C2 ∪ {¬p}

C1 ∪C2

The given clauses are often referred to as axioms, and the task it to derive
the empty clause (the contradiction) from the axioms. In tree-resolution the
proof is organised as a binary tree with the axioms in the leaves and the empty
clause in the root.

As comparison in unrestricted resolution (dag-resolution) the derived clauses
are listed in a linear fashion C1, C2, . . . , Cu, and any clause Cl is either an ax-
iom or appears by resolving two clauses Ci, Cj , i, j < l. Such a derivation can
also be represented as a dag which explains the terminology dag-resolution.
In dag-resolution a derived clause can be reused, while this is not the case in
tree-resolution.

As already noted, Haken considered a sequence of tautologies expressing
the so-called pigeonhole principle. It can be shown that Haken’s tautologies
require tree-resolution proofs of size ≥ n2n [11]. In this paper we will show
that an exponential lower bound actually follows from the simple fact that the
pigeon-hole principle fails as a principle of infinite combinatorics.

Haken’s tautologies (Γn) can be written as follows:
∪nj=1 {aij}, where i = 1, 2, . . . , n
{āij , āik}, where i, j, k = 1, 2, . . . , n and j 6= k

∪nj=1 {a0j}, {ā0i, ā0j}, where i, j = 1, 2, . . . , n and i 6= j

{āik, ājk}, where i, j, k = 1, 2, . . . , n
{āij , ā0j}, where i, j = 1, 2, . . . , n
This collection is, in a rather obvious way, finitely generated by the symmetric
group Sn. More specifically each Γn is generated by taking the Sn-closure of
the clauses:
∪j {a1j}, {ā12, ā13}, {ā11, ā12}, ∪j {a0j}, {ā01, ā02}, {ā13, ā23},
{ā12, ā02}, {ā12, ā22}, {ā11, ā01}

7

For future reference let us denote this collection of generators by ΓHaken. For
any n let Cn denote the collection of clauses which appear by closing ΓHaken un-
der the natural action of the symmetrical group Sn (permuting {1, 2, 3, . . . , n}
while keeping 0 fixed). This system of clauses is equivalent to the system for
which Haken obtained his famous super-polynomial lower bound.

2.1 Sn-generated unsatisfiability problems

The translation of many combinatorial principles into a system of unsatisfi-
able clauses naturally leads to clauses which are generated by applying the
symmetric group Sn to a collection of generators. The Sn-symmetry arises
naturally when the combinatorial problem is independent from the underly-
ing representation. Consider, for example, a combinatorial principle K which
is valid for some graph G. The principle K is also valid when the enumer-
ation of the vertices is permuted by an element π ∈ Sn. It turns out that
this Sn-symmetry survives (as will become clear) when we reformulate the
combinatorial principle in terms of an (un)satisfiability problem.

Before we move on we will be slightly more general and consider hyper-
graphs; For fixed r = 0, 1, 2, . . . we can consider the collection an1,n2,...,nr

of boolean variables for which n1, n2, . . . , nr ∈ {1, 2, . . .} = N. Actually we
might also have other boolean variables bn1,n2,...,nr for which n1, n2, . . . , nr ∈
{1, 2, . . . , }, or more generally we might fix a collection ain1,n2,...,nri

i = 1, 2, . . .
of boolean variables of different variable types (one for each i). The support
of a boolean variable ain1,n2,...,nri

is {n1, n2, . . . , nri}. We consider two kind
of clauses. An ordinary clause is a collection {p1, p2, . . . , pl} of literals (i.e.
boolean variables or negations of boolean variables). An abstract clause is a
formal expression of the form ∪j {ain1,n2,...,nri−1,j}. In the case of ΓHaken the
generators ∪j {a1j} and ∪j {a0j} were the only abstract clauses - all other
clauses were ordinary clauses. In the example of ΓHaken we can view boolean
variables which contain a zero (e.g. a02) as variables of a different variable
type than variables which do not contain a zero (e.g. a12).

Now let Γgen be a collection of clauses (normal clauses as well as abstract
clauses). Assume that all boolean variables which appear in Γgen have support
contained in {1, 2, . . . , l}. For each n ≥ l we get a collection Γn of clauses
by taking the Sn-closure of the clauses in Γgen in the obvious fashion. The
sequence Γn is Sn-generated if there exists a collection Γgen (not necessarily
finite) such that Γn is the Sn-closure of Γgen. The sequence Γn is finitely Sn-
generated if there exists a finite collection Γgen which generates the sequence
Γn. Notice that Γ must involve infinitely many variable types in the case where
Γ is infinite.

In [28] we showed how one could obtain a finite collection of generators
(like the list above) whenever given an existential second order sentence Ψ. If

8

Ψ is second order existential which is on prenex normal form with its first order
part purely universal, then the translation into propositional logic does not
involve the introduction of skolem functions. In this case we simply translate
the question of whether a purely universal first order sentence Ψ′ has a model
(of size n) into a satisfiability problem ΓΨ,n. As we showed in [28] there is a
one-to-one correspondence between the satisfying assignments of ΓΨ,n and the
models of size n of Ψ′.

The converse is essentially (see later for the exact result) also true: For
any collection Γ of generators there exists a universal first order theory T such
that there is a one-to-one correspondence between satisfying assignments of Γn
(the Sn-closure of Γ) and the models Mn of T which have size n. Furthermore,
if Γ is finite, then T can be replaced by a single universal first order sentence
Ψ.

Again there is a one-to-one correspondence between the satisfying assign-
ments of Γn and the models of size n of T (Ψ).

2.2 Link to predicate logic

Consider the system Γgen := ΓHaken. We claim (and it is essentially just a
matter of changing notation) that the satisfiability problem Γn is equivalent
to the question of whether a sentence (theory) in predicate logic has a model of
size n. The sentence is the following predicate formula expressing the negation
of the pigeon-hole principle:

∀x f(x) 6= c ∧ ∀x, y, z (f(x) = y ∧ x 6= z)→ (f(z) 6= y)

We can write this sentence in clausal form as a satisfiability problem in
predicate logic. This problem consists of the clauses

{¬f(x) = c}, and {¬f(x) = z,¬f(y) = z, x = y}
as well as the usual clauses for axioms of equality (see [19] or below for more
details). To these clauses we add the clauses {¬ci = cj} for i 6= j, i, j ≤ n as
well as the clause {x = c1, x = c2, . . . , x = cn} (see below for a discussion of
this choice). The collection these clauses gives us a system Cn of clauses in
predicate logic. The satisfiability problems Γn and Cn are (not surprisingly)
closely related.

We will now focus on the case of translating satisfiability problems in pred-
icate logic into a satisfiability problem in propositional logic (Our translation
should NOT be confused with the usual Herbrand-style (or Henkin-style) trans-
lation in which sentences are viewed as propositional variables).

Let C be a collection of clauses for predicate logic over some fixed language
L in which function symbols and relation symbols have arities bound by fixed
constants krel

C and kfun
C . The collection C might be infinite. Any universal

9

theory can be written as a collection of clauses. In general any theory T ′

can be replaced by a logical equivalent universal theory T (this process of
introducing skolem-functions is not unique).

Let Ceq denote the collection C extended with clauses expressing the axioms
of equality. More specifically let Ceq consists of the clauses in C together with
the clauses {x = x},
{¬x = y, y = x}, {¬x = y,¬y = z, x = z} and a clause {¬x1 = y1,¬x2 =
y2, . . . ,¬xk = yk,¬R(x1, x2, . . . , xk), R(y1, y2, . . . , yk)} for each k-ary relation
symbol R (k = 1, 2, . . . , krel

C) and a clause {¬x1 = y1,¬x2 = y2, . . . ,¬xk =
yk, f(x1, x2, . . . , xk) = f(y1, y2, . . . , yk)} for each k-ary function symbol f (k =
1, 2, . . . , kfun

C). Now let n ∈ N be given. Let c1, c2, . . . , cn be new constants
which does not appear in C. Consider the following collection (of clauses):

C≥n := {{¬c1 = c2}, {¬c1 = c3}, . . . , {¬cn−1 = cn}}
If we add these clauses to Ceq, any model which satisfies the clauses must have
size ≥ n. A little care is needed when we add clauses expressing that there are
at most n elements in the domain. One could, for example, add the clause,
{x1 = x2, x1 = x3, . . . , xn = xn+1}. The presence of this clause, however,
smuggles in a version of the pigeon-hole principle which is not available as a
rule in propositional resolution proofs. Instead we chose the collection:

C≤n := {{x = c1, x = c2, . . . , x = cn}}
The collection of the clauses in Ceq together with the clauses axiomatising n-
ness is denoted Cn (i.e. Cn := Ceq ∪ C≥n ∪ C≤n). We also introduce a slightly
weaker axiomatisation of n-ness. In this axiomatisation we replace the clause
{x = c1, x = c2, . . . , x = cn} by the schema Cweak≤n which consists of the clauses
{f(ci1 , ci2 , . . . , cik) = c1, f(ci1 , ci2 , . . . , cik) = c2, . . . , f(ci1 , ci2 , . . . , cik) = cn}.
There is one such clause for each function symbol and for each i1, i2, . . . , ik ∈
{1, 2, . . . , n}. For each constant symbol c the schema contain the clause {c =
c1, c = c2, . . . , c = cn}. This system of clauses is denoted Cweak

n (i.e. Cweak
n :=

Ceq ∪ C≥n ∪ Cweak
≤n).

To get propositional tautologies like the ones which have already been
extensively examined in the literature ([2], [11], [13], [16], [28]) we proceed
as follows: We are given a system Cn (or Cweak

n). We want to ensure that
each literal (=atomic formula or negation of atomic formula) is of the form:
R(x1, x2, . . . , xk) or f(x1, x2, . . . , xk) = xk+1 or c = x1. To achieve this we
rewrite the clauses in the obvious way. Assume, for example, that we want
to rewrite the clause: {R(x, S(S(x))), f(S(x), y) = x}. We do this in steps,
getting {R(x, z),¬z = S(S(x)),¬w = S(x), f(w, y) = x} , {R(x, z),¬z =
S(u),¬u = S(x),¬w = S(x), f(w, y) = x}, and then finally {R(x, z),¬S(u) =
z,¬S(x) = u,¬S(x) = w, f(w, y) = x}. The resulting system is denoted
C∗n (Cweak,∗

n (C∗eq,n in the case of Ceq)). Finally consider all clauses which can

10

appear by replacing each of its variables by a constant from c1, c2, . . . , cn. We
denote the resulting system of clauses Cprop

n (Cprop,weak
n).

Notice that each clause in Cweak
≤n is a substitution instance of the clause

{x = c1, x = c2, . . . , x = cn} in C≤n. On the other hand
{fff(c1) = c1, fff(c1) = c2, . . . , fff(c1) = cn} (which is a substitution
instance of {x = c1, x = c2, . . . , x = cn}) becomes {¬f(c1) = x,¬f(x) =
y, f(y) = c1, f(y) = c2, . . . , f(y) = cn} and thus when constants ci, cj are
substituted for x and y
{¬f(c1) = ci,¬f(ci) = cj, f(cj) = c1, f(cj) = c2, . . . , f(cj) = cn}. But clauses
of this form are just weakenings of the clauses in Cweak≤n . Actually it is not
difficult to see that this always is the case. Thus from now on we do not
distinguish between Cprop,weak

n and Cprop
n . From now on Cprop

n denotes the same
system as Cprop,weak

n (except we might be allowed to include weakenings of the
clauses to be refuted to the unsatisfiability problem).

Notice that the size of Cprop
n is bounded by a polynomial in n. It should,

however, be emphasised that our translation procedure - naively speaking -
typically translates combinatorial principles (like the pigeon-hole principle)
into an infinite system of clauses. This is because, besides the “usual” clauses,
we also get clauses which, for example, express properties and behaviour of
the terms (including skolem-functions). In the case of the pigeonhole principle
we have, for example, clauses expressing properties which involve the iteration
of the function symbol. We have already seen that this is irrelevant when it
occurs in {x = c1, x = c2, . . . , x = cn} and that we essentially get the same
clauses whether we allow iterations of terms or only allow atomic terms to be
substituted. This is also (trivially) the case for a general clause in C. This is
because substitution in a clause (e.g. x← f(x), y ← g(y) in {R(x, y)}) always
leads to a weakening of the original clause ({R(f(x), g(y))} which turns into
the form {R(z, u),¬f(x) = z,¬g(y) = u}).

These considerations show that the translation Cprop
n (after having dis-

carded irrelevant weakenings) always contains only polynomially (in n) many
clauses. The translation corresponds (except from the treatment of constants
in the original language for C) to the informal procedure which seems to have
been used when considering a principle like the pigeonhole principle [13] or
the parity principle [3]. This translation also agrees with (and extends) the
procedure defined in [28].

Let SC(n) denote the size of the smallest tree-resolution refutation of Cprop
n .

If there is no such refutation, we let SC(n) = ∞. Usually proof complexity
is measured in the size of the satisfiability problem, however we get cleaner
results if we use n as input parameter. Also there exist polynomials p1, p2

such that p1(n) ≤ |Cn| ≤ p2(n) so our complexity gap agrees with the usual
conventions. For our purposes it is most sensible to use the model size n as
the relevant parameter.

11

Finally let me briefly mention the treatment of constants. In the case
where L has finitely many constants c(1), c(2), . . . , c(u) and where we assume
that these are distinct, it is natural (mostly for cosmetic reasons) to replace the
clauses {c(i) = c1, c

(i) = c2, . . . , c
(i) = cn} by the clauses {c(1) = c1}, {c(2) =

c2}, . . . , {c(u) = cu} and to let the symmetric group Sn−u act on {u + 1, u +
2, . . . , n}. Notice that this modification of Cprop

n only affects our lower bounds
mildly (at most by a polynomial factor nu).

3 Main Results

Theorem 1: (Gap theorem) The following are equivalent:

(1) For any polynomial P (n), there exists n such that SC(n) > P (n).

(2) For each n, SC(n) ≥ 2n/max(krel
C ,1+kfun

C).

(3) C is satisfied in an infinite model.
The decision problem of deciding whether C satisfies (1),(2) and (3) is unde-
cidable. The collection of finite collections C of clauses for which there exists a
polynomial P such that P (n) > SC(n) for all n ∈ N is recursively enumerable
(but not recursive). There is no total recursive function, which given input C,
outputs u ∈ N such that nu > SC(n) whenever (1),(2) or (3) fails.

Now let Ψ be a universal sentence in first order logic. In the previous section
we showed that we can express the claim that Ψ does not have a model of size
n as a boolean tautology Ψn (see also [28]). We may even consider the case
where Ψ is a Π2-sentence (i.e. not just a Π1-sentence). In this case we can
translate the sentence into propositional logic by means of abstract clauses very
similar to the abstract clauses described earlier (the existential quantifier get
translated into clauses like ∪j1,j2,...,jr {ai1,i2,...,is1−1,j1,is1+1,...,isk−1,jk,isk+1,...,im}.
In general (for arbitrary first order formulas) we can introduce skolem func-
tions (see [28] for details) to rewrite the sentence as a Π1-sentence (or just
a Π2-sentence) which then can be translated into a satisfiability problem in
propositional logic. One way which leads to the same result is to translate Ψ
into a satisfiability problem CΨ (the usual way by introducing skolem func-
tions etc. see for example [19]) and then proceed as described the the previous
section. The collection of clauses CΨ,eq (which contains the clauses for equal-
ity) is satisfiable if and only if Ψ has a model. If Ψ does not have a model,
there exists (by Herbrands Theorem) a finite collection of clauses (from CΨ,eq)
together with a suitable unification, such that the resulting system is unsatis-
fiable in the sense of propositional logic. Let Ψn denote the tautology which
express the unsatisfiability of Cprop

Ψ,n . With this notation we get:

Corollary 1: Assume Ψ is a sentence of first order logic. Assume Ψ does not
have models of size n for infinitely many values n1, n2, n3, . . . of n. Then the

12

following are equivalent:

(1) Ψn has a tree-resolution refutation of sub-exponential size.
(2) Ψn has a tree-resolution refutation of polynomial size.
(3) Ψ has no infinite model.
Furthermore if (1), (2) or (3) holds, there exists n0 such that Ψn is a tautology
for all n ≥ n0.

Corollary 2: If Ψn has a tree-resolution refutation of size < 2n0/max(krel
T ,1+kfun

T)

just for one value n = n0, then there exists a polynomial P (n) such that each
Ψn, for n ≥ n0 have tree-refutations of size ≤ P (n).

Given our main result there is nothing mystical in this Corollary. A tree-
resolution of size < 2n/max(krel

T ,1+kfun
T) witness the fact that

Ceq ∩ {{c1 6= c2}, . . . {cn−1 6= cn}} is unsatisfiable, and that C is not satisfied
in any infinite model. It is well known that predicate logic is decidable in
an oracle which provide an upper bound on the Herbrand Complexity for a
logical valid formula. This shows that there is no general computable method
for computing the degree of the polynomial P in Corollary 1.

As a by-product and somewhat related we get a complexity gap for the
Herbrand complexity:

Theorem 3: (Complexity gap for Herbrand Complexity) Let C be a
satisfiability problem (for predicate logic). Assume that the underlying lan-
guage has all functions and relations of arity bounded by a constant. Consider
Cn := Ceq ∪ C≥n ∪ C≤n and let us only consider the values of n for which Cn is
unsatisfiable.

Then either Cn has a Herbrand Complexity bounded by a constant, or Cn
has Herbrand Complexity which is linear in n.

Furthermore, the first case appears exactly when C is unsatisfiable.

We noticed (after Corollary 2) that there is no general computable method
for computing the degree of the polynomial P in Corollary 1. The same ob-
servation shows that there is no general computable method for bounding
the constant in Theorem 3. Also there is, given input C, no computational
method which can decide whether the sequence Cprop

n (Cn) requires super-
polynomial tree-resolution refutations (has non-constant Herband Complex-
ity) or has polynomial size tree-resolution refutations (have constant Herband
Complexity)

The argument for the polynomial upper bound can be broadened somewhat
further. We present these results in the section further perspectives .

13

4 Examples

Now let us illustrate the main ideas in this paper by a few examples:

Example 1: Let Θ ≡ ∀x∃yR(x, y) ∨ ∃x∀y¬R(x, y). This sentence is logi-
cally valid. To show this (by the resolution method for predicate logic) we
first consider Ψ ≡ ¬Θ ≡ ∃x∀y¬R(x, y) ∧ ∀x∃y¬R(x, y) and rephrase this (by
introducing skolem-functions) as ∀y¬R(c, y) ∧ ∀xR(x, f(x)). This translation
method is standard and is, for example, described in [19]. To show Θ is equiv-
alent to showing that the system of clauses {{¬R(c, y)}y , {R(x, f(x))}x} is
unsatisfiable. The unsatisfiability follows from the fact that we have a unifi-
cation of (R(c, y), R(x, f(x)) by x→ c, y → f(c) which leads to the refutation
{¬R(c,f(c))} {R(c,f(c))}

∅ .
For a given n, the clauses in Cn consist of the clauses

{¬R(c, y)}y , {R(x, f(x))}x together with the clauses for equality and the clauses
{¬c1 = c2}, . . . , {¬cn−1 = cn}, as well as the schema: {c = c1, c = c2, . . . , c =
cn}, and {f(ci) = c1, f(ci) = c2, . . . , f(ci) = cn}. Now to get the system
Cprop
n we rewrite {¬R(c, y)}y and {R(x, f(x))}x as {¬c = x,¬R(x, y)}x,y and
{R(x, y),¬f(x) = y}x,y.

Finally, after taking the union of all clauses which appear by replacing free
variables by constants c1, c2, . . . , cn, we arrive at Cprop

n the following clauses,
where fij is shorthand for f(ci) = cj and where di is shorthand for c = ci:

{¬rik,¬di} for i, k ∈ {1, 2, . . . , n}, {rik,¬fik} for i, k ∈ {1, 2, . . . , n},
{d1, d2, . . . , dn}, {fi1, fi2, . . . , fin} for i ∈ {1, 2, . . . , n}.
The system Cprop

n has the following tree-resolution refutation proof:

Bn

....

B4

B3

B2
B1 {d1, d2, . . . , dn}
{d2, d3, . . . , dn}
{d3, . . . , dn}
....

........

{dn}
∅

where

Bi :=
Ain

....

Ai4

Ai3

Ai2
Ai1 {fi1, fi2, . . . , fin}
{¬di, fi2, fi3, . . . , fin}
{¬di, fi3, . . . , fin}

....

........

{¬di, fin}
{¬di}

14

and where

Aik :=
{¬rik,¬di} {rik,¬fik}

{¬di,¬fik}

It is not hard to verify that this proof consists of 4n2 +2n+1 clauses (which is
optimal because any tree-resolution refutation must have each of the 2n2+n+1
clauses appearing in the some leaf). ♣
This example illustrate how the fact that Ψ has no models (of size n) can be
translated into a “test-case” unsatisfiability problem for propositional logic.
In the example ¬Ψ is logically valid so Ψ has no infinite model. According to
our main result this implies (what we just verified) that Cprop

n has polynomial
size tree-resolution refutations.

Example 2: Let T denote the first order theory axiomatised by the single
axiom ψ := ∀i, j(i 6= j → s(i) 6= s(j)) ∧ ∀j s(j) 6= c. The theory T is an
axiomatisation of the first order theory of a constant and a successor function.
The clauses in C consist of {x = y,¬S(x) = S(y)}x,y, and {¬S(x) = c}x.
To make the translation into propositional logic we rewrite these clauses as
{x = y,¬S(x) = z,¬S(y) = z}x,y,z and {¬S(x) = y,¬c = y}x,y. To simplify
the readability we abbreviate S(ci) = cj as sij, and c = cj as dj. This
gives us a satisfiability problem Cprop

n in the boolean variables s11, s12, . . . , snn,
d1, d2, . . . , dn and with the following clauses:

(1) {si1, si2, . . . , sin} for i = 1, 2, . . . , n.
(2) {s̄ik, s̄jk} for i 6= j, where i, j, k ∈ {1, 2, . . . , n}
(3) {d1, d2, . . . , dn}
(4) {d̄i, d̄j} for i 6= j, where i, j ∈ {1, 2, . . . , n}
(5) {d̄i, s̄ji} for i, j ∈ {1, 2, . . . , n}.
The theory T has infinite models so, according to our main result, Cprop

n re-
quires tree-resolution refutations of size ≥ 2n/max(krel

T ,1+kfun
T) = 2n/2.

♣
Example 3: Let T be the theory which is axiomatised by a single axiom
stating that there exists a injective map from the universe onto the universe
minus one point. More specifically let T be axiomatised by the sentence:

∀x, y x 6= y → f(x) 6= f(y) ∧ ∀x f(x) 6= c.

In clausal form we have C := {{x = y,¬f(x) = f(y)}x,y, {¬f(x) = c}x}.
Then C∗ := {{x = y,¬f(x) = z,¬f(y) = z}x,y,z, {¬f(x) = z, c = z}x,z}.
Let eij be short hand for f(i) = j and let dj be short hand c = j. Let
Cprop′
n := {{ēik, ējk} for i 6= j, {ēik , dk}, {ei1, ei2, . . . , ein}, i = 1, 2, . . . , n}.

15

The clauses in Cprop
n involve other substitution instances of C. As we

already noticed these substitutions play no role. For example substituting
f(x) → x and f(y) → y in {x = y,¬f(x) = f(y)}x,y gives us the clause
{f(x) = f(y),¬f(f(x)) = f(f(y))}x,y. If we rewrite this on the (*)-form
we get the clause {¬f(y) = z, f(x) = z,¬f(x) = u,¬f(y) = v,¬f(u) =
w,¬f(v) = w}. Thus Cprop

n includes the clause {¬f(cj) = ck, f(ci) = ck,¬f(ci) =
cu,¬f(cj) = cv ,¬f(cu) = cw,¬f(cv) = cw} for i 6= j and i, j, k, v, w, z ∈
{1, 2, . . . , n} with i 6= j. In our shorthand notation these clauses are of the
form {ējk, eik, ēiu, ējv, ēuw, ēvw} where i 6= j. These clause are weakenings of
{ēuw, ēvw} which is already (when u 6= v) in Cpropn . When u = v, the clause is
a weakening of {ēiu, ējv} which is already (when i 6= j) in Cpropn . Thus these
clause are redundant. Other substitution instances produce even more clauses,
but these clauses are redundant. Thus Cprop

n = Cprop′
n .

There exists an infinite model in which T is valid. Thus Cpropn require
tree-resolution refutations of size ≥ 2

n
2 . The usual version of the pigeon-hole

principle is obtained by treating c as a fixed element (for example c1). In this
case we get the clauses
Cprop∗
n := {{ēik, ējk} for i 6= j, {ēi1, d}, {ei1, ei2, . . . , ein}, i = 1, 2, . . . , n}. Clearly

this give a lower bound of 2
n
2 /n on refuting Cprop∗

n . Actually it is not hard to
see that we can modify our main theorem to the case where the symmetrical
group Sn−1 acts on {c2, c3, . . . , cn} (and where we let c = c1). This gives a
lower bound of 2

(n−1)
2 . The best known lower bound on this propositional

version of the pigeon-hole principle is (n− 1)2n−1 (see [11]).
♣

Example 4: It is well known that each finite division ring is a field. There
are various ways to rephrase the statement that the universe is a division ring
which is not a field as a satisfiability problem (for predicate logic). Let C be
one of these satisfiability problems. Then for each n, Cprop

n is an unsatisfiable
set of clauses expressing the fact that there are no non-commutative division
rings with n elements.

There are infinite divisions rings which not are fields (for example Hamil-
ton’s famous quaternions). Thus, according to our main result the sequence
Cprop
n ; n = 1, 2, requires exponential size tree-resolution refutations. It

is not clear if Cprop
n is hard for stronger propositional proof systems like for

example the extended Frege proof system. ♣
The final example is somewhat curious. It shows a case where the so-called
weak propositional pigeonhole principle appears somewhat unexpected:
Example 5: Let T be the first order theory in the language L(=, di; i ∈
N) of equality plus infinitely many constants. Assume that the theory T is
axiomatised by a conjunction of the axioms {¬di = dj} where i 6= j, i, j ∈ N.
Notice that T not is finitely axiomatisable. Our main theorem include this

16

situation. Let CT = {{¬di = dj} : i 6= j, i, j ∈ N}}. The system Cweak
n = Cn

consists of the clauses: {¬di = dj} for i 6= j, i, j ∈ N and {¬ci = cj} and {di =
c1, . . . , di = cn}, i ∈ N as well as the clauses for equality. Thus Cprop

n consists
of the clauses {ē(i)k , ē

(j)
k } and {e(i)1 , e

(i)
2 , . . . , e

(i)
n }, where e(i)k is shorthand for

di = ck. So Cprop
n is (essentially) a boolean version of the pigeonhole principle

(stating that there is no injective map from an infinite set onto a set with n
elements). A priori T has an infinite model, so according to our main result,
Cprop
n requires exponential size tree-refutations. ♣

5 The polynomial size upper bound

As before let C be a collection of clauses (in the sense of predicate logic). The
clauses in C consists of atomic formulas and negations of atomic formulas.

The system C can be rewritten on a normal form C∗ where all (nega-
tions of) atomic formulas are (negation of) basic atomic formulas i.e. each
atomic formula is either of the form R(xi1 , xi2 , . . . , xir) where R is a r-ary
(r ∈ {1, 2, . . .}) relation symbol or is of the form f(xi1 , xi2 , . . . , xir) = xir+1

where f is a r-ary (r ∈ {1, 2, . . .}) function symbol. Constants are treated
as 0-ary function symbols. Here are some examples of basic atomic formulas:
R(x, z, x), f(x, y, z) = z and U(x, y). On the other hand the atomic formulas
R(g(y), x) and f(x, g(y), z) = h(z, x) are not basic.

Now it is clear we can rewrite any clause C, containing atomic formu-
las, as an equivalent clause C∗ containing only basic atomic formulas. In the
case where C = {{¬R(c, y)}y , {R(x, f(x))}x} we can rewrite this as C∗ :=
{¬R(x, y),¬c = x}x,y, {R(x, y),¬f(x) = y}x,y}.

From the usual completeness theorem it follows that C has a model if and
only if Ceq is satisfiable. And this only holds if and only if C∗eq is satisfiable
(has a model).

Assume C has no model. Then Ceq (and C∗eq) is unsatisfiable and according
to Herbrands Theorem there exists a unification τ and a finite subset C′ ⊆ Ceq
(C′ ⊆ C∗eq) such that τ(C′) is unsatisfiable in the sense of propositional logic.

Actually in the case of C∗eq we can write the refutation on a special normal
form. We will use this normal form in the proof of our upper bound.

Let me illustrate this by an example. Consider the “proof-form”

{¬R(c, y)}y {R(x, f(x))}x
∅

The substitution x → c, y → f(c) turns this into a valid resolution. Now we
can rewrite the proof-form as

{¬R(x, y),¬c = x}x,y {R(x, y),¬f(x) = y}x,y
{¬c = x,¬f(x) = y}x,y

17

This is a valid proof (though in many formalisms only closed terms, and
not variables are allowed). The final clause {¬c = x,¬f(x) = y}x,y can be
refuted by the unification x→ c, y → f(c).

This leads to the proof:

{f(c) = f(c)}
{c = c}

{¬R(x, y),¬c = x}x,y {R(x, y),¬f(x) = y}x,y
{¬c = x,¬f(x) = y}x,y (= D)

{¬c = c,¬f(c) = f(c)}
{¬f(c) = f(c)}
∅

The refutation consists of two parts. The first part ends with the clause
= D. The unification is uniquely determined from this clause, and the next
step (leading to the clause {¬c = c,¬f(c) = f(c)}) is the only place in the
refutation where a substitution takes place. The final part of the refutation
only uses clauses expressing the axioms of equality.

This idea works in general. For any refutation of Ceq, we can rewrite this
as a tree-refutation of C∗eq which is of a normal form such that:

(1) The first part of the refutation consists solely of basic atomic formulas
and negation of basic atomic formulas.

(2) The last clause D in this part uniquely determines the unification which
is required to refute the clause.

(3) The clause D consists solely of negations of atomic equations.

(4) The last part of the proof refutes the unification (of D) using only
applications of substitutions of equality axioms.

To illustrate these ideas further let
C := {{P (0)}, {¬P (x), P (S(x))}x , {¬P (S(S(0)))}}. This statement is writ-
ten in the language L = L(0, P, S) of predicate logic which contains a unary
relation symbol P , a constant 0 and a unary function symbol S. Clearly
Ceq is unsatisfiable. Any refutation requires Herbrand complexity HC = 3
(if {¬P (S(S(0)))} is replaced by {¬P (S(k)(0)))} it requires Herbrand Com-
plexity HC = k). Clearly C∗ = {{P (x),¬0 = x}x, {¬P (x), P (y),¬S(x) =
y}x,y, {¬P (z),¬S(z1) = z2,¬S(z2) = z,¬0 = z1}z,z1,z2}. The corresponding
propositional unsatisfiability problem Cprop

n consists of the clauses:

(1) A clause {pi} for i = 1, 2, . . . , n.

(2) A clause {¬pi, pj ,¬sij} for each i, j ∈ {1, 2, . . . , n}.

18

(3) A clause {¬pi,¬sjk,¬ski,¬oj} for each i, j, k ∈ {1, 2, . . . , n}.

(4) The clause {o1, o2, . . . , on}.

(5) A clause {si1, si2, . . . , sin} for each i ∈ {1, 2, . . . , n}.

This system is (a priori as we know) finitely Sn-generated. The generators are
{p1}, {¬p1, p2,¬s12}, {¬p1,¬s23,¬s31,¬o2} as well as the degenerate versions
of these
(i.e. {¬p1,¬s21,¬s11,¬o2} etc.). The axioms for C≤n are generated by the two
abstract generators ∨j{oj} and ∨j{s1j}.

The clauses C have no model so we want to show (this is the issue in
this section) that the sequence n → Cprop

n has polynomial size tree-resolution
refutations. The clauses in Ceq have the following refutation:

{¬P (S(S(0)))}
{¬P (S(0)), P (S(S(0)))} {P (0)} {¬P (0), P (S(0))}

{P (S(0))}
{P (S(S(0)))}

∅

This can be translated into the normal form (which is a refutation of C∗eq).
The first part of this refutation is

{P (z),¬0 = x,¬S(x) = y,¬S(y) = z} U

{¬0 = x,¬S(x) = y,¬S(y) = z} (= D)

where

U :=
{¬P (y), P (z),¬0 = x,¬S(x) = y,¬S(y) = z} V

{P (z),¬0 = x,¬S(x) = y,¬S(y) = z}

and where

V :=
{P (x),¬0 = x} {¬P (x), P (y),¬0 = x,¬S(x) = y}

{P (y),¬0 = x,¬S(x) = y}

The last clause D determines the unification x ← 0, y ← S(0) and z ←
S(S(0)). The last part of the refutation consists of the obvious refutation of
the clause {¬0 = 0,¬S(0) = S(0),¬S(S(0)) = S(S(0))}.

Now let us show how we can turn the abstract derivation of D into propo-
sitional refutations of Cprop

n . For any i, j, k we have a derivation Ai,j,k:

{¬pk,¬oi,¬sij,¬sjk}
{¬pj, pk,¬sij,¬oi,¬sjk}

{pi,¬oi} {¬pi, pj,¬oi,¬sij}
{pj ,¬oi.¬sij}

{pk,¬oi,¬sij,¬sjk}
{¬oi,¬sij,¬sjk} (= Dijk)

19

These derivations can now be resolved using the axioms in (4) and (5).
First we derive {¬oi,¬sij} from the clauses {¬oi,¬sij,¬sjk} k = 1, 2, . . . , n
and {sj1, sj2, . . . , sjn}. Then we derive the clauses {¬oi} from {¬oi,¬sij}
j = 1, 2, . . . , n and {si1, si2, . . . , sin}. Finally we derive the empty clause from
{¬oi} and {o1, o2, . . . , on}.

In this derivation each clause in (1)-(5) was used exactly once so Cprop
n has

refutation which has n3 + n2 + 2n + 1 leaves. The derivation tree is a binary
tree so the derivation uses 2n3 + 2n2 + 4n+ 1 clause.

These considerations leads to
Lemma 1: Assume Ceq is unsatisfiable. Then there exists l ∈ N such that for
each n ≥ 2, there exists a tree-resolution refutation of Cprop

n of size ≤ nl

Proof: Assume Ceq is unsatisfiable . Then C∗eq is unsatisfiable. According to
Herbrand’s Theorem (see for example [19]) there exists a finite refutation of
a suitable substitution instance. Actually there exists a finite tree-refutation
on the normal form (described above). The first part of this refutation leads
to a clause D of the form;

{¬h1(z11, . . . , z1r1) = z1,r1+1,¬h2(z21, . . . , z2r2) = z2,r2+1, . . . ,

. . . ,¬hu(zu1, . . . , zuru) = zu,ru+1}

where each hj denotes one of the function symbols f1, f2, . . . , fl and where
each zij denotes a variable (i.e. x, y, z, xij , yi1,i2,i3,...,ir etc). All the variables
which are not among the variables on the right hand sides (i.e. the variables
not among z1,r1+1, z2,r2+1, . . . , zu,ru+1) can be substituted with anything (for
example c1).

Consider all substitutions where the variables on the right hand sides
(i.e. the variables z1,r1+1, z2,r2+1, . . . , zu,ru+1) are replaced by for constants
in {c1, c2, . . . , cn}. If there are u different atomic term equations in D, there
are exactly nu different derivations Ai1,i2,...,iu . All together these derivations
use at most HC(C∗eq) nu different axioms.

The derivation Ai1,i2,...,iu derives some clauseDi1,i2,...,iu. Each clauseDi1,i2,...,iu

expresses the propositional version of a list of negations of basic atomic for-
mulas. And each of these basic equations has all free variables replaced by
constants from {c1, c2, . . . , cn}.

Now we use the fact that D has an unification. The unification problem is
to unify a list of the form

h1(z11, z12, . . . , z1r1) = z1,r1+1, h2(z21, z22, . . . , z2r2) = z2,r2+1, . . . ,

. . . , hu(zu1, zu2, . . . , zuru) = zu,ru+1

20

All variables zij which do not appear among the variables z1,r1+1, z2,r2+1, . . . , zu,ru+1

are substituted with c1 (or any other constant). Next notice that there is a
natural partial ordering on the remaining variables. We define the ordering by
defining zi,r1+1 to dominate the variable zij if zij appears in hi(zi1, zi2, . . . , ziri)
(as well as on the right hand side somewhere).

The fact that D has an unification ensures this is a well defined ordering ≺.
Without loss of generality we can assume that the u variables in the notation of
Ai1,i2,...,iu have been displayed according to some total ordering which extends
≺.

The clause Di1,i2,...,iu (in the propositional notation) is of the form

{¬h1
i11,i12,...,i1r1 ,i1

,¬h2
i21,i22,...,i2r2 ,i2

, . . . ,¬huiu1,iu2,...,iuru ,iu
}

Resolving with the clause {h1
i11,i12,...,i1r1 ,1

, h1
i11,i12,...,i1r1 ,2

, . . . , h1
i11,i12,...,i1r1 ,n

} we
derive the clauses D′

i2,...,iu
.

{¬h2
i21,i22,...,i2r2 ,i2

, . . . ,¬huiu1,iu2,...,iuru ,iu
}

Notice that the variable i1 does not appear elsewhere because the variable
z1,r1+1 was dominating all other terms. Now we precede and resolve the clauses
D′
i2,...,iu for i2 = 1, 2, 3, . . . , n with the clause
{h2

i21,i22,...,i2r2 ,1
, h2
i21,i22,...,i2r2 ,2

, . . . , h2
i21,i22,...,i2r2 ,n

} and derive the clausesD′′
i3,...,iu

{¬h3
i31,i32,...,i3r3 ,i3

, . . . ,¬huiu1,iu2,...,iuru ,iu
}

We continue this procedure. Eventually we derive the empty clause. The
number of clauses used in the leaves is at most HC(C) nu where u is the
number of atomic term equations in the clause D. The number u is bound
by the number of function symbols which appear in the unification needed to
refute Ceq. 2

Please notice that it is the non circular relationship between the variables on
the right hand sides of D which allows this procedure to go through. If D,
for example, happens to be {¬S(x) = y,¬S(y) = x} it would be impossible to
translate {¬sij,¬sji}ij (as well as {si1, si2, . . . , sin}i) into a (polynomial size)
resolution refutation. Well, the point of course is, that D can never be of
the form {¬S(x) = y,¬S(y) = x} because S(x) = y and S(y) = x (and thus
S(S(x)) = x) have no unification.

Lemma 2: Assume C is not satisfied in any infinite model. Then there exists
l ∈ N such that for each n ≥ 2, there exists a tree-refutation of Cprop

n of size
≤ nl

Proof: If C has no infinite model according to the compactness theorem, it
cannot have arbitrary large finite models. Assume C has no models of size

21

≥ n0. Introduce constants c1, c2, . . . , cn0 together with axioms {¬ci = cj} for
i 6= j. It is clear that the system Cprop

n0
is unsatisfiable. Now consider a general

n ≥ n0. According to Lemma 1 (with the obvious treatment of the constants
c1, c2, . . . , cn0) there exists a tree-refutation of Cprop

n of size ≤ nl. 2

Corollary: In theorem 1, (1) implies (3) and (2) implies (3).

6 The exponential size lower bounds

For the lower bound it is convenient to view a tree-resolution refutation as
a decision tree. This is essentially done by turning the refutation tree on its
head (see for example [20]). On an input (i.e. a truth assignment) the decision
tree outputs an unsatisfied clause. To illustrate the idea consider for example
the tree-refutation:

{p, r} {p̄, s}
{r, s} {r̄, s}

{s} {s̄}

∅
The refutation shows that {{s̄}, {p, r}, {p̄, s}, {r̄, s}} is unsatisfiable. If we

turn the refutation on its head we get the binary decision tree.

@
@

@
@

�
�

�
�

�
�

�
�

@
@

@
@

�
�

�
�

@
@

@
@

s?

r?

p?

{s’}

{r’, s}

0 1

0

0 1

1

{p , r} {p’, s}

Decision tree refuting {{s’},{r’, s},{p’, s},{p , r}}

For any truth assignment of the variables (s, p and r) the decision tree
uniquely determines a clause which is unsatisfiable.

22

We want to give a lower bound on the number of clauses needed to refute
Cprop
n in a tree-refutation. This is equivalent of giving a lower bound of the

number of nodes required by a decision tree which output an unsatisfied clause.
Now the variables in the clauses in Cprop

n are basic atomic sentences where
the variables are substituted by concrete constants chosen from {c1, c2, . . . , cn}.
Thus, we can view the decision tree as a decision tree which as input takes
a model M of the language of Ceq extended by the constants {c1, c2, . . . , cn}.
The decision tree outputs a clause which is unsatisfied by M .

If we restrict the inputs to models M which satisfy the clauses in C, the
decision tree never needs to output the clauses appearing from Ceq. Only
clauses expressing ≤ n-ness and ≥ n-ness are needed because all other clauses
are automatically satisfied. If we further restrict the input to only include such
models M for which the constants c1, c2, . . . , cn are interpreted as different
elements, the decision tree only needs to output clauses expressing ≤ n-ness.
These are clauses of the form {f(a1, a2, . . . , ar) = c1, . . . , f(a1, a2, . . . , ar) =
cn}.

All output nodes which do not output a clause expressing ≤ n-ness can be
cancelled and the decision tree can be simplified until it is a binary decision
tree T where all leaves have been assigned an axiom of ≤ n-ness.

Now we approach the key idea for the lower bound. We restrict the inputs
further. We only consider inputs which are models M which have size ≥
n′ (n′ > n), which satisfy the clauses in C, and which have the constants
c1, c2, . . . , cn, cn+1, . . . interpreted as different elements. Also we require that
each element in M has a name cj for some j. This extra requirement is
permitted because if there is a model of C which has size n′ then there is also
such a model for which each of the constants c1, c2, denotes its elements
(skolem-lowenheims theorem is needed if we only want to consider at most
countable many constants cα, α ∈ I).

This restriction on the inputs allows us to simplify the decision tree T
further. All nodes which correspond to outputs which can never be achieved
can be removed. This leads to a decision tree T ′.

Now the lower bound is almost trivial. Suppose that C has a model of size
≥ n′. The model might be finite or infinite. We want to see what impact this
has on the size of tree-resolution refutations of Cprop

n .
The key observation is that each constant c1, c2, . . . , cn must appear along

each computational path through T ′.

Lemma 3: Assume there are models M of C which have size > n. Then each
computational path through T ′ must involves each of the constants c1, c2, . . . , cn.

Proof: Assume some branch does not involve the constant c′ ∈ {c1, c2, . . . , cn}.
The branch leads to a leaf l which has been assigned a clause on the form
{f(ci1 , ci2 , . . . , cir) = c1, f(ci1 , ci2 , . . . , cir) = c2, . . . , f(ci1 , ci2 , . . . , cir) = cn}.

23

None of the inputs M which lead to the leaf l will have f(ci1 , ci2 , . . . , cir) =
c′. The decision tree T ′ does not involve any of the constants cn+1, cn+2, . . . , cn′

(or cn+1, cn+2, . . . if n′ =∞) so none of the inputs M which lead to the leaf
l will have f(ci1 , ci2 , . . . , cir) = cj for some j = n + 1, n + 2, . . . , n′ (if this
was the case, we get a contradiction by replacing the input M with a model
M ′ in which the interpretation of c′ and cj is interchanged). But then all
models M which lead to the leaf l fail to satisfy f(ci1 , ci2 , . . . , cir) = c for any
constant c. Now we only considered inputs being models M for which each
element has a name. Thus each model M which leads to the leaf l must have
∀x ¬f(ci1, ci2 , . . . , cir) = x. This sentence is a logical contradiction. This is
a contradiction to the fact that T ′ was constructed in such a way that there
actually was some permissible input M leading to l. 2

From this we get:

Lemma 4: Assume n is given, and that there is a model of C which has size
n′ for some n′ > n. Here n′ =∞ if C has an infinite model. Then there is no
tree-refutation of Cprop

n which has size < 2n/max(krel
C ,1+kfun

C).

Thus (3) implies (1) and (2) in Theorem 1. This, in conjunction with the upper
bounds, complete the proof of the first part of Theorem 1. The remaining part
follows from the fact that the set of finite satisfiability problem C (for predicate
logic) which is satisfiable in an infinite model is non-recursive. Actually the
complement - the set of finite satisfiability problems C which has no infinite
model - is r.e. complete.

Finally - to complete the proof of the Gap Theorem - we have to show that
there is no total recursive function which given input C, outputs u ∈ N such
that nu > SC(n) whenever (1),(2) or (3) fails. If such total recursive function
existed, we could use property (2) to provide a bound on smallest n0 with
Cprop
n unsatisfiable for each n ≥ n0. This would give us a decision procedure to

decide whether C has an infinite model. It is well known that the existence of
such a decision procedure leads to a contradiction. This completes the proof
of the Gap Theorem.

7 Further perspectives

Up to this point we have considered uniform sequences Cprop
n of unsatisfiability

problems. Notice however that our polynomial upper bound was achieved by
highly uniform families of tree-refutations. This raises a crucial question.
Given a propositional proof system P . When does P have the property that
uniform generated (i.e. Sn-generated) sequences of tautologies which have
short P -proofs have short uniformly (here used in an informal sense) generated
P -proofs? In this paper we have seen that tree-resolution has this property.

24

Let Ttotal denote the mathematical theory which is axiomatised by all ex-
istential sentences ψ which are valid in all finite models (the sentences are
written in an infinite language with an arbitrary number of function and re-
lation symbols of each arity). This theory consists of the class of first order
formulas which hold in all finite models. Notice that Ttotal is a well-defined
theory because the property of being valid in all finite models is closed under
logical deduction. The list of sentences in Ttotal forms a complete co-recursively
enumerable set. Thus Ttotal is not recursively axiomatisable.

Given a propositional proof system P . In general we let TP ⊆ Ttotal denote
the collection of existential sentences ψ ∈ Ttotal for which the sequence ψn has
polynomial size (or for example nlog(n)o(1)

-size) P -proofs.
Let ψ be a sentence (formula) in predicate logic. Assume for example

ψ :≡ ∀x∃y∀zR(x, y, z). The sentence (formula) ψ′ :≡ ∃yR(c, y, f(y)) is a
skolemisation of ψ. Clearly ψ implies ψ′ while ψ′ does not implies ψ in general.
In our context, things are very nice because we consider validity in a class of
models (rather than validity in a single model). Notice that ψ holds in the
class of all finite models if and only if ψ′ holds in the class of all finite models.
Often a sentence has more than one skolemisation. Using [4] it is possible to
show that there exists a sequence of sentences ψu (in predicate logic) as well as
two sequences ψ′

u and ψ′′
u such that ψ′

u and ψ′′
u both are skolemisations of ψu

and such that the term-complexity as well as the Herbrand complexity of ψ′′
u is

2u-times larger than the term complexity as well as the Herbrand complexity
of ψ′

u (here 2l+1 := 22l and 20 = 1). The function 2u has a non-elementary
growth rate.

Theorem 4: For any reasonable (see proof for details) propositional system
P , Tp is a well defined mathematical theory closed under logical deduction.
More specifically Tp is closed under logical deduction in the following sense:
Let ψ be an arbitrary sentence (not necessarily an existential sentence) which
is a logical consequence of Tp. Then for any skolemisation of ψ turning it
into an equivalent existential sentence ψ′, the sequence ψ′

n have polynomial
size P -proofs (i.e. ψ′ ∈ Tp). If ψ′′ is another skolemisation there are exam-
ples which show that the polynomial tree-resolution refutation complexity of
(ψ′′)n might have a degree which is non-elementarily larger than the degree of
the tree-resolution refutation complexity of (ψ′)n. Thus the polynomial com-
plexity of the sequence tautologies arising from different skolemisations can
vary grossly. Still the translation procedure leads to robust complexity results:
Either all translations produce sequences which all have polynomial size tree-
resolution refutations or none of the translations produce sequences which have
polynomial size tree-resolution refutations.

Proof:(outline) The property of having polynomial size propositional proofs
is closed under logical deduction. We showed this for tree-resolution, but for

25

stronger systems (which polynomially simulate tree-resolution) this property
follows as a corollary. More specifically the skolemisation ψ′ is a logical conse-
quence of ψ, and ψ is by assumption a logical consequence of TP . Thus there
exists a finite collection of axioms θ1, θ2, . . . , θu ∈ TP such that η, a skolemisa-
tion of (θ1∧ θ2∧ . . .∧ θu → ψ′), is a logical tautology as well as an appropriate
existential sentence of the form we consider.

Our polynomial upper bound ensures that the sequence ηn has polynomial
size P -proofs. By assumption, the sequences (θ1)n, (θ2)n . . . (θk)n each have
polynomial size P -proofs. The intuition tells us that in a reasonable proposi-
tional proof system this implies (η)n ≡ (θ1)n ∧ (θ2)n ∧ . . .∧ (θk)n → (ψ′)n and
thus the sequence ψ′

n has polynomial size P -proofs.
Some care is however needed at this stage, and we need to extend our upper

bound result slightly. Let us assume that P is a refutation system which is
at least as efficient as tree-resolution. The situation can then be described as
follows: By assumption we have polynomial size refutations of the translation
of the clauses
{{l111, l112, . . . , l11k}, {l121, l122, . . . , l12k}, . . . , {l1k1, l1k2, . . . , l1kk}} (the refuta-
tions of (¬θ1)n). Here each literal lijm denotes a basic atomic sentence or
the negation of a basic atomic sentence. To simplify the notation we have
assumed (and we can clearly do this without loss of generality) that all index
run between 1 and k. We also assume we have polynomial size P -refutations
of the clauses {{li11, li12, . . . , li1k}, {li21, li22, . . . , li2k}, . . . , {lik1, lik2, . . . , likk}}
when i = 2, 3, . . . , k (refutations of (¬θi)n where i = 2, 3, . . . , k). By assump-
tion we can refute the CNF formula
θ :≡ ∧kj=1 ∧π∈Sk

{¬lj1π(1),¬lj2π(2), . . . ,¬ljkπ(k)} ∧ ∧ki=1 {mi1,mi2, . . . ,mik} (θ
is a CNF sentence (in predicate logic) which is logically equivalent to ¬η).
According to our main result (the upper bound) there exists polynomial size
tree-refutations of the propositional translations of θ. We want to show we
can obtain polynomial size P -refutations of the CNF ∧ki=1 {mi1,mi2, . . . ,mik}
(i.e. a refutation of ¬(ψ′)n). To show this we need to assume P satisfies the
following natural condition:
Assumption (slightly informal): If A1 ∧A2 . . . Ak → B has a derivation of size
s, then the CNF of A1 ∧ A2 . . . Ak−1 → (B ∨ ¬Ak) has a derivation of size
sO(1).

This assumption suffices (we leave the rather tedious details to the reader)
and ensures that it is possible to construct polynomial size P -refutation proofs
of the propositional translations of ∧ki=1 {mi1,mi2, . . . ,mik}. This construc-
tion is very similar to the construction in our polynomial upper bound. We
call a propositional system P as reasonable if it satisfies the polynomial up-
per bound for translations of tautologies (this happens, in particular, for all
propositional proof systems which are stronger than tree-resolution) and sat-
isfies the assumption above. This concludes the proof that TP is a well defined

26

and a well-behaved theory.
There exists a sequences of sentences ψ which have skolemisations ψ′ and

ψ′′ which leads to unsatisfiability problems Cψ′ and Cψ′′ (of predicate logic)
such that the Herbrand Complexity of the two systems differ with a non-
elementary function (see [4] for details). Also the term complexity might
differ by a non-elementary function. The canonical translation (we used for
our upper bound) thus leads to tree-resolution refutations in which the degree
in the polynomial complexity differs by a non-elementary function.

The final part of the theorem follows from the extension of our upper
bound we already discussed. 2

Notice that the assumption that P is a reasonable propositional system is a
harmless assumption. Only reasonable propositional proof systems are rele-
vant for complexity theory. An unreasonable propositional system can always
be strengthened (by adding a few extra deduction rules) such that it becomes
reasonable. All standard propositional systems are reasonable.

To show a super-polynomial lower bound for the propositional system P
it suffices to show that TP 6= Ttotal. In this paper we showed that when P
is tree-resolution then TP is the minimal theory i.e. just predicate logic. For
tree-resolution TP is recursively axiomatisable (axiomatised by the empty set
(!) of axioms over predicate logic). In general for stronger propositional proof
systems TP need not be recursively axiomatisable. It is a mistake to equate TP
with I∆0(α) (resp. V 1

1 or U1
1) when P is polynomial size bounded depth Frege

proofs (resp. polynomial size extended Frege proofs or nlog(n)o(1)-size Frege
proofs) [remark: for readers who are not familiar with the theories I∆0(α),
V 1

1 or U1
1 it suffices to know that these are all recursively axiomatisable by

universal axioms (see [17])]. The theory TP is axiomatised by purely existential
axioms and thus it behaves different from the theories (I∆0(α), V 1

1 or U1
1)

which not are axiomatisable by purely existential axioms.
It is possible to formulate various interesting conjectures [27] concerning

general properties of the axiomatisations of TP . Here we only state the most
general of these conjectures:

Conjecture: For any propositional proof system TP 6= Ttotal.

Using Cook’s and Reckhow’s reformulation of the NP 6= co-NP question [13]
we get:

Proposition: The conjecture implies NP 6= co-NP.

The main aim in this section was to define the theory TP (where P is an
arbitrary propositional proof system). Our main result can now be stated as
follows:

Theorem 5: Let P denote tree-resolution and let TP (f) ⊆ Ttotal denote the
theory of principles ψ ∈ Ttotal which have f(n)-size tree proofs (refutations).

27

The theory TP (f) is well-defined as well as well-behaved (Theorem 4). Fur-
thermore TP (f) is the same theory (namely predicate logic) for any super-
polynomial but sub-exponential function f(n).

8 General considerations

Consider the theory TP (f) defined in the previous section. When the growth
rate of f changes the theory TP (f) might of course also change. The question
is whether this change happens in a continuous manner or - as we have shown
for tree-resolution - happens in jumps.

This touches a fundamental question in complexity theory. It is an empir-
ical fact that only a relative small number of complexities appears in practice
(e.g. θ(1), θ(

√
log(n)/loglog(n)), θ(log(n)/loglog(n)), θ(n), θ(nlogn), θ(n2),

2n
θ(1)

). This phenomena is folklore, but to my knowledge there is at present
no heuristic explanations of this.

Theoretically, virtually any complexity is possible, so why do so few com-
plexities appear in practice? One feature of real world computational problems
is that they in some sense involve the same general computational problem.
It would, for example, be highly unnatural to consider a computational prob-
lem where certain lists have to be sorted for some values of n while certain
bin-packing problems have to be solved for other values of n. Uniformity
is clearly a feature of real world problems as we meet them in theoretical
computer science. I hope the reader will forgive me these pure speculations,
but perhaps uniformly (here used informally) given computational problems
always have worst case complexities belonging to a finite list (including e.g.
θ(1), θ(

√
log(n)/loglog(n)), θ(log(n)/loglog(n)), θ(n), θ(nlogn), θ(n2), 2n

θ(1)
)

of possibilities? Perhaps the fact that so few complexities appear in complex-
ity theory are the shadows of a master theorem - a theorem which states that
uniform complexity questions only can have certain possible answers (among
finitely many possibilities). Or does this phenomena only reflect our limita-
tions in showing matching upper and lower bounds? In the setting of proposi-
tional logic perhaps TP (f) always makes at most finitely many jumps. Clearly
(using Cook’s and Reckhow’s result [13]) if there is a complexity gap for any
propositional system P we must have NP 6= co-NP.

It is, of course, also possible that our gap-theorem is a rather singular
phenomena which only occur for weak propositional proof systems (like tree-
resolution) where certain versions of the so-called weak pigeon-hole principle
fails.

Let me point out that it is possible to extend the complexity gap theorem
to a wider class of tautologies. In the present paper we solely focused on the
propositional versions of the first finitisation principle [23]. This was mainly
done to keep the proofs as simple as possible. It is possible to achieve a

28

polynomial↔ exponential complexity gap related to the propositional version
of the second finitisation principle [23]. In order to keep the application of
mathematical logic to a pleasant minimum we will not discuss this extension
in the present paper.

Let me point out that there also is a complexity gap for the so-called
Nullstellensatz proof system as well as for the Polynomial calculus. The exact
size of this gap is still not completely settled. From [18] and [29] it is however
clear that we essentially have a complexity jump from polynomial size NS-
proof (PS-proof) to at least nlog(n). We suggest that the actual jump is from
polynomial size to size 2o(n). This was claimed (with incomplete proof) in [30].

A very interesting question is to classify the collection of propositions Ψ
which have polynomial size refutations for different propositional proof systems
(or equivalently to characterise the theory TP). Consider for example the
NS-proof system (over fields of characteristic 0). This is a very interesting
propositional proof system which has been studied intensively in the recent
years. The system was first introduced in [5] and has many nice features [12].
We finish the paper by showing that the Nullstellensatz proof system proves
the following version of the pigeon-hole principle.

For fixed n ∈ N consider the class Polyn of polynomials in the variables xij
where i ∈ {0, 1, 2, . . . , n} and j ∈ {1, 2, . . . , n}.

Consider the following polynomial equations:

(
n∑

j=1,j 6=i
xij) + xii − 1 = 0 for i = 1, 2, . . . , n, (

n∑
j=1

x0j)− 1 = 0.

(
n∑

j=1,j 6=i
xji) + xii + x0i − 1 = 0 for i = 1, 2, . . . , n.

These equations have no 0/1-solution as such a solution would define a bijec-
tion from {0, 1, . . . , n} onto {1, 2, . . . , n}. Actually we show:

Proposition: The equations do not have any solutions over any ring.

Proof: Notice that
n∑

i=1

((
n∑

j=1,j 6=i
xij)+xii+x0i−1)−

n∑

i=1

((
n∑

j=1,j 6=i
xji)+xii−1)− (

n∑

j=1

x0j)−1 = 1

and that 1 thus can be written as a linear combination of the polynomials
which appear in the polynomial equations. 2

The tautologies for the usual pigeonhole principle is an extension of the above
equations. Besides the equations above, they include:

x2
ij − xij = 0, where i ∈ {0, 1, 2, . . . , n} and j ∈ {1, 2, . . . , n}.

29

xijxik = 0 for i ∈ {0, 1, 2, . . . , n} and j, k ∈ {1, 2, . . . , n} with j 6= k.

xjixki = 0 for i ∈ {1, 2, . . . , n} and j, k ∈ {0, 1, 2, . . . , n} with j 6= k.

It is well known that the bijective pigeon-hole principle requires exponential
size bounded depth Frege proofs [7]. Thus we have:

Theorem 6: There exists a sequence of tautologies which has linear size
Nullstellensatz proofs, but require exponential size bounded depth Frege Proofs.

This shows that the strength of the NS-proof system is incompatible to Bounded
Depth Frege. It also shows that the complexity gap for the NS-proof system
does not take place at the same place as for tree-resolution (i.e. TTR ⊂ TNS

with TTR 6= TNS). An exact characterisation of TNS, i.e. an exact charac-
terisation of the class of Cn’s which have polynomial size NS-proofs, is open.
Is the theory TNS recursively axiomatisable? Also the size of the complexity
jump for the NS-proof system is open although some special cases has been
settled [29]. The same questions for bounded depth Frege are open, and any
answer has to involve ideas beyond current techniques. Does the cutting plane
propositional proof system have a complexity gap? Does unrestricted resolu-
tion? Does the unrestricted resolution system have a gap-theorem similar to
that for tree-resolution?

To end I would like to thank Peter Bro Miltersen and Ulrich Kohlenbach
for their useful comments related to this paper.

References

[1] Ajtai, M.: The complexity of the pigeonhole principle. In 29th Annual
Symposium on Foundations of Computer Science, IEEE (1988) pp. 346-
355.

[2] Ajtai, M.: The complexity of the pigeonhole principle. Combinatorica,
14(4) (1994) pp. 417-433.

[3] Ajtai, M.: The independence of the modulo p counting principles. In
Proceedings of the 26th ACM STOC, (1994) 402-411

[4] Baaz, M.,Leitsch, A.: On Slolemization and proof complexity. Fund. In-
form. 20 no. 4 (1994) 353-379

[5] Beame, P., Impagliazzo, R., Krajicek, J., Pitassi, T., Pudlak, P.: Lower
bounds on Hilbert’s Nullstellensatz and propositional proofs. Proceedings
of the London Mathematical Society 73(3) 1-26 (1996)

30

[6] Beame, P.,Karp R., Pitassi T., Saks M.: On the complexity of Unsatis-
fiability Proofs for Random k-CNF Formulas. STOC 98. The 30th ACM
STOC, (1998)

[7] Beame, P.,Impagliazzo, R.,Krajicek, J., Pitassi,T.,Pudlak,P., Woods,A.:
Exponential lower bounds for the pigeonhole principle, In the proceedings
of the 24th ACM STOC 200-221 (1992)

[8] Beame, P., Riis, S.: More on the relative strength of counting principles.
In: Proceedings of the DIMACS workshop on Feasible Arithmetic and
Complexity of Proofs, (1996)

[9] Buss, S.: The propositional pigeonhole principle has polynomial size Frege
proofs, J. of Symbolic Logic, 52 (1987) 916-927

[10] Buss, S.: Propositional consistency proofs, Annals of Pure and Applied
Logic 52 (1991) 3-29

[11] Buss, S., Pitassi, T.: Resolution and the weak Pigeonhole Principle
(notes).

[12] Buss, S., Krajicek, j,. Pitassi, T., Razborov, A., Sergal, J.: Polynomial
bound on Nullstellensatz for counting principles. To appear in Computa-
tional Complexity (1997)

[13] Cook, S., Reckhow, R.: The relative efficiency of propositional proof
systems, Journal of Symbolic Logic, 44 (1979) 36-50.

[14] Galil, Z.: On the complexity of regular resolution and the Davis-Putnam
procedure. Theoretical Computer Science, 4 (1977) 23-46

[15] Kearns, Vazirani: An Introduction to Computational Learning Theory,
MIT Press, (1994)

[16] Haken, A.: The intractability of resolution, Theoretical Computer Sci-
ence, 39 (1985), 297-308.

[17] Krajicek, J.:Bounded Arithmetic, propositional logic, and complexity the-
ory, Encyclopedia of Mathematics and Its Applications, Vol. 60, Cam-
bridge University Press (1995)

[18] Krajicek, J.: On the degree of ideal membership proofs from uniform
families of polynomials over a finite field (manuscript)

[19] Leitsch, A.: The resolution Calculus. Book in the series of Texts in The-
oretical Computer Science, Ed. Brauer, W., Rozenberg, G., Salomaa, A.
Springer / Heidelberg (1996)

31

[20] Lovasz, L. Naor,M., Newman,I.,Wigderson,A. Search problems in the de-
cision tree model. In Proceedings of the 32th ACM STOC, (1991) 576-585

[21] Pudlak, P.: On the length of proofs of finitistic consistency statements
in first order theories, in: J.B. Paris et al., eds, Logic Colloquium ’84
North-Holland, Amsterdam (1986) 165-196

[22] Pudlak, P.: Improved bounds to the lengths of proofs of finitistic consis-
tency statements, in: Logic and combinatorics, Contemporary Math. 65
(Amer. Math. Soc., Providence, RI (1987) 309-331.

[23] Riis, S.: Making infinite structures finite in models of Second Order
Bounded Arithmetic. In: Arithmetic, proof theory and computorial com-
plexity, 289-319, Oxford: Oxford University Press 1993

[24] Riis, S.: Independence in Bounded Arithmetic. DPhil dissertation, Oxford
University (1993)

[25] Riis, S.: Count(q) does not imply Count(p) Annals of Pure and Applied
Logic, 90(1-3) (1997) 1-56

[26] Riis, S.: Count(q) versus the pigeon-hole principle. Archive for Mathe-
matical Logic 36 (1997) 157-188

[27] Riis, S.: (manuscript in preparation)

[28] Riis, S., Sitharam, M: Generating hard tautologies using logic and the
symmetric group. BRICS RS-98-19.

[29] Riis, S., Sitharam, M: Uniformly Generated Submodules of Permutation
Modules. BRICS RS-98-20.

[30] Riis, S., Sitharam, M: (manuscript in preparation). Incomplete version ap-
pear as: Non-constant Degree Lower Bounds imply Linear Degree Lower
Bounds, Technical report TR97-048 of the Electronic Colloquium on Com-
putational Complexity, http://www.eccc.uni-trier.de/pub/eccc (1997)

[31] Simpson,S.: Unprovable theorem and fast growing functions. Contempora
Mathematics Vol 65 (1987) 359-394

[32] Tseitin, G.S.: On the complexity of derivations in the propositional Cal-
culus. In A.O. Slisenko, editor, Studies in Constructive Mathematics and
Mathematical Logic, Part II (1968)

[33] Urquhart, A.: Hard examples for resolution. Journal of the ACM, 34(1)
(1987) 209-219.

32

[34] Urquhart, A.: The Complexity of Propositional Proofs. The Bulletin of
Symbolic Logic, 1 (1995) 425-467

33

Recent BRICS Report Series Publications

RS-99-29 Søren Riis.A Complexity Gap for Tree-Resolution. September
1999. 33 pp.

RS-99-28 Thomas Troels Hildebrandt.A Fully Abstract Presheaf Seman-
tics of SCCS with Finite Delay. September 1999. 37 pp. To
appear in Category Theory and Computer Science: 8th Interna-
tional Conference, CTCS ’99 Proceedings, ENTCS, 1999.

RS-99-27 Olivier Danvy and Ulrik P. Schultz. Lambda-Dropping: Trans-
forming Recursive Equations into Programs with Block Struc-
ture. September 1999. 57 pp. To appear in the November 2000
issue ofTheoretical Computer Science. This revised report su-
persedes the earlier BRICS report RS-98-54.

RS-99-26 Jesper G. Henriksen.An Expressive Extension of TLC. Septem-
ber 1999. 20 pp. To appear in Thiagarajan and Yap, editors,
Fifth Asian Computing Science Conference, ASIAN ’99 Pro-
ceedings, LNCS, 1999.

RS-99-25 Gerth Stølting Brodal and Christian N. S. Pedersen.Finding
Maximal Quasiperiodicities in Strings. September 1999. 20 pp.

RS-99-24 Luca Aceto, Willem Jan Fokkink, and Chris Verhoef.Conser-
vative Extension in Structural Operational Semantics. Septem-
ber 1999. 23 pp. To appear in theBulletin of the EATCS.

RS-99-23 Olivier Danvy, Belmina Dzafic, and Frank Pfenning. On
proving syntactic properties of CPS programs. August 1999.
14 pp. To appear in Gordon and Pitts, editors, 3rd Work-
shop on Higher Order Operational Techniques in Semantics,
HOOTS ’99 Proceedings, ENTCS, 1999.

RS-99-22 Luca Aceto, Zolt́an Ésik, and Anna Ingólfsdóttir. On the Two-
Variable Fragment of the Equational Theory of the Max-Sum
Algebra of the Natural Numbers. August 1999. 22 pp.

RS-99-21 Olivier Danvy. An Extensional Characterization of Lambda-
Lifting and Lambda-Dropping. August 1999. 13 pp. Extended
version of an article to appear in Fourth Fuji International
Symposium on Functional and Logic Programming, FLOPS ’99
Proceedings (Tsukuba, Japan, November 11–13, 1999). This
report supersedes the earlier BRICS report RS-98-2.

