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On the Two-Variable Fragment of the Equational Theory

of the Max-Sum Algebra of the Natural Numbers

Luca Aceto∗ Zoltán Ésik† Anna Ingólfsdóttir∗‡

Abstract

This paper shows that the collection of identities in two variables
which hold in the algebra N of the natural numbers with constant
zero, and binary operations of sum and maximum does not have a
finite equational axiomatization. This gives an alternative proof of the
non-existence of a finite basis for N—a result previously obtained by
the authors. As an application of the main theorem, it is shown that
the language of Basic Process Algebra (over a singleton set of actions),
with or without the empty process, has no finite ω-complete equational
axiomatization modulo trace equivalence.

AMS Subject Classification (1991): 08A70, 08B05, 03C05, 68Q70.
ACM Computing Classification System (1998): F.4.1.
Keywords and Phrases: Equational logic, varieties, complete ax-
iomatizations, process algebra, trace equivalence.

1 Introduction

Since Birkhoff’s original developments, equational logic has been one of the
classic topics of study within universal algebra. (See, e.g., [7, 8, 9] for surveys
of results in this area of research.) In particular, the research literature is,
among other things, rich in results, both of a positive and negative nature,
on the existence of finite bases for theories (i.e. finite sets of axioms for
them).
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In this paper, we contribute to the study of equational theories that are
not finitely based by continuing our analysis of the equational theory of the
algebra N of the natural numbers with constant zero, and binary operations
of summation and maximum (written ∨ in infix form). Our investigations
of this equational theory started in the companion paper [1]. In op. cit. we
showed that the equational theory of N is not finitely based. Moreover, we
proved that, for all n ≥ 0, the collection of all the equations in at most n
variables that hold in N does not form an equational basis.

The equational theory of N is surprisingly rich in non-trivial families of
identities. For example, the following infinite schemas of equations also hold
in N:

en : nx1 ∨ . . . ∨ nxn ∨ (x1 + . . .+ xn) = nx1 ∨ . . . ∨ nxn
e′n : nx ∨ ny = n(x ∨ y) ,

where n ∈ N, and nx denotes the n-fold sum of x with itself.
Let Eq2(N) denote the collection of equations that hold in N containing

occurrences of two distinct variables. A natural question suggested by the
family of equations e′n above is the following:

Is there a finite set E of equations that hold in N such that
E ` Eq2(N)?

This paper is devoted to proving that no finite axiomatization exists for
Eq2(N). Apart from its intrinsic mathematical interest, this result offers yet
another view of the non-existence of a finite axiomatization for the variety
generated by N proven in [1].

The proof of our main technical result is model-theoretic in nature, and
follows standard lines. The details are, however, rather challenging. More
precisely, for every prime number p, we construct an algebra Ap in which all
the equations that hold in N and whose “measure of complexity” is strictly
smaller than p hold, but neither ep nor e′p hold in Ap. As a consequence of
this result, we obtain that not only the equational theory of N is not finitely
based, but not even the collection of equations in two variables included in
it is.

We also provide an application of our main result to process algebra
[2]. More precisely, we show that trace equivalence has no finite ω-complete
equational axiomatization for the language of Basic Process Algebra [3] over
a singleton alphabet, with or without the empty process [10].

Although the proof of our main theorem uses results from [1], we have
striven to make the paper self contained. The interested reader is referred
to op. cit. and the textbooks [4, 5] for further background information.
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2 The Max-Sum Algebra

Let N = (N,∨,+, 0) denote the algebra of the natural numbers equipped
with the usual sum operation +, constant 0 and the operation ∨ for the
maximum of two numbers, i.e.,

x ∨ y = max{x, y} .

We study the equational theory of the algebra N—that is, the collection
Eq(N) of equations that hold in N. The reader will have no trouble in
checking that the following axioms, that express expected properties of the
operations of maximum and sum, hold in N:

∨1 x ∨ y = y ∨ x
∨2 (x ∨ y) ∨ z = x ∨ (y ∨ z)
∨3 x ∨ 0 = x

+1 x+ y = y + x

+2 (x+ y) + z = x+ (y + z)
+3 x+ 0 = x

+∨ (x ∨ y) + z = (x+ z) ∨ (y + z)

This set of equations will be denoted by Ax 1. Note that the equation (x+
y)∨ x = x+ y is derivable from +3 and +∨, and, using such an equation, it
is a simple matter to derive the idempotency law for ∨, i.e.,

∨4 x ∨ x = x .

We denote by Ax 0 the set consisting of the equations ∨1, ∨2, ∨4, +1–+3
and +∨. Moreover, we let V0 stand for the class of all models of Ax0, and
V1 for the class of all models of the equations Ax1. Thus, both V0 and V1

are varieties and, by the above discussion, V1 is a subvariety of V0, i.e.,
V1 ⊆ V0.

Since the reduct (A,∨) of any algebra A = (A,+,∨, 0) in V0 is a semi-
lattice, we can define a partial order ≤ on the set A by a ≤ b if and only if
a ∨ b = b, for all a, b ∈ A. This partial order is called the induced partial
order. When A is in the variety V1, the constant 0 is the least element of A
with respect to ≤. Moreover, for any A ∈ V0, the ∨ and + operations are
monotonic with respect to the induced partial order.

The axiom system Ax 1 completely axiomatizes the collection of equa-
tions in at most one variable which hold in the algebra N. However, the
interplay between the operations of maximum and sum generates some non-
trivial collections of equations in two or more variables. For example, the
following infinite schemas of equations, which will play an important role in
the technical developments of this paper, also hold in N:

en : nx1 ∨ . . . ∨ nxn ∨ (x1 + . . .+ xn) = nx1 ∨ . . . ∨ nxn
e′n : nx ∨ ny = n(x ∨ y) ,
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where n ∈ N, nx denotes the n-fold sum of x with itself, and we take
advantage of the associativity and commutativity of the operations. By
convention, nx stands for 0 when n = 0. It is not too difficult to see that,
for any n, the equation en is derivable from Ax1 and e′n.

Let Eq2(N) denote the collection of equations that hold in N containing
occurrences of two distinct variables. A natural question suggested by the
family of equations e′n above is the following:

Is there a finite subset E of Eq(N) such that E ` Eq2(N)?

The remainder of this paper is devoted to proving that no finite axiomatiza-
tion exists for Eq2(N). Apart from its intrinsic mathematical interest, this
result offers yet another view of the non-existence of a finite axiomatization
for the variety generated by N proven in [1].

3 Explicit Description of the Free Algebras

In this section we give a brief review of some results on the equational
theory of the algebra N that we obtained in [1]. (The proofs of the results
stated in this section may be found ibidem.) We start by offering an explicit
description of the free algebras in the variety V generated by N. Since N
satisfies the equations in Ax 1, we have that V is a subvariety of V1, i.e.,
V ⊆ V1.

For the sake of clarity, and for future reference, we shall describe the
finitely generated free algebras in V. We recall that any infinitely generated
free algebra is a directed union of the finitely generated free ones. (The
interested reader is referred to [4] for this and other basic results in universal
algebra that we shall use in what follows.)

Let n ≥ 0 denote a fixed integer. The set Nn is the collection of all
n-dimensional vectors over N. Let Pf (Nn) denote the collection of all finite
nonempty subsets of Nn, and define the operations in the following way: for
all U, V ∈ Pf (Nn),

U ∨ V := U ∪ V
U + V := {u+ v : u ∈ U, v ∈ V }

0 := {0} ,

where 0 stands for the vector whose components are all 0. For each i ∈ [n] =
{1, . . . , n}, let ui denote the ith unit vector in Nn, i.e., the vector whose only
non-zero component is a 1 in the ith position.

4



Proposition 3.1 The algebra Pf (Nn) is freely generated in V0 by the n

singleton sets {ui}, i ∈ [n], containing the unit vectors.

Note that the induced partial order on Pf (Nn) is given by set inclusion.
It is easy to see that any term t in the variables x1, . . . , xn (n ≥ 0)

can be rewritten, using the equations in Ax0, to the maximum of linear
combinations of the variables x1, . . . , xn, i.e., there are m ≥ 1, and cji ∈ N
for j ∈ [n] and i ∈ [m] such that the equation

t =
∨
i∈[m]

(
∑
j∈[n]

cjixj)

holds in V0. (The empty sum is defined to be 0.) We refer to such terms
as normal forms. Thus we may assume that any equation which holds in a
given subvariety of V0 is in normal form, i.e., of the form t1 = t2 where t1
and t2 are normal forms. Furthermore, an equation

t1 ∨ . . . ∨ tm = t′1 ∨ . . . ∨ t′m′

holds in a subvariety of V0 if and only if, for all i ∈ [m] and j ∈ [m′],

ti ≤ t′1 ∨ . . . ∨ t′m′ and t′j ≤ t1 ∨ . . . ∨ tm

hold in the subvariety. We refer to an inequation of the form

t ≤ t1 ∨ . . . ∨ tm

where t, t1, . . . , tm are linear combinations of variables, as simple inequations.
A simple inequation t ≤ t1 ∨ . . . ∨ tm that holds in N is irredundant if,

for every j ∈ [m],

N 6|= t ≤ t1 ∨ . . . ∨ tj−1 ∨ tj+1 ∨ . . . ∨ tm .

By the discussion above, we may assume, without loss of generality, that
every set of inequations that hold in N consists of simple, irredundant in-
equations only.

In order to give an explicit description of the finitely generated free
algebras in V1, we need to take into account the effect of equation ∨3. Let
≤ denote the pointwise partial order on Nn. As usual, we say that a set
U ⊆ Nn is an order ideal, if u ≤ v and v ∈ U jointly imply that u ∈ U , for
all vectors u, v ∈ Nn. Each set U ⊆ Nn is contained in a least ideal (U ]n, the
ideal generated by U . The relation that identifies two sets U, V ∈ Pf (Nn)
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if (U ]n = (V ]n is a congruence relation on Pf (Nn), and the quotient with
respect to this congruence is easily seen to be isomorphic to the subalgebra
If (Nn) of Pf (Nn) generated by the finite non-empty ideals.

For each i ∈ [n], let (ui]n denote the principal ideal generated by the
unit vector ui, i.e., the ideal ({ui}]n.

Proposition 3.2 If (Nn) is freely generated in V1 by the n principal ideals
(ui]n.

Again, the induced partial order on If (Nn) is the partial order determined
by set inclusion.

We note that, if n ≥ 2, then the equation en fails in If (Nn), and a
fortiori in V1. Since for n ≥ 2 the equation en holds in N but fails in V1,
in order to obtain a concrete description of the free algebras in V we need
to make further identifications of the ideals in If (Nn). Technically, we shall
start with Pf (Nn).

Let v1, . . . , vk (k ≥ 1) be vectors in Nn, and suppose that λi (i ∈ [k])
are non-negative real numbers with

∑
i∈[k] λi = 1. We call the vector of real

numbers
∑

i∈[k] λivi a convex linear combination of the vi.

Definition 3.3 We call a set U ⊆ Pf (Nn) a convex ideal if for any convex
linear combination

∑
i∈[k] λivi, with vi ∈ U for all i ∈ [k], and for any

v ∈ Nn, if

v ≤
k∑
i=1

λivi

in the pointwise order, then v ∈ U .

Note that any convex ideal is an ideal. Moreover, the intersection of any
number of convex ideals is a convex ideal. Thus, any subset U of Nn is
contained in a least convex ideal, [U ]n. When U is finite, so is [U ]n. We let
c ≤ U mean that the simple inequation

c · x ≤
∨
d∈U

d · x

holds in N. Then we have the following useful characterization of the simple
inequations that hold in N.

Lemma 3.4 Suppose that U ∈ Pf (Nn) and c ∈ Nn. Then c ∈ [U ]n iff
c ≤ U .
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Let ∼ denote the congruence relation on Pf (Nn) that identifies two sets
of vectors iff they generate the same least convex ideal. It is immediate
to see that the quotient algebra Pf (Nn)/ ∼ is isomorphic to the following
algebra CIf (Nn) = (CIf (Nn),∨,+, 0) of all non-empty finite convex ideals
in Pf (Nn). For any two I, J ∈ CIf (Nn),

I ∨ J = [I ∪ J ]n

I + J = [{u+ v : u ∈ I, v ∈ J}]n
0 = {0} .

Indeed, an isomorphism Pf (Nn)/ ∼→ CIf (Nn) is given by the mapping
U/ ∼7→ [U ]n.

Recall that, for each i ∈ [n], ui denotes the ith unit vector in Nn. For each
i ∈ [n], the set [ui]n = (ui]n = {ui, 0} is the least convex ideal containing ui.

Theorem 3.5 CIf (Nn) is freely generated by the n convex ideals [ui]n in
the variety V.

As a corollary of Theorem 3.5, we obtain the following alternative charac-
terization of simple equations which hold in the algebra N.

Corollary 3.6 Let c, dj (j ∈ [m]) be vectors in Nn. Then c ≤ {d1, . . . , dm}
iff there are λ1, . . . , λm ≥ 0 such that λ1 + . . .+λm = 1 and c ≤ λ1d1 + . . .+
λmdm with respect to the pointwise ordering. Moreover, if c ≤ {d1, . . . , dm}
is irredundant, then λ1, . . . , λm > 0.

The above result offers a geometric characterization of the simple inequations
in Eq(N), viz. an inequation c ·x ≤ d1 ·x∨ . . .∨dm ·x (where x = (x1, . . . , xn)
is a vector of variables) holds in N iff the vector c lies in the ideal generated
by the convex hull of the vectors d1, . . . , dm.

4 The Two Variable Fragment of the Equational

Theory is not Finitely Based

We now proceed to apply the results that we have recalled in the previous
section to the study of the two variable fragment of the equational theory of
the algebra N. The main aim of this paper is to prove the following result to
the effect that the collection of equations Eq2(N) cannot be deduced using
any finite number of equations in Eq(N).
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Theorem 4.1 There is no finite set E of equations in Eq(N) such that
E ` Eq2(N).

To prove Thm. 4.1 we shall define a sequence of algebras An (n ≥ 1) in V1

such that following holds:

For any finite set E of equations which hold in N, there is an n

such that
An |= E but An 6|= e′n .

Recalling that, for any n, the equation en is derivable from e′n and Ax1, it is
sufficient to prove the statement above with e′n replaced by en. Furthermore,
in light of our previous analysis, the result we are aiming at in this section,
viz. Thm. 4.1, may now be reformulated as follows.

Proposition 4.2 Let E be a finite set of simple, irredundant equations such
that N |= E. Then there is an n ∈ N and an algebra An ∈ V1 such that
An |= E but An 6|= en.

The non-existence of a finite axiomatization of the two variable fragment of
the equational theory of N follows easily from Prop. 4.2 and the preceding
discussion. In fact, let E be any finite subset of Eq(N). Without loss of
generality, we may assume that E includes Ax1, and that E \ Ax1 consists
of simple, irredundant equations. Then, by Prop. 4.2, there is an algebra
An ∈ V1 such that An |= E but An 6|= en. Since en is derivable from
Ax1 and e′n, it follows that An 6|= e′n. We may therefore conclude that
E 6` Eq2(N), which was to be shown.

4.1 The Algebras An

We let the weight of a vector u ∈ Nn, notation |u|, be defined as the sum of
its components. (Equivalently |u| = u · δn where δn = (1, . . . , 1).) To define
the algebra An, where n ≥ 1 is a fixed integer, let us call a set I ⊆ Nn
an n-convex ideal if it is an ideal and for any convex linear combination
v = λ1v1 + . . .+λmvm and vector u ∈ Nn of weight |u| < n, if v1, . . . , vm ∈ I
and u ≤ v, where ≤ is the pointwise order, then u ∈ I. It is clear that any
convex ideal in Nn is n-convex. Any set U ⊆ Nn is contained in a least n-
convex ideal, denoted [[U ]]n. (The subscript n will often be omitted when it
is clear from the context.) Call a vector v = (v1, . . . , vn) ∈ Nn n-ok, written
okn(v), if |v| ≤ n and

|v| = n ⇒ ∃i ∈ [n]. vi = n .
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A set of vectors is n-ok if all of its elements are. Note that if U is a finite
non-empty set consisting of n-ok vectors, then [[U ]] is also finite and contains
only n-ok vectors.

The algebra An consists of all non-empty (finite) n-convex ideals of n-ok
vectors, as well as the element >. The operations are defined as follows: for
all I, J ∈ An, I, J 6= >, let

K = {u+ v : u ∈ I, v ∈ J} .

Then,

I + J :=

{
[[K]] if K contains only n−ok vectors
> otherwise.

I ∨ J := [[I ∪ J ]]

0 := {0} = [[0]] .

Moreover, we define >+ I = >∨ I = >, and symmetrically, for all I ∈ An.

Proposition 4.3 For each n ≥ 1, An ∈ V1.

Proof: For every I ∈ If (Nn), let h(I) = [[I]], if I contains only n-ok vec-
tors, otherwise let h(I) = >. This defines a surjective homomorphism
h : If (Nn) → An. Thus An is a quotient algebra of If (Nn), and the re-
sult follows from Proposition 3.2. �

We shall now show that, for every n ≥ 2, the algebra An is not in V. In
particular, if n ≥ 2, then the equations en and e′n do not hold in An.

Lemma 4.4 If n ≥ 2 then An 6|= en and An 6|= e′n.

Proof: Assume that n ≥ 2. Let Ji = [[{ui}]]n (i ∈ [n]), where ui denotes
the ith unit vector in Nn. Then, since n ≥ 2,

J1 + . . .+ Jn = > .

Furthermore, for i ∈ [n],

nJi = [[{(
i places︷ ︸︸ ︷

0, . . . , 0, n, 0 . . . , 0)}]]n

9



and therefore

nJ1 ∨ . . . ∨ nJn = [[{(n, 0, . . . , 0, 0), . . . , (0, 0, . . . , 0, n)}]]n 6= > .

It follows that en fails in An. Since en is derivable fromAx1 and e′n, Prop. 4.3
yields that e′n also fails in An. �

Note that the induced partial order on An has > as its top element, and
coincides with the inclusion order over the elements in An that are different
from >. For K ∈ Pf (Nn), by slightly abusing notation, we let [[K]] stand for
[[K]] in the original sense if K contains only n-ok vectors and > otherwise.
With this extension of the definition of [[ ]] we have that [[K]]+[[L]] = [[K+L]]
for all K,L ∈ Pf (Nn). Using this notation, denoting the induced preorder
on An by vn, we obtain the following alternative characterization of An as a
quotient algebra of Pf (Nn), which will be used in the technical developments
to follow.

Let L,M ∈ Pf (Nn). We write

L ≤ M ⇔ ∀u ∈ L. u ≤M .

Now,
An = {[[L]] : L ∈ Pf (Nn)}

where
[[L]] vn [[M ]] iff L �n M

and
L �n M ⇔ [okn(M) ⇒ (okn(L) ∧ L ≤ M)] .

We use ≈n to denote the kernel of �n. Similarly Lemma 3.4 provides us
with the following characterization of CIf (Nn):

CIf (Nn) = {[L] : L ∈ Pf (Nn)}

where, by Lemma 3.4,

[L] ⊆ [M ] iff L ≤ M .

We extend the definition of the weight function to elements of Pf (Nn) thus:

|L| = max{|u| : u ∈ L} .

Now we have the following easy, but useful result.

10



Lemma 4.5 If L ≤ M then |L| ≤ |M |.

We recall that ∼ denotes the kernel of the preorder ≤.

Lemma 4.6

1. For all m and all L ∈ Pf (Nn), mL ∼ {mu : u ∈ L}.

2. If p is prime and m < p then m[[K]]p = [[{mu|u ∈ K}]]p.

Proof: We prove the two statements in turn.

1. Let K = {mu : u ∈ L}. We shall prove that mL ∼ K. Obviously
K ⊆ mL, which in turn implies that K ≤ mL. To prove that mL ≤ K

holds, assume v = v1 + . . . + vm ∈ mL, where v1, . . . , vm ∈ L, and
that r ∈ Nn. Let ir be the index of the largest amongst the numbers
v1 · r, . . . , vm · r. Then we have

v · r = v1 · r + . . .+ vm · r ≤ (mvir) · r

where mvir ∈ K. This proves the first statement in the lemma.

2. The case m = 1 is trivial so we may assume that m > 1. To prove
the statement in this case, let L = {mv|v ∈ K}. Suppose that p is a
prime number and 2 ≤ m < p. In light of our previous remarks, it is
sufficient to show that mK ≈p L. First we recall that

mK = K + . . . +K︸ ︷︷ ︸
mtimes

= {v1 + . . .+ vm : vi ∈ K, i ∈ [m]} .

In particular this implies that L ⊆ mK and therefore that L �p mK.
To prove that mK �p L holds we proceed as follows. We know from
Lemma 4.6(1) that mK ≤ L. It is therefore sufficient to prove that
¬okp(mK) implies ¬okp(L). To this end, assume that there is a v1 +
. . .+ vm ∈ mK which is not p-ok and let vi be the vector of maximum
weight amongst v1, . . . vm. Then

|mvi| = m|vi| ≥ |v1|+ . . . |vm| ≥ p .

That m|vi| = p is impossible, as p is prime and m ≥ 2. Therefore
|mvi| = m|vi| > p which means that mvi is not p-ok. As mvi ∈ L,
this proves that L is not p-ok, which was to be shown. �

11



Note that Lemma 4.6(2) does not hold in general if p is not prime. For
instance, if p = 4, m = 2 and K = {(2, 0), (0, 2)}, then

> = m[[K]]p 6= [[{(4, 0), (0, 4)}]]p .

In what follows we let the simple inequation

a1x1 + . . . + amxm ≤

c11x1 + . . . + cm1 xm
∨
...
∨

c1kx1 + . . .+ cmk xm

be represented by (ai)i≤m ≤ (cij)
i≤m
j≤k (or sometimes simply by a ≤ C if the

meaning is clear from the context), where (ai)i≤m denotes the the row vector

(a1, · · · , am) and (cij)
i≤m
j≤k the k × m matrix

 c11 . . . c
m
1

...
...

c1k . . . c
m
k

. We also let an

instantiation of the variables x1, . . . , xm by the singleton sets {η1}, . . . , {ηm}
(or equivalence classes generated by these sets) be represented as

η =

 η1
...
ηm

 =

 η1
1 . . . η

n
1

...
...

η1
m . . . η

n
m

 ,

i.e. the matrix with row vectors η1, . . . , ηm. We note that, by commutativity

of ∨, the simple inequation a ≤ B, where B is any matrix obtained by

permuting the rows of C, represents exactly the same simple inequation as

a ≤ C, viz. the inequation a ≤ U , where U = {c1, . . . , ck} and the ci (i ∈ [k])

are the row vectors of C. Similarly any permutation of the column vectors

of C combined with a corresponding permutation of the entries of a yields a

simple inequation that holds in N iff a ≤ C does. (Any instantiation matrix

should be similarly permuted as well.) The weight of C, notation |C|, is
defined as the sum of its entries.

Notation: In the remainder of this paper, a and C will denote a row vector
in N1×m and a matrix in Nk×m, respectively.

Now we have the following corollaries of Lemma 4.6.
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Corollary 4.7 Let p be a prime number. If p > max{|a|, |C|} then the
following holds. For all L1, . . . , Lm ∈ Pf (Np),

∀(v1, . . . , vm) ∈ L1 × . . .× Lm.

{a1v1 + . . . + amvm} �p
{c11v1 + . . .+ cm1 vm,

...
c1kv1 + . . .+ cmk vm}

implies

a1L1 + . . .+ amLm �p

c11L1 + . . .+ cm1 Lm
∪
...
∪

c1kL1 + . . .+ cmk Lm .

Proof: Follows directly from Lemma 4.6(2). �

The next result will play a key role in the proof of Thm. 4.9 to follow.

Corollary 4.8 Assume that a ≤ C holds and is irredundant. Then Ap 6|=
a ≤ C, where p is a prime number with |a| < p and |C| < p, iff there is an
instantiation matrix η ∈ Nm×p, such that

1. a · η has weight p and at least two non-zero coefficients, and

2. cj · η has weight p and exactly one non-zero coefficient for j ∈ [k].

Proof: We prove the two implications separately.

• ‘Only If Implication’: We establish that each condition is met in
turn.

1. Assume that a ≤ C holds in N, and therefore in CIf (Np) (Theo-

rem 3.5), but not in Ap. Then, as |a| < p and |C| < p, for some
L1, . . . , Lm ∈ Pf (Np),

a ·

 L1
...
Lm

 ≤ C ·

 L1
...
Lm
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but

a ·

 L1
...
Lm

 6�p C ·
 L1

...
Lm



where C ·

 L1
...
Lm

 has the obvious meaning in Pf (Np). By Cor. 4.7

there is a (η1, . . . , ηm) ∈ L1 × . . . × Lm such that

a ·
 η1

...
ηm


 ≤



c1 ·

 η1
...
ηm

 ,
...

ck ·

 η1
...
ηm




but

a ·
 η1

...
ηm


 6�p



c1 ·

 η1
...
ηm

 ,
...

ck ·

 η1
...
ηm




.

Let η =

 η1
...
ηm

. First we note that if a · η is p-ok then, by

definition of �p,

{a · η} �p {cj · η : j ∈ [k]}

which contradicts our assumption. Thus we may conclude that
a·η is not p-ok. Next we note that if |a·η| > p then, by Lemma 4.5,
|{cj · η : j ∈ [k]}| > p and therefore

{a · η} �p {cj · η : j ∈ [k]} ,
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again a contradiction to our assumption. Thus we are left with
the case where |a · η| = p and a · η has at least two non-zero
coefficients.

2. By Cor. 3.6, since a ≤ C holds in CIf (Np), we may infer that

a ≤ λ1c1 + . . . + λkck ,

where, as a ≤ C is irredundant, λ1, . . . , λk > 0 and λ1+. . .+λm =
1. By associativity of matrix multiplication we have that

a · η ≤ λ1(c1 · η) + . . .+ λk(ck · η)

which in turn implies

p = |a · η| ≤
|λ1(c1 · η)|+ . . .+ |λk(ck · η)| =
λ1|c1 · η|+ . . . + λk|ck · η| .

As by the analysis at point 1 of the proof |cj · η| ≤ p, for j ∈ [k],
this implies that |cj · η| = p for j ∈ [k]. Thus, as every cj · η
is p-ok, it must have exactly one non-zero coefficient for every
j ∈ [k].

• ‘If Implication”: Take an instantiation matrix η ∈ Nm×p that sat-
isfies the proviso of this statement. Let x1 = J1 = [[{η1}]]n, . . . , xm =
Jm = [[{ηm}]]n. Then it is easy to check that

a1J1 + . . .+ amJm = >

but that
c1jJ1 + . . . + cmj Jm 6= > for j ∈ [k]

and therefore ∨
j∈[k]

c1jJ1 + . . .+ cmj Jm 6= > .

Thus the inequation a ≤ C does not hold in Ap. �

Note that if η is an instantiation matrix satisfying points 1–2 in the above
statement, then so does any matrix obtained by permuting the columns of
η.

Using the previous result, we are now in a position to show the following
theorem, which is the key to the proof of Propn. 4.2 and of Thm. 4.1.
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Theorem 4.9 If a ≤ C is irredundant and holds in N, then Ap 6|= a ≤ C

for at most one prime number p > max{|a|, |C|}.

Proof: Assume that a = (a1, . . . , am) ∈ N1×m and C = (cij)
i≤m
j≤k ∈ Nk×m

(i.e. the inequation a ≤ C contains at most m variables) and that N |=
a ≤ C. Assume furthermore that the statement of the theorem does not
hold and that m is the smallest number of variables for which it fails; we

shall show that this leads to a contradiction. So suppose that N |= a ≤ C

but that Ap 6|= a ≤ C and Aq 6|= a ≤ C, where p and q are prime and

max{|a|, |C |} < p < q. First we note that we may assume that ai > 0 for
i ∈ [m], or else we could immediately reduce the number of variables in the

equation under consideration. Since a ≤ C holds in N, this implies that

each column of C is non-zero. We now continue with the proof as follows:

First we use the assumption Ap 6|= a ≤ C and Corollary 4.8 to analyze

the structure of a and C. Then we argue that the result of this analysis

contradicts our second assumption, viz. the failure of the inequation a ≤ C

in Aq.

As Ap 6|= a ≤ C, by Corollary 4.8 there is an instantiation matrix η =

(ηri )
r≤p
i≤m ∈ Nm,p, such that

• a · η has weight p and at least two non-zero coefficients and

• cj ·η has weight p and exactly one non-zero coefficient, for every j ∈ [k].

By minimality of m, we may furthermore assume that each row of η contains
a non-zero entry.

By rearranging the order of the rows of C (i.e. the order of the terms
that occur on the right-hand side of the simple equation) and of the columns
of η, we may assume that there is a 0 < k0 ≤ k such that

1. cj · η = (p, 0, . . . , 0) for j ∈ [k0] and

2. cj · η = (0, l2j , . . . , l
m
j ) for k0 < j ≤ k, where exactly one of the lij is

non-zero for 2 ≤ i ≤ m.

By rearranging the columns of C and correspondingly the order of the entries
of a and η (i.e. the order of the variables that occur in the equation), we
may assume that there is an m0 ∈ [m] such that if j ≤ k0 then cij = 0 for
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all i > m0. Therefore we may suppose that C looks as follows:

C =



c11 . . . c
m0
1

...
...

c1k0
. . . cm0

k0

O1

O2 ?


(1)

where O1 and O2 are (possibly empty) 0-matrices (i.e., matrices whose en-
tries are all 0) and ? just means that this part of the matrix is unknown.
Recall that, as previously observed, some of the cij (i ∈ [m0], j ∈ [k0]) may

be 0, but no column in the upper left corner of C is identically 0.

We claim that k0 < k and m0 < m, and therefore that O1 and O2 are
both non-trivial. To see that this claim holds, note that, by 1.-2. above, η
has the form

η =



η1
1

...
η1
m0

O

? ?


where O is a 0-matrix. This follows because if some of the columns of the

matrix to the right of the first column (the one that starts with

 η1
1

...
η1
m0

)

has a non-zero entry above the horizontal solid line, at least one of the cj ·η,
j ∈ [k0], is going to have more than one non-zero entry. Since the rows of η
are non-zero, we have that η1

j 6= 0 for every j ∈ [m0]. Using this fact it is not
difficult to see that, as claimed, the cases where either k0 = k or m0 = m

cannot occur. Indeed, if m0 = m then η has only one non-zero column and
consequently a ·η cannot have two non-zero coefficients. Moreover, if k0 = k

and m0 < m then the right hand side of the inequation does not contain the
variables xi, with m0 < i ≤ m, whereas, by assumption, the left hand side

does—a contradiction to the fact that the inequation a ≤ C holds in N. We
may therefore assume that k0 < k and m0 < m.
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Now we recall from Cor. 3.6 that, since a ≤ C is an irredundant inequa-
tion that holds in N, there is a sequence of real numbers λi, i ∈ [k], such
that

a ≤ (λ1c1 + . . .+ λk0ck0) + (λk0+1ck0+1 + . . . + λkck) ,

where λi > 0 for i ∈ [k] and λ1 + . . . + λk ≤ 1. Next let

a1 = (a1, . . . , am0 , 0, . . . , 0) and

a2 = (0, . . . , 0, am0+1, . . . , am) .

Then a = a1 + a2 and

a · η = a1 · η + a2 · η ≤
(λ1c1 · η + . . . + λk0ck0 · η) + (λk0+1ck0+1 · η + . . .+ λkck · η) .

By multiplying with δp = (1, ..., 1) ∈ Np, and therefore getting the weight,
we have:

p = (a · η) · δp = (a1 · η) · δp + (a2 · η) · δp ≤
λ1(c1 · η) · δp + . . .+ λk(ck · η) · δp =
λ1|c1 · η|+ . . .+ λk|ck · η| =
λ1p+ . . .+ λkp ≤ p .

Thus these last two inequalities must be equalities, and

p = (a · η) · δp = (λ1 + . . .+ λk)p .

Furthermore, because of the special structure of the coordinates of the vec-
tors a1, a2, c1, ..., ck, we must have that

a1 ≤ λ1c1 + ...+ λk0ck0

and
a2 ≤ λk0+1ck0+1 + ...+ λkck

and therefore, using similar reasoning as above,

(a1 · η) · δp ≤ (λ1 + . . .+ λk0)p

and
(a2 · η) · δp ≤ (λk0+1 + . . . + λk)p .

From above we know that both the left hand sides and the right hand sides
of these inequalities sum up to p; therefore these two inequalities must be
equalities. Thus we have proven that

np = (a1 · η) · δp = λp ,
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where λ = λ1 + . . . + λk0 and np ∈ N. Note that, as k0 < k and λi > 0
(i ∈ [k]), it holds that λ < 1. Hence we have that np < p.

In a similar way, using the form of C in (1) and the fact that q > p,

N |= a ≤ C and Aq 6|= a ≤ C, we may conclude that there is a γ ∈ Nm×q
such that

nq = (a1 · γ) · δq = λq .

This in turn implies that
np
p =

nq
q or equivalently np ·q = nq ·p, contradicting

our assumption that np < p, nq < q and p and q are different primes. We
may therefore conclude that no such minimal number of variables m exists
and consequently that the statement of the theorem holds. This completes
the proof of the theorem. �

Prop. 4.2 follows immediately from the above result, completing the proof of
the non-existence of a finite equational axiomatization for the two-variable
fragment of the equational theory of the algebra N.

Remark 4.1 Using our results, it is easy to show that the reduct (N,∨,+)
of N is also not finitely based, and that the two variable fragment of its
equational theory has no finite equational axiomatization.

Remark 4.2 As a further corollary of Thm 4.1, we obtain that the equa-
tional theory of the algebra (N,∨,+, 0, 1) is also not finitely based. To see
this, note that whenever an equation holds in (N,∨,+, 0, 1) and one side
contains an occurrence of the symbol 1, then so does the other side. Let
E be an axiom system for (N,∨,+, 0, 1), and let E0 denote the subset of
E consisting of all the equations not containing occurrences of the constant
1. In light of the above observation, E0 is an axiom system for the reduct
N of (N,∨,+, 0, 1). Thus the existence of a finite basis for the algebra
(N,∨,+, 0, 1) would contradict Thm. 4.1.

In similar fashion, it is easy to prove that the two variable fragment of
the equational theory of the algebra (N,∨,+, 0, 1) has no finite equational
axiomatization.

5 An Application to Process Algebra

We now offer an application of the results we have developed in this paper
to the field of process algebra. (The interested reader is referred to [2] for a
textbook presentation of this field of research.)
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We begin by presenting the language of Basic Process Algebra (BPA)
[3] (over a singleton set of actions) with the empty process [10] and its
operational semantics.

The Syntax We assume a countably infinite set Var of process variables,
with typical element x. We use a to denote the only action symbol that may
be used in process terms.

The language (BPAε) of Basic Process Algebra with the empty process
and action a is given by the following BNF grammar:

P ::= ε | a | x | P + P | P · P .

The set of closed terms, i.e., terms that do not contain occurrences of process
variables, is denoted by T(BPAε). We shall use P,Q to range over (BPAε).
A closed substitution is a mapping from process variables to closed terms
in the language (BPAε). For every term P and closed substitution σ, the
closed term obtained by replacing every occurrence of a variable x in P with
the closed term σ(x) will be written Pσ.

Operational Semantics and Trace Equivalence The operational se-
mantics for the language of closed terms T(BPAε) is defined by the tran-
sition rules in Table 1 from [2]. These rules define transitions P

a→ P ′ to
express that term P can evolve into term P ′ by the execution of action a,
and transitions P

√
to express that term P can terminate successfully.

a
a→ ε ε

√

P
√

P +Q
√ P

a→ P ′

P +Q
a→ P ′

Q
√

P +Q
√ Q

a→ Q′

P +Q
a→ Q′

P
√

Q
√

P ·Q√
P
√

Q
a→ Q′

P ·Q a→ Q′
P

a→ P ′

P ·Q a→ P ′ ·Q

Table 1: Transition Rules for T(BPAε).

For n ≥ 0, we write P
an→ P ′ iff there exist terms P0, . . . , Pn such that

P = P0
a→ P1

a→ · · ·Pn−1
a→ Pn = P ′. In that case, we say that an is
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a trace of term P [6]. For terms P,Q ∈ T(BPAε), we write P ' Q iff P

and Q afford the same traces. Note that the collection of traces of a term
is non-empty and prefix-closed. Moreover, since a is the only action, it is
completely determined by the longest sequence it contains. This is the key
to the proof of the following result.

Proposition 5.1 The relation ' is preserved by the operators in the signa-
ture of (BPAε).

In light of Propn. 5.1, we can construct the quotient algebra

T = (T(BPAε)/', ·,+, ε, a)

of closed (BPAε)-terms modulo '. That is, for P,Q ∈ (BPAε),

T |= P = Q iff (for all closed substitutions σ : Pσ ' Qσ) .

The equational theory of T will be written Eq(T). Our order of business in
the remainder of this paper will be to show the following result to the effect
that there is no finite equational axiomatization of the algebra T, i.e., of
trace equivalence over the language T(BPAε).

Theorem 5.1 The algebra T is not finitely based. In particular, no finite
subset of Eq(T) proves all the equations in two variables that hold in T.

To prove the above theorem, note that T is isomorphic to the algebra
(N,∨,+, 0, 1), if we interpret summation over N as ·, ∨ as +, and the con-
stants 0 and 1 as ε and a, respectively. (An isomorphism would simply map
the congruence class of term P to the length of the longest trace P affords.)
Therefore the claim follows immediately from Remark 4.2.

Remark 5.1 As a corollary of the observations in Remark 4.1, similar re-
sults can be proven mutatis mutandis for trace equivalence over the language
of Basic Process Algebra (over a singleton set of actions) without the empty
process.
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