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Abstract

Lambda-lifting and lambda-dropping respectively transform a block-
structured functional program into recursive equations and vice versa.
Lambda-lifting was developed in the early 80’s, whereas lambda-dropping
is more recent. Both are split into an analysis and a transformation.
Published work, however, has only concentrated on the analysis parts.
We focus here on the transformation parts and more precisely on their
correctness, which appears never to have been proven. To this end, we
define extensional versions of lambda-lifting and lambda-dropping and
establish their correctness with respect to a least fixed-point semantics.
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Centre of the Danish National Research Foundation.
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Home page: http://www.brics.dk/~danvy

1



1 Introduction and motivation

If procedural programming languages are out of the Turing tar pit today, it
is largely due to the expressive power induced by block structure and lexi-
cal scope. However block structure and lexical scope are not essential: in the
mid 80’s, Hughes, Johnsson, and Peyton Jones showed how to lambda-lift any
block-structured program into recursive equations, which can then be efficiently
compiled on the G-machine [5, 6, 9]. Since then, lambda-lifting has had its
ups and downs: it is used for example in at least one compiler and two partial
evaluators for the Scheme programming language [1, 2, 3]; in an unpublished
note, “Down with Lambda-Lifting” [7], Meijer severely criticizes it; and it is no
longer systematically used to compile Haskell programs today [8]. In all cases,
lambda-lifting is considered as an intermediate transformation in a compiler or
a partial evaluator.

Our own stab at lambda-lifting is linguistic. We are interested in program-
ming and in the expressive power induced by block structure and lexical scope,
which lambda-lifting eliminates. This led us to devise an inverse transforma-
tion to lambda-drop recursive equations into a block-structured, lexically scoped
program. Lambda-dropping was reported at PEPM’97 jointly with Schultz and
implemented as the back-end of a partial evaluator [4, 10]. In that joint work,
we tried to emphasize the symmetric aspects of lambda-lifting and lambda-
dropping:

scope-insensitive
recursive equations

block
sinking��

lambda
dropping

��

scope-insensitive
block-structured program

block
floating

OO

parameter
dropping

��
scope-sensitive

block-structured program

lambda
lifting

DD

parameter
lifting

OO

Let us start from a block-structured program. A priori, this program con-
tains free variables and is thus scope-sensitive. To make it scope-insensitive,
we pass extra parameters to each of its locally defined functions. These extra
parameters account for the free variables of each function. Once the program is
scope-insensitive, we globalize each block by making it float to the top level and
defining each of its locally defined functions as a global recursive equation.1 Con-
versely, lambda-dropping requires us to group recursive equations into blocks
and make these blocks sink in the corresponding recursive equation, following

1Incidentally, we favor Johnsson’s style of lambda-lifting [6], where recursive equations are
named and names of recursive equations are free in their bodies. This makes it possible to
see them as mutually recursive top-level functions in a functional programming language.
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fun power_l (base, 0) = 1

| power_l (base, expo) = base * (power_l (base, expo - 1))

(* power_l : int * int -> int *)

fun power_d (base, expo)

= let fun loop 0 = 1

| loop expo = base * (loop (expo - 1))

in loop expo

end (* loop : int -> int *)

(* power_d : int * int -> int *)

Figure 1: λ-lifted and λ-dropped versions of the power function

the edges of the source call graph. The resulting program is block-structured
but scope insensitive, except for the names of the (ex-)recursive equations, of
course. We make it scope sensitive by preventing each function from passing
variables whose end use is lexically visible.

A simple example: Figure 1 displays the power function in ML. Many other
examples exist [2, 4, 5, 6, 9, 10] but this one is simple and illustrative enough.
One of its parameters is “inert,” i.e., it does not change through the recursive
calls. The lambda-lifted version carries the inert argument through each re-
cursive call. The lambda-dropped version does not, making it instead a free
variable in the actual traversal of the other argument. Lambda-lifting and
lambda-dropping transform one definition into the other and vice-versa.

The anatomy of lambda-lifting and lambda-dropping: Both naturally
split into an analysis and a transformation. Leaving aside block-sinking, which
is specific to lambda-dropping, the analysis determines which parameters can
be lifted and which parameters can be dropped.

It is however a fact that most of the work in lambda-lifting and lambda-
dropping has concentrated on its analysis and neglected its transformation.
Both at PEPM’97 and at a meeting of the IFIP Working Group on Functional
Programming in June 1997, we ventured that the correctness of lambda-lifting
was still an open problem and there was a general agreement that it was so.

Our goal: We address parameter lifting and dropping and their formal cor-
rectness. More precisely, we want to know whether a lambda-lifted program
and the corresponding lambda-dropped program compute the same function.

Our means: We consider the meanings of the lambda-lifted and the lambda-
dropped programs in a least-fixed point semantics [11]. Using fixed-point induc-
tion, we prove that the lambda-lifted version and the lambda-dropped version
of power compute the same function.
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Our point: We generalize this example and introduce extensional versions of
lambda-lifting and lambda-dropping, i.e.,

Extensional lambda-lifting: a type-indexed mapping from the functional asso-
ciated to a lambda-dropped function to the functional associated to the
corresponding lambda-lifted function; and

Extensional lambda-dropping: a type-indexed mapping from the functional
associated to a lambda-lifted function to the functional associated to the
corresponding lambda-dropped function.

Overview: In Section 2, we present two extensional, type-indexed transfor-
mations respectively lambda-lifting and lambda-dropping a functional, and we
show that the input and the output functionals share the same fixed point.
These extensional transformations assume that one knows which parameter(s)
to lift or to drop. In Section 3, we scale up extensional lambda-lifting and
lambda-dropping to mutually recursive functions. Section 4 concludes.

In the appendix, we instantiate both a lambda-dropped and a lambda-lifted
version of the append function out of the same fold function for lists. We had
observed that instantiating (lambda-dropped) fold functionals naturally yields
lambda-dropped functions, and it came as a surprise to us that it could also
yield lambda-lifted functions as well.

2 Extensional lambda-lifting and lambda-dropping

Lambda-lifting and lambda-dropping are defined intensionally, i.e., they are
textual transformations. Could we define their extensional counterparts, that we
could apply to the corresponding meanings instead of to their text? We answer
positively to this question by exhibiting two mappings between the functional
corresponding to the lambda-dropped version of a function and the functional
corresponding to its lambda-lifted counterpart.

2.1 Extensional lambda-lifting

Let us define an extensional lambda-lifter for unary functionals abstracted by
a dropped parameter. The lambda-lifter lifts the abstracted parameter in first
position in the resulting uncurried binary functional.

Definition 1 Let A, B, and X denote pointed CPOs.

lift1 : (X → (A→ B)→ A→ B)→ (X ×A→ B)→ X ×A→ B
lift1 F f 〈x, a〉 = F x (λa′.f 〈x, a′〉) a

This extensional version makes it possible to lambda-lift a functional prior
to taking its fixed point.

4



Theorem 1 (lambda-lifting) Let A, B, and X denote pointed CPOs and let
F ∈ X → (A→ B)→ A→ B. Then for any x ∈ X and a ∈ A,

fixA→B (F x) a = fixX×A→B (lift1 F ) 〈x, a〉.

Proof: By fixed-point induction. Let us define Rx as an X-indexed family of
admissible relations between A→ B and X ×A→ B:

Rx = {(d, `) | ∀a ∈ A.d a = ` 〈x, a〉}

Each Rx is pointed (contains (⊥A→B, ⊥X×A→B)) and admissible (it is defined
as an intersection of inverse images by (continuous) application functions of the
admissible equality relation). Now ∀x ∈ X and ∀(d, `) ∈ Rx,

(F x d, lift1 F `) ∈ Rx

since ∀a ∈ A, lift1 F ` 〈x, a〉 = F x (λa′.` 〈x, a′〉) a
= F x (λa′.d a′) a
= F x d a

Therefore, by fixed-point induction, the least fixed points of the two functions
are also related, i.e.,

(fixA→B F x, fixX×A→B (lift1 F )) ∈ Rx

which, expanding the definition of Rx, is precisely what we wanted to prove. 2
Similarly, we can define an extensional lambda-lifter that lifts the abstracted

parameter in second position in the resulting uncurried binary functional.

Definition 2 Let A, B, and X denote pointed CPOs.

lift2 : (X → (A→ B)→ A→ B)→ (A×X → B)→ A×X → B
lift2 F f 〈a, x〉 = F x (λa′.f 〈a′, x〉) a

2.2 Extensional lambda-dropping

We now turn to defining an extensional lambda-dropper for uncurried binary
functionals. The lambda-dropper drops the first parameter of the functional,
assuming it to be inert.

Definition 3 F : (A×X → B) → A×X → B is inert in X if and only if
∀f ∈ A×X → B, ∀x ∈ X, and ∀a ∈ A,

F (λ〈x′, a′〉.f 〈x, a′〉) 〈x, a〉 = F (λ〈x′, a′〉.f 〈x′, a′〉) 〈x, a〉

Definition 4 Let A, B, and X denote pointed CPOs.

drop1 : ((X ×A→ B)→ X ×A→ B)→ X → (A→ B)→ A→ B
drop1 F x f a = F (λ〈x, a′〉.f a′) 〈x, a〉

5



This extensional version makes it possible to lambda-drop a functional prior
to taking its fixed point.

Theorem 2 (lambda-dropping) Let A, B, and X denote pointed CPOs and
let F ∈ (X ×A→ B) → X ×A→ B be inert in X. Then for any x ∈ X and
a ∈ A,

fixX×A→B F 〈x, a〉 = fixA→B (drop1 F x) a.

Proof: By fixed-point induction. Let us define Rx as an X-indexed family of
admissible relations between X ×A→ B and A→ B:

Rx = {(`, d) | ∀a ∈ A.` 〈x, a〉 = d a}

Each Rx is pointed and admissible. Now ∀x ∈ X and ∀(`, d) ∈ Rx,

(F `, drop1 F x d) ∈ Rx

since ∀a ∈ A, drop1 F x d a = F (λ〈x′, a′〉.d a′) 〈x, a〉
= F (λ〈x′, a′〉.` (x, a′)) 〈x, a〉
= F (λ〈x′, a′〉.` (x′, a′)) 〈x, a〉 since F is inert in X
= F ` 〈x, a〉

Therefore, by fixed-point induction, the least fixed points of the two functions
are also related, i.e.,

(fixX×A→B F , fixA→B (drop1 F x)) ∈ Rx

which is what we wanted to prove. 2

Similarly, we can define an extensional lambda-dropper that drops the second
parameter of an uncurried binary functional, assuming it to be inert.

Definition 5 Let A, B, and X denote pointed CPOs.

drop2 : ((A×X → B)→ A×X → B)→ X → (A→ B)→ A→ B
drop2 F x f a = F (λ〈a′, x〉.f a′) 〈a, x〉

2.3 Inverseness properties

It is a simple matter to check that drop1◦ lift1 = identity and that lift1◦drop1 =
identity over functionals that are inert in their first parameter.

3 Scaling up to mutual recursion

Extensional lambda-lifting and lambda-dropping scale up to mutual recursion,
along the lines of Section 2.

For the record, Figure 2 displays an extensional lambda-lifter for a pair of
unary functionals abstracted by a dropped parameter, using ML as a meta-
language. The lambda-lifter lifts the abstracted parameter in first position in
the resulting pair of uncurried binary functionals. Similarly, Figure 3 displays
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signature LIFT2

= sig

val lift1 : (’e -> ((’a -> ’b) * (’c -> ’d) -> ’a -> ’b) *

((’a -> ’b) * (’c -> ’d) -> ’c -> ’d)) ->

((’e * ’a -> ’b) * (’e * ’c -> ’d) ->

’e * ’a -> ’b) *

((’e * ’a -> ’b) * (’e * ’c -> ’d) ->

’e * ’c -> ’d)

end

structure Lift2 : LIFT2

= struct

fun lift1 F

= (fn (f,g) => fn (x1, x2) => let val (F1,F2) = F x1

in F1 (fn a2 => f (x1, a2),

fn a2 => g (x1, a2)) x2

end,

fn (f,g) => fn (x1, x2) => let val (F1,F2) = F x1

in F2 (fn a2 => f (x1, a2),

fn a2 => g (x1, a2)) x2

end)

end

Figure 2: Extensional lambda-lifting for mutually recursive functions

signature DROP2

= sig

val drop1 : ((’e * ’a -> ’b) * (’e * ’c -> ’d) ->

’e * ’a -> ’b) *

((’e * ’a -> ’b) * (’e * ’c -> ’d) ->

’e * ’c -> ’d) ->

’e -> ((’a -> ’b) * (’c -> ’d) -> ’a -> ’b) *

((’a -> ’b) * (’c -> ’d) -> ’c -> ’d)

end

structure Drop2 : DROP2

= struct

fun drop1 (F1, F2) x1

= (fn (f, g) => fn x2 => F1 (fn (a1, a2) => f a2,

fn (a1, a2) => g a2) (x1, x2),

fn (f, g) => fn x2 => F2 (fn (a1, a2) => f a2,

fn (a1, a2) => g a2) (x1, x2))

end

Figure 3: Extensional lambda-dropping for mutually recursive functions
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signature FIX2

= sig

val fix : ((’a -> ’b) * (’c -> ’d) -> ’a -> ’b) *

((’a -> ’b) * (’c -> ’d) -> ’c -> ’d) ->

(’a -> ’b) * (’c -> ’d)

end

structure Fix2 : FIX2

= struct

fun fix (f1, f2)

= (fn a1 => f1 (fix (f1, f2)) a1,

fn a2 => f2 (fix (f1, f2)) a2)

end

Figure 4: Applicative-order fixed-point operator for pairs of functionals

an extensional lambda-dropper for a pair of uncurried binary functionals. The
lambda-dropper drops the first parameter of the two functionals. The dropped
parameter is assumed to be inert.

These pairs of functionals require a fixed-point operator such as the one in
Figure 4.

For example, here is a lambda-dropped pair of functionals computing the
parity of a non-negative integer. Their fixed point is the pair of mutually recur-
sive functions even and odd, parameterized with the value to test for the base
case.

val mkFodd_even_d

= fn b => (fn (ev, od) => fn n => (n = b) orelse od (n - 1),

fn (ev, od) => fn n => (n > b) andalso ev (n - 1))

(*

mkFodd_even_d : int -> (’a * (int -> bool) -> int -> bool) *

((int -> bool) * ’b -> int -> bool)

*)

The corresponding two lambda-dropped parity functions are obtained by
instantiating the base value and taking the fixed point of the result:

val (even_d, odd_d)

= Fix2.fix (mkFodd_even_d 0)

(*

even_d : int -> bool

odd_d : int -> bool

*)

Applying Lift2.lift1 to the lambda-dropped pair of functionals yields the
corresponding lambda-lifted pair of functionals:

val Fodd_even_l

= Lift2.lift1 mkFodd_even_d

8



(*

Fodd_even_l : ((int * int -> bool) * (int * int -> bool) ->

int * int -> bool) *

((int * int -> bool) * (int * int -> bool) ->

int * int -> bool)

*)

And indeed, simplifying Lift2.lift1 Fodd even d yields:

(fn (ev, od) => fn (b, n) => (n = b) orelse od (b, n - 1),

fn (ev, od) => fn (b, n) => (n > b) andalso ev (b, n - 1))

which is lambda-lifted.
We obtain two mutually recursive lambda-lifted functions by taking the fixed

point of this pair. Instantiating their first argument yields the parity functions:

val (even_l, odd_l)

= let val (even_aux, odd_aux) = Fix2.fix Fodd_even_l

in (fn n => even_aux (0, n), fn n => odd_aux (0, n))

end

(*

even_l : int -> bool

odd_l : int -> bool

*)

Finally, applying Drop2.drop1 to the lambda-lifted pair of functionals yields
a lambda-dropped pair of functionals which is extensionally equivalent to the
original lambda-dropped pair of functionals.

val mkFodd_even_d’

= Drop2.drop1 Fodd_even_l

(*

mkFodd_even_d’ : int -> ((int -> bool) * (int -> bool) ->

int -> bool) *

((int -> bool) * (int -> bool) ->

int -> bool)

*)

4 Conclusion

Over the last ten years, only the analysis part of lambda-lifting and lambda-
dropping have been investigated. Establishing the formal correctness of their
transformation appeared to be still an open problem. We have introduced exten-
sional versions of lambda-lifting and lambda-dropping to address this problem.
For the sake of expository concision, we have concentrated on single recursive
functions and only informally outlined how the approach scales up to mutually
recursive functions.

Concentrating on single recursive functions makes it clear how both lambda-
lifting and lambda-dropping connect to the static-argument transformation in
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Haskell [4, 8]. One thing we have not reported here (because it is a little
tedious) is that lambda-lifting and lambda-dropping are correct both in a call-
by-name language and in a call-by-value language. To this end, we defined the
denotational semantics of two functional languages, one following call-by-name
and one following call-by-value, and we considered the denotations of a lambda-
dropped function and of a lambda-lifted function such as the power function of
Figure 1: lift1 and drop1 respectively map one into the other and vice-versa.

On the other hand, experimenting with mutually recursive functions re-
veals the practical limitations of extensional, type-directed lambda-lifting and
lambda-dropping: handling block structure becomes daunting rather quickly.
Some automated support is needed here to study extensional lambda-lifting
and lambda-dropping further.
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A Lambda-dropping and lambda-lifting from fold

In daily programming practice, we have observed that fold-instantiated defini-
tions naturally yield lambda-lifted programs when the fold function is lambda-
lifted and lambda-dropped programs when the fold function is lambda-dropped.
For example, let us consider the resident fold function in Standard ML of New
Jersey:

fold : (’a * ’b -> ’b) -> ’a list -> ’b -> ’b.

Figure 5 displays both its lambda-lifted and its lambda-dropped definitions.
The usual definitions of append from fold read as follows.

fun append_l xs ys = fold_l (op ::) xs ys

(* append_l : ’a list -> ’a list -> ’a list *)

fun append_d xs ys = fold_d (op ::) xs ys

(* append_d : ’a list -> ’a list -> ’a list *)

Simplifying them (using the usual unfold-fold technique) yields the following
definitions:

fun append_l [] ys

= ys
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fun fold_l f [] b

= b

| fold_l f (x :: xs) b

= f (x, fold_l f xs b)

fun fold_d f xs b

= let fun walk [] = b

| walk (x :: xs) = f (x, walk xs)

in walk xs

end

Figure 5: Lambda-dropped and lambda-lifted fold functionals for lists

| append_l (x :: xs) ys

= x :: (append_l xs ys)

fun append_d xs ys

= let fun walk [] = ys

| walk (x :: xs) = x :: (walk xs)

in walk xs

end

The former is lambda-lifted, and the latter is lambda-dropped.
It is, however, also possible to obtain the lambda-lifted version of append,

using the lambda-dropped version of fold as follows:

fun append_alt xs ys = fold_d (fn (x, c) => fn ys => x :: (c ys))

xs

(fn ys => ys)

ys

(* append_alt : ’a list -> ’a list -> ’a list *)

Simplifying the definition of append alt yields:

fun append_alt xs ys

= let fun walk [] = (fn ys => ys)

| walk (x :: xs) = (fn ys => x :: (walk xs ys))

in walk xs ys

end

Spreading some syntactic sugar makes it read:

fun append_alt xs ys

= let fun walk [] ys = ys

| walk (x :: xs) ys = x :: (walk xs ys)

in walk xs ys

end

11



which in effect is lambda-lifted.
The key idea here is to instantiate the type variable ’b, in the type of fold d,

with a function ’a list -> ’a list. This function carries the inert parameter
ys until its point of use.

Conjecture 1 One cannot obtain the lambda-dropped version of append, using
the lambda-lifted version of fold.
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