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Abstract

This report is concerned with solving equations on fixed and
non-fixed size bit-vector terms. We define an equational transfor-
mation system for solving equations on terms where all sizes of
bit-vectors and extraction positions are known. This transforma-
tion system suggests a generalization for dealing with bit-vectors
of unknown size and unknown extraction positions. Both solvers
adhere to the principle of splitting bit-vectors only on demand,
thereby making them quite effective in practice.

1 Introduction

Efficient automation of bit-vector reasoning is essential for the effective
mechanization of many hardware verification proofs. It has been demon-
strated, for example, in [SM95] that the lack of such a capability forms
one of the main impediments to cost-effective verification of industrial-
sized microprocessors.

*This research was supported in part by the Deutsche Forschungsgemeinschaft
(DFG) project Verifiz and by the Deutscher Akademischer Austauschdienst (DAAD).
The work undertaken at SRI was partially supported by the National Science Foun-
dation under grant No. CCR-9509931.



Here we are specifically concerned with the problem of solving equa-
tional bit-vector constraints. Given an equation on bit-vector terms,
a solver yields true if this equation is valid, false if it is unsatisfiable,
and an equivalent system of solved equations otherwise. A solver can
therefore not only be used to decide formulas but also to compute a
compact representation of the set of all interpretations (witnesses) for a
given formula. Consider, for example, the formula zg®y; = Y@z,
where z(g), yjg) are variables for bit-vectors of length 6 and 2, respec-
tively, and .®. denotes concatenation of bit-vectors. A solved form for
this formula is given by x5 = Y2 ®y[2)®yj2) Without further restrictions
on ypg. Moreover, solving is the central concept for deciding formulas in
the combination of theories, since Shostak’s algorithm [Sho84] consists
of a composition of solvers for the individual theories. Thus, solving
bit-vector equations opens the door for deciding many hardware verifica-
tion problems including operations from other fundamental theories like
arithmetic, lists, or arrays.

It is our basic premise that the peculiarities of bit-vectors and the par-
ticular combination of bit-vector operations like concatenation, extrac-
tion of contiguous parts, bitwise Boolean operations, and finite arithmetic
require specialized reasoners to effectively deal with bit-vector problems
instead of simply encoding bit-vectors and operations there upon in, say,
arithmetic. Such a specialized solver has been described, for example,
in [CMR96, CMR97]. The key design feature of this algorithm is that it
only splits bit-vectors on demand. In this way, run times of the solver
are—in extreme cases—independent of the lengths of the data paths in-
volved. The solver in [CMR97] includes a number of optimizations to
improve usability. Unfortunately, these low-level details also tend to dis-
tract from the underlying, basically simple concepts of this algorithm.

In this report we remedy the situation and reconstruct the solver
in [CMR97] in terms of an equational transformation system. Besides
the advantage of separating the conceptual ideas of the algorithm from
low-level efficiency issues, the description of solving as an equational
transformation system suggests a generalization to deal with equations
on non-fixed size bit-vector terms, i.e., terms of unknown size or with
integer variables as extraction positions.

We proceed as follows. In Section 2 we fix the notation used through-
out this report, review basic concepts of bit-vectors, and define the prob-
lem of solving. Hereby, we restrict ourselves to the theory of bit-vectors
with the fundamental operations of concatenation and extraction only,



since other bit-vector operations, like bitwise Boolean operations, can be
added in a conceptually clean way using the notion of bit-vector OB-
DDs [CMR97, Mé6198]. Section 3 forms the core of this report and de-
scribes a rule-based algorithm for solving fixed size bit-vector equations.
In Section 4 we extend the rule-based algorithm for solving equations on
non-fixed size bit-vector terms. Section 5 concludes with some remarks.

Prototypical implementations of the fixed size and the non-fixed size
bit-vector solvers are available from:

http://www.informatik.uni-ulm.de/ki/Bitvector/

2 Preliminaries

This section contains background material on Shostak’s procedure for
deciding combinations of quantifier-free theories and on the theory of
bit-vectors.

Canonization. Shostak’s procedure [Sho84] operates over a subclass
of certain unquantified first-order theories called o-theories. Informally,
these theories have a computable canonizer function o from terms (in the
theory) to terms, such that an equation ¢ = w is valid in the theory if and
only if o(t)=c(u), where = denotes syntactic equality. More precisely,
the full set of requirements on canonizers—as stated in [CLS96]—are as
follows.

Definition 1 Let T be a set of terms, possibly containing subterms not
in the theory. Then o : T — T is called a canonizer if it fulfills the
properties:

1. An equation t = u in the theory is valid if and only if o(t) =o(u).
Ift ¢ T then o(t)=t.
o(o(t)) =o(t)

Ifo(t)=f(t1,...,tn) foratermt € T theno(t;) =t; for1 <i <n.

vars(o(t)) C vars(t)



Algebraic Solvability. To construct a decision procedure for equality
in a combination of o-theories, Shostak’s method requires that the o-
theories have the additional property of algebraic solvability. A o-theory
is algebraically solvable if there exists a computable function solve, that
takes an equation s = t and returns true for a valid equation, false for
an unsatisfiable equation, and, otherwise, an equivalent conjunction of
equations of the form x; = t;, where the z;’s are distinct variables of
s =1t that do not occur in any of the ¢;’s; notice that the t;’s may be
constructed using some variables not occurring in the source equation
s =t.

Definition 2 Let E = solve(e), t; denote terms in some algebraic theory,
and x; € vars(e); then solve(.) is called a solver for this theory if the
following requirements are fulfilled [CLS96].

1. Fe <& solve(e) is in the theory.

2. E € {true, false} or E= \z;=t;.

3. If e contains no variables, then E € {true, false}.
4. If E= N\z;=t; then z; € vars(e) and for all i,j: x; & vars(t;),
z; # xj, and t;=o(t;).

Systems of equations E satisfying these requirements are also said to be
in solved form with respect to e.

Solving an equation ¢ = u yields an explicit description of all satisfying
models Z of t =u, i.e., assignments of the variables to terms such that
Z E t=wu where semantic entailment = is defined in the usual way.

Example 1 A solved form for the equation (x V y) = —z on Boolean
terms is given by {x = a, y = b, z = —a A —b}, where a, b are fresh
variables.

Notice that solving is a rather powerful concept, since it can be used to
decide fully-quantified equations by inspecting dependencies between the
terms on the right-hand side of solved forms. The formula Vz,y. 3z. (zV
y) = —z, for example, is valid since the solved form of the equation in the
body (see Example 1) does not put any restrictions on the V-quantified
variables. This argument holds in general.
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Bit-vectors. Fixed size bit-vector terms have an associated (positive)
length n, and the bits in a bit-vector of length n are indexed from 0
(leftmost) to n — 1 (rightmost). In the following, sy, tm), up denote
bit-vector terms of lengths n, m, k, respectively, and ¢, j are positions
in bit-vectors; whenever possible we omit subscripts. Bit-vectors are
either variables z,), constants C := {1j,|n € IN"} U {0p,|n € IN"} (bit-
vectors filled with 1’s and 0’s, respectively), subfield extractions tp,[i, j]
of 7 — i 4+ 1 many bits ¢ through j from bit-vector ¢, or concatenations
t®u; sometimes we use t*, for k € IN", to denote the k successive copies
t®...®t of t. A bit-vector term t, is said to be well-formed if the
corresponding set w f(tp,)) of arithmetic constraints is satisfiable.

wf(pm) = {1<n}, if py is a constant or a variable
wf(t[n]®u[m]) = wf(t[n]) U wf(u[m])
wf(mli,j]) = wfty)U{0<ii<j,j<n}

The set of well-formed terms of size n are collected in BV,, and BV
denotes the union of all BV,,. Likewise, an equation fj,) = uy, is well-
formed if

wf () Uwf(up) U{n =m}

S
<
=Y
E)

I
=
2

I

is satisfiable. Furthermore, ¢ < u denotes the subterm relation on bit-
vector terms, and the set of variables in term ¢ (equation ¢t = u) is denoted
by vars(t) (vars(t = u)).

Concatenation and extraction form a core set of operations that per-
mits encoding other bit-vector operations like rotation or shift. Other ex-
tensions involve bitwise Boolean operations on bit-vectors (e.g. t XOR u)
and finite arithmetic (e.g. addition modulo 2", t+,u). Bit-vector terms
of unknown size or terms with extraction at unknown positions are re-
ferred to as non-fized size terms in the following.

Canonizing Bit-vector Terms. A bit-vector term t is called atomic if
it is a variable or a constant, and simple terms are either atomic or of the
form )[4, j] where at least one of the inequalities i # 0, j # n —1 holds.
Moreover, terms of the form ¢; ®t,® . . . ®t;, (modulo associativity), where
t; are all simple, are referred to as being in composition normal form. If, in
addition, none of the neighboring simple terms denote the same constant
(modulo length) and a simple term of the form t[i, j] is not followed
by a simple term of the form ¢[j + 1,k|, then a term in composition



tml0,n —1] =
tli, [k, 1] — tlk+i,041]
= Ui —n,j — 1] Irn<i
— tplt,n — 1®upn 0,5 —n] IFi<n <y
CQCm] —  Clntm]
ali,jlozlj + 1,k — x[i, k|

Figure 1: Canonizing Bitvecor Terms

normal form is called maximally connected. Maximally connected terms
are a canonical form for bit-vector terms. A canonical form for a term
tin), denoted by o(p,), is computed using the term rewrite system in

Figure 1 (see [CMR97)).

Solvability. Fixed size bit-vector equations can readily be solved by
comparing corresponding bits on the left-hand side and the right-hand
side of the equation followed by propagating the resulting bit equations;
such an algorithm is described, for example, in [CMR96]. This overly-
eager bitwise splitting yields, not too surprisingly, exorbitant run times in
many cases and the resulting solved forms are usually not succinct. The
key feature of the solvers described below is to avoid case splits whenever
possible.

3 Solving Fixed Size Bit-Vector Equations

In this section an equational transformation system for solving equa-
tions on fixed size bit-vector terms with concatenation and extraction is
presented. Hereby, it is assumed that both the left-hand side and the
right-hand side are canonized.

The rules in Figure 2 describe (conditional) transformations on sets
of equations. They are of the form F, a — E’, where E, E’' are sets
of equations and « is a side condition. Such a rule is applicable if
matches a subset of the equations to be transformed and if the given side
condition(s) are fulfilled. The formulation of the transformation rules in
Figure 2 relies on the concept of chunks.



(1) pPp®t = qm®u >—>{ ftj[n] = ] }

P} = 0 (gmi[0 : n — 1))
(1) Pp®t = qm®u, — < o(gmn:m—1))Qu=t
n<m Q) = 0 (qm)[0 : 1 = 1)) ®0 (g [0 = M — 1])
Py = 0 (gm)[0 : 0 — 1))
1) pw®t=qm = o(gmn:m—1]) =t
Qim) = (g [0 : 1 — 1])®0 (qpmy [ : M — 1])
(2) c=d, c#d — FAIL
(3) t=t — {}
. —tfafu
o) ()
= p=r
o {377 - {7
o {2201 ~ (r=q)
o {10} - {2
(8) c=t, t¢C — {t=c}

9) p=q¢®t, pFo(gt) — {qt=p}

Figure 2: Equational Transformation System Cgy.



Definition 3 A chunk is either a bit-vector variable xy,), an extraction
from a bit-vector variable xp,[i, j], or a constant cp).

In the sequel we use the convention that cp,), dj, denote constants, py,,
qm), Tk denote chunks, and s, £, upg) denote arbitrary bit-vector
terms.

Rules (1)—(1") in Figure 2 split equations on terms with a chunk at
the first position of a concatenation into several equations on subterms;
recall from Section 2 that the canonizer o computes maximally connected
composition normal forms. Furthermore, rule (2) detects inconsistencies,
rule (3) deletes trivial equations, and the remaining rules are mostly
used to propagate equalities; t[¢/u]| in rule (4) denotes replacement of
all occurrences of ¢ with w in ¢. Finally, rule (9) flips non-structural
equations in order to make them applicable for further processing with
rule (1”). Notice that none of the rules in Figure 2 introduces fresh
variables.

Example 2 Let v := x4, Yy -= y[g, and z ;= z[g; then:

{z[0,7]|®y = y®z, = =1z[0,7|®z[8, 15|}
Y {z[0,7] =y, y==2, =120, 7]®x[8, 15]}
D 0T =2 y=2 x=20, (s, 15]}
2 {z[0,7] =2, y=2, ©=20z(8,15]}

This derivation exemplifies the importance of so-called structural equa-
tions like = = [0, 7|®x[8,15]. Intuitively, these equations are used to
represent necessary splits of a variable. On the other hand, structural
equations p = s do not carry any semantic information, since p = o(s).

Definition 4 Given an equationt = u, the set of cuts for x,) € vars(t =u),
denoted by cuts(zpy)), is defined as follows:

cuts(zpy) :={—-1,n—1}U{i = 1,7 | zy[i,j] 2 t=u}
Now, the set of structural equations for t = u is defined as:

z€vars(t=u) ’ij € ClltS(.T), le < ’ij+1 and
there is no i’ € cuts(x), i # 1; with ig <1 <y}



In the Example 2 above, cuts(zpq) = {—1,7,15} and therefore
SE(t=u)={z=2[0,7]®x[8,15], y=y[0,7], z=2[0,7] }.

The last two equations in this set of structural equations can be dis-
carded, since they do not represent proper splits. Notice also that, in the
worst case, the cardinality of S€(.) may grow quadratically with the size
of the bit-vectors involved. Some simple implementation techniques for
handling this kind of blow-up are listed in [M6198].

Definition 5 Let t =wu be a bit-vector equation. A set of equations Y,
is called a solved set for t =w if: 1. Y| is equivalent with {t =u}. 2.
no rule of Cg is applicable for Y, . 3. for each x € vars(t =u) N, T,
contains an equation of the form x = s.

A solved set does not constitute a solved form in the sense of Definition 2,
since some variable might occur on both sides of an equation. Given
a solved set, however, it is straightforward to construct an equivalent
solved form by omitting equations not of the form x; = u and replacing
occurrences of extractions right-hand sides with fresh variables. Given
the solved set {z[0,7] =z, y =z, x = z®x[8, 15]} of Example 2, the set
{r =2®a, y=z}, where a is a fresh variable, is an equivalent solved
form. This can be done in general.

Lemma 1 For each solved set Y| of equations there is an equivalent
solved form Y.

Now we are in the position to state a soundness and completeness result
for the equational transformation system in Figure 2. This theorem,
together with the construction for proving Lemma 1, determines a solver
in the sense of Definition 2.

Theorem 1 Let t =wu be an equation on fized size, canonized bit-vector
terms. Starting with the initial set of equations {t = u} U SE(t =u),
the equational transformation system Cg in Figure 2 terminates with an
(equivalent) solved set for t = u.

It can easily be checked that the transformation rules (1)—(9) in Fig-
ure 2 are equivalence-preserving. The transformation process terminates,
since, first, rules (1)—(1"”) decrease the lengths of bit-vector terms, sec-
ond, rules (2),(3),(6) decrease the number of equations in the respective



target sets, and third, the rules (4),(5),(7),(8) do not enlarge target sets
and, together with rule (6), they construct a unique representation of ev-
ery chunk. This process of equality propagation is terminating. Finally,
rule (9) flips an equation as a preprocessing step for applying rule (1”);
it cannot be applied repeatedly. The form of the rules together with the
initial set SE(t = u) guarantees that the terminal set is a solved set. In
particular, the set SE(t = u) includes for each (non-arbitrary) variable x
in vars(t = u) an equation of the form = = s in order to match the third
requirement of Definition 5.

4 Bit-Vector Equations of Non-Fixed Size

In this section we develop a conceptual generalization of the equational
transformation system Cy that is capable of solving equations on non-
fixed size bit-vector terms like the word problems below.

Example 3

T @0 ®Ym) = 2@ Quwy (1)
z®1y®0y = @0y @z (2)

Equation (1) is solvable if and only if n = 1, m = 3 orn = 3, m = 1, while
Equation (2) is solvable if and only if [ is even. Thus, both equations can
not be solved in the strict sense of Definition 2. Instead, they motivate
not only the need for representing all solutions as a disjunction of solved
forms but also for integrating integer reasoning into the process of solving
bit-vector equations.

Definition 6 A frame is a pair (T, V) consisting of a set of bit-vector
equations Y and a set U of integer constraints of the formn < m, n =m,
n|m (divisibility), or n fm (non-divisibility) for n,m € IN*. Let Vpy,
Viv+ be sets that include the bit-vector variables and the natural number
variables of some frame (Y, V), respectively; then an interpretation of
(Y, W) is a function I : Vgy UViy+ — BVUINT such that Z(x},)) € BV,
andZ(n) € INT. This determines notions like satisfiability or consistency
of a frame in the usual way.

A set of frames is called satisfiable if there is at least one satisfiable
frame and two sets of frames are equivalent if their sets of satisfying
interpretations coincide. Furthermore, a set = of frames is called disjoint,
if for each (Y;,¥;), (V;,V;) € =, i # j, the conjunction of their integer
constraints is inconsistent; i.e., if V; ANV; = L.

10



(1) ({p[n]®t = Q[m}®u} U E, \I/) —

[ D) = 0(qm) [0 : 1 — 1]),
o(qmi[n : m — 1]))Qu =t, UE,
Gim) = g [0 = 12— 1@y [0 2 10 — 1]
{n<m}uvw

Pln] = 4[m)> UE
t=u ’

{n=m}uv

dim) = U(p[n][o m = 1])7
o(pmilm : n — 1])®t = u, | UE,
n—1

D] = P[0 : m — 1]@ppy [m :
{n>m}uvw

(1) ({zpli:j)l=2pk:J}UEY),  wherei <k —

( {I[nl[i 1) = aj-g T—T} UE, )
((—i+1)|(k—i)}UT
( {x[n] [0:1]= a[h}®(b[hq®a[h})l_:—hiﬂ} UE, )
((=i+1) f(h—D)}UT

where h = (I —i+ 1)MOD(k — i),
W=k—i—h,

a, b fresh variables.

Figure 3: Split Rules of Sg.
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A frame transformation system called Sy is presented in Figures 3 and 4.
The form of these rules is largely motivated by the equational transfor-
mation system in Figure 2 with the additional provision of case splits in
rule (1) and (1)*. Application of rule (1), for example, replaces a source
frame (Y, ¥) by three target frames (T;, ¥;). It is easily seen that the
property of disjointness is preserved by the frame transformation sys-
tem Sy. The rules (1”)—(9) in Figure 4 only operate on sets of bit-vector
equations and do not alter any integer constraints, while rule (10) is used
to delete frames with inconsistent integer constraints. Hereby, the side
condition ¥ |= L of rule (10) is decidable. This can be shown by a simple
reduction to the Diophantine problem for addition and divisibility that
was proven decidable, for example, in [Lip78, Lip81].! Altogether, Sy
yields {(0,0)} for tautologies, whereas unsatisfiable formulae are eventu-
ally reduced to {}. Notice also that, in contrast to the rule system Cg
in Figure 2, the frame transformation system Sy may introduce fresh
variables a and b.

Theorem 2 states a correctness result for this frame transformation
system that can be proved similarly to Theorem 1; in contrast to The-
orem 1, however, it does not imply termination of the transformation
process.

Theorem 2 Lett=u be an equation on canonized and (possibly) non-
fized size bit-vector terms. Define the initial frame (Yy, ¥¢) by

{t=u}USE(t=1u), wf(t=u)).

If the process of applying rules Sy to the singleton set Zq := {( Yy, ¥o)}
terminates with a set of frames Z¢, then:

1. Z¢ contains only solved forms (for t =u) in the sense of Defini-
tion 2.

2. Hy is disjoint.
3. oy and =y are equivalent.

The rules in Figures 3, 4 and the overall structure of the solver may be
best explained by means of an example. Consider, for example, solving

!The Diophantine problem for addition and divisibility is equivalent to the decid-
ability of the class of formulas of the form Jz1, ..., z,. /\i?:1 A; in natural numbers,
where the A; have the form z,, = z; + &k, Tm|z;, or ,, = p and p is a natural
number [DMV95].

12



P} = 0(qm) [0 : m-1]),
, o (qim)[n : m-1]) =1,
(1 ) ({p[n}®t - Q[m]}UEv \Il) — Q[m} = Q[m] [O : n—1]®q[m] [n . m—l]

UE, T

(2) E{{:E;Unﬁ? ) — (B, 7)

(4) <{ §:Z}UE \If> g=t - <{ f;ii[q/“]}UE» \If)
(5) <{§3}UE \I/) afresh  — ({ ZG}UE, qz)
(6) ({ZzZ}UE fo> afresh  — ({ZzZ}UE xp)
o (s = (e
8) ({c=t}UE, ¥), téC  — ({t=c}UE, T

9) {p=¢qRt}UE, V), pFo(qet) — ({g®t=p}UE, U)
(10) (T, ¥), U = 1 »— FAIL

Figure 4: Simple Rules of Sg.
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the word problem (2) in Example 3. In this example we freely simplify
integer constraints by omitting weakest constraints.

Example 4 There are no structural equations for
T @1y ®0p) = 1y &0y @)y

and the corresponding well-formedness constraints are given by the sin-
gleton set {1 < [}. Thus, solving starts with the initial frame

Eo = {({zp®1y®0y = 1;y@0y @y}, {1 < 1})}.

Rule (1) in Figure 3 matches with the leftmost chunks z; and 1 of the
equation e, and application of this rule yields the following three frames:

—_
—
—

1-=
(-} {1<li<1}),
({zp = 1y, 1y®0p = Oy®@z}, {1<,1=1}),
({zl0: 0] =1y, oyl : F1]@1y®0y = 0y®zy}, {1 < 1,1 > 1})

The first frame is inconsistent and can be deleted via rule (10). Likewise,
the second frame in =; vanishes, since rule (2) eventually triggers for the
equation

1 ®0p) = Oy ®zqy.

It remains to process
(Tg, \113) = ({LL‘[Z] [0 : O] = 1[1}, x[l][l : l—1]®1[1]®0[1] = Om®$m}, {l > 1})

In an attempt to match the second equation of Y3 with rule (1), three new
frames (Y31, ¥31), (Y32, ¥32) and (Y33, ¥33) are generated with additional
constraints [ < 2, [ = 2 and [ > 2, respectively. Now, U3, yields false
and (Y3, U3y) terminates, after simplifying the integer constraints, with
the frame

({zg = 1y®0p }, {I=2}).
In frame (Y33, ¥33), the equation x[0 : [ — 3] = (2 : | — 1] is matched
by rule (1)* This y1€ldS two frames (T331,\I’331) and (T332,\I/332) such
that [ is required to be even in the first frame and odd in the second

frame. In 331, the equation z) = (a[g})% is added, thereby terminating
with the frame

(2 = (Ly®0p)%, {I > 2, 2|1}).

14
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Since Y33, contains the equation zp = by ®(dj®bpy) 2 , together with
the equations zp[0: 0] =1 and zp[l —1:1— 1] =0y this frame re-
duces to false. Altogether, solving terminates with the two frames:

{ (o =1w®0y},  {1=2}) }
({zp = Ap®op)z}, {1>2,2]1})

Thus, the set of solutions is characterized by zp = (1[1]®0[1])% for all
even [’s greater or equal to 2. In special situations like the one above,
a refinement of the solving algorithm could try to merge ‘compatible’
frames as soon as possible.

5 Conclusions

We have presented two specialized algorithms for solving equations on
fixed size bit-vectors and for non-fixed size bit-vectors built up from con-
catenation and extraction operators. Both solvers adhere to the principle
of splitting bit-vectors only on demand.

In the case of the fixed size bit-vector solver, this feature leads to
moderate run times for large data paths. Even better, for some equa-
tions, solving time is independent of the size of data paths. However,
the restriction to concatenation and extraction causes bit-wise splitting
in situations where the regularity of solved forms cannot be expressed
succinctly in terms of these operators only (for examples see [BDLIg]
or [BP98]). An extension of the fixed size solver with an iteration opera-
tor as proposed in [BP98| handles these cases well. More importantly, a
useful bit-vector solver should support a rich set of operators including
bitwise Boolean operators and finite arithmetic. We have demonstrated
in [CMR97] that bitwise Boolean operators can be added in a conceptu-
ally clean way using the notion of bit-vector OBDDs. Again, splits are
only performed on demand. OBDDs can also be used to encode finite
arithmetic operations as Boolean functions. Using a ripple-carry adder
for adding (modulo 2") two bit-vectors of length n in a naive way, how-
ever, yields overly-eager bitwise splitting and the resulting solver is, in
our experience, not useful in practice. Barrett et al [BDL9I8] approach
this problem by introducing a normal form geared to support arithmetic
directly. In order to perform splits lazily, they introduce an overflow
operator for ripple-carry additions. Their normalizer, however, does not
possess the property of canonicity, and their algorithm does not seem to
directly support bitwise Booleans operators.
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The solver for non-fixed size bit-vector equations has been devel-
oped as a generalization of the algorithm for fixed size bit-vector equa-
tions. With a similar motivation in mind, Bjgrner and Pichora [BP98|—
independently—developed an algorithm for solving special cases of bit-
vector equations of non-fixed size; their approach, however, is restricted
to processing equations including one unknown size only, while our solver
permits processing equations containing several unknowns. On the other
hand, the solver in [BP98] is known to be terminating on the given
fragment, while it is unknown if the algorithm described in Section 4
terminates for all input equations. If it is indeed terminating then it
may be used to decide word equations [Mak92, PR98]. It has been
shown, however, that any non-fixed size solver that supports a richer set
of operators—as required for most hardware applications—is necessarily
incomplete, since the halting problem can be reduced to solve non-fixed
size equations on bit-vectors built up from concatenation, extraction, and
bitwise Boolean operators only [M&198].
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