
B
R

IC
S

R
S

-99-9
B

rabrand
etal.:

A
R

untim
e

S
ystem

forInteractive
W

eb
S

ervices

BRICS
Basic Research in Computer Science

A Runtime System for
Interactive Web Services

Claus Brabrand
Anders Møller
Anders B. Sandholm
Michael I. Schwartzbach

BRICS Report Series RS-99-9

ISSN 0909-0878 March 1999



Copyright c© 1999, Claus Brabrand & Anders Møller & Anders B.
Sandholm & Michael I. Schwartzbach.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/99/9/



A Runtime System for
Interactive Web Services

Claus Brabrand Anders Møller Anders Sandholm
Michael I. Schwartzbach

BRICS∗, Department of Computer Science
University of Aarhus, Denmark

{brabrand,amoeller,sandholm,mis}@brics.dk

Abstract

Interactive web services are increasingly replacing traditional static
web pages. Producing web services seems to require a tremendous
amount of laborious low-level coding due to the primitive nature of
CGI programming. We present ideas for an improved runtime system
for interactive web services built on top of CGI running on virtually
every combination of browser and HTTP/CGI server. The runtime
system has been implemented and used extensively in <bigwig>, a
tool for producing interactive web services.

Keywords: CGI, Interactive Web Service, Web Document Management,
Runtime System, Session Model.

1 Introduction

An interactive web service consists of a global shared state (typically a
database) and a number of distinct sessions that each contain some local
private state and a sequential, imperative action. A web client may invoke

∗Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

1



an individual thread of one of the given session kinds. The execution of this
thread may interact with the client and inspect or modify the global state.

One way of providing a runtime system for interactive web services would
be to simply use plain CGI scripts [5]. However, being designed for much
simpler tasks, the CGI protocol by itself is inadequate for implementing
the session concept. It neither supports long sessions involving many user
interactions nor any kind of concurrency control. Being the only widespread
standard for running web services, this has become a serious stumbling stone
in the development of complex modern web services.

We present in this paper a runtime system built on top of the CGI protocol
that among other features has support for sessions and concurrency control.
First, we motivate the need for a runtime system such as the one presented
here. This is done by presenting its advantages over a simple CGI script
based solution. Afterwards, a description of the runtime system, its different
parts, and its dynamic behavior is given. We round off with a discussion of
related work, a conclusion, and directions for future work.

In the appendices, we briefly describe an implementation of the suggested
runtime system. Also, we give a short presentation of <bigwig> [4], which
is a tool for producing interactive web services that makes extensive use of
the self-contained runtime system package.

2 Motivation

The technology of plain CGI scripts lacks several of the properties one would
expect from a modern programming environment. In the following we dis-
cuss various shortcomings of traditional CGI programming and motivate our
solution to these problems, namely the design of an improved runtime system
built on top of the standard CGI protocol.

2.1 The session concept

First, we will describe and motivate the concept of an interactive web service.
The HTTP protocol was originally designed for browsing static docu-

ments connected with hyperlinks. CGI together with forms allows dynamic
creation of documents, that is, the contents of a document are constructed
on the server at the time the document is requested. Dynamic documents

2



have many advantages over static documents. For instance, the contents of
the documents can be tailor-made, and up-to-date.

A natural extension of the dynamic-document model is the concept of
interactive services, which is illustrated in Figure 1. Here the client does

browse

reply
compute

show page

start session

forms etc.
fill out

submit

CLIENT SERVER

Figure 1: An interactive web session

not browse a number of more or less independent statically or dynamically
generated pages but is guided through a session controlled by a session thread
on the server. This session can involve a number of user interactions. The
session is initiated by the client submitting a “start session” request. The
server then starts a thread controlling the new session. This thread generates
a reply page which is sent back to the client. The page typically contains
some input fields that are filled in by the client. That information is sent to
the server, which then generates the next reply, and so on, until the session
terminates.

This session concept allows a large class of services to be defined. How-
ever, a number of practical problems needs to be solved in order to implement
this model on top of the CGI model.

2.2 CGI scripts and sequential session threads

As explained above, a web service session consists of a sequential compu-
tation that along the way presents information to the client and waits for

3



replies. However, CGI is a state-less protocol, meaning that execution of
a CGI script only lasts until a page is shown to the web client. This fact
makes it rather tedious to program larger web services involving many client
interactions. The sequential computation has to be split up into the small
bits of computation that happen between client interactions. Each of these
small bits will then constitute a CGI script or an instance of a CGI call.

Furthermore, to achieve persistency of the local state, one has to store
and restore it explicitly between CGI-calls, for instance “hidden” in the web
page sent to the client. For simple services where the full session approach
is not needed this stateless-server approach might be preferable, but it is
clearly inadequate in general.

Thus, the problem of forced termination of the CGI script at each client
interaction is two-fold:

• Having to deal with many small scripts makes the writing and main-
tenance of a web service rather difficult because the control-flow of the
service tends to become less clear from the program code.

• Starting up a whole new process every time a client interaction is per-
formed is expensive in itself. On top of this a complete image of the
local state has to be stored and restored each time a client interac-
tion is required. The local state can potentially hold a lot of data,
such as database contents. Thus one gets a substantial overhead in the
execution of a web service.

We provide a simple solution which splits CGI scripts into two components,
namely connectors and session threads. A connector is a tiny transient CGI
script that redirects input to a session thread, receives the response from
that thread, and redirects it back to the web client. The session threads are
persistent processes running residently on the web server. They survive CGI
calls and can therefore implement a long sequential computation involving
several client interactions. The use of transient connectors and persistent
session threads decreases the difficulty of writing and maintaining web ser-
vices. Furthermore, it improves substantially on the overhead of the web
server during execution of a service.

2.3 Other CGI shortcomings

Traditionally, reply pages from session threads are sent directly to the client.
That is, the session thread (or the connector if using the system described

4



above) writes the page to standard-output and the web server sends it on to
the client browser. This basic approach imposes some annoying problems on
the client:

• The client is not able to use “bookmarks” to identify the session, since
selecting a bookmark might imply resending an old query to the server
while the server expects a reply to a more recent interaction. It would
be natural to the client if selecting a bookmarked session would continue
the session from its current state. Obviously, this requires the server to
always keep some kind of backup of the latest page sent to the client.

• In the session concept described in the previous section, it does not
make sense to roll back execution of a session thread to a previous
state. A thread can only be continued from its current point of execu-
tion. As a result of sending pages directly using the standard-output
method, every new page shown to the client gets stacked up in the
client’s browser. This means that the stack of visited pages becomes
filled up with references to outdated pages. One result is that the
“back” button in the browser becomes rather useless.

We suggest a simple solution where—instead of sending the reply itself—the
session thread writes its reply to a file visible to the client and then sends to
the client a reference to the reply file. By choosing the same URL for the
duration of the session, this reference can then function as an identification
of that particular session. This solves both the problem with bookmarks and
with the “back” button. Pressing “back” will now bring the client back to
the web page where he started the session, which seems like a natural effect.

This method also opens up for an easy solution to another problem. Some-
times the server requires a long time to compute the information for the next
page to be shown to the client. Naturally, the client may become impatient
and lose interest in the service or assume that the server or the connection
is down if no response is received within a certain amount of time. If confir-
mation in the form of a temporary response page is sent, the client will know
that something is happening and that waiting will not be in vain.

This extra feature is implemented in the runtime system as follows. If a
response is not ready within for instance 8 seconds, the connector responds
with a reference to a temporary page (for instance saying “please wait”)
and terminates. This page will then automatically be loaded by the clients
web browser and reload itself, say every 5 seconds. Once the session thread

5



finishes its computation and the real response page is ready, the thread just
replaces the temporary page with the real response page. This will have the
effect that next time the page is reloaded, the real response page will be
shown to the client.

This reloading can be done with standard HTML functionality. Of course
the reloading causes some extra network traffic, but using this method is
probably as close as one gets to server pushing in the world of CGI program-
ming.

2.4 Handling safety requirements consistently

Another serious problem with traditional CGI programming is that concur-
rency control, such as synchronization of sessions and locking of shared vari-
ables, gets handled in an ad-hoc fashion. Typically, this is done using low-
level semaphores supplied by the operating system.

As a result, web services often implement these aspects incorrectly result-
ing in unstable execution and sometimes even damaging behavior.

Our solution allows one to put safety requirements, such as mutual exclu-
sion or much more complex requirements, separately in a centralized super-
vising process called the controller. This approach significantly simplifies the
job of handling safety requirements. Also, since each of the requirements can
be formulated separately, the solution is much more robust towards changes
in various parts of the code.

It is generally considered inefficient and unsafe to have centralized com-
ponents in distributed systems. However, in this case the bottleneck is more
likely to be the HTTP/CGI server and the network than the safety con-
troller. In spite of that, we do try to distribute the functionality of our
safety controller as discussed in Section 5.

3 Components in the Runtime System

At any time there will be a number of web clients accessing the HTTP/CGI
server through the CGI protocol. On the server side we will have a controller
and a number of session threads running. The session threads access the
global data and produce response pages for the web clients. From time
to time a connector will be started as the result of a request from a web
client. The connector will make contact with the running session thread.

6



A connector is shut down again after having delegated the answer from a
session thread back to the web client.

In the following we give a more detailed description of these components.
For an overview of the components in the runtime system, see Figure 2.

session thread

reply

controller

internet

client

HTTP/CGI server

connector

Figure 2: The runtime system

Web clients Web clients are the users of the provided web service. They
make use of the service essentially by filling in forms and submitting requests
(HTTP/CGI) using a browser.

The HTTP/CGI server The HTTP/CGI server handles the incoming
HTTP/CGI requests by retrieving web pages and starting up appropriate
CGI scripts, in our case connectors. It also directs response pages back to
the web clients.

Session threads Session threads are the resident processes running on the
web server surviving several CGI calls. They represent the actual service
code that implements the provided web service. They do calculations, search
databases, produce response web pages, etc.

Connectors When a web client makes a request through the server, a
connector is started up. If this request is the first one made, the controller

7



starts up a new session thread corresponding to the request made by the web
client. Otherwise—that is, if the web client wants to continue execution of
a running session thread—the connector notifies the relevant session thread
that a request has been made and forwards the input to that thread.

Reply pages Each session thread has a designated file which contains the
current web page visible to the client of the session. When writing to this file,
the whole contents is through a buffer updated atomically since the client
may read the file at any time.

The controller The controller is a central component. It supervises ses-
sion threads and has the possibility of suspending their execution at various
points. This way it is ensured that the stated safety requirements are satis-
fied.

Furthermore, the runtime system also contains a global-state database
(could be the file-system or a full-fledged database), and a service manager,
which takes care of garbage-collecting abandoned session threads and other
administrative issues.

4 Dynamics of the Runtime System

In this section we describe the dynamic behavior of the runtime system. We
start by explaining the overall structure of the execution of a session thread.
Starting from this, we present each of the possible thread transitions.

First, it is described how a session thread is started. Then, transitions
involving interaction with a web client, that is, showing web pages and getting
replies, are dealt with. Finally, the transitions involving interaction with the
controller are presented.

For each transition we give a description of the components involved and
their interaction.

4.1 Execution of a thread

The lifetime of a session thread is depicted in the diagram in Figure 3. When
a thread is first started, it enters the state active. Here it can do all sorts of
computations.

8



start

��

showing

vv
active

77

��ww
end waiting

^^

Figure 3: Possible states and transitions for a session thread

Eventually it reaches a point where it has composed a response HTML
page. This page is shown to the web client and the thread enters the
state showing. Here it waits for the web client to respond via yet another
HTTP/CGI request. Upon re-submission the thread reenters the state active
and resumes execution.

Note that in the world of naive CGI programming when moving from
active to showing and back one would have to store a complete image of the
local state before terminating the script. Then, when started again a new
process would be started and the local state would have to be reconstructed
from the image that was saved. This substantial overhead of saving and
restoring local state is avoided completely by the use of transient connectors
and resident threads.

While in state active a thread can get to a point in execution where safety
critical computation, such as accessing a shared resource, needs to be carried
out. When reaching such a point the thread asks the controller for permission
to continue and enters the state waiting. When permission is granted from
the controller the thread reenters the active state and continues execution.

With a traditional approach one would have to merge the code imple-
menting the intricate details dealing with concurrency control with the ser-
vice code. This intermixing would in addition to substantially reducing the
readability of the code also increase the risk of introducing errors. Our so-
lution separates the code dealing with concurrency control from the service
code.

When the session is complete, the thread will leave the state active and
end its execution.

9



4.2 Starting up a session thread

This section describes the transition from start to active.
When a new web client makes an HTTP/CGI request, the server will

start up a new connector as a CGI script. Since this request is the first one
made by the web client, a new thread is started according to the session
name given in the request. As will be described later, a response page will
be sent back to the client when the thread reaches a show call or a certain
amount of time, for instance 8 seconds, has passed.

When a session thread is initiated or when it moves from showing to
active, the contents of the reply file is immediately overwritten by a web
page containing a “reply not ready—please wait” message and a “refresh”
HTML command. The “refresh” command makes the browser reload the
page every few seconds until the temporary reply file is overwritten by the
real reply as described in the following section. The default contents of the
“please wait” page can be overridden by the service programmer by simply
overwriting the reply file with a message more appropriate for the specific
situation.

4.3 Interaction with the client

During execution of a running thread the service can show a page to the web
client and continue execution when receiving response from the client. In the
following we describe these two actions.

Showing a page

This section describes the transition from active to showing.
During execution of a session thread one can do computations, inspect

the input from the client, produce response documents, etc. When a response
document has been constructed and the execution reaches a point where the
page is to be shown to the client, the following actions will be taken:

1. First, the document to be shown is written to the reply file as indicated
in Figure 2. This file always contains a “no cache” pragma-command,
so that the client browser always fetches a new page even though the
same URL is used for the duration of the whole session. Unfortunately
we thereby lose the possibility of browser caching, but being restricted
to building on top of existing standards we cannot get it all.

10



2. If the connector, that is, the CGI script started by the web client, has
not already terminated due to the 8 second timeout, the session thread
tells it that the reply page is ready. After this, the thread goes to sleep.

3. When the connector either has been waiting the 8 seconds or it receives
the “reply ready” signal from the session thread, the connector writes a
location-reference containing the URL for the reply page onto standard-
output (using the CGI “location” feature), and then dies.

4. Finally, the HTTP/CGI server will transmit the URL back to the
web clients browser which then will fetch the reply page through the
HTTP/CGI server and show it to the client.

In Figure 2, these actions describe a flow of data starting at the session thread
and ending at the client.

Receiving client response

This section describes the transition from showing to active.
While the session thread is sleeping in the showing state, the web client

will read the page, fill out appropriate form fields, and resubmit. This will
result in the following flow of data from the client to the session thread (see
Figure 2):

1. First, a request is made by the client via the CGI protocol. This
request can be initiated either by clicking on a link or by pressing a
submit button.

2. As a result, the HTTP/CGI server starts up a CGI script, that is, a
connector.

3. The connector will then see that the client is already associated with
a running thread and thus wake up that sleeping session thread and
supply its new arguments.

4.4 Interaction with the controller

The controller allows the programmer to restrict the execution of a web
service in such a way that stated safety requirements are satisfied.

11



Threads have built-in checkpoints at places where safety critical code is
to be executed. At these checkpoints the thread must ask the controller for
permission to continue. The controller, in turn, is constructed in such a way
that it restricts execution according to the safety requirements and only allow
threads that are not about to violate the requirements to continue.

In the following we describe in further detail the controller itself, what
happens when session threads ask for permission, and how permission is
granted by the controller.

The controller

The controller consists of three parts: some control logic, a number of check-
point-event queues, and a timeout queue. Figure 4 gives an overview of the
controller.

3S

3S

S3

QUEUE

E

CHECKPOINT EVENT QUEUES

CONTROL LOGIC

1

2E

TIMEOUTE3

Figure 4: Components of the controller

The control logic The control logic is the actual component representing
the safety requirements. It controls whether events are enabled, and hence
when the various session threads may continue execution at checkpoints. One
could imagine various approaches, such as, the use of finite state machines or
petri-nets. For that reason, the internals of the control logic are not specified
here. The only requirement is that the interface must contain the following
two functions available to the runtime system:

• check enabled — takes a checkpoint-event ID as argument and replies
whether that event is currently enabled.

12



• event occurred — takes the ID of an enabled checkpoint-event as
argument and updates the internal state of control logic with the in-
formation that the event has occurred.

We explain in the following how these functions are used in the controller.

Checkpoint-event queues The checkpoint-event queues form the inter-
face to the running threads of the service. There is a queue for each possible
checkpoint event. When a thread reaches a checkpoint it asks the controller
for permission to continue by adding its process-ID onto the queues corre-
sponding to the events it wants to wait for at the checkpoint.

Timeout queue As an extra feature one can specify a timeout when asking
the controller for permission to continue. For this purpose the controller has a
timeout queue. If permission is not granted within the specified time bound,
the controller wakes up the thread with the information that permission
has not been granted yet, but a timeout event has occurred. The specified
timeouts are put in the special timeout queue (which is implemented as a
priority queue).

Asking for permission at checkpoints

This section describes the transition from active to waiting.
As mentioned earlier, one has the possibility of adding checkpoints to

session code where critical code is to be executed. The runtime system inter-
face makes some functions available to the service programmer for specifying
checkpoints. Conceptually, the programmer uses them to specify a “check-
point statement” as illustrated with an example in Figure 5. This example
would have the effect that whenever a thread instance of this session reaches
this point it will do the following:

1. First, it will tell the controller that it waits for either an E1 event, an
E3 event, or a timeout of 20 seconds.

2. Having sent this request to the controller, the thread goes to sleep
waiting for a response.

13



wait {
case E1:

...

case E3:

...

timeout 20:

...

}

Figure 5: A checkpoint example

Controller actions

When the controller is up and running, it loops doing the following:

• If it receives a request to pass a checkpoint from a client, the controller
pushes the ID of the client onto the appropriate queues. These entries
are chained so that later, when permission is granted, they can all be
removed at once. Figure 4 illustrates the effect of the example from
Figure 5 where entries belonging to a session, S3, are in the E1, E3 and
timeout queues.

• If a timeout has occurred, the controller deletes the affected entries in
the queues and informs the involved thread.

• Otherwise, it will look for an enabled event using the check enabled

function from the control logic. If the queue corresponding to an en-
abled event is non-empty then the controller makes the event occur by
doing the following:

1. It removes the linked entries with the thread-ID of the enabled
event from the respective queues,

2. tells the control logic that the event has occurred using the func-
tion event occurred, and

3. wakes up the involved thread with a “permission granted” signal
containing the name of the event.

14



If several events become enabled, a token-ring scheduling policy is used.
This ensures fairness in the sense that if a thread waits for an enabled
event, it will at some point be granted permission to continue.

Permission granted

This section describes the transition from waiting to active.
Having sent a request for permission to continue the thread is sleeping,

waiting for the controller to make a response. If a “permission granted” signal
is sent to the thread, it wakes up and continues, branching according to the
event signaled by the controller. In the example checkpoint in Figure 5, if
the controller grants permission for an E1 event, execution is continued at the
code following case E1. If the controller sends a “timeout” signal, execution
continues after timeout.

5 Extending the Runtime System

The runtime system described in the previous sections can be extended in
several ways. The following extensions either have been implemented in an
experimental version of the runtime system package or will be in near future.
With these extensions, we believe that we begin reaching the limits of what
is possible with the standard CGI protocol and the current functionality of
standard browsers.

Distributed safety controller

To smoothen presentation, we have so far described the controller as one
centralized component. In most cases it is possible to divide the control
logic into independent parts controlling disjoint sets of checkpoint events.
The controller can then be divided into a number of distributed control pro-
cesses [10]. This way the problem of the controller being a bottleneck in the
system is successfully avoided.

Service monitors

Using the idea of connectors and controllers, one can construct a “remote ser-
vice monitor”, that is, a program run by a super-client, which is able to access
logs and statistics information generated by the connectors and controllers,

15



and to inspect and change the global state and the state of the control logic
in the controllers. This can be implemented by having a dedicated monitor
process for each service.

Secure communication

The system presented here is quite vulnerable to hostile attacks. It is easy
to hijack a session, since the URL of the reply file is enough to identify a
session. A simple solution is to use random keys in the URLs, making it
practically impossible to guess a session ID. Of course, all information sent
between the clients browser and the server, such as the session ID and all
data written in forms, can still be eavesdropped. To avoid this, we have been
doing experiments with cryptography, making all communication completely
secure in practice. This requires use of browser plug-ins, which unfortunately
has not been standardized. The protocols being used in the experiments
are RSA, DES3, and RIPE-MD160. They prevent hijacking, provide secure
channels, and verify user ID—all transparently to the client.

Document clusters

In the session concept illustrated in Figure 1, only one page is generated and
shown to the client at a time. However, often the service wants to generate
a whole “cluster” of linked documents to the client and let the client browse
these documents without involving the session thread. With the current
implementation, a solution would be to program the possibility of browsing
the cluster into the service code—inevitably a tedious and complicated task.

Document clusters can be implemented by simply having a reply file for
each document in the cluster. Recall, however, that in the presented setup,
the name of the reply file was fixed for the duration of a session. That way,
the history buffer of the browser got a reasonable functionality. Therefore, to
get that functionality we need a somewhat different approach: the reply files
are not retrieved directly by the HTTP server but via a connector process.
This connector receives the ID of the session thread in the CGI query string
and the document number in a hidden variable.

Single process model

If all server processes (the session threads, safety controllers, etc.) are run-
ning on the same machine, that is, the possibility of distributing the processes

16



is not being exploited, they might as well be combined into a single process
using light-weight threads. This decreases the memory use (unless the oper-
ating system provides transparent sharing of code memory) and removes the
overhead of process communication. The resulting system becomes some-
thing very close to being a dedicated web server. The important difference
being that it still builds upon the CGI protocol.

6 Related Work

The idea of having persistent processes running residently on the server is
central in the FastCGI [8] system. One difference is that FastCGI requires
platform- and server-dependent support, while our approach works for all
servers that support CGI. Also, our runtime system is tailored to support
more specific needs.

A more detailed and formal description of how one can make use of safety
requirements written separately in a suitable logic can be found in [2, 10]. A
language for writing safety requirements is presented, the compilation process
into a safety controller is described, and optimizations for memory usage and
flow capacity of the controller are developed.

The Mawl language [1, 3, 7] has been suggested as a domain-specific lan-
guage for describing sequential transaction-oriented web applications. Its
high-level notation is also compiled into low-level CGI scripts. Mawl di-
rectly provides programming constructs corresponding to global state, dy-
namic document, sessions, local state, imperative actions, and client interac-
tions. This system shows great promise to facilitate the efficient production
of reliable web services. While Mawl thus offers automatic synthesis of many
advanced concepts, it still relies on standard low-level semaphore program-
ming for concurrency control. Also, it does not have a FastCGI-like solution
but in instead it is possible to compile a service into a dedicated server for
that particular service. Though being faster than using simple CGI scripts
this solution is, as opposed to using a FastCGI-like solution, not easily ported
between different machine architectures.

17



7 Conclusions and Future Work

The implementation as briefly described in Appendix A constitutes the core
of the <bigwig> tool which currently is being developed at BRICS. In the
<bigwig> tool, the runtime system we propose here has shown to provide
simple and efficient solutions to problems occurring more and more often
due to the increased use of interactive web services. Furthermore, the ses-
sion concept seems to constitute a framework which is very natural to use
for designing complex services. By basing the design of the runtime system
on very widely used protocols, the system is easy to incorporate. The fur-
ther development of the runtime system can be followed on the <bigwig>
homepage [4].

A Implementation

A UNIX version of the runtime system has been implemented (in C) as a
package “runwig” containing the following components (corresponding to
Figure 2):

• The connector. It provides connection between the other components
and the clients through the HTTP/CGI server.

• The safety controller, which handles syncronization and concurrency
control. For the reasons described in Section 4.4, the control-logic is
not included in the package but needs to be supplied separately.

• The runtime library, which is linked into the service code. It provides
functions for easy interaction with the other components.

An experimental version of the runtime package implements the extensions
described in Section 5. The runwig package—including all source code, de-
tailed documentation, and examples—is available at

http://www.brics.dk/bigwig/runwig/.

B <bigwig>

<bigwig> is a high-level programming language for developing interactive
web services. Complete specifications are compiled into a conglomerate of

18



lower-level technologies such as CGI-scripts, HTML, JavaScript, Java ap-
plets, and plug-ins running on top the runtime system presented in this
paper. <bigwig> is an intellectual descendant of the Mawl project but is a
completely new design and implementation with vastly expanded ambitions.

The <bigwig> language is really a collection of tiny domain-specific lan-
guages focusing on different aspects of interactive web services. To minimize
the syntactic burdens, these contributing languages are held together by a
C-like skeleton language. Thus, ¡bigwig¿ has the look and feel of C-programs
with special data- and control-structures.

A <bigwig>service executes a dynamically varying number of threads.
To provide a means of controlling the concurrent behavior, a thread may
synchronize with a central controller that enforces the global behavior to con-
form to a regular language accepted by a finite-state automaton. That is, the
’control logic’ in <bigwig> consists of finite-state automata. The control-
ling automaton is not given directly, but is computed (by the MONA [6, 9]
system) from a collection of individual concurrency constraints phrased in
first-order logic. Extensions with counters and negated alphabet symbols
add expressiveness beyond regular languages.

HTML documents are first-class values that may be computed and stored
in variables. A document may contain named gaps that are placeholders for
either HTML fragments or attributes in tags. Such gaps may at runtime
be plugged with concrete values. Since those values may themselves contain
further gaps, this is a highly dynamic mechanism for building documents.
The documents are represented in a very compressed format, and the plug
operations takes constant time only. A flow-sensitive type checker ensures
that documents are used in a consistent manner.

A standard service executes with hardly any security. Higher levels of
security may be requested, such that all communications are digitally signed
or encrypted using using 512 bit RSA and DES3. The required protocols are
implemented using a combination of Java, Javascript, and native plug-ins.

The familiar struct and array datastructures are replaced with tuples and
relations which allow for a simple construction of small relational databases.
These are efficiently implemented and should be sufficient for databases no
bigger than a few MBs (of which there are quite a lot). A relation may be
declared to be external, which will automatically handle the connection to
some external server. An external relation is accessed with (a subset of) the
syntax for internal relations, which is then translated into SQL.

An important mechanism for gluing these components together is a fully

19



general hygienic macro mechanism that allows ¡bigwig¿ programmers to ex-
tend the language by adding arbitrary new productions to its grammar. All
nonterminals are potential arguments and result types for such macros that,
unlike C-front macros, are soundly implemented with full alpha-conversions.
Also, error messages remain sensible, since they are threaded back through
macro expansion. This allows the definition of Very Domain-Specific Lan-
guages that contain specialized constructions for building chat rooms, shop-
ping centers, and much more. Macros are also used to wrap concurrency
constraints and other primitives in layers of user-friendly syntax.

Version 0.9 of <bigwig> is currently undergoing internal evaluation at
BRICS. If you want to try it out, then contact us for more information.
The documentation is very rough as yet, but this has a high priority in the
next few months. The project is scheduled to deliver a version 1.0 of the
<bigwig> tool in June 1999. This will be freely available in an open source
distribution for UNIX.

References

[1] David Atkins, Thomas Ball, Michael Benedikt, Glenn Bruns, Kenneth
Cox, Peter Mataga, and Kenneth Rehor. Experience with a domain spe-
cific language for form-based services. In Usenix Conference on Domain
Specific Languages, Santa Barbara, CA, October 1997.

[2] Claus Brabrand. Synthesizing safety controllers for interactive
web services. Master’s thesis, Department of Computer Sci-
ence, University of Aarhus, December 1998. Available from
http://www.brics.dk/∼brabrand/thesis/.

[3] K. Cox, T. Ball, and J. C. Ramming. Lunchbot: A tale of two ways
to program web services. Technical Report BL0112650-960216-06TM,
AT&T Bell Laboratories, 1996.

[4] Michael I. Schwartzbach et al. <bigwig> project homepage.
http://www.brics.dk/bigwig/.

[5] Shishir Gundavaram. CGI Programming on the World Wide Web.
O’Reilly & Associates, Inc., 1996.

20



[6] N. Klarlund and A. Møller. MONA Version 1.3 User Manual. BRICS
Notes Series NS-98-3 (2.revision), Department of Computer Science,
University of Aarhus, October 1998.

[7] D. A. Ladd and J. C. Ramming. Programming the web: An application-
oriented language for hypermedia services. In 4th Intl. World Wide Web
Conference, 1995.

[8] Open Market, Inc. FastCGI: A high-performance web server interface.
Technical White Paper, http://www.fastengines.com/whitepapers/,
April 1996.

[9] Anders Møller. MONA project homepage.
http://www.brics.dk/mona/.

[10] Anders Sandholm and Michael I. Schwartzbach. Distributed safety con-
trollers for web services. In Egidio Astesiano, editor, Fundamental Ap-
proaches to Software Engineering, FASE’98, Lecture Notes in Computer
Science, LNCS 1382, pages 270–284. Springer-Verlag, March/April 1998.
Also available as BRICS Technical Report RS-97-47.

21



Recent BRICS Report Series Publications

RS-99-9 Claus Brabrand, Anders Møller, Anders B. Sandholm, and
Michael I. Schwartzbach. A Runtime System for Interactive
Web Services. March 1999. 21 pp. Appears in Mendelzon, edi-
tor, Eighth International World Wide Web Conference, WWW8
Proceedings, 1999, pages 313–323 andComputer Networks,
31:1391–1401, 1999.

RS-99-8 Klaus Havelund, Kim G. Larsen, and Arne Skou. Formal
Verification of a Power Controller Using the Real-Time Model
CheckerUPPAAL. March 1999. 23 pp. To appear in Katoen,
editor, 5th International AMAST Workshop on Real-Time and
Probabilistic Systems, ARTS ’99 Proceedings, LNCS, 1999.

RS-99-7 Glynn Winskel. Event Structures as Presheaves—Two Repre-
sentation Theorems. March 1999. 16 pp.

RS-99-6 Rune B. Lyngsø, Christian N. S. Pedersen, and Henrik Nielsen.
Measures on Hidden Markov Models. February 1999. 27 pp.
To appear in Seventh International Conference on Intelligent
Systems for Molecular Biology, ISMB ’99 Proceedings, 1999.

RS-99-5 Julian C. Bradfield and Perdita Stevens.Observational Mu-
Calculus. February 1999. 18 pp.

RS-99-4 Sibylle B. Fr̈oschle and Thomas Troels Hildebrandt. On
Plain and Hereditary History-Preserving Bisimulation. Febru-
ary 1999. 21 pp.

RS-99-3 Peter Bro Miltersen.Two Notes on the Computational Complex-
ity of One-Dimensional Sandpiles. February 1999. 8 pp.

RS-99-2 Ivan B. Damg̊ard. An Error in the Mixed Adversary Protocol by
Fitzi, Hirt and Maurer . February 1999. 4 pp.

RS-99-1 Marcin Jurdziński and Mogens Nielsen. Hereditary History
Preserving Simulation is Undecidable. January 1999. 15 pp.


