
B
R

IC
S

R
S

-99-7
G

.W
inskel:

E
ventS

tructures
as

P
resheaves—

Tw
o

R
epresentation

T
heorem

s

BRICS
Basic Research in Computer Science

Event Structures as Presheaves
—Two Representation Theorems

Glynn Winskel

BRICS Report Series RS-99-7

ISSN 0909-0878 March 1999

Copyright c© 1999, Glynn Winskel.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/99/7/

Event Structures as Presheaves

—Two Representation Theorems

Glynn Winskel

BRICS?, University of Aarhus, Denmark

Abstract. The category of event structures is known to embed fully
and faithfully in the category of presheaves over pomsets. Here a charac-
terisation of the presheaves represented by event structures is presented.
The proof goes via a characterisation of the presheaves represented by
event structures when the morphisms on event structures are “strict” in
that they preserve the partial order of causal dependency.

1 Introduction

Presheaves have been advanced as a model of nondeterministic processes which
supports a notion of bisimulation and as well extends to higher order [7, 12, 5, 4,
3, 10, 13, 6, 2]. At the start of this work, the paper [7] showed that the category
of (labelled) event structures embedded fully and faithfully in the category of
presheaves over pomsets; the embedding arises canonically from the fact that
pomsets can be regarded as event structures. The paper [7] gave several grounds
for viewing the presheaf category as consisting of generalised event structures.

Clearly some presheaves were not obtained from event structures, among
them those presheaves which were not “rooted” in the sense of not having a
unique starting state. The empty presheaf is not rooted. It allows no computa-
tion, not even the empty pomset. At the other extreme, the terminal presheaf,
which assigns a singleton set to each pomset, supports all computational be-
haviour (like the “chaos” of CSP); although rooted it cannot correspond to an
event structure, seen most quickly by noticing that all morphisms from pom-
sets to event structures are mono a state of affairs not reflected in the presheaf
category for the terminal object. Other presheaves not corresponding to event
structures could be nevertheless understood within broader classes of models
such as certain categories of Petri nets. But the precise boundary was unclear;
there remained the question of precisely which presheaves over pomsets arose
from event structures.

This paper uncovers the conditions that characterise those presheaves rep-
resented by event structures (Theorem 17). The proof involves first showing
an analogous result for a stricter class of morphisms on event structures (Theo-
rem 9). A condition central to both theorems is one equivalent to saying that the
presheaves should be separated with respect to a simple Grothendieck topology.

? Basic Research in CS, Centre of the Danish National Research Foundation.

2 Event Structures and Pomsets

We will work with labelled event structures, and throughout this paper we as-
sume a fixed set of labels L.

A (labelled) event structure [11] is a structure (E,≤, Con, l) consisting of a
set E, of events which are partially ordered by ≤, the causal dependency relation,
a nonempty consistency relation Con consisting of finite subsets of events, and
a labelling function l : E → L, which satisfy

{e′ | e′ ≤ e} is finite,
{e} ∈ Con,

Y ⊆ X ∈ Con⇒ Y ∈ Con,

X ∈ Con & e ≤ e′ ∈ X ⇒ X ∪ {e} ∈ Con,

for all events e, e′ and their subsets X,Y . Events e, e′ ∈ E are concurrent
(causally independent) iff (e 6≤ e′ & e′ 6≤ e & {e, e′} ∈ Con). A configuration of
E is a subset x ⊆ E which is
– downwards-closed: ∀e, e′. e′ ≤ e ∈ x⇒ e′ ∈ x, and
– consistent: ∀X. X finite & X ⊆ x⇒ X ∈ Con.

An event e determines a prime configuration [e] = {e1 ∈ E | e1 ≤ e} consisting
of all its causal predecessors and the event itself.

We restrict attention to label-preserving morphisms on event structures over
the common labelling set L (the fibres of [11]). Let E = (E,≤, Con, l), E′ =
(E′,≤′, Con′, l′) be event structures over L. A morphism from E to E′ consists
of a function f : E → E′ on events which preserves labels (i.e. l = l′ ◦ f) such
that if x is a configuration of E, then its image fx is a configuration of E′ and
if for e1, e2 ∈ x their images are equal, i.e. f(e1) = f(e2), then e1 = e2. We can
equivalently describe a morphism of event structures from E to E′ as a function
f : E → E′ such that

∀e ∈ E. [f(e)] ⊆ f [e] &
∀X ∈ Con. [fX ∈ Con′ & (∀e1, e2 ∈ X. f(e1) = f(e2) ⇒ e1 = e2)].

We say a morphism f : E → E′ of event structures is strict iff [f(e)] = f [e].
It is easy to check that the function composition of two morphisms of event

structures is a morphism so that we obtain a category.

Definition 1. We write E for the associated category of event structures, writ-
ing Es for the subcategory with strict morphisms.

In event structures a configuration, to be thought of as a computation path,
carries more structure than simply a string of actions. A configuration inherits
the shape of a pomset from the causal dependency and labelling of the event
structure. Pomsets [9] are partial orders of labelled events and so can be identified
with special event structures where all finite subsets of events are consistent.

Definition 2. Say a pomset is prime when it has a top event e with respect to
the causal dependency relation ≤—so its set of events is [e].

2

Morphisms from pomsets to event structures are 1-1 functions which send
downwards-closed sets to downwards-closed sets. Thus a morphism from pomset
P to pomset Q may not only extend P by extra events but also relax the causal
dependency relation; two events causally related in P may have images no longer
causally related in Q—of course this cannot occur for a strict morphism which
would force P to be a pomset prefix of Q.

We separate the forms of morphism corresponding to the different ways one
pomset can extend another.

Definition 3. Define Pom to be the full subcategory of event structures E with
objects finite pomsets. Define Poms to be the subcategory of Pom where all
morphisms are strict morphisms.

An epimorphism in Pom is called an augmentation (following [9], though
note the switch of direction relative to loc. cit.).

It is clear that all isomorphisms in Pom are augmentations (and strict) and
that restricting to augmentation morphisms also yields a subcategory of Pom.

Proposition 4. In Pom, any morphism f : P → Q factors uniquely to within
isomorphism as a composition f = P a→ Q0

j→ Q where a is an augmenta-
tion and j is a strict morphism.

Such augment-strict factorisations play a central role in the proof of the second
representation theorem.

3 Presheaf models

Here a presheaf over an (essentially small) category P is thought of as standing for
a nondeterministic process whose computation paths have the shape of objects
of P; according to this view the morphisms of P express how one path shape
extends to another. In this paper P will be either Pom or Poms.

The objects (presheaves) of P̂ consist of functors Pop → Set, to the category
of sets. The morphisms of P̂ are natural transformations between functors. A
presheaf X : Pop → Set can be thought of as specifying for a typical object P
the set X(P) of computation paths of shape P . It acts on a morphism j : P → Q
in P to give a function X(j) : F (Q) → F (P) saying how Q-paths restrict to P -
paths.
Notation: Let X be a presheaf over a category P. Let j : P → Q be a morphism
in P. As is usual, we will frequently write y · j for X(j)(y), the restriction of
y ∈ X(Q) along j : P → Q, a morphism in P. Note that the functoriality of X
ensures that (y ·k) · j, which we will most often write as y ·k · j, equals y · (k ◦ j),
when j : P → Q, k : Q→ R and y ∈ X(R).

Definition 5. LetX be a presheaf over P. Define its category of elements els(X)
to be the category consisting of: objects (P, x) where P is an object of P and
x ∈ X(P); morphisms j : (P, x) → (Q, y) whenever j : P → Q in P and x = y · j.

3

The Yoneda embedding Y : P → P̂ expresses how to regard a path P as the
presheaf P[−, P], such presheaves being called representables. The category of
presheaves P̂ is the free colimit completion of P: for any functor F : P → E
where E has all small colimits, there is a functor LanY(F) : P̂ → E , unique to
within isomorphism, such that

P
Y //

F
&&LLLLLLLLLLLLL P̂

LanY(F)

��
E

commutes. In particular, as presheaf categories have all small colimits we can
instantiate E to a presheaf category Q̂. The functor LanY(F) (a left Kan exten-
sion) can be described explicitly (see e.g. [8]) as that functor such that

LanY(F)(X) = colim(P,x)∈els(X)F (P)

for any X ∈ P̂; its action on morphisms is determined by the universal property
of colimits.

Colimits in Set: Colimits of presheaves are given pointwise in terms of colimits
in Set for which we can make use of an explicit construction of colimits (see e.g.
[1]):

Proposition 6. Let I be a small category. Let D : I → Set be a functor (called
a diagram of shape I in Set). Then, D has a colimit in Set given explicitly as
the cone consisting of the set C and functions γi : D(i) → C, for i ∈ I, described
as follows. The set C is the set of equivalence classes

C =
⊎
i∈I

D(i) / ∼

where ∼ is the least equivalence relation on the set
⊎
i∈I D(i) for which

(i, x) ∼ (j, y) if D(f)(x) = y , for some f : i→ j in I .

The function γi : D(i) → C, where i ∈ I, takes x ∈ D(i) to the equivalence class
{(i, x)}∼.

As colimits are unique to within isomorphism, we can and shall assume that
all the colimits in Set we consider are given explicitly as in Proposition 6.

4 The Problem

There is a canonical functor c from the category of event structures E to the
category of presheaves P̂om. The functor c takes an event structure E of E to

4

the presheaf E[−, E]; in detail, c(E) is the presheaf which for each path object
P yields the set of paths E[P,E] from P into E. The functor c takes a morphism
f : E → E′ in E to the natural transformation E[−, f] : E[−, E] → E[−, E′]
whose component at an object P of Pom is the function E[P,E] → E[P,E′]
taking p to f ◦ p—intuitively, a path p : P → E in E is taken to a path
f ◦ p : P → E′ in E′.

Because the inclusion functor Pom ↪→ E is dense,

Theorem 7. [7] The canonical functor c : E → P̂om is full and faithful.

The canonical functor cs : Es → P̂oms is defined analogously, but with respect
to strict morphisms on event structures and pomsets, and analogously:

Theorem 8. The canonical functor from cs : Es → P̂oms is full and faithful.

The problem addressed in this paper is the characterisation of those presheaves
which correspond to event structures with respect to the canonical embeddings.
These amount to representation theorems; a presheaf X over Pom is said to
be represented by an event structure E in E iff X ∼= E[−, E]. It turns out that
characterising the presheaves in P̂om which are represented by event structures
in E involves first characterising those presheaves in P̂oms represented by event
structures in Es, the strict case.

5 Representation Theorem—Strict Morphisms

This section is devoted to showing our first representation theorem:

Theorem 9. A presheaf X ∈ P̂oms is isomorphic to Es[−, E] for some event
structure E iff X is nonempty and satisfies the conditions

(Mono) For all j1, j2 : P → Q in Poms, where P is prime,

∀x ∈ X(Q). x · j1 = x · j2 ⇒ j1 = j2.

(Separated) For all x, x′ ∈ X(Q) where Q is a pomset,
if (∀j : P → Q in Poms with P prime, x · j = x′ · j) then x = x′.

Remark 10. The empty presheaf assigns the emptyset to each pomset, even the
empty pomset, and so cannot be represented by any event structure which will
always have the empty configuration. As we will see the condition “Mono” ex-
presses that morphisms from pomsets into event structures are mono. In fact
“Mono” is equivalent to the corresponding condition where P is not restricted
to be prime. The condition “Separated” is equivalent to saying that the presheaf
X is separated with respect to the Grothendieck topology (see e.g. [8]) with basis
consisting of collections {ki : Pi → Q | i ∈ I} of jointly surjective morphisms.
Note that “Separated” implies that any nonempty presheaf X is rooted in the
sense that X(∅), the set assigned to the empty pomset ∅, is a singleton; because
there are no prime pomsets mapping into the empty pomset.

5

It is easy to show the “only if” half of the theorem.

Lemma 11. Let E be an event structure in Es. Let X be the presheaf Es[−, E].
Then X is nonempty and satisfies the conditions “Mono” and “Separated”.

Proof. “Mono”: Let x ∈ Es[Q,E] and j1, j2 : P → Q morphisms in Poms.
For the presheaf Es[−, E] obtained via the hom-functor, x · j1 = x · j2 means
x ◦ j1 = x ◦ j2, so j1 = j2 as x is 1-1 and thus mono.
“Separated”: Suppose x, x′ ∈ Es[Q,E] have the property that x · j = x′ · j for all
j : P → Q in Poms, from a prime pomset P . But this implies x ◦ j = x′ ◦ j for
all inclusions j : [e] ↪→ Q where e is an event of Q. Hence, x and x′ agree on all
events of Q and so are equal. 2

To show the converse, “if” direction, of Theorem 9 we construct an event struc-
ture from a nonempty presheaf satisfying the “Mono” and “Separated” condi-
tions. We do this by forming a colimit in Es. Not all colimits exist in Es. However
if a nonempty presheaf X satisfies the “Mono” condition we can construct a col-
imit as follows.

Lemma 12. Let X be a nonempty presheaf over Poms which satisfies the “Mono”
condition. Then the colimit colim(Q,x)∈els(X)Q exists in Es. Its events E can be
taken to be the colimit in Set

⊎
(Q,x)∈els(X)

Q / ∼

where ∼ is the least equivalence relation such that

((Q, x), q) ∼ ((Q′, x′), q′) if ∃k : Q→ Q′ in Poms. x = x′.k & k(q) = q′ ,

when the components of the colimiting cone in Es, at (Q, x) ∈ els(X), are given
by maps

γQ,x : Q→ E with q 7→ {(Q, x), q)}∼ .

The causal dependency and consistency relations on E satisfy:
– e ≤ e′ iff there are q ≤ q′ in Q for some pomset Q and x ∈ X(Q) such that
γQ,x(q) = e and γQ,x(q′) = e′,

– C ∈ Con iff there is S ⊆ Q for some pomset Q and x ∈ X(Q) such that
C = γQ,xS.

Proof. Write ((Q, x), q) ∼1 ((Q′, x′), q′) iff ∃k : Q → Q′. x = x′ · k & k(q) = q′.
By definition, the relation ∼ is the symmetric transitive closure of ∼1.

Suppose that ((Q, x), q) ∼1 ((Q′, x′), q′) and that i : [q] ↪→ Q and i′ : [q′] ↪→
Q′ are the associated inclusion morphisms in Poms. Then “restricting” along i
and i′ we obtain

((Q, x), q) ∼1 ((Q′, x′), q′)

∼1 ∼1

(([q], x · i), q) ∼1 (([q′], x′ · i′), q′) .

6

Recalling that morphisms are strict we see that for x ∈ X(Q), x′ ∈ X(Q′),

(([q], x · i), q) ∼1 (([q′], x′ · i′), q′) iff ∃k : [q] ∼= [q′]. x · i = x′ · i′ · k .

Thus a ∼1-chain establishing ((Q, x), q) ∼ ((Q′, x′), q′) restricts to a ∼1-chain
involving only prime pomsets. Noting that the ∼1 relation is already symmetric
and transitive when only prime pomsets are involved, we obtain

((Q, x), q) ∼ ((Q′, x′), q′) iff (([q], x · i), q) ∼1 (([q′], x′ · i′), q′)
iff ∃k : [q] ∼= [q′]. x · i = x′ · i′ · k

where i : [q] ↪→ Q and i′ : [q′] ↪→ Q′ are the inclusion morphisms.
It follows that each γQ,x : Q→ E is 1-1. Suppose q, q′ ∈ Q and ((Q, x), q) ∼

((Q, x), q′). Then we obtain

k : [q] ∼= [q′] & x · i = x′ · i′ · k

where i : [q] ↪→ Q and i′ : [q′] ↪→ Q′. But X is assumed to satisfy the “Mono”
condition. Hence i = i′ ◦ k so that q = i(q) = i′ ◦ k(q) = i′(q′) = q′, making γQ,x
a 1-1 function.

As ∼1 respects causal predecessors [−], defining the causal dependency and
consistency relations as above yields an event structure and ensures that each
γQ,x is a morphism in Es. Together γQ,x, where (Q, x) ∈ els(X), form a cone in
Es, which is colimiting because it is so in Set. 2

Prime pomsets distribute through the colimits of Lemma 12:

Lemma 13. Let X be a nonempty presheaf over Poms satisfying the “Mono”
condition. Let P be a prime pomset. The canonical map from the colimiting cone,

ϕP : colim(Q,x)∈els(X)Es[P,Q] → Es[P, colim(Q,x)∈els(X)Q] ,

acting so
ϕP : {((Q, x), j)}∼ 7→ γQ,x ◦ j ,

is an isomorphism, where γQ,x where (Q, x) ∈ els(X), is the colimiting cone to
colim(Q,x)∈els(X)Q.

Proof. Write E for the event structure obtained as the colimit colim(Q,x)∈els(X)Q
in Lemma 12. We first check that ϕP is well-defined. In the explicit presentation
of the colimit C = colim(Q,x)∈els(X)Es[P,Q] in Set the equivalence relation ∼
is generated by ∼1 where

((Q, x), j) ∼1 ((Q′, x′), j′) iff ∃k : Q→ Q′ in Poms. x = x′ · k & k ◦ j = j′.

Thus, if ((Q, x), j) ∼1 ((Q′, x′), j′), then there is k : (Q, x) → (Q′, x′) in els(X).
So, as E, γ is a cone, we directly obtain γQ,x = γQ′,x′ ◦ k. Thus

ϕP (((Q, x), j)) = γQ,x ◦ j = γQ′,x′ ◦ k ◦ j = γQ′,x′ ◦ j′ = ϕP (((Q′, x′), j′)) .

7

Hence ϕP is well-defined as a function. We require in addition that ϕP is 1-1
and onto.
“onto”: Suppose f : P → E in Es. As a prime pomset, P is [p] for some event
p. The image f(p), in E, is an equivalence class {((Q, x), q)}∼, choosing any
representative ((Q, x), q), where (Q, x) ∈ els(X) and q ∈ Q. Because morphisms
are strict [p] ∼= [q], so f must factor through γQ,x for some j : P → Q in Poms:

P
f //

j

��

E

Q

γQ,x

??�������

But now ϕP ({((Q, x), j)}∼) = γQ,x ◦ j = f .
“1-1”: Again, as P is prime it has the form [p] for some p ∈ P . First note that any
equivalence class c ∈ colim(Q,x)∈els(x)Es[P,Q] has a representative of the form
(([q], x), j), j) where j : [p] ∼= [q]. To see this note that for any representative
((Q, y), l),

((Q, y), l) ∼1 (([q], y · i), l0)

where q = l(p) and l factors as [p]
l0∼= [q]

i
↪→ Q.

Thus assuming that ϕP (c) = ϕP (c′) for c, c′ ∈ colim(Q,x)∈els(X)Es[P,Q],
there are representatives (([q], x), j) and (([q′], x′), j′) where j : [p] ∼= [q] and
j′ : [p] ∼= q′] for which

γ[q],x ◦ j = γ[q′],x′ ◦ j′. (1)

Consequently, γ[q],x(q) = γ[q′],x′(q′), from which we obtain ((([q], x), q) ∼ (([q′], x′), q′)
in E. But now (just as in the proof of Lemma 12) we derive the existence of an
isomorphism k such that

k : [q] ∼= [q′] & x = x′ · k . (2)

As k : ([q], x) ∼= ([q′], x′) is a morphism in els(X) and E, γ is a cone, we see that

γ[q],x = γ[q′],x′ ◦ k .
Hence, by (1),

γ[q′],x′ ◦ j′ = γ[q],x ◦ j = γ[q′],x′ ◦ k ◦ j ,
ensuring j′ = k◦j from the injectivity of γ[q′],x′ . With (2), this yields (([q], x), j) ∼1

(([q′], x′), j′) in C, making c = c′. Hence ϕP is 1-1. 2

It is well-known that a presheaf is the colimit of its representables and that
colimits in categories of presheaves are obtained pointwise [8]. With our explicit
treatment of colimits in Set we obtain an explicit isomorphism:

Lemma 14. Let X be a presheaf over Poms. Let P ∈ Poms. Then

ψP : X(P) ∼= colim(Q,x)∈els(X)Poms[P,Q] ,

where ψP (z) = {((P, z), 1P)}∼.

8

Now we can prove the “if” half of the first representation theorem:

Lemma 15. Suppose X, a nonempty presheaf over Poms, satisfies the “Mono”
and “Separated” conditions. Let E be the event structure obtained as the colimit
colim(Q,x)∈els(X)Q in Es (cf. Lemma 12). Then, there is a natural isomorphism

θ : X ∼= Es[−, E]

which has components θQ : X(Q) → Es[Q,E], at pomset Q, given by

θ(x) = γQ,x

for x ∈ X(Q). [We adopt the notation of Lemma 12 where γQ,x : Q → E is the
component of the colimiting cone at (Q, x) ∈ els(X).]

Proof. We first check that θ is a natural transformation. Suppose j : Q→ Q′ in
Poms. We require the following naturality square to commute:

X(Q)
θQ // Es[Q,E]

X(Q′)

X(j)

OO

θQ′ // Es[Q′, E] .

−◦j
OO

I.e., letting x′ ∈ X(Q′), we require γQ,x′·j = (γQ′,x′) ◦ j. But this is a direct
consequence of E, γ forming a cone.

For θ to be a natural isomorphism we need that each θQ, at a pomset Q, is
1-1 and onto:
“onto”: Supposing f : Q → E the image of Q must be consistent in E. Hence,
by the way the consistency relation is defined on E in Lemma 12, the map f
must factor as

Q
f //

j

��

E

Q0

γQ0,x0

>>~~~~~~~~

for some (Q0, x0) ∈ els(X). Take x = x0 · j ∈ X(Q). Then, f = γQ0,x0 ◦ j = γQ,x
because E, γ is a cone and (Q, x) j→ (Q0, x0) in els(X). Hence θQ(x) = f .
“1-1”: Suppose θQ(x) = θQ(x′) for x, x′ ∈ X(Q). Then, for any j : P → Q
with P prime, θP (x · j) = θP (x′ · j) by naturality. Thus because X is “Sepa-
rated”, it is sufficient to show that θP is 1-1 for each prime pomset P . However,
each component θP , when P is a prime pomset, arises as the composition of
isomorphisms

X(P)
ψP∼= colim(Q,x)∈els(X)Poms[P,Q] cf. Lemma 14,
= colim(Q,x)∈els(X)Es[P,Q] as Poms ↪→ Es is full,
ϕP∼= Es[P,E] cf. Lemma 13.

2

9

As a corollary of Lemmas 11 and 15 we obtain the first representation theorem
(Theorem 9) whose statement heads this section.

6 Representation Theorem—Nonstrict Morphisms

Our aim now is to characterise those presheaves over Pom represented by event
structures in E.
Notation: We make heavy use of the augment-strict factorisation of Proposi-
tion 4 and it is helpful to adopt the convention that arrows � stand for aug-
mentations while � stand for strict morphisms.
The statement of the second representation theorem involves a “confluence”
condition on the category of elements of a presheaf.

Confluence Conditions: We will be interested in presheaves Y ∈ P̂om for
which the category of elements els(Y) satisfies the confluence condition:

Letting a : P � Q and f : P → R, in els(Y),

if (R, z)

(P, x)

f

OO

a
// // (Q, y)

then (R, z) a′ // // (S,w)

(P, x)

f

OO

a
// // (Q, y)

f ′

OO
commutes,

for some (S,w) in els(Y) with a′ : R � S and f ′ : Q→ S.
We can summarise the confluence condition in the diagram:

· a′ // //___ ·

·
f

OO

a
// // ·
f ′

OO�
�
�

Remark 16. By specialising f in the confluence condition to an augmentation
we obtain a condition which we likewise summarise as the confluence diagram:

· a′ // //___ ·

·
f

OOOO

a
// // ·
f ′

OOOO�
�
�

Note that in this case the morphism f ′ will also be an augmentation just because
it is a second factor of an epimorphism.

The remainder of the paper is devoted to showing the second representation
theorem:

10

Theorem 17. A presheaf Y ∈ P̂om is isomorphic to E[−, E] for some event
structure E iff Y is nonempty and satisfies the conditions

(Mono) For all j1, j2 : P → Q in Pom, where P is prime,

∀y ∈ Y (Q). y · j1 = y · j2 ⇒ j1 = j2.

(Separated) For all y, y′ ∈ Y (Q) where Q is a pomset,
if (∀j : P → Q in Pom, with P prime, y · j = y′ · j) then y = y′.
(Confluent) The confluence condition above holds of els(Y).

The proof of Theorem 17 uses the first representation theorem (Theorem 9)
characterising which presheaves in P̂oms are represented by event structures E
in Es. The proof has three main parts Sections 6.1, 6.2 and 6.3.

In Section 6.1 the extension of the obvious inclusion functor Poms ↪→ Pom
to a colimit-preserving functor L : P̂oms → P̂om is characterised (Lemma 18).

The next stage, presented in Section 6.2, is to relate the two canonical em-
beddings cs : Es → P̂oms and c : E → P̂om in the diagram

Es
� � //

cs

��

E

c

��
P̂oms

L // P̂om

which is shown to commute up to isomorphism (Lemma 20). It follows that the
presheaves in P̂om represented by event structures in E are, to within isomor-
phism, the images under L of those presheaves in P̂oms represented by event
structures in Es.

Finally, in Section 6.3, it is shown that, to within isomorphism, the images
in P̂om under L of presheaves in P̂oms are those which satisfy the “Conflu-
ent” condition, and that the “Mono” and “Separated” conditions transfer via
L to the corresponding conditions in P̂om (Lemma 21). This yields the second
representation theorem (Theorem 17).

6.1 The Functor L

To within isomorphism, there is a colimit-preserving function L : P̂oms → P̂om
such that

Poms
� � I //

Ys

��

Pom

Y
��

P̂oms

L // P̂om

commutes to within isomorphism. The functor L may be obtained as the left-
Kan extension, so LanYs(Y ◦ I)(X) = colim(P,x)∈els(X)Y(P) for X ∈ P̂oms.
By exploiting the augment-strict factorisation (Proposition 4) we give a more
workable characterisation.

11

Lemma 18. Let X ∈ P̂oms, Q ∈ Pom. Define

L(X)(Q) = {{(P, x, a)}' | x ∈ X(P) & a : Q � P)}
where (P, x, a) ' (P ′, x′, a′) iff ∃k : P ∼= P. x = x′ · k & k ◦ a = a′. For
f : Q→ Q′, define L(X)(f) : L(X)(Q′) → (LX)(Q) to act so

{(P ′, x′, a′)}' 7→ {(P, x′ · i, a)}'
where i : P � P ′ and a : Q � P are an augment-strict factorisation i◦a = a′◦f :

Q′ a′ // // P ′

Q

f

OO

// a // // P
OO
i

OO

Then, L(X) is a presheaf over Pom such that L(X) ∼= LanYS (Y ◦ I)(X).

Proof. As colimits of presheaves are obtained pointwise, from the explicit de-
scription of colimits in Set, Proposition 6, we see

LanYs(Y◦I)(X)(Q) = colim(P,x)∈els(X)Poms[Q,P] =
⊎

(P,x)∈els(X)

Pom[Q,P]/∼

where ∼ is the least equivalence relation such that

((P, x), f) ∼ ((P ′, x′), f ′) iff ∃k : P � P ′. x = x′ · k & k ◦ f = f ′ .

It follows that for each ((P ′, x′), f ′) ∈ ⊎
(P,x)∈els(X) Pom[Q,P]

((P, x′ · i), a) ∼ ((P ′, x′), f ′)

where an augment-strict factorisation of f is:

P ′

Q

f ′
??~~~~~~~~

a
// // P

OO
i

OO

The isomorphism L(X)(Q) ∼= LanYs(Y ◦ I)(X)(Q) is a direct consequence.
Via the isomorphism we obtain a colimiting cone with vertex L(X)(Q); it

has components γP,x : Poms[Q,P] → L(X)(Q) for (P, x) ∈ els(X) given by
γP,x(g) = {(P0, x · i0, a0)}' where g has augment-strict factorisation:

P

Q

g
??�������

a0
// // P

OO
i0

OO

12

We require that the isomorphism is natural in Q. To show this it is sufficient
to verify that with respect to f : Q → Q′ in Pom the map L(X)(f) is the
(necessarily unique) mediating map from the colimiting cone L(X)(Q′), γ′ to
the cone L(X)(Q), γ ◦ f , i.e. for all (P, x) ∈ els(X),

L(X)(f) ◦ γ′P,x = γP,x ◦ f .
The verification relies on augment-strict factorisation being unique to within
isomorphism. 2

Remark 19. Let X be a presheaf over Poms. In the special case when f is an
augmentation a0 : Q � Q′, L(X)(a0) : {(P ′, x′, a′)}' 7→ {(P ′, x′, a′ ◦ a0)}' .

6.2 Relating Non-Strict and Strict

The next lemma relates the two canonical embeddings cs : Es → P̂oms and
c : E → P̂om.

Lemma 20. Let E be an event structure in Es. Then, L ◦ cs(E) ∼= c(E).

Proof. We require that L(Es[−, E]) ∼= E[−, E]. ¿From the definition of L,

L(Es[−, E])(Q) = {{(P, x, a)}' | x : P � E & a : Q � P}
where (P, x, a) ' (P ′, x′, a′) iff ∃k : P ∼= P ′. k ◦ a = a′ & x = x′ · k. Thus
elements of L(Es[−, E])(Q) are in 1-1 correspondence with factorisations (to
within isomorphism) of morphisms in E[Q,E]. As such factorisations are unique,
we obtain the isomorphism

αE : L(Es[−, E])(Q) ∼= E[Q,E] where {(P, x, a)}' 7→ x ◦ a .
To check that the isomorphism αQ is natural in Q, we require for f : Q→ Q′

that the naturality square

{{(P, x, a)}' | x : P � E & a : Q � P} αQ // E[Q,E]

{{(P ′, x′, a′)}' | x′ : P ′ � E & a′ : Q′ � P ′}
L(Es[−,E])(f)

OO

αA′ // E[Q′, E]

−◦f
OO

commutes. However, by definition

L(Es[−, E])(f)({(P ′, x′, a′)}') = {(P, x′ ◦ i, a)}'
where a : Q � P and i : P � P ′ provide an augment-strict factorisation of
a′ ◦ f :

Q′ a′ // // P ′ // x
′

// E

Q
OO

f

OO

a // // P
OO
i

OO

Clearly, αQ({(P, x′ ◦ i, a)}') = x′ ◦ i ◦ a = x′ ◦ a′ ◦ f = α′
Q({P ′, x′, a′}') ◦ f , so

the naturality square commutes, as required. 2

13

6.3 Transfer of Conditions via L

We characterise, to within isomorphism, those presheaves which are images un-
der L : P̂oms → P̂om as those which are “Confluent” and see how the key
conditions of the first representation theorem transfer across L.

Lemma 21. (i) Let Y ∈ P̂om. Then Y satisfies the “Confluent” condition iff
Y ∼= L(X) for some X ∈ P̂oms.

(ii) Let X ∈ P̂oms. Then, X satisfies the “Mono” and “Separated” conditions
iff L(X) satisfies the “Mono” and “Separated” conditions

Proof. (i)“if”: Suppose that in els(L(X))

f : (Q, q) → (R, r) and b : (Q, q) → (Q′, q′)

where q ∈ L(X)(Q), r ∈ L(X)(R) and q′ ∈ L(X)(Q′) and f : Q → R and
b : Q � Q′ in Pom. Assume f factorises as

f = Q
a1� P1

i� P.

Then, from the definition of L(X),

r = {(P, x, a)}', q′ = {(P ′, x′, a′)}' and r = {(P1, x·i, a1)}' = {(P ′, x′, a′◦b)}'
for some a : R � P with x ∈ X(P), and a′ : Q′ � P ′ with x′ ∈ X(P ′).

Because (P1, x · i, a1) ' (P ′, x′, a′ ◦ b) there is an isomorphism j : P1
∼= P ′

making (P1, x · i, 1P1) ' (P ′, x′, 1P ′). Summarising all the facts in a diagram in
els(L(X)) we obtain the two commuting squares

(P, x̃)

(R, r)

a
:: ::tttttttttt

(P1, x̃ · i)
OO
i

OO

j

%%JJJJJJJJJ

(Q, q)

f

OO
a1

:: ::uuuuuuuuu

b $$ $$JJJJJJJJJJ (P ′, x̃′)

(Q′, q′)
a′

99 99ssssssssss

where x̃ = {(P, x, 1P)}', x̃′ = {(P ′, x′, 1P ′)}' and x̃ · i = {(P1, x · i, 1P1)}'. In
particular, noting the isomorphism j : (P1, x̃ · i) ∼= (P ′, x̃′), we see the “Conflu-
ent” condition is satisfied in els(L(X)).
“only if”: To show the converse, we show how given Y ∈ P̂om which is “Conflu-
ent” there is a presheaf ext(Y) ∈ P̂oms such that L(ext(Y)) ∼= Y . The presheaf
ext(Y) consists of just the extreme elements of Y , those elements of Y which
are not restrictions of elements with respect to any augmentations other than
isomorphisms:

14

– ext(Y)(P) = {y ∈ Y (P) | ∀a : P � Q, y′ ∈ Y (Q)). y = y′ · a ⇒ a is iso.}
for pomsets P .

– ext(Y)(j) is the restriction of Y (j), for morphisms j : P � P ′ in Poms;
that ext(Y)(j) is well-defined, i.e. that if y′ ∈ ext(Y)(P ′), then Y (j)(y′) ∈
ext(Y)(P), follows directly from Y being “Confluent” and the uniqueness
up to isomorphism of factorisation.
It is now clear that ext(Y) ∈ P̂oms. We require that L(ext(Y)) ∼= Y . By

definition L(ext(Y)(Q) = {{(P, y, a}' | y ∈ ext(Y)(P) & a : Q � P}. Defining
δ({P, y, a)}') = y · a yields a function δ : L(ext(Y))(Q) → Y (Q) which is seen
to be well-defined directly from the definition of '.
δ is 1-1: Suppose δ({(P, Y, a)}') = δ({(P ′, y′, a′)}'). Then y0 =def y ·a = y′ ·a′.
As Y is assumed “Confluent” we obtain a commuting diagram

(P, y)
b

%% %%J
J

J
J

J

(Q, y0)

a
:: ::ttttttttt

a′ $$ $$JJJJJJJJJ
(P1, y1)

(P ′, y′)
b′

99 99t
t

t
t

t

in els(Y). However (P, y) and (P ′, y′) are extreme elements of Y . Hence b and
b′ are isomorphisms making (P, y, a) ' (P ′, y′, a′).
δ is onto: Suppose y ∈ Y (Q). Because pomsets in Pom are finite, any chain

(Q, y)
a1� (Q, y)

a2� · · · an� (Qn, yn)
an+1� · · ·

is els(Y) must eventually only involve isomorphisms, i.e. for some n for all
m ≥ n, each augmentation am is an isomorphism. Taking a = an−1 ◦ · · · ◦ a1

there is an extreme element yn for which δ({(Qn, a, yn)}') = yn · a = y.
It follows that, to within isomorphism, the images of L are precisely those

presheaves Y of P̂om which are “Confluent”.
(ii) We now show that the “Mono” and “Separated” conditions transfer via L.
We first observe that for X ∈ P̂oms,

ext(L(X)) ∼= X

because extreme elements of L(X), of the form {(P, x, 1P)}', are in 1-1 corre-
spondence with x ∈ X(P).
“if”: Assuming L(X) is “Mono” and “Separated”, the “Mono” and “Separated”
conditions can be also seen to hold in the restriction ext(L(X)), which is iso-
morphic to X .
“only if”: Assuming X is “Mono” and “Separated” entails that X ∼= Es[−, E]
for some event structure E. By Lemma 20, L(X) ∼= E[−, E]. Now, just as in
the proof of Lemma 11, E[−, E] and so L(X) satisfies “Mono” (because mor-
phism from pomsets to event structure in E are mono) and “Separated” (because
morphisms are determined by their actions on events.) 2

15

We now obtain, as a corollary:
Proof of Theorem 17: By Lemma 20, a nonempty presheaf Y ∈ P̂om is repre-
sented by some event structure in E iff Y ∼= L(X) for some nonempty X ∈ P̂oms

which is “Mono” and “Separated”. But Lemma 21 says that the latter properties
hold of X iff Y ∼= L(X) is “Mono”, “Separated” and “Confluent”. 2

References

1. F. Borceux. Handbook of categorical algebra, vol. 1. CUP, 1994.
2. G. L. Cattani. Presheaf models for concurrency. PhD thesis, University of

Aarhus, 1999. Forthcoming.
3. G. L. Cattani, M. Fiore, and G. Winskel. A theory of recursive domains with

applications to concurrency. In Proceedings of LICS ’98, pages 214–225, IEEE
Press, 1998.

4. G. L. Cattani, I. Stark, and G. Winskel. Presheaf models for the π-calculus.
In Proceedings of CTCS ’97, LNCS 1290, pages 106–126, 1997.

5. G. L. Cattani and G. Winskel. Presheaf models for concurrency. In Proceedings
of CSL’ 96, LNCS 1258, pages 58–75, 1997.

6. M. Fiore, G. L. Cattani and G. Winskel. Weak bisimulation and open maps.
To appear in LICS’99.

7. A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from open maps. Infor-
mation and Computation, 127:164–185, 1996.

8. S. Mac Lane and I. Moerdijk. Sheaves in geometry and logic: A First Intro-
duction to Topos Theory. Springer-Verlag, 1992.

9. Pratt, V.R., Modelling concurrency with partial orders. International Journal
of Parallel Programming, 15,1, p.33-71, Feb. 1986.

10. A. J. Power, G. L. Cattani and G. Winskel. A categorical axiomatics for
bisimulation. In Proceedings of CONCUR’98, LNCS 1466, pages 591–596,
1998.

11. G. Winskel and M. Nielsen. Models for concurrency. In Handbook of logic in
computer science, Vol. 4, Oxford Sci. Publ., pages 1–148. Oxford Univ. Press,
1995.

12. G. Winskel. A presheaf semantics of value-passing processes. In Proceedings
of CONCUR’96, LNCS 1119, pages 98–114, 1996.

13. G.Winskel. A Linear Metalanguage for Concurrency. In Proceedings of
AMAST’98, LNCS, 1999.

16

Recent BRICS Report Series Publications

RS-99-7 Glynn Winskel. Event Structures as Presheaves—Two Repre-
sentation Theorems. March 1999. 16 pp.

RS-99-6 Rune B. Lyngsø, Christian N. S. Pedersen, and Henrik Nielsen.
Measures on Hidden Markov Models. February 1999. 27 pp.
To appear in Seventh International Conference on Intelligent
Systems for Molecular Biology, ISMB ’99 Proceedings, 1999.

RS-99-5 Julian C. Bradfield and Perdita Stevens.Observational Mu-
Calculus. February 1999. 18 pp.

RS-99-4 Sibylle B. Fr̈oschle and Thomas Troels Hildebrandt. On
Plain and Hereditary History-Preserving Bisimulation. Febru-
ary 1999. 21 pp.

RS-99-3 Peter Bro Miltersen.Two Notes on the Computational Complex-
ity of One-Dimensional Sandpiles. February 1999. 8 pp.

RS-99-2 Ivan B. Damg̊ard. An Error in the Mixed Adversary Protocol by
Fitzi, Hirt and Maurer . February 1999. 4 pp.

RS-99-1 Marcin Jurdziński and Mogens Nielsen. Hereditary History
Preserving Simulation is Undecidable. January 1999. 15 pp.

RS-98-55 Andrew D. Gordon, Paul D. Hankin, and Søren B. Lassen.
Compilation and Equivalence of Imperative Objects (Revised Re-
port). December 1998. iv+75 pp. This is a revision of Technical
Report 429, University of Cambridge Computer Laboratory,
June 1997, and the earlier BRICS report RS-97-19, July 1997.
Appears in Ramesh and Sivakumar, editors,Foundations of
Software Technology and Theoretical Computer Science: 17th
Conference, FST&TCS ’97 Proceedings, LNCS 1346, 1997,
pages 74–87.

RS-98-54 Olivier Danvy and Ulrik P. Schultz. Lambda-Dropping: Trans-
forming Recursive Equations into Programs with Block Struc-
ture. December 1998. 55 pp. To appear inTheoretical Computer
Science.

RS-98-53 Julian C. Bradfield. Fixpoint Alternation: Arithmetic, Transi-
tion Systems, and the Binary Tree. December 1998. 20 pp.

