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Measures on hidden Markov models

Rune B. Lyngsg* Christian N. S. Pedersen'
Henrik Nielsen?

Abstract

Hidden Markov models were introduced in the beginning of
the 1970’s as a tool in speech recognition. During the last decade
they have been found useful in addressing problems in computa-
tional biology such as characterising sequence families, gene find-
ing, structure prediction and phylogenetic analysis. In this paper
we propose several measures between hidden Markov models. We
give an efficient algorithm that computes the measures for left-
right models, e.g. profile hidden Markov models, and discuss how
to extend the algorithm to other types of models. We present an
experiment using the measures to compare hidden Markov models
for three classes of signal peptides.

1 Introduction

A hidden Markov model describes a probability distribution over a po-
tentially infinite set of sequences. It is convenient to think of a hidden
Markov model as generating a sequence according to some probability
distribution by following a first order Markov chain of states, called the
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path, from a specific start-state to a specific end-state and emitting a
symbol according to some probability distribution each time a state is
entered. One strength of hidden Markov models is the ability efficiently
to compute the probability of a given sequence as well as the most prob-
able path that generates a given sequence. Hidden Markov models were
introduced in the beginning of the 1970’s as a tool in speech recognition.
In speech recognition the set of sequences might correspond to digitised
sequences of human speech and the most likely path for a given sequence
is the corresponding sequence of words. Rabiner [19] gives a good intro-
duction to the theory of hidden Markov models and their applications to
speech recognition.

Hidden Markov models were introduced in computational biology in
1989 by Churchill [5]. Durbin et al. [6] and Eddy [7, 8] are good overviews
of the use of hidden Markov models in computational biology. One of
the most popular applications is to use them to characterise sequence
families by using so called profile hidden Markov models introduced by
Krogh et al. [15]. For a profile hidden Markov model the probability of
a given sequence indicates how likely it is that the sequence is a member
of the modelled sequence family, and the most likely path for a given se-
quence corresponds to an alignment of the sequence against the modelled
sequence family.

An important advance in the use of hidden Markov models in compu-
tational biology within the last two years, is the fact that several large li-
braries of profile hidden Markov models have become available [8]. These
libraries not only make it possible to classify new sequences, but also open
up the possibility of comparing sequence families by comparing the pro-
files of the families instead of comparing the individual members of the
families, or of comparing entire sequence families instead of the individual
members of the family to a hidden Markov model constructed to model
a particular feature. To our knowledge little work has been published in
this area, except for alignment of profiles [9)].

In this paper we propose measures for hidden Markov models that
can be used to address this problem. The measures are based on what
we call the co-emission probability of two hidden Markov models. We
present an efficient algorithm that computes the measures for profile
hidden Markov models and observe that the left-right architecture is the
only special property of profile hidden Markov models required by the
algorithm. We describe how to extend the algorithm to broader classes of
models and how to approximate the measures for general hidden Markov



models. The method can easily be adapted to various special cases, e.g. if
it is required that paths pass through certain states.

As the algorithm we present is not limited to profile hidden Markov
models, we have chosen to emphasise this generality by presenting an
application to a set of hidden Markov models for signal peptides. These
models do not strictly follow the profile architecture and consequently
cannot be compared using profile alignment [9].

The rest of the paper is organised as follows. In section 2 we discuss
hidden Markov models in more detail. In section 3 we introduce the
co-emission probability of two hidden Markov models and formulate an
algorithm for computing this probability of two profile hidden Markov
models. In section 4 we use the co-emission probability to formulate
several measures between hidden Markov models. In section 5 we discuss
extensions to more general models. In section 6 we present an experiment
using the method to compare three classes of signal peptides. Finally in
section 7 we briefly discuss how to compute relaxed versions of the co-
emission probability.

2 Hidden Markov models

Let M be a hidden Markov model that generates sequences over some fi-
nite alphabet 3 with probability distribution Ppy, i.e. Py/(s) denotes the
probability of s € ¥* under model M. Like a classical Markov model, a
hidden Markov model consists of a set of interconnected states. We use
P,(¢') to denote the probability of a transition from state g to state ¢'.
These probabilities are usually called state transition probabilities. The
transition structure of a hidden Markov model is often shown as a di-
rected graph with a node for each state, and an edge between two nodes
if the corresponding state transition probability is non-zero. Figure 1
shows an example of a transition structure. Unlike a classical Markov
model, a state in a hidden Markov model can generate or emit a symbol
according to a local probability distribution over all possible symbols.
We use P,(c0) to denote the probability of generating or emitting symbol
o € ¥ in state q. These probabilities are usually called symbol emission
probabilities. If a state does not have symbol emission probabilities we
say that the state is a silent state.

It is often convenient to think of a hidden Markov model as a gener-
ative model, in which a run generates or emits a sequence s € X* with
probability Pps(s). A run of a hidden Markov model begins in a spe-



cial start-state and continues from state to state according to the state
transition probabilities until a special end-state is reached. Each time a
non-silent state is entered, a symbol is emitted according to the symbol
emission probabilities of the state. A run thus results in a Markovian
sequence of states as well as a generated sequence of symbols. The name
“hidden Markov model” comes from the fact that the Markovian se-
quence of states, also called the path, is hidden, while only the generated
sequence of symbols is observable.

Start End

Figure 1: The transition structure of a profile hidden Markov model.
The squares are the match-states, the diamonds are the insert-states and
the circles are the silent delete-states.

Hidden Markov models have found applications in many areas of com-
putational biology, e.g. gene finding [14] and protein structure predic-
tion [20], but probably the most popular use is as profiles for sequence
families. A profile is a position-dependent scoring scheme that captures
the characteristics of a sequence family, in the sense that the score peaks
around members of the family. Profiles are useful when searching for
unknown members of a sequence family and several methods have been
used to construct and use profiles [10, 16, 21]. Krogh et al. [15] real-
ized that simple hidden Markov models, which they called profile hidden
Markov models, were able to capture all other profile methods.

The states of a profile hidden Markov model are divided into match-,
insert- and delete-states. Figure 1 illustrates the transition structure of
a simple profile hidden Markov model. Note the highly repetitive tran-
sition structure. Each of the repeated elements consisting of a match-,
insert- and delete-state models a position in the consensus sequence for
the sequence family. The silent delete-state makes it possible to skip a
position while the self-loop on the insert-state makes it possible to insert
one or more symbols between two positions. Another distinctive feature



of the structure of profile hidden Markov models is the absence of cycles,
except for the self-loops on the insert-states. Hidden Markov models
with this property are generally referred to as left-right [13] (or some-
times Bakis [1]) models, as they can be drawn such that all transitions
go from left to right.

The state transition and symbol emission probabilities of a profile
hidden Markov model (the parameters of the model) should be such
that Py(s) is significant if s is a member of the sequence family. These
probabilities can be derived from a multiple alignment of the sequence
family, but more importantly, several methods exist to estimate them (or
train the model) if a multiple alignment is not available [2, 6, 8].

3 Co-emission probability of two models

When using a profile hidden Markov model, it is sometimes sufficient just
to focus on the most probable path through the model, e.g. when using a
profile hidden Markov model to generate alignments. It is, however, well
known that profile hidden Markov models possess a lot more information
than the most probable paths, as they allow the generation of an infinity
of sequences, each by a multitude of paths. Thus, when comparing two
profile hidden Markov models, one should look at the entire spectrum of
sequences and probabilities.

In this section we will describe how to compute the probability that
two profile hidden Markov models independently generate the same se-
quence, that is for models M; and M, generating sequences over an
alphabet ¥ we compute

Z PM1(8)PM2(8)‘ (1)

sEX*

We will call this the co-emission probability of the two models. The al-
gorithm we present to compute the co-emission probability is a dynamic
programming algorithm similar to the algorithm for computing the prob-
ability that a hidden Markov model will generate a specific sequence |6,
Chapter 3]. We will describe how to handle the extra complications aris-
ing when exchanging the sequence with a profile hidden Markov model.

When computing the probability that a hidden Markov model M
generates a sequence s = Sp...S,, a table indexed by a state from M
and an index from s is usually built. An entry (g,7) in this table holds
the probability of being in the state ¢ in M and having generated the



prefix s;...s; of s. We will use a similar approach to compute the co-
emission probability. Given two hidden Markov models M; and M, we
will describe how to build a table A indexed by states from the two
hidden Markov models, such that the entry A(q, q’) — where ¢ is a state
of M; and ¢’ is a state of My — holds the probability of being in state ¢ in
M and ¢’ in M, and having independently generated identical sequences
on the paths to ¢ and ¢’. The entry indexed by the two end-states will
then hold the probability of being in the end-states and having generated
identical sequences, that is the co-emission probability.

To build the table, A, we have to specify how to fill out all entries
of A. For a specific entry A(q,q’) this depends on the types of states ¢
and ¢'. As explained in the previous section, a profile hidden Markov
model has three types of states (insert-, match- and delete-states) and
two special states (start and end). We postpone the treatment of the
special states until we have described how to handle the other types of
states. For reasons of succinctness we will treat insert- and match-states
as special cases of a more general type, which we will call a generate-
state; this type encompasses all non-silent states of the profile hidden
Markov models.

The generate-state will be a merging of match-states and insert-states,
thus both allowing a transition to itself and having a transition from the
previous insert-state; a match-state can be viewed as a generate-state
with probability zero of choosing the transition to itself, and an insert-
state can be viewed as a generate-state with probability zero of choosing
the transition from the previous insert-state. Note that this merging of
match- and insert-states is only conceptual; we do not physically merge
any states, but just handle the two types of states in a uniform way.
This leaves two types of states and thus four different pairs of types.
This number can be reduced to three, by observing that the two cases of
a generate/delete-pair are symmetric, and thus can be handled the same
way.

The rationale behind the algorithm is to split paths up in the last
transition(s)! and all that preceded this. We will thus need to be able
to refer to the states with transitions to ¢ and ¢’. In the following, m, i
and d will refer to the match-, insert- and delete-state with a transition
to ¢, and m’, i’ and d’ to those with a transition to ¢’. Observe that if ¢
(or ¢') is an insert-state, then ¢ (or ¢') is the previous insert-state which,

In some of the cases explained below, we will only extend the path in one of the
models with an extra transition, hence the unspecificity.



by the generate-state generalisation, has a transition to ¢ (or ¢') with
probability zero.

delete/delete entry Assume that ¢ and ¢’ are both delete-states. As
these states don’t emit symbols, we just have to sum over all pos-
sible combinations of immediate predecessors of ¢ and ¢', of the
probability of being in these states and having independently gen-
erated identical sequences, multiplied by the joint probability of
independently choosing the transitions to ¢ and ¢’. For the calcu-
lation of A(q,q’) we thus get the equation

Alg,q) =
A(m, m") P (q) Py (') + A(m, ") P (q) Py (¢') + A(m, d’) P (q) P (q')
+ A(i,m")Pi(q) Py (¢') + A(i,7")Py(q) Py (¢') + A(i,d' ) Pi(q) P (q')
+ A(d,m')Py(q) P (q') + A(d, ") Pa(q) Py (¢') + A(d,d") Py(q) Py (¢').-
(2)

delete/generate entry Assume that ¢ is a delete-state and ¢ is a
generate-state. Envision paths leading to ¢ and ¢’ respectively while
independently generating the same sequence. As ¢ does not emit
symbols while ¢’ does, the path to ¢’s immediate predecessor (that
is, the path to ¢ with the actual transition to ¢ removed) must
also have generated the same sequence as the path to ¢’. We thus
have to sum over all immediate predecessors of ¢, of the probabil-
ity of being in this state and in ¢’ and having generated identical
sequences, multiplied by the probability of choosing the transition
to g. For the calculation of A(g,¢') in this case we thus get the
following equation

A(q,q') = A(m,q")Pn(q) + A(i,¢')Pi(q) + A(d,q¢')Pa(q).  (3)

generate/generate entry Assume that ¢ and ¢’ are both generate-
states. The last character in sequences generated on the paths to ¢
and ¢ are generated by ¢ and ¢’ respectively. We will denote the
probability that these two states independently generate the same
symbol by p, and it is an easy observation that

p=7) Pyo)Py(o). (4)

ceEY



The problem with generate/generate entries is that the last tran-
sitions on paths to ¢ and ¢ might actually come from ¢ and ¢
themselves, due to the self-loops of generate states. It thus seems
that we need A(q,q’) to be able to compute A(q,q")!

So let us start out by assuming that at most one of the paths to ¢
and ¢ has a self-loop transition as the last transition. Then we can
easily compute the probability of being in ¢ and ¢’ and having in-
dependently generated the same sequence on the paths to ¢ and ¢/,
by summing over all combinations of states with transitions to ¢
and ¢’ (including combinations with either ¢ or ¢’ but not both)
the probabilities of these combinations, multiplied by p (for inde-
pendently generating the same symbol at ¢ and ¢') and the joint
probability of independently choosing the transitions to ¢ and ¢'.
We denote this probability by Ag(q, ¢’), and by the above argument
the equation for computing it is

Ao(g,q") =p(A(m, m") P (q) P (q') + A(m, ") Prn(q) P (¢)
(9)Pa(¢') + A(m,q' ) Pn(q) Py (¢)
q¢)+ A(i, i) Pi(q) P (¢)
q¢)+ A(i,q)Pi(q9) Py (g
y ) Pa(q) P (') + A(d, i) Pa(q) Py
,d')Py(q)Py(q") + A(d,q ) Py(q) Py (¢'
+ A(g,m) Py(q) P (¢') + A(g, ") Py(q) Py (d)
+ A(q,d")Py(q) P (q'))-

Now let us cautiously proceed, by considering a pair of paths where
one of the paths has exactly one self-loop transition in the end,
and the other path has at least one self-loop transition in the end.
The probability — that we surprisingly call A;(q,q’) — of getting
to ¢ and ¢’ along such paths while generating the same sequences
is the probability of getting to ¢ and ¢ along paths that do not
both have a self-loop transition in the end, multiplied by the joint
probability of independently choosing the self-loop transitions, and
the probability of ¢ and ¢’ emitting the same symbols. But this is
just

)
@) (5)
q

Ai(q,q") =1A0(q,q), (6)

where

r = pPy(q)Py(q) (7)



is the probability of independently choosing the self-loop transitions
and emitting the same symbols in ¢ and ¢’. Similarly we can define
Ax(q,4'), and by induction it is easily proven that

Ailq,q) = rAi-1(q,d) = ™" As(q,q). (8)

As any finite path ending in ¢ or ¢’ must have a finite number of
self-loop transitions in the end, we get

Alg,d) = Alg.q)

(e o]

= r*A(q,q) (9)

k=0
1
= —A n.
1—r O(Q> q )
Despite the fact that there is an infinite number of cases to consider,
we observe that the sum over the probabilities of all these cases
comes out as a geometric series that can easily be computed.

Each of the entries of A pertaining to match- insert- and delete-states
can thus be computed in constant time using the above equations. As
for the start-states (denoted by s and s’) we initialise A(s,s’) to 1 (as we
have not started generating anything and the empty sequence is identical
to itself). Otherwise, even though they do not generate any symbols, we
will treat the start-states as generate states; this allows for choosing an
initial sequence of delete-states in one of the models. The start-states are
the only possible immediate predecessors for the first insert-states, and
together with the first insert-states the only immediate predecessors of
the first match- and delete-states; the equations for the entries indexed
by any of these states can trivially be modified according to this. The
end-states (denoted by e and €’) do not emit any symbols and are thus
akin to delete-states, and can be treated the same way.

The co-emission probability of M; and M, is the probability of being
in the states e and €’ and having independently generated the same se-
quences. This probability can be found by looking up A(e, €’). In the rest
of this paper we will use A(M;, M) to denote the co-emission probability
of M; and M,.

As all entries of A can be computed in constant time, we can com-
pute the co-emission probability of M; and M, in time O(nins) where



n; denotes the number of states in M;. The straightforward space re-
quirement is also O(niny) but can be reduced to O(n;) by a standard
trick [11, Chapter 11].

4 Measures on hidden Markov Models

Based on the co-emission probability we define two metrics that hope-
fully, to some extent, express how similar the families of sequences rep-
resented by two hidden Markov models are. A problem with the co-
emission probability is that the models having the largest co-emission
probability with a specific model, M, usually will not include M itself,
as shown by the following proposition.

Proposition 1 Let M be a hidden Markov model and p = max{Py(s) |
s € ¥*}. The mazimum co-emission probability with M attainable for
any hidden Markov model is p. Furthermore, the hidden Markov models

attaining this co-emission probability with M, are exactly those models,
M', for which Pyi(s) > 0 < Py(s) = p for all s € ¥,

Proof. Let M' be a hidden Markov model with Py (s) > 0 < Py(s) = p.
Then

> Pu(s)=1 (10)

sEX*, Pp(s)=p

and thus the co-emission probability of M and M’ is

> Pu(s)Pur(s) = > Pu(s)Pur(s) = p. (11)

sEX* sEX* Py (s)=p

Now let M’ be a hidden Markov model with Py (s") = p’ > 0 for
some s’ € ¥* with Py(s') = p” < p. Then the co-emission probability of
M and M’ is

Z Pu(8)Pyp(s) = p'p” + Z Prr(s) P (s)
sED* sex\{s'}

(12)

/ I

<pp"+(1-p)p
<p.

This proves that a hidden Markov model, M’, has maximum co-emission
probability, p, with M, if and only if the assertion of the proposition is
fulfilled. O

10



Proposition 1 indicates that the co-emission probability of two models
not only depends on how alike they are, but also on how ‘self-confident’
the models are, that is, to what extent the probabilities are concentrated
to a small subset of all possible sequences.

Another way to explain this undesirable property of the co-emission
probability, is to interpret hidden Markov models — or rather the prob-
ability distribution over finite sequences of hidden Markov models — as
vectors in the infinite dimensional space spanned by all finite sequences
over the alphabet. With this interpretation the co-emission probability,
A(My, M,), of two hidden Markov models, M; and Mo, simply becomes
the inner product,

(My, M) = | My|[ M| cosv, (13)

of the models. In the expression on the right hand side, v is the angle
between the models — or vectors — and |M;| = /(M;, M;) is the length
of M;. One observes the direct proportionality between the co-emission
probability and the length (or ‘self-confidence’) of the models being com-
pared. If the length is to be completely ignored, a good measure of the
distance between two hidden Markov models would be the angle between
them — two models are orthogonal, if and only if they can not generate
identical sequences, and parallel (actually identical as the probabilities
have to sum to 1) if they express the same probability distribution. This
leads to the definition of our first metric on hidden Markov models.

Definition 1 Let M; and M, be two hidden Markov models, and let
A(M, M'") denote the co-emission probability of two hidden Markov mod-
els M and M'. We define the angle between M and Ms as

Dangie( My, My) = arccos (A(Ml, M) / VA, M) A(Ms, M2)> .

Having introduced the vector interpretation of hidden Markov models,
another obvious metric to consider is the standard metric on vector
spaces, that is, the (euclidian) norm of the difference between the two
vectors

|My — My| = \/(My, — My, My — Ms,). (14)

11
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(a) Hidden Markov model M; with (b) Hidden Markov model M, with

Py, (a) = 1. Py,(a) = 1/2 and Py,(ak) =
= (2=L)*=2 for k > 1.

Figure 2: Two distinctly different models can have an arbitrarily small
distance in the Dypge metric. It is easy to see that A(M, M;) = 1,
A(My, M) = 1/2 and A(My, My) = 1/4+ 1/(8n — 4); for n — oo one
thus obtains Dngie( M1, My) — 0 but Daig(M;, My) — 1/2.

Considering the square of this, we obtain
|My — My|* = (My — My, My — Ms)

=3 (Pun(s) = Pas(s))’
SEX* (15)
=" (Pan(8)? + Pans(5)? — 2Pas, () Pans(5))

= A(My, My) + A(Ms, M) — 2A(My, Ms).

Thus this norm can be computed based on co-emission probabilities, and
we propose it as a second choice for a metric on hidden Markov models.

Definition 2 Let My and M, be two hidden Markov models, and A(M, M')
be the co-emission probability of M and M'. We define the difference be-
tween M, and M, as

Daig(My, My) = \/A(My, My) + A(My, My) — 2A(M;, M)

One problem with the Dgig metric is that |M;| — | M| < Daig( My, M) <
| M| + | Ma]. If |My| > |Ms| we therefore get that Dag(My, Ms) ~ | M|,
and we basically only get information about the length of M; from Dg;g.

The metric Dangle is not prone to this weakness, as it ignores the
length of the vectors and focuses on the sets of most probable sequences

12



in the two models and their relative probabilities. But this metric can also
lead to undesirable situations, as can be seen from figure 2 which shows
that Da,nge might not be able to discern two clearly different models.
Choosing what metric to use, depends on what kind of differences one
wants to highlight.

For some applications one might want a similarity measure instead
of a distance measure. Based on the above metrics or the co-emission
probability one can define a variety of similarity measures. We decided
to examine the following two similarity measures.

Definition 3 Let M; and My be two hidden Markov models and A(M, M'")
be the co-emission probability of M and M'. We define the similarity be-
tween M, and M, as

S1(My, My) = cos (D angie(My, M)
— A(M,, My) / VA, M)A(Ms,, My)

and
So(My, M) = 2A(My, My) /(A(My, My) + A(M,, Ms)) .

One can easily prove that these two similarity measures possess the fol-
lowing nice properties.

1. 0 < Si(M1,M2) < 1.
2. S;(My, M) =1 if and only if Vs € X* : Py, (s) = Pa(s).

3. Si(My, M) =0ifand only if Vs € £* : Py, (s) > 0= Py ,(s) =0,
that is, there are no sequences that can be generated by both M;
and M.

The only things that might not be immediately clear are that S, satisfies
properties 1 and 2. This however follows from

A(Mla Ml) + A(M2a MQ) - 2A(M1’M2) = Z (PMI (5) - PMz(S))2a (16)
seEX*

cf. equation 15, wherefore 2A(My, My) < A(My, My) + A(M,, Ms), and
equality only holds if for all sequences their probabilities in the two mod-
els are equal.

13



5 Other types of hidden Markov models

Profile hidden Markov models are not by far the only type of hidden
Markov models used in computational biology. Other types of hidden
Markov models have been constructed for e.g. gene prediction [14] and
recognition of trans-membrane proteins [20].We observe that the prop-
erties of the metrics and similarity measures introduced in the previous
section do not depend on the structure of the underlying models, so
once we can compute the co-emission probability of two models, we can
also compute the distance between and similarity of the two models. The
question thus is, can our method be extended to compute the co-emission
probability for other types of hidden Markov models too?

The first thing one can observe, is that the only feature of the un-
derlying structure of profile hidden Markov models we use, is that they
are left-right models, i.e. we can number the states such that if there is a
transition from state i to state j then ¢ < j (if the inequality is strict, that
is ¢ < j, then we do not even need the geometric sequence calculation,
and the calculation of the co-emission probability reduces to a calculation
similar to the forward /backward calculations [6, Chapter 3|). For all left-
right hidden Markov models, e.g. profile hidden Markov models extended
with free insertion modules [3, 12], we can thus use recursions similar to
those specified in section 3 to compute the co-emission probability.

With some work the method can even be extended to all hidden
Markov models where each state is part of at most one cycle, even if this
cycle consists of more than the one state of the self-loop case. We will
denote such models as hidden Markov models with only simple cycles.
This extension can be useful when comparing models of coding DNA,
that will often contain cycles with three states, or models describing a
variable number of small domains. For general hidden Markov models
we will have to resort to approximating the co-emission probability. In
the rest of this section we will describe these two generalisations.

5.1 Hidden Markov models with only simple cycles

Assume that we can split M and M’ into a number of disjoint cycles
and single nodes, {C;}i<x and {C/};<y, such that {C;} and {C]} are
topologically sorted, i.e. for p € C; (p' € C}) and q € Cj (¢ € ()
and ¢ < j there is no path from ¢ to p in M (from ¢ to p' in M’).
To compute the co-emission probability of M and M’, we will go from
considering pairs of single nodes to considering pairs of cycles, i.e. we

14



look at all nodes in a cycle at the same time.

Let C; and C, be cycles? in M and M’ respectively. Assume that we
have already computed the co-emission probability, A(q,q'), for all pairs
ofnodes, ¢, ¢, where g € Cj, ¢' € C},, j < i,j' < i'and (i,i') # (j,5'). We
will now describe how to compute the co-emission probability, A(p,p’),
for all pairs of nodes, p,p’, with p € C; and p' € CY,.

As with the profile hidden Markov models, cf. section 3, we will pro-
ceed in a step by step fashion. We start by restricting the types of paths
we consider, to get some intermediate results; we then expand the types
of paths allowed — using the intermediate results — until we have covered
all possible paths.

The first types of paths we consider are paths, m and 7/, generating
identical sequences that ends in p and p’, but where the immediate pre-
decessor of p on 7 is not in C}, or the immediate predecessor of p’ on =’
is not in C},. We will denote the co-emission probability at p,p’ of paths
of this type as A.(p,p’), as it covers the co-emission probability of paths
entering the pair of cycles, C;, C},, at p,p’; it can easily be computed as

Adad) = S P@PADACT) S P0)Py(o),  (17)
r—q,r’'—q oeX
(r,r") € C; x C,
where r — ¢ (" — ¢') denotes that there is a transition from r to g
in M (from r’ to ¢' in M’). Here we assume that both ¢ and ¢’ are
non-silent states; if both are silent, the sum over all symbols factor,
Y wes, P(0)Py(o) (the probability that ¢ and ¢' generates identical sym-
bols), should be omitted, and if one is silent and the other non-silent, the
sum should furthermore only be over non-C; (or non-C,) predecessors of
the silent state.
Before we proceed further, we will need some definitions that allow
us to talk about successors of states and successors of pairs of states in
C;, Cl, and some related probabilities.

Definition 4 Let q € C; (¢ € C},). The successor of q in C; (¢ in Cl)
is the unique state r € C; (1’ € C,) for which there is a transition from q
tor (from q tor').

The uniqueness of the successor follows from the requirement that the
models only have simple cycles. For successors of pairs of states things

2If C; or Cl, is not a cycle but a single node, the calculations of the co-emission
probabilities pertaining to pairs of nodes from C; and Cj, trivialises to calculations
similar to equation 17 below.
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are a little bit more complicated, as we want the successor of a pair to be
the unique pair to which we can get to, generating the same number of
symbols (zero or one) using one transition in one or both models. This
is captured by definition 5.

Definition 5 Let ¢ € C; and ¢’ € C},. The successor of q,q" in C;,C},
suc(q, q'), is the pair of states r, 7" where

o if the successor of q in C; is silent or the successor of ¢’ in C, is
non-silent, then r is the successor of q; otherwise r = q.

o if the successor of ¢' in C} is silent or the successor of q in C; is
non-silent, then ' is the successor of q'; otherwise ' = ¢'.

By this definition the successor of a pair of states, ¢,q’, is the pair of
successors of ¢ and ¢’ if both successors are silent or both successors
are non-silent states. If the successor of ¢ is a non-silent state and the
successor of ¢’ is a silent state then the successor of ¢, ¢ is the pair
consisting of ¢ and the successor of ¢'.

We will use P, ,(suc(g,q’)) to denote the probability of getting from
q,q" to suc(q,q’) generating identical symbols. If r,r" = suc(q,q’) are
both non-silent, then P,y (r,7") = Py(r)Py(r') >_, e, Pr(0) Py (0); if one
or both are silent, the sum over all symbols factor, > . P.(0)Py(0),
should be omitted, and if only r (') is silent, the P, (1) factor (P,(r) fac-
tor) should furthermore be omitted as ¢’ = ' (as ¢ = 7).

More generally we will use P, ,(r,r'), where ¢, € C; and ¢, 1" € C,,
to denote the probability of getting from ¢,q" to r,r’ generating iden-
tical sequences without cycling, i.e. by just starting in ¢,¢" and go-
ing through successors until we reach r,r’ the first time. We resolve
the ambiguity of the meaning of P, ,(q,q¢’) by setting P, ,(q,q') = 1.
To ease notation in the following, we furthermore define P, ,(r,r’) =
Py y(suc(q, q')) Psuc(q,q) (T, 7). The probability P, ,(g,q’) is thus the prob-
ability of going through one full cycle of successors to ¢, ¢’ until we are
back at q,q’; if r,7" # q,q' then P, .(r,7") = Py (r,1").

One can observe that r, 7’ might not be anywhere in the sequence of
successors starting at ¢, ¢’. If we can get to r, ' from ¢, ¢’ going through
consecutive successors, then there is a pair of paths from ¢ to r and from
q to r’, respectively, generating an equal number of symbols. Such a pair
of paths does not necessarily exist. E.g. assume there is an even number
of non-silent states in both C; and C},, and that the successor, r, of ¢
in C} is non-silent. Any path that starts in ¢ and ends in r will generate
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(a) Two example cycles, C; (b) The cycle of the class of pairs in

{90,q1, 92} and C, = {40,491, 93,935,944}  Ci x C}, containing qo, gp-
Hollow circles denote silent states and
filled circles denote non-silent states.

Figure 3: An example of a pair of cycles in M and M’ and one of the
induced cycles of pairs. A path, 7, ending in ¢ in C; and a path, =/,
ending in ¢, in C, are shown with zigzagged lines. If we assume that the
two paths generate identical sequences, then the co-emission path, 7, 7/,
ends in gq, ¢4 in C;, CY,. Though 7’ enters C, at ¢}, the co-emission path,
m, ', enters C;, Cl, at qo, qp, as the first symbol in the sequence generated
by m and 7’ that is generated by states in both C; and CY,, the second
last symbol of the sequence, is generated by go and ¢ respectively.

an uneven number of symbols, while any path starting and ending in
q € C}, will generate an even number of symbols. It is thus impossible
to get from ¢, ¢’ to r, ¢’ going through successors.

More formally, let d,(r) (resp. dy(r')) denote the number of non-silent
states we go through going from ¢ to r in C; (from ¢’ to 7’ in C,), and
let h (h') denote the total number of non-silent states in C; (in C},).
Then by similar reasoning as in the above, we can get from ¢, ¢ to r,r’
going through successors if and only if dy(r) = dy(r') mod gcd(h, ).
It is evident that we can always get back to ¢,q¢ when starting in ¢, ¢/,
and thus the pairs of states from C;, C}, can be partitioned into cycles of
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consecutive successors, cf. figure 3. If it is possible to get from ¢, ¢’ to
p,p’ generating an equal number of symbols, i.e. ¢, ¢ and p,p’ are in the
same cycle of pairs, we will say that ¢,¢ and p,p’ belong to the same
class, as the partition of pairs in this manner is actually a partition into
equivalence classes.

We are now ready to compute the probability of getting simultane-
ously to p and p’ having generated identical sequences, without having
been simultaneously in p and p’ previously on the paths. This is

App)= Y. Adg,d)Py(p.p) (18)

q,q’ belongs to the
same class as p,p’

as we sum over all possible pairs, ¢,¢’, where paths ending in p,p’ can
have entered C;, CY,. It is similar to Ay(p,p’) for profile hidden Markov
models in the sense, that it is the probability of reaching p and p’ hav-
ing generated identical sequences without having looped through p,p’
previously.

To compute the A, entries efficiently for all pairs of states in a class,
we exploit the fact that P,y (p,p) = Pyq(suc(q,q’))Pec(gq)(p,p") (for
q,q # p,p'); we can thus compute Ay(p,p’) in an incremental way, start-
ing at the successor of p,p’ and going through the cycle of successors,
adding the A, values and multiplying by the probability of getting to the
next successor. Furthermore, as

AO(p7p/)Pp,p'(Suc(p7p,)) + Ae(SUC(p,p/))
= Y Adg,d)Pog(p,0) By (suc(p, 1))

/
q,q’ belongs to the
same class as p,p’ (19)

+ Ac(suc(p, p')) Pouc(pp) (suc(p, p'))
= Ap(suc(p, p')) + Ac(suc(p, p')) Piucippr (Suc(p, p))

we do not need to start from scratch when computing Ay for the other
pairs that belong to the same class as p,p’ — which would require time
proportional to the square of the number of pairs in the class — but can
reuse Ag(p,p’) to compute Ag(suc(p,p’)) in constant time. Finally we
observe that

o0

| 1
Alp,p) =Y _ P, ,(p,p) Ao(p,p) =

————A(p, D) (20)
=0 1 - P;,p/ (p7 p,)
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Algorithm 1 Computation of the co-emission probabilities at all pairs
of states that are in the same class as p,p’.

¢4 =p,p

AccumulatedP = A.(p,p’)

r=1

while suc(q,¢') # p,p’ do
AccumulatedP = AccumulatedP - P, ,(suc(q,q’)) + Ae(suc(q, q'))
r=r-P,y(suc(qg,q))
¢,¢ = suc(q, ¢')

end while

r=r-Fg(suc(q, q))
repeat /* AccumulatedP = Ay(q,q’) and r = Pq,,q’ (¢,4) */
A(q,q') = AccumulatedP - ﬁ

Accumulated P
= AccumulatedP - P, y(suc(q,q)) + (1 — ) - Ac(suc(q, ¢'))

¢, q' = suc(q, q')
until suc(q,q) = p,p’

and

P;’p, (p,p) = Pq'7q,(q, q) (21)

for all ¢,q" that belong to the same class as p,p’. This allows us to
formulate algorithm 1 for computing the co-emission probability at all
pairs in a cycle.

It is an easy observation that we run through all pairs of the class
twice — once in the while-loop and once in the repeat-loop — thus using
time proportional to the number of pairs in the class to compute the
co-emission probabilities at each pair. Therefore, the overall time for
handling the entries pertaining to the pair of cycles, C;, Cl,, is O(|C;||C}])
once we have computed the A, entries; thus the time used to compute the
co-emission probability of two hidden Markov models with only simple
cycles is proportional to the product of the number of transitions in the
two models. This is comparable to the complexity of O(nins) for profile
hidden Markov models, as this result relied on there only being a constant
number of transitions to each state. In general we can compute the co-
emission probability of two hidden Markov models, M; and M,, with
only simple cycles — including left-right hidden Markov models — in time
O(myms), where m; denotes the number of transitions in M;.

19



5.2 General hidden Markov models

For more complex hidden Markov models, let us examine what is ob-
tained by iterating the calculations. Let Al(q,q’) be the value computed
for entry (g, ¢’') in the 7’th iteration. If we assume that ¢ and ¢’ are either
both silent or both non-silent states, then we can compute the new entry

for (q,q') as

Ali(g,d) =p > Ailr,7)P(q)Pr(d), (22)

e

T —q
where p is as defined in equation 4 if ¢ and ¢’ are non-silent states, and
is 1 if ¢ and ¢ are silent states. If ¢ and ¢’ are of different types, the
summation should only be over the predecessors of the silent state as in
equation 3. In each iteration we thus extend co-emission paths with one
pair of states, and A}(q,q’) is the probability of getting to ¢,q having
generated identical sequences on a co-emission path of length <.

The resemblance of this iterated computation to the previous cal-
culation of A; is evident, but a well-known mathematical sequence is
not easily recognisable in equation 22. Instead we observe that A%(q,q’)
holds the probability of being in states ¢ and ¢’ and having generated
identical prefixes in the two models after ¢ iterations. If we assume that
the only transitions from the end-states are self-loops with probability 1
(this makes the Al(e, €’) entry accumulate the probabilities of generating
identical sequences after at most 7 iterations), then

Aile,d) < AM, M) < ) Aifa.d) (23)

qeEMi, qg'€M>2

where A(M7, M,) is the true co-emission probability of M; and M,. This
follows from the fact, that to generate identical sequences we must either
already have done so, or at least have generated identical prefixes so far.

Now assume that for any two states, we can choose transitions to non-
silent states (or the end-states) and emit different symbols with probabil-
ity at least 1 — ¢ where ¢ < 1. Then the total weight with which A%(q,q’)
contributes to the entries — not counting the special (e, €’) entry — of A;
is at most c. Thus

Yo A(ed)<c Y Algq) (24)
qEMy, €My qEMy, ¢'eM>
(g,9")#(ese’) (9,9 )#(ese)
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and by induction we get

> Allgd) - Alled) = > Allgq) < ¢, (25)
qeMy,q' EM> qeEM1, q' €My
(9,9")#(ese”)

which shows that the iteration method approximates the co-emission
probability exponentially fast.

Though our assumption about the non-zero probability of choosing
transitions and emissions such that we generate different symbols in the
two models is valid for most, if not all, hidden Markov models used in
practice, it is not even necessary. If d is the minimum number of paired
transitions we have to follow from ¢ and ¢’ to get to the end-states®
or states where we can emit different symbols after having generated
identical prefixes, and ¢ is the probability of staying on this path and
emit different symbols, we still get the exponential approximation of
equation 25 with ¢ = (¢/)¥/¢. By these arguments we can approximate
the co-emission probabilities and thus the metrics and similarity measures
presented in section 4 of arbitrary hidden Markov models exponentially
fast.

6 Results

We have implemented the method described in the previous sections for
computing the co-emission probabilities of two left-right models. The
program furthermore computes the derived measures and is currently
available at www.brics.dk/~cstorm/hmmcomp. The program was used
to test the four measures in a comparison of hidden Markov models for
three classes of secretory signal peptides — cleavable N-terminal sequences
which target secretory proteins for translocation over a membrane.
Signal peptides do not have a well-defined consensus motif, but they
do share a common structure: an N-terminal region with a positive
charge, a stretch of hydrophobic residues, and a region of more polar
regions containing the cleavage site, where two positions are partially
conserved [22]. There are statistical differences between prokaryotic and
eukaryotic signal peptides concerning the length and composition of these

3The end-states ensures that d exists — if we can not get to e and €', then we can
not pass through ¢ and ¢’ and generate identical sequences. Therefore we may just
as well ignore the (g, ¢’) entry.
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(c) Plot of Sy values (d) Plot of Sy values

Figure 4: Plots of the results obtained with the different measures. Mod-
els 1 through 5 are the models trained on eukaryotic sequences, models 6
through 10 are the models trained on Gram-positive bacterial sequences,
and models 11 through 15 are the models trained on Gram-negative bac-
terial sequences. This gives 9 blocks, each of 25 entries, of different pairs
of groups of organisms compared, but as all the measures are symmetric
we have left out half the blocks showing comparisons between different
groups of organisms. This should increase clarity, as no parts of the plots
are hidden behind peaks.

regions [23, 17], but the distributions overlap, and in some cases, eukary-
otic and prokaryotic signal peptides are found to be functionally inter-
changeable [4].
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Euk  Gpos  Greg

Euk Gpos Gneg

Euk | 0.231 1.56 1.52 BEuk

6.77-107 256-1071° 2.67-10719

Gpos 0.864 1.47 Gpos 1.95-107 9.09-10~!
Gneg 0.461 Gneg 4.43 .10~
(a) Table of Dapgle values (b) Table of Dgig values
Euk Gpos Gneg BEuk Gpos Gneg‘
Euk | 0.967 Euk | 0.955
GPOS 1.06-1072 0.547 GPOS 1.78 -107% 0.511

Gpeg | 4.74-107% 0.102 0.866 || Gpeg | 2.93-1072 4.78-107% 0.839

(c) Table of S; values (d) Table of Sy values

Figure 5: Tables of the average values of each block plotted in figure 4.
The empty entries corresponds to the blocks left out in the plots.

The hidden Markov model used here is not a profile HMM, since sig-
nal peptides of different proteins are not necessarily related, and therefore
do not constitute a sequence family that can be aligned in a meaning-
ful way. Instead, the signal peptide model is composed of three region
models, each having a characteristic amino acid composition and length
distribution, plus seven states modelling the cleavage site — see Nielsen
and Krogh [18] for a detailed description. A combined model with three
branches was used to distinguish between signal peptides, signal anchors
(a subset of transmembrane proteins), and non-secretory proteins; but
only the part modelling the signal peptide plus the first few positions
after the cleavage site has been used in the comparisons reported here.

The same architecture was used to train models of three different sig-
nal peptide data sets: eukaryotes, Gram-negative bacteria (with a double
membrane), and Gram-positive bacteria (with a single membrane). For
cross-validation of the predictive performance, each model was trained
on five different training/test set partitions, with each training set com-
prising 80% of the data — i.e., any two training sets have 75% of the
sequences in common.

The comparisons of the models are shown in figures 4 and 5. In gen-
eral, models trained on cross-validation sets of the same group are more
similar than models trained on data from different groups, and the two
groups of bacteria are more similar to one another than to the eukaryotes.
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However, there are some remarkable differences between the measures.
According to Dgg, the two bacterial groups are almost as similar as the
cross-validation sets, but according to Dyyg1. and the similarity measures,
they are almost as dissimilar as the bacterial /eukaryotic comparisons.

This difference actually reflects the problem with the Dgg measure
discussed in section 4. The distribution of sequences for models trained
on eukaryotic data are longer in the vector interpretation, i.e. the proba-
bilities are more concentrated, than the distributions for models trained
on bacterial data. What we mainly see in the Dgg values for bacte-
rial/eukaryotic comparisons is thus the length of the eukaryotic models.
This reflects two properties of eukaryotic signal peptides: they have a
more biased amino acid composition in the hydrophobic region that com-
prises a large part of the signal peptide sequence; and they are actually
shorter than their bacterial counterparts, thus raising the probability of
the most probable sequences generated by this model.

Dangle also shows that the differences within groups are larger in the
Gram-positive group than in the others. This may simply reflect the
smaller sample size in this group (172 sequences vs. 356 for the Gram-
negative bacteria and 1137 for the eukaryotes).

The values of D,,g1ec in between-group comparisons are quite close to
the maximal 7/2. Thus the distributions over sequences for models of
different groups are close to being orthogonal. This might seem surpris-
ing in the light of the reported examples of functionally interchangeable
signal peptides; but it does not mean that no sequences can be generated
by both eukaryotic and bacterial models, only that these sequences have
low probabilities compared to those that are unique for one group. In
other words: if a random sequence is generated from one of these models,
it may with a high probability be identified which group of organisms it
belongs to.

7 Discussion

Recall that the co-emission probability is defined as the probability that
two hidden Markov models, M; and M,, generate completely identical
sequences, i.e. as Y v Py, (s1)Py,(s2) where s; = s3. One problem
with the co-emission probability — and measures based on it — is that it
can be desirable to allow sequences to be slightly different. One might
thus want to loosen the restriction of “s; = s5” to, e.g., “sy is a substring
(or subsequence) of s2,” or even “|s;| = |s3|” ignoring the symbols of the
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sequences and just comparing the length distributions of the two models.

Another approach is to take the view that the two hidden Markov
models do not generate independent sequences, but instead generates
alignments with two sequences. Inspecting the equations for computing
the co-emission probability, one observes that we require that when one
model emits a symbol the other model should emit an identical sym-
bol. This corresponds to only allowing columns with identical symbols
in the produced alignments. A less restrictive approach would be to al-
low other types of columns, i.e. columns with two different symbols or a
symbol in only one of the sequences, and weighting a column according
to the difference it expresses. The modifications proposed in the previous
paragraph can actually be considered special cases of this approach. Our
method for computing the co-emission probability can easily be modified
to encompass these types of modifications.
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