
B
R

IC
S

R
S

-99-5
B

radfield
&

S
tevens:

O
bservationalM

u-C
alculus

BRICS
Basic Research in Computer Science

Observational Mu-Calculus

Julian C. Bradfield
Perdita Stevens

BRICS Report Series RS-99-5

ISSN 0909-0878 February 1999

Copyright c© 1999, Julian C. Bradfield & Perdita Stevens
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/99/5/

Observational mu-calculus

Julian Bradfield1,2 and Perdita Stevens1

Abstract

We propose an extended modal mu-calculus to provide an ‘as-
sembly language’ for modal logics for real time, value-passing cal-
culi, and other extended models of computation.

1 The problem

The modal mu-calculus is widely considered to be a good ‘assembly
language’ into which temporal logics can be compiled. However, the
mu-calculus is not good at expressing properties of systems where the
observations are structured in some way. The principal examples are
real-timed systems, in which the passing of time can be observed, and
value-passing systems, in which the system may be observed to input
and output values along named ports. The values may even be names
themselves, as in the pi-calculus. A large number of extensions of popular
logics has been proposed (for example, in [2, 1, 4]), but there is as yet no
common framework in which the extensions can be studied. This seems
unfortunate, since in fact the extensions have a great deal in common.

In this paper we consider the problem of defining an ‘assembly-language’
logic for such extensions. The logic should be small and simple, and it
should be possible to translate these previously studied extensions into
it. This requirement will almost certainly lead to a logic in which typical
properties are expressed as long formulae. This will not concern us. It
is unreasonable to expect model-checking in so powerful a logic to be

1Laboratory for Foundations of Computer Science. Postal address: LFCS, Univer-
sity of Edinburgh, JCMB, King’s Buildings, EDINBURGH, EH9 3JZ, United King-
dom. Email: {Julian.Bradfield,Perdita.Stevens}@dcs.ed.ac.uk

2Danish National Research Council Centre for Basic Research in Computer Sci-
ence. Postal address: BRICS, Ny Munkegade bldg 540, DK–8000 Århus C

1

decidable in general; we will settle for a framework in which it is possible
to identify decidable fragments sufficient to include the images of decid-
able high level logics. Here we describe steps in this direction, and our
reasons for optimism about the strategy.

There are several possible frameworks in which one might look for a
solution. The most powerful framework is full second-order logic; how-
ever, this is intractable, in many ways. Monadic second-order logic is
a restriction which has a much more amenable theory; it is also used
in at least one serious verification environment[3]. It can be argued
that second-order quantification is too hard to understand, even for an
assembly-language logic. It is also arguable that since the popular tem-
poral logics are all expressible in terms of fixpoints, it is unnecessary to
go beyond fixpoints to second order, even monadic. This would suggest
the use of first-order logic with fixpoints, a logic much studied in finite
model theory, though less so in the mainstream verification community.
However, we maintain that all these logics have one feature, which is not
shared by traditional temporal logics, and which we consider undesirable:
they all have variables ranging over ‘states’, so that a formula can capture
states and keep them for later inspection. Temporal logics, including the
modal mu-calculus, do not have state variables; although the semantics
is defined over states, or even runs, there is no explicit access to states
in the logic. This accords with the observational paradigm, in which one
can inspect the behaviour of a process, but not its internal state. We
therefore adopt a modal mu-calculus framework for our logic. However,
when observing a value-passing or real-time process, values, which may
be arbitrary datatypes, or times are part of the observation. It is there-
fore reasonable – and necessary to capture existing logics! – to allow our
logic to have variables ranging over observable values, and to allow some
logical and non-logical manipulation of these observed values. To obtain
decidability results, one may need to restrict such manipulation severely;
however, in general we propose the use of first-order logic, with a set of
defined predicates, for the data language.

2 An assembly language mu calculus, Aµ

A formula is allowed to observe transitions, including values, names or
times which may be part of the action. It may store these values for
later use. Accordingly we allow a formula to use a set C of mutable
cells c, d, The values of these cells may change when the formula

2

tracks a change in the process by observing a transition, or autonomously.
We need to be able to state constraints on the contents of the cells.
Accordingly we have a two-level logic, the higher level parametrized on
the lower. Formulae φ . . . have free variables which are cellnames c, d . . .
or hooked cell names ↼c ,

↼
d . . . ; this allows us to state constraints on how

cell values change, for example at a modality. (Logically, the cells can
be expressed as first-order variables which are also passed through the
fixpoints as parameters; the cell notation saves symbols, and imposes
certain constraints on the use of these variables, as does the use of the
VDM-style hooks.)

The high level logic is defined thus:

Φ = T F X Φ ∨ Φ Φ ∧ Φ 〈l, C, φ〉Φ [l, C, φ] Φ νX.Φ µX.Φ

where l is an action expression, C ⊆ C a set of cells whose contents may
be altered on passing through the modality, and φ a low level formula
over C ∪↼

C which must be satisfied by the cell contents (and ex-contents
of modifiable cells) after the modality.

Action expressions depend on the domain of interpretation. For ex-
ample, suppose that we interpret the logic over labelled transition sys-
tems where the labels L include a(v) or a(v) where v ∈ V is a value.
(Such a transition system arises naturally from early semantics of a value-
passing CCS process.) Then an action expression may be any label l ∈ L,
or ε (a dummy label such that P

ε−→ P , allowing autonomous setting of
cells), or a(c) or a(c) for a cell name c. In the last case the purpose is

to set c: we have P satisfying 〈a(c), C, φ〉Φ iff P
a(v)−→ P ′ for some v and

there exist new values of the cells C such that φ holds and (c = v) holds,
and P ′ satisfies Φ (with respect to the updated cell values). Note that if
c /∈ C, we are requiring the process to read exactly the current value of
c. Formally, we can say that an action expression maps a cell environ-
ment to a label, or to the dummy label ε: given a cell environment, an
action expression yields the label we want to observe from the process,
and specifing a range of possible cell environments by allowing mutable
cells correspondingly allows a range of labels.

If we are concerned with pi calculus processes, we may want also to
allow an action expression to be c(d) where c (as well as d) may be a
cellname; again, the process will do a transition with a particular name
and the result will be to put that name into the cell c.

For another example, we can interpret the logic over real timed pro-

3

cesses, modelled as labelled transition systems with instantaneous action
labels l ∈ L, and delay actions δ(d) for non-negative reals d which are al-
ways possible from any state. We can then incorporate the ‘specification
clocks’ of [2] simply by having a real-valued cells c1, c2, . . . , and requir-
ing that in every delay modality, C includes the ci and the predicate φ
enforces their updating:

〈δ(d), {d, c1, ..., cn}, c1 = ↼c1 + d ∧ ... ∧ cn = ↼cn + d〉.

As syntactic sugar we may adopt the convention that cells marked cl

behave in this manner, and omit them from the delay modalities. Note
that these are specification clocks. Since we are taking a rigorously ob-
servational view here, internal state of a process, such as propositions or
clocks, is not observable unless the process chooses to export the infor-
mation; by the usual hacks, any internal state can be exported.

Figure 1 gives the semantics in full. Note that a fixpoint is implic-
itly parametrized on the cells, or more exactly on a cell environment: a
cell environment is a (finite) map from cell names to values. That is,
satisfaction is defined relative to

• a variable environment V which maps each fixpoint variable X to
a map from cell environments to sets of processes,

• a cell environment ρ.

The logic is defined relative to

• the low level logic (the language from which φ is drawn) with a
corresponding notion of satisfaction.

• matching of actions to action expressions: an action expression and
an action may or may not match in the context of a cell environ-
ment; formally, they match iff the action label is the image of the
cell environment under the map given by the action expression.

In the usual way, the subset ordering on P(Proc) is extended point-
wise to the set of maps from cell environments to P(Proc), giving a
complete lattice structure so that the Knaster-Tarski theorem applies.
That is, fixpoints in the observational mu-calculus are fixpoints of func-
tions of type

((V ar → V al)→ P(Proc))→ ((V ar → V al)→ P(Proc))

4

A |=V,ρ T
A 6|=V,ρ F
A |=V,ρ X iff A ∈ V (X)(ρ)
A |=V,ρ Φ1 ∨ Φ2 iff A |=V,ρ Φ1 or A |=V,ρ Φ2

A |=V,ρ Φ ∧ Φ iff A |=V,ρ Φ1 and A |=V,ρ Φ2

A |=V,ρ 〈l, C, φ〉Φ iff ∃ρ′ a new cell environment differing from ρ only in
the values of cells in C (c 6∈ C ⇒ ρ′(c) = ρ(c)) and ∃a, A′ such that
A

a−→ A′ and a matches l in context ρ′ and ρ, ρ′ |= φ and A′ |=V,ρ′ Φ
A |=V,ρ [l, C, φ] Φ iff whenever ρ′ is a new cell environment differing from

ρ only in the values of cells in C (c 6∈ C ⇒ ρ′(c) = ρ(c)) and A
a−→ A′

and a matches l in context ρ′ and ρ, ρ′ |= φ then A′ |=V,ρ′ Φ
A |=V,ρ νX.Φ iff A ∈ S(ρ) for some S ∈ (V ar → V al) → P(Proc) such
that A′ ∈ S(ρ) implies A′ |=V [X 7→S],ρ Φ
A |=V,ρ µX.Φ iff A ∈ S(ρ) for all S ∈ (V ar → V al) → P(Proc) such
that A′ |=V [X 7→S],ρ Φ implies A′ ∈ S(ρ).

Figure 1: Semantics of Aµ

where the first argument gives the current values of all the (finitely many)
cells which exist (wlog) anywhere in the formula.

Thus to see whether A |=V,ρ νX.Φ, we let h be the maximal fixpoint
of the function

F : ((V ar → V al)→ P(Proc))→ ((V ar → V al)→ P(Proc))

which is defined by

(Ff)(ρ′) = {B ∈ Proc : B |=V [X 7→f]ρ′ Φ}
Then we define A |=V,ρ νX.Φ iff A ∈ h(ρ).

3 Use of Aµ

To illustrate our logic, we exhibit translations from existing logics spe-
cialised for time or for value passing.

3.1 TCTL.

Timed CTL, in the flavour of [2], is interpreted on systems which have a
discrete state and a number of real-time clocks; a system either does an

5

instantaneous action, which may include resetting clocks, or allows time
to pass. The atomic predicates are state predicates, or simple comparison
of clocks – a restriction which allows model-checking procedures – and the
temporal connectives are ∃U and ∀U . The underlying semantic model
is systems of ‘real-time trajectories’ along which time passes or states
change: ‘premodels’ satisfy basic sanity properties (including stutter clo-
sure), ‘safe premodels’ are closed under limits, and ‘real-time systems’
have only divergent trajectories (along which time passes; in particular,
zeno paths are excluded). To get the normally desired interpretation of
inevitability ∀U , one interprets over real-time systems. In this case the
‘obvious’ translation of p∀U q is just µZ.q∨((p∨q)∧[]Z. However, we are
working with transition systems as the underlying model, so a priori we
must have non-divergent paths, and thus the obvious translation is ac-
tually translating from safe premodels, not real-time systems. There are
two options here: in the tradition of Fair CTL, one could simply decree
that non-divergent paths are unfair, and adjust the model-checking pro-
cedures to ignore them. However, as we have a powerful mu-calculus, we
can encode this fairness constraint, at least over reasonably well-behaved
systems.

A divergence-safe real-time system (in the sense of [2]) comprises a
set P = {p1, . . . , pm} of boolean propositions and a set C = {x1, . . . , xn}
of real-time clocks, together with a set of trajectories satisfying the ap-
propriate sanity conditions. A state of the system is a boolean valuation
of the propositions and a non-negative real valuation of the clocks. Let S
be the set of states. It is shown in [2] that the behaviour of such a system
can be generated by a transition relation → on S × S, which is required
to be reflexive, such that each transition changes the propositions and/or
resets clocks. In fact, the system can be executed by alternately taking
a transition and allowing time to pass.

We translate such a system into our framework in the obvious way:

we take the transition system S,→ and add all delay transitions s
δ(d)−→ s

to model the passing of time. Since TCTL permits free access to the
propositions and clocks of the system, we extend the state-changing
transitions to carry labels exporting the current values of propositions

and clocks at the end state: s
(p1,...,pm,xcl

1 ,...,x
cl
n)−→ s′. For obvious typo-

graphic reasons, we shall elide these labels in print. Similarly, whenever
we write an Aµ modality 〈−, E, φ〉, we silently assume that it is really
〈−(p1, . . . , pm, x

cl
1 , . . . , x

cl
n), E ∪ F, φ ∧ φ′〉, where F is the set of propo-

sition and clock cells, and φ′ states that every clock is either reset or

6

unchanged:
∧
i(x

cl
i = 0 ∨ xcl

i = ↼xi).
Subject to a proviso to be explained, we can now translate a TCTL

formula φ on the original system into a formula tr(φ) of observational
mu-calculus on the translated system so that the translated property
holds iff the original property holds.

We assume that we have Aµ cells corresponding to the propositions
and clocks. Further, for every specification clock z of TCTL we have a
cell zcl (using the syntactic sugar described earlier).

The basic propositions of TCTL have the form p, for p ∈ P ; x+ c ≤
y + d for x, y ∈ C and c, d ∈ N. These are imported directly into Aµ as
part of the ‘low-level logic’.

The formula z.φ, which is true if φ is true after resetting the speci-
fication clock z to zero, is translated to 〈ε, {zcl}, zcl = 0〉trφ, using the
dummy transition.

The existential ‘until’ formula φ∃Uψ is simply translated to µZ. trψ∨
(trφ ∧ (〈−, {},T〉Z ∨ 〈δ(d), {d},T〉Z)). As this is an existential state-
ment, we need not concern ourselves with the existence of zeno paths: a
trajectory demonstrating the truth of φ∃U ψ also demonstrates the truth
of the translation, and vice versa.

As we discussed earlier, the universal ‘until’ formula tr(φ ∀U ψ) is
much harder, as our models do not exclude zeno paths. Provided that
our system satisfies the condition (*), which will be defined after the
proof, the following complicated formula serves as a translation:

tr(φ ∀U ψ) ≡ [ε, bcl, bcl = 0]µX.νZ.trψ∨
(trφ

∧ (bcl > 1⇒ [ε, bcl, bcl = 0]X)

∧ [−, ∅,T]Z

∧ (〈ε, {d},T〉(〈δ(d), ∅,T〉trψ
∧ [δ(d′), {d′}, d′ ≤ d]Z)

∨ [δ(d′′), {d′′},T]Z))

Let us show the correctness of this translation. A state s in the origi-
nal system satisfies φ ∀U ψ, by the semantics of [2], if every (divergent)

trajectory σ = s0
δ(d0)−→→ s1 . . . satisfies φ U ψ, that is there is some si

and some d ≤ di such that si + d � ψ, and for all sj , d
′ such that j < i

and d′ ≤ dj or j = i and d′ ≤ d, sj + d′ � φ. Firstly, suppose that
tr(φ ∀U ψ) fails at some state t0 in the transition system model. We
shall construct a divergent real-time trajectory in the original real-time

7

system from t0 on which φ U ψ fails. The trajectory has the property
that X, and therefore trψ, fails at all points; and it is composed of sec-
tions, such that each section ends in a state in which either trφ fails, in
which case φU ψ has failed, or at least one time unit has passed since the
beginning of the section. Suppose the current section constructed so far
is s0

α1−→ . . .
αn−→ sn, where each αi is a transition or a delay (consecutive

delays may be combined into one by the sanity conditions on real-time
systems). sn fails Z, so it fails trψ and fails at least one of the four
conjuncts in the second half of the body of Z. If it fails trφ, we are
done, since then φU ψ fails on this finite trajectory. If it fails the second
conjunct, then at least one unit of time has passed since the last time, so
we set bcl to 0 and start a new section. If sn fails [−, ∅,T]Z, then extend
the current section by sn → sn−1, where sn−1 fails Z. The slighly tricky
case is when sn fails the last conjunct. In this case, there exists some
d′′ such that sn + d′′ fails Z. In fact, we can make (using the property
(*)) the stronger statement that also trψ fails between sn and s + d′′,
for the following reason: suppose ψ holds at some d < d′′. Then since sn
fails 〈ε, {d},T〉(〈δ(d), ∅,T〉tr(ψ) ∧ [δ(d′), {d′}, d′ ≤ d]Z), there must be
some d′ < d at which Z fails. Repeat ad infinitum to obtain an infinite
number of points between sn and sn + d′′ at which ψ holds, interspersed
with points at which Z fails; then by property (*) applied to ψ, there is
a finite interval in which ψ holds; but over this interval Z holds, which

is a contradiction. Now extend the current section by sn
δ(d′′)−→ sn + d′′.

Each time we extend the current section, we unfold the failing maxi-
mal fixpoint Z; hence after a finite number of steps, the current section
must end, either in failure of φ, or in time passing.

Thus if φ never fails, we have an infinite divergent trajectory along
which ψ always fails, so showing that φ ∀U ψ fails.

The converse is easy; any trajectory demonstrating the failure of φ∀U
ψ also demonstrates the failure of tr(φ ∀U ψ).

The property (*) required for the proof is: if ψ holds at infinitely
many points in some finite interval, then ψ holds over some non-empty
open subinterval. If TCTL is finitely variable over a class of systems,
this property will hold over that class. Further, no physical system can
fail (*). For an example of a system that does fail (*), consider a system
with an initial state s0, and such that a transition to s1 can occur at
s0 + 1/2i for all i.

8

3.2 Timed mu-calculus

In a similar style, the timed mu-calculus Tµ of [2] with its binary ‘until’
operator φ . ψ can be translated. In [2], Tµ is defined over arbitrary
premodels; as previously, we restrict our attention to those premodels
that are generated by transition systems. We shall use the same notation
as above for the system.

The basic predicates of Tµ are the same as for TCTL, including the
use of specification clocks, and are handled identically.

Disjunction and negation are translated as themselves.
Tµ also has the specification clock resetting operator z.φ, which is

translated as above.
The temporal operator of Tµ is the ‘leads to’ operator .. The se-

mantics of this operator is defined by: s |=E φ . ψ, where E is a clock
environment giving the values of the clocks of the formula, if there is a

state s′ and a delay d such that s
δ(d)−→ s → s′ and s′ |=E+d ψ, and for

all delays d′ ≤ d, s + d′ |=E+d′ φ ∨ ψ, where E + d is E with all clocks
advanced by d.

This semantic definition can be expressed directly in Aµ, using the
trick of the dummy transition to express quantification, thus:

〈ε, {d},T〉(〈δ(d), ∅,T〉〈L, ∅,T〉q ∧ [δ(d′), {d′}, d′ ≤ d] (p ∨ q)).

Finally, the Tµ fix-point, which is formally parametrized on clock en-
vironments, is translated directly to anAµ fix-point, formally parametrized
on cell environments.

3.3 Value-passing mu calculus

As sketched earlier, we can also handle value-passing logics such as [1, 4].
As an example we translate Dam’s first order mu calculus for the pi cal-
culus, which we will call Pµ. The main difficulty, which is presentational
rather than substantial, stems from Dam’s explicit use of abstractions
and concretions, both in the pi calculus and in the logic. An abstraction
is an agent which requires instantiation of names to become ground; a
concretion is an agent which provides names as well as a ground con-
tinuation. We give Dam’s version of the pi calculus an LTS semantics
defined in terms of his commit relation, by using as actions of the LTS
both actions of the pi-calculus (names, co-names and τ) and the special
pseudo-actions (n) and [n] for n a name, representing the process being
instantiated with a name n and emitting a name n, respectively:

9

• A a−→ B iff for some C, A � a.C and C � B.

• A (n)−→ B iff for some C, A � (λx.C)n and C{n/x} � B.

• A [n]−→ B iff either A � [n]B, or A � (νn)[n]B.

The a(b).P of the usual pi calculus notation corresponds to a.λb.P in

Dam’s, and accordingly the
a(b)−→ transition of the usual semantics is split

into two parts
a−→ (b)−→; and similarly a〈b〉.P corresponds to a.[b]P .

In fact we are using a slight variant: Dam relativises the pi-calculus
semantics to name partitions, but that is not necessary for our purposes.

In Pµ, λ is used for all binding, so the quantifiers ∃, ∀, Σ do not
bind formula variables. Notionally, they accept a name and add it to
the pending stack (the list of names that appears in the semantics of
the logic). When the λ is unwound, it pops a name from the stack and
uses it to instantiate a name in the body of the λ expression. The well
formedness conditions ensure that it is possible to tell from the formula
for each λ which constructor was responsible for the name being put on
the stack. Similarly an application φx may be seen as a formula which
puts its argument x onto the stack, whence it will be retrieved by some λ
in φ. To simulate this, we may assign cells s1, . . . , sk to stack positions (k
is bounded by the depth of constructor nesting), and a cell x for each vari-
able x, and then simulate binding by assignment, thus: translate λx.φ as
[(x), {x}, x = si], where si is the cell into which the matching constructor
has placed its value. Note that here ‘constructor’ means ∃, ∀,Σ, which
push one value on the stack; and application φx1 . . . xn, which may push
several values on the stack, and which we might prefer to write in reverse
Polish notation as xn . . . x1φ. This stack mechanism ensures that fixpoint
unfolding is correctly handled: if a fixpoint X of arity 2, say, appears in
a formula as Xxy, then y and x are ‘pushed on to the stack’ by the
application, and then when the fixpoint is unfolded, its body finds the
arguments ‘on the stack’; this copes with the fact that in Pµ parameters
are explicitly passed through fixpoints by application , whereas in Aµ
they are implicitly passed through the cell environment. Accordingly, a
formula that has n parameters at the top level uses s1, . . . , sn to receive
them, and we may view the top level as a pseudo-constructor.

The semantics of Pµ are defined using a name partition ε, which
specifies which names are distinct. Since the only predicates on names
which this logic allows are (in)equalities, this is sufficient in that context.

10

Figure 2: Translating the decorated value-passing mu calculus
φ in Dam’s logic trφ in Aµ

x = y 〈ε, ∅, x = y〉T
x 6= y 〈ε, ∅, x 6= y〉T
φ ∧ ψ trφ ∧ trψ
φ ∨ ψ trφ ∨ trψ
[a]φ [a, ∅, T] trφ
〈a〉φ 〈a, ∅, T 〉trφ
X X

νX.φ νX.tr φ
µX.φ µX.trφ
λ−ix.φ [(x), {x}, x = si] trφ
(φx)+i 〈ε, {si}, si = x〉trφ
Σ+iφ 〈[si], {si}, T 〉trφ
∀+iφ [ε, {si}, T] trφ
∃+iφ 〈ε, {si}, T 〉trφ

Our logic stores actual values in named cells, so we have more information
available and no need for the ε.

To build an Aµ translation of a given Pµ formula, we first decorate
the constructors with the number of the stack cell into which it puts its
value (let us write +i to indicate a push), and decorate each λ with the
number of its matching constructor (−i to indicate a pop).

For example, consider the formula

νX.λx.[in]∀(λy.Xy) ∧ [out]Σ(λx′.x = x′ ∧Xx′).

This is an example of a parametrized fixpoint, as it requires a name to
be instantiated. It is, in fact, the specification of the one place memory
cell: ‘for the initial contents x, if we input a name y, we go to a state
with y as the contents, and if we output a value x′, then x′ is equal to x
and we return to the initial state (since x′ = x!)’.

The decorated version is

+1νX.λ−1x.[in]∀+1(λ−1y.(Xy)+1) ∧ [out]Σ+1(λ−1x′.x = x′ ∧ (Xx′)+1),

which needs only one stack cell. Then we translate the decorated term
according to Figure 2.

To prove the translation correct, we need to demonstrate that

11

A |=V,x1,...xn,ε φL iff tr (A, ε) |=V,ρ(x1,...xn,ε) trφ

where ρ(x1, . . . xn, ε) is any cell environment which gives values to the
cells xi in a way which respects ε.

This is proved by a routine, albeit somewhat intricate, induction on
the structure of φ.

4 Games

The remaining question then is, can we treat in our logic the prob-
lems that can be treated in the original logics—in particular, the model-
checking problem—both with the generality given by our framework, and
in specific domains with the effectiveness of the domain logics.

It is easy to see that a minor variant of the standard model-checking
game [7] characterises satisfaction of an Aµ formula by a process. We
need only alter the modality rules to allow the player who chooses the
process transition to choose new values for the modifiable cells too, sub-
ject to satisfying the predicate on cell values, and to correct matching of
an action expression to an observation.

In detail:
We wish to establish whether a process P satisfies a closed Φ of the

observational mu-calculus in the presence of some initial cell environment
ρ. We assume all bound fixpoint variables in Φ are distinct, renaming
them if necessary to ensure this: the assumption is used in Rule 6 of
Figure 4.

The model-checking game G(P,Φ, ρ), is played by Abelard and Eloise.
Abelard attempts to show that P fails to have the property Φ in envi-
ronment ρ whereas Eloise tries to show that P does have Φ there. We
write Player A and Player B for “a player” and “the other player” when
it doesn’t matter which is which.

A play of G(P0,Φ0, ρ0) is a finite or infinite length sequence of the
form (P0,Φ0, ρ0) . . . (Pn,Φn, ρn) . . . where each Φi is a subformula of Φ0

and each Pi is a derivative of P0 and each ρi is a cell environment on the
cells which appear in Φ0. (We call such a triple a configuration of the
game.)

Suppose a play (so far) is (P0,Φ0, ρ0) . . . (Pj,Φj , ρn). The moves are
given in Figure 4: note that the form of the available moves, and which
player chooses, are determined by the form of Φj . Each time the cur-
rent game configuration is (P, σZ.Ψ), at the next step this fixed point

12

1. if Φj = Ψ1 ∧ Ψ2 then Abelard chooses Φj+1 to be either Ψ1 or Ψ2

and Pj+1 = Pj and ρj+1 = ρj .

2. if Φj = Ψ1 ∨ Ψ2 then Eloise chooses Φj+1 to be either Ψ1 or Ψ2,
and Pj+1 is Pj and ρj+1 = ρj .

3. if Φj = [l, C, φ] Ψ then Abelard chooses a new cell environment ρj+1

differing from ρj only in the values of cells in C (c 6∈ C ⇒ ρj+1(c) =

ρj(c)) and a transition Pj
a−→ Pj+1 where a matches l in context

ρj+1 and ρjρj+1 |= φ. Φj+1 is Ψ.

4. if Φj = 〈l, C, φ〉Ψ then Eloise chooses a new cell environment ρj+1

differing from ρj only in the values of cells in C (c 6∈ C ⇒ ρj+1(c) =

ρj(c)) and a transition Pj
a−→ Pj+1 where a matches l in context

ρj+1 and ρjρj+1 |= φ. Φj+1 is Ψ.

5. if Φj = σZ.Ψ then Φj+1 is Z and Pj+1 is Pj and ρj+1 = ρj .

6. if Φj = Z and Z is bound by σZ.Ψ then Φj+1 is Ψ and Pj+1 is Pj
and ρj+1 = ρj .

Figure 3: Rules for the next move in a game play

13

is abbreviated to Z, and each time the configuration is (Q,Z) the fixed
point subformula it identifies is, in effect, unfolded once as the formula
becomes Ψ.1

The conditions for winning a play are given in Figure 4. Abelard
wins if a blatantly false configuration is reached, or if Eloise is stuck, and
dually for Eloise. The remaining condition identifies who wins an infinite
length play. We call variables bound by ν Eloise-variables and variables
bound by µ Abelard-variables, and the notion of subsuming is:

Definition 1 Suppose σX.Ψ and σY.Ψ′ are subformulae of a formula Φ.
X subsumes Y if σY.Ψ′ is a subformula of σX.Ψ.

We omit the easy proof that X in winning condition 3 is indeed
unique, so that the condition is well-defined.

A strategy π for Player A is a set of rules telling Player A how to move:
that is, it is a partial function from plays2 to configurations, which given
a play p ∈ dom π ending in a configuration (Q,Ψ) from which Player A
must move, returns a non-empty set of legal next configurations. If every
such set is a singleton, we say that π is deterministic (and in this case we
will usually think of π(p) as a configuration, rather than as a singleton
set of configurations). We call π history-free if π(p) is determined solely
by the final configuration (Q,Ψ) of p, irrespective of the rest of the play.
A play q follows π if for every proper prefix p of q ending in an A-choice,
p ∈ dom π and the next configuration of q after p is in π(p). π is complete
if whenever p is a play following π and ending in a configuration from
which Player A must choose, π(p) is defined. Otherwise it is partial. π is
a winning strategy if it is complete and B does not win any play which
follows π. A history-free complete strategy may be regarded as a partial
function from configurations to configurations.

The basic theorem we exploit is:

Theorem 2 P |=∅,ρ Φ iff Eloise has a winning strategy for G(P,Φ).

This is a trivial variation on the corresponding theorem for plain mu-
calculus and its games, see [7]: the crucial point is that the winning
conditions for infinite plays ensure that the semantics of minimal and
maximal fixpoints are reflected in the game.

1As there are no choices here it doesn’t matter who “chooses” – to fit in with the
abstract game framework, we say that Eloise chooses to unwind minimal fixpoints
and Abelard chooses to unwind maximal fixpoints.

2Plays are just sequences of moves, which need not yet be decided.

14

Abelard wins

1. The play is (P0,Φ0) . . . (Pn,Φn) and Φn = F.

2. The play is (P0,Φ0) . . . (Pn,Φn) and Φn = 〈K〉Ψ and {Q : P
a−→

Q and a ∈ K} = ∅.

3. The play (P0,Φ0) . . . (Pn,Φn) . . . has infinite length and the unique
variable X which occurs infinitely often and which subsumes all
other variables that occur infinitely often identifies a least fixed
point subformula µX.Ψ.

Eloise wins

1. The play is (P0,Φ0) . . . (Pn,Φn) and Φn = T.

2. The play is (P0,Φ0) . . . (Pn,Φn) and Φn = [K]Ψ and {Q : P
a−→

Q and a ∈ K} = ∅.

3. The play (P0,Φ0) . . . (Pn,Φn) . . . has infinite length and the unique
variable X which occurs infinitely often and which subsumes all
other variables that occur infinitely often identifies a greatest fixed
point subformula νX.Ψ.

Figure 4: Winning conditions

15

4.1 Abstract games for model-checking the obser-
vational mu calculus

Whether it is possible to calculate a winning strategy – that is, to solve
a model-checking problem – depends on the domain of interpretation
and the lower level logic. [5] suggests a generic approach via abstract
games , in which classes of game positions are considered together and
split only when the analysis requires it. Initially positions are considered
together if they have the same shape; the notion of shape – an equivalence
relation ≈ of finite index on the set of reachable concrete positions – is
required to satisfy certain sanity conditions, such as that the shape of a
position is sufficient to determine whose turn it is to move, and that the
sequence of shapes of an infinite play is enough to determine who wins
it. These requirements are not hard to meet: for example, in the case of
model-checking the observational mu calculus, we could take the shape
of (A, φ, ρ) to be φ. In practice, we would be more likely to take a finer
notion of shape which also considered the agent A; we need to be able to
define the sets of concrete positions which arise in the execution of the
algorithm of [5] by giving their common shape together with a constraint
that describes what subset of the≈-equivalence class we have. Thus there
is a trade-off: the more precise the notion of shape, the less powerful the
constraint language has to be.

The algorithm gradually refines the equivalence relation ≈, and is
guaranteed to terminate if, essentially, there is a finite refinement of the
original equivalence relation which is stable under the operations of the
algorithm. In [6] such refinements were characterised independently of
the algorithm: we need a finite equivalence relation ∼ such that:

• ∼ is a refinement of ≈, “has the same shape as”

• if u ∼ v and u′ is a legal next position after u then there is some
v′ ∼ u′ such that v′ is a legal next position after v

• if u′ ∼ v′ and u′ is a legal next position after u then there is some
v ∼ u such that v′ is a legal next position after v

These conditions capture the intuition that ∼, whilst still finite, only
relates positions which are the same as far as the game is concerned:
it is a relation which is “detailed enough” to answer the question. The
algorithm, which can be seen as taking ≈ as its starting equivalence
relation for refinement, can be shown never to split the classes of such

16

an equivalence relation, and to terminate because of the finite number of
equivalence classes.

This approach can be seen as a generalisation of techniques such as
the region analysis used by [2] and many others. The idea is to capture
the essence of situations in which apparently infinite problems are solved
by taking advantage of the fact that there is a tractable abstraction: we
incrementally build a representation which is “just detailed enough” to
answer the question.

There is more detailed work to be done to exploit this technique, but
we believe that it will yield decidability results equivalent, up to notation,
to those in the papers dealing with the logics we translate. One way to
justify the belief is to observe that equivalence relations of this sort are
apparent in the original papers, and may be expected to be preserved by
the translations. In the case of model checking Pµ on finite control pi
calculus terms, for example, it is intuitively clear that the reason why it
works is that, if one ignores names, only finitely many terms and formulae
can appear; and the only salient feature of the names is which pairs of
names are equal. We expect the notion of shape to be what you get by
ignoring names, and the refinement to move towards the finest possible
equivalence relation, in which we know everything about which names
are equal. This sketch, of course, elides a considerable amount of work
which will need to be done to make the argument precise; but we do not
expect to encounter essential difficulties.

5 Conclusions

We have defined a general purpose assembly language logic and shown
that it is powerful enough to express the properties for which various spe-
cial purpose temporal logics have been developed. We exhibited transla-
tions, and showed that there is reason to conjecture that the images of
the translations can be decided uniformly, for example by the algorithm
of [5].

We have not so far considered the efficiency of the generic algorithm;
the one in [5] is intended only to be an existence proof for such an algo-
rithm. One interesting strand of work would be to investigate to what
extent it is possible to develop a generic algorithm whose efficiency com-
petes with more specialised algorithms.

An area of concern is that, as with any translation-based approach to
solving verification problems, the fact that the problem is being solved in

17

a translated domain poses serious problems for the tool developer trying
to provide meaningful feedback to the user of the tool.

6 Acknowledgements

We thank Mads Dam for helpful comments on issues arising from [1].
Perdita Stevens is supported by UK EPSRC Grant GR/K68547. Ju-

lian Bradfield is supported by an EPSRC Advanced Research Fellowship,
and his visit to BRICS is being supported by BRICS.

References

[1] M. Dam, Model Checking Mobile Processes, Information and Com-
putation 129 35-51, 1996.

[2] T. A. Henzinger, X. Nicollin, J. Sifakis and S. Yovine, Symbolic Model
Checking for Real-time Systems, Information and Computation 111
193–244 (1994).

[3] J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T.
Rauhe, and A. Sandholm, Mona: Monadic Second-order logic in prac-
tice, Proc. TACAS ’95, LNCS 1019 (1995).

[4] J. Rathke, Symbolic Techniques for Value-Passing Calculi. PhD. the-
sis, University of Sussex, 1997.

[5] P. Stevens,Abstract Games for Infinite State Processes, in Proc.
CONCUR98, LNCS 1466 147–162 (1998).

[6] P. Stevens, ‘Abstract interpretations of games, in Proc. 2nd Interna-
tional Workshop on Verification, Model Checking and Abstract Inter-
pretation 98, Venezia TR CS98-12.

[7] C. Stirling, Modal and temporal logics for processes. LNCS 1043
149-237 (1996).

18

Recent BRICS Report Series Publications

RS-99-5 Julian C. Bradfield and Perdita Stevens.Observational Mu-
Calculus. February 1999. 18 pp.

RS-99-4 Sibylle B. Fr̈oschle and Thomas Troels Hildebrandt. On
Plain and Hereditary History-Preserving Bisimulation. Febru-
ary 1999. 21 pp.

RS-99-3 Peter Bro Miltersen.Two Notes on the Computational Complex-
ity of One-Dimensional Sandpiles. February 1999. 8 pp.

RS-99-2 Ivan B. Damg̊ard. An Error in the Mixed Adversary Protocol by
Fitzi, Hirt and Maurer . February 1999. 4 pp.

RS-99-1 Marcin Jurdziński and Mogens Nielsen. Hereditary History
Preserving Simulation is Undecidable. January 1999. 15 pp.

RS-98-55 Andrew D. Gordon, Paul D. Hankin, and Søren B. Lassen.
Compilation and Equivalence of Imperative Objects (Revised Re-
port). December 1998. iv+75 pp. This is a revision of Technical
Report 429, University of Cambridge Computer Laboratory,
June 1997, and the earlier BRICS report RS-97-19, July 1997.
Appears in Ramesh and Sivakumar, editors,Foundations of
Software Technology and Theoretical Computer Science: 17th
Conference, FST&TCS ’97 Proceedings, LNCS 1346, 1997,
pages 74–87.

RS-98-54 Olivier Danvy and Ulrik P. Schultz. Lambda-Dropping: Trans-
forming Recursive Equations into Programs with Block Struc-
ture. December 1998. 55 pp. To appear inTheoretical Computer
Science.

RS-98-53 Julian C. Bradfield. Fixpoint Alternation: Arithmetic, Transi-
tion Systems, and the Binary Tree. December 1998. 20 pp.

RS-98-52 Josva Kleist and Davide Sangiorgi.Imperative Objects and Mo-
bile Processes. December 1998. 22 pp. Appears in Gries and
de Roever, editors,IFIP Working Conference on Programming
Concepts and Methods, PROCOMET ’98 Proceedings, 1998,
pages 285–303.

RS-98-51 Peter Krogsgaard Jensen.Automated Modeling of Real-Time
Implementation. December 1998. 9 pp. Appears inThe 13th
IEEE Conference on Automated Software Engineering, ASE ’98
Doctoral Symposium Proceedings, 1998, pages 17–20.

