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Objects, Types and Modal Logics∗

Dan S. Andersen Lars H. Pedersen Hans Hüttel
Josva Kleist†

December 1996

Abstract

In this paper we present a modal logic for describing properties of
terms in the object calculus of Abadi and Cardelli [AC96]. The logic is
essentially the modal mu-calculus of [Koz83]. The fragment allows us
to express the temporal modalities of the logic CTL [BAMP83]. We
investigate the connection between the type system Ob1<:µ and the
mu-calculus, providing a translation of types into modal formulae and
an ordering on formulae that is sound w.r.t. to the subtype ordering
of Ob1<:µ.

1 Introduction

In [AC94a, AC94b, AC94c, AC96] Abadi and Cardelli present and investigate
several versions of the ς-calculus, a calculus for describing central features of
object-oriented programs, with particular emphasis on various type systems.

In this paper we present a modal logic for describing dynamic properties
of terms in the object calculus. By dynamic properties we mean properties
specifically related to the behaviour over time of a term. We also exam-
ine the relation between the type system with recursive types Ob1<:µ for
the ς-calculus and the modal mu-calculus [Koz83]. It turns out that there
are close correspondences between the type system and a fragment of the
mu-calculus using maximal fixedpoints. In particular, there is a sound and
∗To be presented at FOOL4 (Workshop on the Foundations of Object-Oriented Lan-

guages), La Sorbonne, Paris, January 18, 1997
†Address: Dep. of Computer Science, Aalborg University, Frederik Bajersvej 7, 9220

Aalborg, Denmark. Email: {hans,kleist}@cs.auc.dk
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complete translation from types to logical formulae preserving typability and
the subtype ordering, when we interpret subtyping as containment. Phrased
differently, the translation establishes a Curry-Howard-style result in that it
allows us to view ς-calculus terms as realizers of certain mu-calculus formulae.

2 The ς-calculus and its reduction semantics

There are various versions of the ς-calculus. In this paper we shall consider
what is essentially the simple object calculus of [AC94b] with booleans added.
The set of object terms, Obj, is defined by the following abstract syntax:

a ::= [li = ς(xi:Ai)bi]i∈I objects
| x self variables
| a.l method activation
| a.l ⇐ ς(x:A)b method override
| fold(A, a) | unfold(a) recursive fold/unfold
| if(a, a, a) | true | false booleans

Here xi ∈ SVar range over self variables, li ∈ MNames range over method
names and Ai ∈ Types. We let m(a) denote the set of method names and
fv(a) the set of free self variables in a.

The original presentation of the ς-calculus uses a small-step reduction
semantics, which is also used in the labelled transition semantics in the fol-
lowing section.

Let a = [li = ς(xi:Ai)bi]i∈I. Then the reduction rules are given by

a.lk ; bk{a/xk} (k ∈ I)

a.lk ⇐ ς(x:A)b ; [li = ς(xi:Ai)bi, lk = ς(x:A)b]i∈I\{k}(k ∈ I)

if(true, a1, a2) ; a1 if(false, a1, a2) ; a2

unfold(fold(A, a)) ; a

The activation of the method lk results in the method body being activated
with the self variable being bound to the original object. Method override
results in an object with the overridden method exchanged with the new
method.

The reduction order is leftmost; this we express through evaluation con-
texts (C[·]) which have the following abstract syntax (with [·] denoting the
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hole of the context):

C[·] ::= [·].l | [·].l ⇐ ς(x:A)b | unfold(·) | fold(·) | if(·, a1, a2)

and an evaluation strategy given by the transition rule

a ; b

C[a] ; C[b]

In the labelled transition semantics we will need to talk about objects con-
verging to a value. This notion is of course defined modulo some notion of
value; suppose that we have a well-defined notion of value, that a is an object
and v a value. We then write a ⇓ v (“a converges to the value v”) if there is a
terminating reduction sequence a ; a1 ; · · · v. We write a ⇑ (“a diverges”)
if there is no v such that a ⇓ v.

3 Types

One of the main motivation for the ς-calculus is that of studying various type
systems of object-oriented programming languages within a unified frame-
work. In this paper we shall consider the type system Ob1<:µ from [AC94b]
as presented in [GR96].

3.1 The type language

The set of Ob1<:µ type expressions Type is defined via the following abstract
syntax:

A ::= Bool | [li:Ai] | Top | µ(X)A | X

Here Bool denotes the only ground type, namely that of truth values. [li:Ai]
denotes an object record type, where the method li has type Ai. Top denotes
the most general or unspecified type, µ(X)A is a recursive type and X ranges
over TypeVar, the set of type variables.

3.2 Assigning types to objects

Ob1<:µ has two kinds of judgments. Type judgments on the form Γ ` a : A,
state that the object a has type A under the assumptions in Γ, where Γ
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describes typing assumptions of self variables. For instance, Γ(x) = A states
that we assume that the free self variable x has type A.

The type system Ob1<:µ also incorporates a notion of subtyping, whose
intended informal interpretation is that of capturing some types being more
general than others. The expression A <: B denotes that A is a subtype of
B and thus that objects of type A may be used instead of objects of type B.

Subtyping judgments Γ ` A <: B state that the type A is a subtype of
B, given the subtyping assumptions in Γ. Here the typing assumptions in Γ
describe subtyping constraints on type variables. Γ(X) = E states that we
assume X <: E.

In order to ensure uniqueness of recursively defined types Abadi and
Cardelli define a syntactic predicate of formal contractivity on type variables.
A � Y should be read as ‘variable Y is formally contractive in type expression
A’. Informally, this means that any occurrence of Y occurs within the scope
of a method label in the type expression E. The rules defining the predicate
are shown in Table 1.

X 6= Y

X � Y Top � Y [li:Ai] � Y

A � Y

µ(X)A � Y

Table 1: Formal contractivity

A type of Ob1<:µ is well-formed if it can be formed using the inference
rules of Table 2.

The subtyping relation is expressed in the inference rules of Table 3.
Finally, an object a has type A under assumptions Γ if Γ ` a:A can be

inferred by the type assignment rules in Table 4. An object term a is said to
be typable if for some type A we can infer that ∅ ` a:A.

4 A labelled transition semantics

The correspondence between object types and modal logic is based on the
labelled transition semantics used to interpret logical formulae. As our la-
belled transition semantics, we shall use that proposed by Gordon and Rees
in [GR96]. The syntax has been altered very slightly in that boolean values
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[Type Object]
Γ ` Ai ∀i ∈ I

Γ ` [li:Ai]i∈I
[Type top]

Γ ` Top

[Type X]
X ∈ dom(Γ)

Γ ` X
[Type Rec]

Γ[X <: Top] ` A A � X

Γ ` µ(X)A

Table 2: Well-formed types

[Sub Refl]
Γ ` A

Γ ` A <: A
[Sub Trans]

Γ ` A1 <: A2 Γ ` A2 <: A3

Γ ` A1 <: A3

[Sub X]
Γ(X) = A

Γ ` X <: A
[Sub top]

Γ ` A

Γ ` A <: Top

[Sub obj]
K ⊆ L i ∈ L j ∈ K Γ ` Ai

Γ ` [li:Ai]i∈L <: [lj:Aj]j∈K

[Sub rec]
Γ ` µ(X1)A1 Γ ` µ(X2)A2 Γ[X2 <: Top,X1 <: X2] ` A1 <: A2

Γ ` µ(X1)A1 <: µ(X2)A2

Table 3: The subtyping relation
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[Var]
Γ(x) = A

Γ ` x:A
[Select]

Γ ` b:[li:Bi]i∈I j ∈ I

Γ ` b.lj:Bj

[Object]
Γ[xi:A] ` bi:Bi ∀i ∈ I A ≡ [li:Bi]i∈I

Γ ` [li = ς(xi:A)bi]i∈I : A

[Update]
Γ ` a:A Γ[x:A] ` b:Bj j ∈ I A ≡ [li:Bi]i∈I

Γ ` a.lj ⇐ ς(x:A)b : A

[Fold]
A ≡ µ(X)A Γ ` a:A{A/X}

Γ ` fold(A, a) : A
[Unfold]

A ≡ µ(X)A Γ ` a:A
Γ ` unfold(a) : A{A/X}

[If]
Γ ` a:Bool Γ ` a1, a2 : A

Γ ` if(a, a1, a2) : A
[Subsump]

Γ ` a:A1 Γ ` A1 <: A2

Γ ` a : A2

Table 4: Type assignment

can now appear. Transitions are on the form a α- b — this transition
describes that the object term a admits the observation α and then becomes
the object term b.

In the labelled transition semantics, terms are always annotated with
their type. The types of Ob1<:µ are divided into two classes, active and
passive. Active types are the types of values. Only Bool is active, so in our
presentation all values are booleans. Recursive types, object types and Top
are passive types. At active types a program must converge to a value before
it can be observed; at passive types a program performs observable actions
unconditionally, whether or not it converges.

The observations, α ∈ Obs, take the following forms:

α ::= true | false | l | l ⇐ ς(x)e | unfold

These observations should be interpreted as follows: An object term allows
the observation true (resp. false) if the term is of type Bool and has the value
true (resp. false.) An object term allows the observation l if it has a method
labelled l. An object term allows the observation l ⇐ ς(x)e if the object
can have its method labelled l redefined as ς(x)e. And finally, an object
term always allows the observation unfold – intuitively, this corresponds to
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‘unfolding’ the object by substituting self variables by their corresponding
objects.

The labelled transition semantics is defined by the minimal family of
relations

{ α- | α ∈ Act}
closed under the rules in Table 5.

[Trans Bool]
a ⇓ v ∈ {true,false}

aBool
v- 0

[Trans Select]
A ≡ [li:Ai]i∈I j ∈ I

aA
lj- a.lj Aj

[Trans Update]
A ≡ [li:Ai]i∈I j ∈ I x:A ` e:Aj

aA
lj⇐ς(x)e- a.lj ⇐ ς(x:A)eA

[ Trans Unfold]
A ≡ µ(X)A B ≡ A[A/X]

aA
unfold- unfold(a)B

Table 5: The rules of the labelled transition semantics

The notion of bisimulation equivalence ∼ is defined as usual [Par81,
Mil89].
Definition 1 (Bisimulation) Bisimilarity ∼ is the greatest binary relation
on ς-calculus terms that satisfies the following:

a ∼ b if and only if

1. a α- a′ ⇒ ∃ b′ s.t. (b α- b′ ∧ a′ ∼ b′)

2. b α- b′ ⇒ ∃ a′ s.t. (a α- a′ ∧ a′ ∼ b′).

If a ∼ b we say that a and b are bisimilar.
We sometimes index bisimilarity w.r.t. types, writing a ∼A b if a:A and

b:A and a and b are bisimilar. It should be noted, though, that Definition 1
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not only relates terms aA and bA on their type A, but also on all of their
supertypes. That is, if the subtype relation

A <: B1 <: B2 <: · · · <: Bn

holds, then Definition 1 states that the following must hold:

aA ∼ bA ⇒ aB1 ∼ bB1, . . . , aBn ∼ bBn

In the following we refer to the bisimulation of Definition 1 as Gordon-
Rees bisimulation or bisimulation in the sense of Gordon and Rees.

5 A logic for objects

The logic we shall use is a version of the modal mu-calculus [Koz83] inter-
preted over the labelled transition system defined in the previous section.
This logic also corresponds to the Hennessy-Milner logic of [HM85] extended
with (local) recursive definitions [Lar90].

5.1 Syntax of formulae

The set of mu-calculus formulae is given by

F ::= F1 ∨ F2 | F1 ∧ F2 | 〈α〉F | [α]F | X | νX.F | µX.F
| 〈true〉tt | 〈false〉tt | tt | ff

α ::= l | unfold | l ⇐ ς(x)e

Here X ranges over the set of formula recursion variables FormVar. tt
and ff are atomic formulae, not to be confused with the boolean values of the
ς-calculus. The modalities of the logic are indexed by the observations from
the labelled transition semantics. Intuitively, a formula 〈α〉F is true for an
object o if o allows some observation α such that F is true for the resulting
object. Similarly, a formula [α]F is true for the object o if all observations
of α will result in an object for which F is true. A syntactic constraint is
imposed on the form of formulae including true and false, as the only way an
object can allow a boolean observation is by terminating.
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5.2 Semantics of formulae

We interpret our logic over the labelled transition system of the previous
section. If a formula F is true for an object a, we say that a satisfies F .

The denotation of a formula is the set of object terms that satisfy F .
As formulae may contain free variables. the denotation of a formula is seen
relative to an environment σ : FormVar ↪→ P(Obj) which for a given
variable, returns the set of objects which satisfies the formula bound to that
variable.

We can extend operations and predicates on sets of objects to environ-
ments. For any two environments σ1, σ2 we write σ1 ⊆ σ2 iff for all variables
we have that σ1(X) ⊆ σ2(X). If S is a set of objects, we write σ ⊆ S if for
all X we have that σ(X) ⊆ S. Similarly, σ1 ∪ σ2 is the environment σ such
that σ(X) = σ1(X) ∪ σ2(X).

The semantics of formula not using the recursion operators can then be
defined as:

[[tt]]σ = Obj
[[ff ]]σ = ∅

[[F1 ∨ F2]]σ = [[F1]]σ ∪ [[F2]]σ
[[¬F ]]σ = Obj \ [[F ]]σ
[[X]]σ = σ(X)

[[〈l〉F ]]σ = {a | ∃b : a l- b and b ∈ [[F ]]σ}
[[[l]F ]]σ = {a | ∀b with a l- b : b ∈ [[F ]]σ}

[[〈l ⇐ ς(x)a〉F ]]σ = {a | ∃b : a
l⇐ς(x)a- b and b ∈ [[F ]]σ}

[[[l ⇐ ς(x)a]F ]]σ = {a | ∀b with a
l⇐ς(x)a- b : b ∈ [[F ]]σ}

The operators νX.F and µX.F are local recursion operators. For any recur-
sive formula νX.F or µX.F we define a declaration function

DF : (FormVar ↪→ P(Obj)) → P(Obj) by DF (σ) = [[F ]]σ

Both recursion operators denote a solution to the equation X = F , that
is, we want an environment σ such that [[X]]σ = [[F ]]σ. A σ with this property
is called a model.

9



One may easily show that (FormVar ↪→ P(Obj), ⊆), the set of envi-
ronments ordered under inclusion, constitutes a complete lattice and that
the function DF is a monotonic function for any recursive formula νX.F or
µX.F . Consequently, Tarski’s fixedpoint theorem [Tar55] for complete lat-
tices and monotonic functions, guarantees that models always exist for any
recursive formula.
Theorem 2 (Maximal and minimal model) Given a recursive formula
F of the form νX.F or µX.F , there exist models σmax and σmin given by:

σmax =
⋃

{σ | σ ⊆ DF (σ)}

σmin =
⋂

{σ | DF (σ) ⊆ σ}
σmax is the maximal model w.r.t. ⊆ and σmin is the minimal model w.r.t. ⊆.

The ν-operator is taken to indicate that we want the model σmax, whereas
the ν-operator is taken to indicate that we want the model σmin and thus
the semantics of the recursion operators is

[[νX.F ]]σ = σmax(X)
[[µX.F ]]σ = σmin(X)

From Theorem 2 we obtain the following definition of pre- and post-
models.
Definition 3 (Pre- and post-models) Given a formula µX.F or νX.F ,
an environment σ is a pre-model if σ ∈ {σ | DF (σ) ⊆ σ}. σ is a post-model
if σ ∈ {σ | σ ⊆ DF (σ)}.

Consequently, Theorem 2 says that the semantics of a ν-formula is the
union of all its post-models and that the semantics of a µ-formula is the
intersection of all its pre-models. When relating types and logical properties,
we are primarily interested in maximal models.

6 Specifying objects

The modal mu-calculus is very powerful when used a temporal logic of la-
belled transition systems. It is well-known that the temporal modalities of
the propositional branching time temporal logic CTL [Eme94] are expressible
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within the mu-calculus (in fact, it can be shown that all of CTL∗ [Eme94]
can be expressed within the mu-calculus).

In this short section we shall describe how properties of ς-calculus can be
described this way. We let the set Act denote the set of possible observations;
we write [Act]F as an abbreviation of

∧
α∈Act[α]F and similarly, we write

〈Act〉F as an abbreviation of
∨

α∈Act〈α〉F .
The CTL temporal modalities can be defined as

AGF = νX.F ∧ [Act]X
EGF = νX.F ∧ ([Act]ff ∨ 〈Act〉X)
EFF = µX.F ∧ 〈Act〉X
AFF = µX.F ∧ (〈Act〉tt ∧ [Act]X)
Us

F,G = µX.G ∨ (F ∧ 〈Act〉tt ∧ [Act]X)
Uw

F,G = νX.G ∨ (F ∧ [Act]X)

The intuitive interpretation of these modalities is

AGF : An object o satisfies AGF , a ∈ [[AG]]σmax, if F is satisfied by all states
of any transition path of o.

EGF : EGF is satisfied by an object o if there exists some transition path of
a such that F is satisfied by all states of the path.

EFF : The dual of AGF . An object o satisfies PF if F is satisfied by some
state along some transition path.

AFF : Guarantees that F will sooner or later be true along any transition
path.

Us(F, G), Uw(F, G): The meanings of Uw(F, G) and Uw(F, G) only differ slightly.
The idea is that an object o satisfies Us(F, G) or Uw(F, G) if F is sat-
isfied by o until G at some point is satisfied. The difference is that
Uw(F, G) does not guarantee that G will ever be satisfied. Us(F, G) is
called strong until, and Uw(F, G) weak until.

So notice that invariance properties are expressed using maximal recur-
sion, whereas eventuality properties are expressed using minimal recursion.
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The following example illustrates how an object can be specified using
the CTL modalities:
Example 1 In [AC96] a calculator object is described. The behaviour of
the calculator can informally be stated as follows: Either one of the methods
enter, add or sub can be invoked, which will result in a new calculator, or the
method equals can be invoked resulting in termination. In the following let
Act be defined as Act = {enter, add, sub}.

The formula F shown below specifies the observations that must be al-
lowed by a calculator object of recursive type. The formula G describes
what must always hold about the methods enter, add and sub of the calcu-

lator object:

F = 〈unfold〉tt ∧ [unfold]tt ∧ [Act]ff,

G = ([add]tt ∧ 〈add 〉tt) ∨ ([sub]tt ∧ 〈sub〉tt)
∨ ([enter]tt ∧ 〈enter〉tt) ∧ [unfold]ff.

To express that it holds that F is satisfied until G at some point will be
satisfied we use the connective “strong until” and write:

Us(F, G).

We write that Us(F, G) must always hold as

AGUs(F, G)

The specification of the calculator object is then a combination of AGUs(F, G)
and the specification for the equals method:

Feq = 〈unfold〉([equals]tt ∧ 〈equals〉tt) ∧
[unfold]([equals]tt ∧ 〈equals〉tt)

The final correctness specification looks as follows:

AGUs(F, G) ∨ Feq.

2

7 Types as logical formulae

In this section we shall show an intimate correspondence between the types
of Ob1<:µ and the formulae of Form. Types are certain invariance properties
and subtyping corresponds to inclusion between logical properties.
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7.1 The translation

In order to be able to express the typings of objects in our modal logic we in-
troduce the atomic formula isBool, which is the logical formula corresponding
to Bool. isBool has the following semantics:

[[isBool]]σ = {a | a:Bool}

The reason for introducing a special atomic formula, which models the basic
type Bool, is that the mu-calculus connectives alone cannot express that an
object of type Bool will allow precisely the observations true or false – in
order to achieve this, we would need infinite conjunctions. Further, the fact
that an object of type Bool can diverge in the reduction semantics cannot be
expressed. In other words, it seems reasonable that the base types should be
modelled by atomic formulae.

Only certain formulae can occurs as the translations of Ob1<:µ types. We
shall call such formulae type formulae. The abstract syntax of type formulae
is as follows:

F ::= tt | (
∧
i∈I

〈li〉t(Fi)) ∧ (
∧
i∈I

[li]t(Fi)) | isBool

| X | νX.〈unfold〉t(F ) ∧ [unfold]t(F )

We denote the set of type formulae by Formt.
We are now able to introduce the translation T : Type → Formt from

types to type formulae as follows:

T (Top) = tt

T (Bool) = isBool
T ([li:Ai]i∈I) = (

∧
i∈I

〈li〉T (Ai)) ∧ (
∧
i∈I

[li]T (Ai))

T (µ(X)A) = νX.〈unfold〉T (A) ∧ [unfold]T (A)
T (X) = X

Not surprisingly, the type Top is assigned the formulae tt, since all typable
objects have type (or supertype) Top. The type Bool is as a special case
translated to the atomic formula isBool. The mu-calculus translation of an
object type reflects the possible method invocations that can be performed
with respect to objects of the object type. The specification for a recursive
object type is an invariance property. It states that it must always be possible
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to perform a transition on unfold leading to the specification for an object
type, and that we must therefore consider the maximal interpretation of the
logic formula. In other words, the µ becomes a ν when passing from types
to formulae.

The translation defined by T is similar to the notion of characteristic
formula [IS94] for the typings of objects. It is not the case, though, that
these characteristic formulae express all possible behaviours of objects. In
particular, it is not possible to prove that the logic for object types fully
characterizes the bisimulation of Gordon and Rees, as the types and thus the
type formulae say nothing about the possibility of method overrides. (This
is exemplified towards the end of this section.)

7.2 Soundness and completeness of the translation

The translation presented here is correct in a very precise sense. In order
to express this, we need to formulate the logic counterparts of the typability
notions. Definition 4 expresses the notion of subtyping with respect to the
modal formulae for types.
Definition 4 Let A, B ∈ Type and Γ some well formed environment. We
say that Γ models the subtyping relation A <: B written

Γ |= A <: B

if for some post-model σ it holds that [[T (A)]]σ ⊆ [[T (B)]]σ and σ(X) ⊆
[[T (C)]]σ for all (X <: C) ∈ Γ.

Lemma 5 relates the standard subtype judgments, which are of the form
Γ ` A <: B, to the inclusion relation between logical properties. The lemma
is interesting in its own right and is also going to be useful in the proof of
Theorem 6.
Lemma 5 Let A, B ∈ Type, Γ some well formed environment and Γ ` A <:
B. Then Γ |= A <: B.
Proof. By induction in the proof tree of Γ ` A <: B, that is, by inspecting
the rules for subtyping.

Sub Refl: It follows directly that [[T (A)]]σ ⊆ [[T (A)]]σ.

Sub Top: Since [[T (Top)]]σ = Obj it must hold that [[T (A)]]σ ⊆ [[T (Top)]]σ
for all types A ∈ Type.

14



Sub Object: Let [li:Ai]i∈I <: [li:Ai]i∈J for some indexing sets I, J for which
it holds that J ⊆ I . By definition of t, T ([li:Ai]i∈I) must impose at
least the same restrictions on objects as T ([li:Ai]i∈J). It follows that
[[[li:Ai]i∈I]]σ ⊆ [[[li:Ai]i∈J]]σ.

Sub X: Follows from the well formedness of Γ.

Sub Rec: Assume there is a post-model σ such that σ(X) ⊆ [[T (C)]]σ for
all X <: C ∈ Γ, σ(X1) ⊆ σ(X2) and [[T (A)]]σ ⊆ [[T (B)]]σ. We must
find a post-model σ′ such that σ′(X) ⊆ [[T (A)]]σ for all X <: C ∈ Γ
and [[T (µX1.A)]]σ ⊆ [[T (µX2.B)]]σ. Take σ′ defined by

σ′(X) =


σ(X1) ∪ [[T (A)]]σ if X = X1

σ(X2) ∪ [[T (B)]]σ if X = X2

σ(X) otherwise

By the assumptions [[T (µX1.A)]]σ′ ⊆ [[T (µX2.B)]]σ′. Thus, we only
need to check that σ′ is a post-model, i.e. that

σ′(X1) ⊆ [[T (A)]]σ′ and σ′(X2) ⊆ [[T (B)]]σ′.

By definition of σ′, σ(X) ⊆ σ′(X) for all X. Then, since [[·]] is mono-
tonic on σ it must hold that [[F ]]σ ⊆ [[F ]]σ′ for all F ∈ Formt.

2
We want our translation to be sound and complete with respect to the

usual typings of objects. In particular we wish to prove a statement resem-
bling

Γ ` a:A ⇔ a ∈ [[T (A)]]σ

for some Γ and σ. It turns out that this is possible, if we assume certain
properties of the typing environment Γ. Theorem 6 gives us the soundness
of our translation.
Theorem 6 (Soundness) Let a ∈ Ob1<:µ, A, B ∈ Type and Γ ` a:A,
where Γ is some well formed environment. If it holds that (x:B) ∈ Γ im-
plies [[x]]σ ∈ [[T (B)]]σ for all x ∈ dom(Γ) and some post-model σ, then
a ∈ [[T (A)]]σ.
Proof. By induction in the proof tree of Γ ` a:A.

Val True: Obviously true ∈ [[T (Bool)]]σ, since by [ Trans Bool ] true true- 0.
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Val False: Similar.

Val Subsumption: We have that a ∈ [[T (A)]]σ and [[T (A)]]σ ⊆ [[T (B)]]σ.
Then by Lemma 5 it must hold that a ∈ [[T (B)]]σ.

Val Select: Assume that a ∈ [[T ([li:Ai]i∈I)]]σ. Then it is also the case that

a ∈ [[(
∧
i∈I

〈li〉T (Ai)) ∧ (
∧
i∈I

[li]T (Ai))]]σ.

By the transition rule [ Trans Select ] and the semantics of 〈li〉F it is
given that a.lj ∈ [[T (Aj)]]σ for all j ∈ I .

Val Unfold: Assume that a ∈ [[T (µ(X)A)]]σ. Then it is also the case that

a ∈ [[X ⇒ 〈unfold〉T (A) ∧ [unfold]T (A)]]σ.

This implies that

a ∈ [[〈unfold〉T (A) ∧ [unfold]T (A)]]σ.

Since σ is a post-model it must hold that unfold(a) ∈ [[T (A)]]σ, since
by [ Trans Unfold ] aµ(X)A

unfold- unfold(a)A.
2

The completeness of the translation is given by Theorem 7.
Theorem 7 Let a ∈ Ob1<:µ and F ∈ Formt. If a ∈ [[F ]]σ then there exists
a type A such that ∅ ` a:A, where T (A) = F .
Proof. By induction on the possible forms of F .

Top: If F = tt then it must hold that a:Top, where T (Top) = tt.

Bool. If F = isBool then, obviously, a:Bool. where T (Bool) = isBool.

Object: Assume that

F = (
∧
i∈I

〈li〉T (Ai)) ∧ (
∧
i∈I

[li]T (Ai)).

It must be the case that a can perform the transitions a
li- a.li,

where a.li ∈ [[T (Ai)]]σ, for all i ∈ I . That is, a must at least have the
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type [li:Ai]i∈I . We do not know if a may have further possibilities for
transitions, a

lj- a.lj for j ∈ J , I ∩J = ∅, which results in the typing

[li:Ai, lj:Aj]i∈I∪J,

but we do not care about this, since

[li:Ai, lj:Aj]i∈I∪J <: [li:Ai]i∈I.

Unfold: Assume that

F = X ⇒ 〈unfold〉T (A) ∧ [unfold]T (A).

Then, obviously, a:µ(X)A.

Var: Trivial.
2

As mentioned earlier, the characteristic formulae for object types do not
fully characterize the bisimulation equivalence of objects due to Gordon and
Rees. This is due to the fact that the typing of an object does not take
into account the possible method overrides that can be performed on the
object. In fact it is possible, with respect to an object, to do infinitely many
method overrides. That is, the ς-calculus is not finite branching. This lack
of information about the possible behaviour of an object carries through to
the type formulae.
Example 2 Consider the two objects:

a = [l1 = true, l2 = false]
b = [l1 = true, l2 = ς(x:A) x.l1]

Both have the type

A = [l1:Bool, l2:Bool],

and supertypes B and C:

B = [l1:Bool],
C = [l2:Bool]

It can be shown that a ∼B b and a ∼C b but a 6∼A b, since after the method
overrides a.l1 ⇐ ς(x)x.l2 and b.l1 ⇐ ς(x)x.l2, a converges while b diverges.
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The encodings of A,B and C look as follows

T (A) = (〈l1〉T (Bool) ∧ 〈l2〉T (Bool)) ∧ ([l1]T (Bool) ∧ [l2]T (Bool))
= (〈l1〉isBool ∧ 〈l2〉isBool) ∧ ([l1]isBool ∧ [l2]isBool)

T (B) = 〈l1〉T (Bool) ∧ [l1]T (Bool)
= 〈l1〉isBool ∧ [l1]isBool

T (C) = 〈l2〉T (Bool) ∧ [l2]T (Bool)
= 〈l2〉isBool ∧ [l2]isBool

If the type formulae should characterize Gordon-Rees bisimulation, then it
should be the case that a, b ∈ [[T (B)]]σ and a, b ∈ [[T (C)]]σ, but a, b 6∈
[[T (A)]]σ. Obviously this is not the case, since a, b ∈ [[T (A)]]σ. 2

8 Conclusions and further work

In this paper we have described how certain properties of ς-calculus terms
can be described within the modal mu-calculus. A natural next step is to
investigate how one can use the mu-calculus to verify interesting properties
of objects. The notion of model checking, that is, algorithmically checking
whether a term satisfies a given modal formula [SW89], is already well un-
derstood in the context of process calculi. It remains to be seen how far we
can proceed within the ς-calculus.

We have also shown a correspondence between the type system Ob1<:µ

for the ς-calculus and the modal mu-calculus, which captures both type as-
signment and subtyping.

A natural question is how much further we can go in this direction. We
can easily deal with arrow types, if we introduce a simple notion of intuition-
istic implication into our logic. Let us say that F implies G for some object
o if o is an object abstraction which, whenever given an argument satisfying
the property F becomes an object satisfying the property G.

[[F ⇒ G]]σ = {o | ∀o′ ∈ [[F ]]σ : oo′ ∈ [[G]]σ}

We then get
T (A1 → A2) = T (A1) ⇒ T (A2)
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It is straightforward to see that this extended interpretation is sound w.r.t.
the subtyping rules for arrow types, and in particular for the rule

[Sub Arrow]
Γ ` A′ <: A Γ ` B <: B′

Γ ` A → B <: A′ → B′

which states that the arrow type is contravariant in its first second and
covariant in its second argument.

This leads straight to the question of the possibility of dealing with the
variance annotations suggested by Abadi and Cardelli in [AC96]. This seems
to require the introduction of negation into the syntax of the logic and is a
topic of further study.

The interpretation of types as modal formulae also suggests a somewhat
alternative account of the semantics of types to that presented in [AC96],
where the semantics of a type is a per (partial equivalence relation). This is
a topic of ongoing work by one of the authors.
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