
B
R

IC
S

R
S

-96-41
S

.D
ziem

bow
ski:

T
he

F
ixpointB

ounded-V
ariable

Q
ueries

are
P

S
P

A
C

E
-C

om
plete

BRICS
Basic Research in Computer Science

The Fixpoint Bounded-Variable
Queries are PSPACE-Complete

Stefan Dziembowski

BRICS Report Series RS-96-41

ISSN 0909-0878 November 1996



Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through World Wide
Web and anonymous FTP:

http://www.brics.dk/
ftp://ftp.brics.dk/pub/BRICS
This document in subdirectoryRS/96/41/



The Fixpoint Bounded-Variable Queries are
PSPACE-complete ?

Stefan Dziembowski
stefand@mimuw.edu.pl

Warsaw University, Department of Mathematics, Informatics and Mechanics, Institute
of Informatics, Banacha 2, 02-097 Warszawa, Poland,
phone: (+48-22) 658-31-65, fax: (+48-22) 658-31-64

Abstract. We study complexity of the evaluation of fixpoint bounded-
variable queries in relational databases. We exhibit a finite database such
that the problem whether a closed fixpoint formula using only 2 individual
variables is satisfied in this database is PSPACE-complete. This clarifies
the issues raised by Moshe Vardi in [Var95]. We study also the complex-
ity of query evaluation for a number of restrictions of fixpoint logic. In
particular we exhibit a sublogic for which the upper bound postulated by
Vardi holds.

1 Introduction

In [Var95] Vardi studies computational complexity of queries expressed in various
logics. There are three notions of the complexity of query evaluation.

1. We can fix a database and evaluate different queries expressible in a logic
against this database. In this case we measure the complexity as a function
of the length of the expression denoting the query. We call it the expression
complexity of the logic.

2. We can fix a query and evaluate this query against different databases. In
this case we measure the complexity as a function of the size of the database
(data complexity of the logic).

3. We can evaluate different queries against different databases and measure
the complexity as a function of the combined size of the database and the
expression denoting the query (combined complexity of the logic).

Vardi remarks that for many logical languages there is a gap between the data
complexity on the one side, and the expression and combined complexities on
the other. For example the data complexity of first order logic (FO) is AC0 while
the expression and combined complexities are complete in PSPACE, the data
complexity of fixpoint logic (FP) is PTIME, while the expression and combined
complexities are EXPTIME-complete.

? Supported by Polish KBN grant No. 8 T11C 002 11. Part of this work was done at
BRICS, a Center for Basic Research in Computer Science, Aarhus, Denmark.



2

The main idea of [Var95] is that when we consider logics with a uniformly
bounded number of individual variables then this gap narrows. This syntax re-
striction captures the well-known technique of database programmers of avoiding
large intermediate results.

We study the problem of measuring the expression and combined complexities
of the bounded-variable version of the fixpoint first-order logic (FPk). We show
that both of them are PSPACE-complete. In [Var95] Vardi has proposed an NP
algorithm for this problem, however the algorithm works only for a subclass of
FPk formulas.

We also consider various restrictions of the FPk syntax and study their com-
plexity. At first, we fix a number of second-order variables. We show that in this
case the expression complexity is in ALOGTIME, but the combined complex-
ity is still PSPACE-complete. Since ALOGTIME 6= PSPACE, this is, up to our
knowledge, first provable gap between expression complexity and combined com-
plexity. We also study the combined and expression complexities of the prefix
version of FPk (formulas are of the form: prefix of fixpoint operators . first-order
formula . arguments), showing the PSPACE-completeness. Finally, we present a
sublogic of FPk for which the NP ∩ co-NP upper bound for combined complexity
holds.

Our results confirm the Vardi’s idea that bounding the number of variables
may lead to narrowing the gap between data and combined complexity. Whether
this gap is indeed more narrow does depend on the hypothesis that PSPACE 6=
EXPTIME.
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3 Basic Definitions

Definitions presented in this section are based on the definitions from [CH82,
Var82]. We change them a bit introducing a notion of a database signature, which
is similar to the standard notion of a signature, used in mathematical logic. This
technical modification makes the proofs in the paper more readable.

3.1 Databases and Queries

Definition1. Database signature is a pair (S, C, ar), where
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– set of relational symbols S and set of constants C are finite disjoint sets of
natural numbers

– ar : S → IN is a function giving for each symbol in the set S its arity

Definition2. A (relational) database under signature σ = (S, C, ar) is a tuple

B = 〈|B|, σ, |[·]|B〉

where

– carrier set |B| is a finite subset of natural numbers
– interpretation |[·]|B is a function giving for each c ∈ C an element of |B| and

for each s ∈ S a relation on |B| of an arity ar(s).

The restriction that the set of symbols and the carrier set are subsets of natural
numbers is technical (we need it, for example in the Definition 4). Usually we
will not respect it and name symbols and carrier set elements in more convenient
way.
An expression 〈B〉 will denote a database B, with a carrier set B under a signa-
ture (∅, C, |[·]|), such that C = B and for every c ∈ C we have |[c]|B = c.
Any database can be extended by adding to it a new symbol with its interpreta-
tion. Formally we define it in the following way:

Definition3. An extension of a database B = 〈|B|, (S, C, ar), |[·]|B〉 with a symbol
T with an interpretation Q and an arity a is a database:

B′ = 〈|B|, (S ∪ {T }, C, ar′), |[·]|B′〉

where |[·]|B′ is equal to the function |[·]|B on the set S \ {T }, and on the argument
T it is equal to Q, similarly, functions ar′ and ar are equal on S \ {T } and
ar′(T ) = a. Such an extension will be denoted by B[Q/T : a]. When an arity
a is clear from a context we will use abbreviation, writing B[Q/T ] instead of
B[Q/T : a].

Definition4. For every database signature σ and every natural number n, an
arbitrary function

Q : {B : B is under signature σ} → P(INn)

such, that Q(B) ⊆ |B|n, will be called a database query of a signature σ → n

Definition5. A query language is a set of expressions L together with a function
Q giving for every e ∈ L a query Qe.

Because we will study the complexity issues in the paper, we make here a formal
assumption, that, together with a language, there is given a standard way of
encoding its elements. We fix also some standard way of encoding databases. We
skip here the details.
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3.2 Logics as a query languages

In [Var95] Vardi studied various logical languages (interpreted in relational struc-
tures) considered as query languages. Every formula ϕ (without function sym-
bols) in any such logic L induces a query defined in the following way:
Suppose, that free first-order variables of ϕ belong to the set {x1, . . . , xi}, and
free second-order variables (with an arity given by a function ar) belong to the
set S. Any database B under the signature (S, C, ar) can be considered as a re-
lational structure. For such a database, an expression e = 〈(x1, . . . , xl)ϕ, (S, ar)〉
defines a query:

Qe = {(b1, . . . , bl) ∈ Bl : B, [b1/x1, . . . , bl/xl] |= ϕ}

(where [b1/x1, . . . , bl/xl] denotes a valuation of first-order variables, such that,
for each i = 1, . . . , l we have v(xi) = ti).
The following abbreviation is useful:
For every database B, a valuation α, a tuple of variables x, a formula ϕ(x), and
a tuple t of the carrier set elements we will often write B, α |= ϕ(t) instead
of B, α[t/x] |= ϕ(x) (where α[t/x] denotes a valuation equal to α outside the
variables x and such that for every i we have that α(xi) = ti).

3.3 Complexity

In this paper we will study the complexity of queries. We are interested in com-
paring complexity of queries expressible in different logical languages. Because
queries are functions, we translate our task to the decision problem: given a tu-
ple t, an expression e and a database B, does t ∈ Qe(B) 2 hold ? Generally this
problem has 3 parameters: t, e and B. Here we will focus on the following two
instances:

– the database B and the language L are fixed, we measure the complexity of
the set:

AnswerL(B, ·, ·) = {〈t, e〉 | e ∈ L and t ∈ Qe(B)}

– only language L is fixed, we measure the complexity of the set:

AnswerL(·, ·, ·) = {〈t, B, e〉 | e ∈ L and t ∈ Qe(B)}

Complexity of the problems AnswerL(B, ·, ·) is called expression complexity; we
say that

– the expression complexity of a language L belongs to a complexity class C iff
for every B, the AnswerL(B, ·, ·) problem is in C

– the expression complexity of a language L is hard in a complexity class C iff
there exists a database B, such that the AnswerL(B, ·, ·) problem is hard in
C

2 Here and later on, t and B are understood to be of the correct arity.
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The complexity of AnswerL(·, ·, ·) is called a combined complexity of the lan-
guage L. Note that for every B, AnswerL(B, ·, ·) is reducible in PTIME to
AnswerL(·, ·, ·), but need not be any B, such that the converse holds. There-
fore AnswerL(·, ·, ·) is generally harder than AnswerL(B, ·, ·). Consequently, ex-
pression complexity of L is lower then its combined complexity. The following
observation is useful:

Lemma6. For an arbitrary database B and an arbitrary logic L (at least as
strong as first-order logic) problems:

AnswerL(B, ·, ·) and AnswerL(B, ·) = {ϕ : ϕ is closed and B |=L ϕ}

are PTIME-equivalent. Similar fact holds for

AnswerL(·, ·, ·) and AnswerL(·, ·) = {ϕ : ϕ is closed and B |=L ϕ}

Proof. The reduction from right to left is trivial. Reduction in the opposite di-
rection consists in replacing free variables in ϕ by constants form the tuple t.

2

From now on, when considering expression and combined complexities (greater
or equal to PTIME) we will restrict ourselves to closed formulas. This restriction
is not essential due to Lemma 6.

4 Fixpoint First-Order Logic

The FP language is an extension of the standard first-order logic with two dual fix-
point operators: µ and ν, denoting the least and the greatest fixpoint, respectively
[CH82]. The syntax is extended in the following way. For an arbitrary FP formula
ϕ and every second-order l-ary variable V appearing positively in it (i.e. not
appearing under negation), the expressions: (µV(x1, . . . , xl).ϕ)(y1, . . . , yl) and
(νV(x1, . . . , xl).ϕ)(y1, . . . , yl) (where x1, . . . xl are distinct first order variables
and y1, . . . , yl are first order variables or constants) are formulas. Note, that we
allow nesting of fixpoint operators.
The set free1(ϕ) of free first-order variables in ϕ is defined as in the standard
first-order logic. For the fixpoint formulas we have: free1(θV(x1, . . . , xl).ϕ) =
free1(ϕ)/{x1, . . . , xl}. The set free2(ϕ) of free second-order variables in ϕ is
also defined in the standard way (second-order variables are bound by µ and ν
operators).
In the sequel we will interpret FP formulas under databases such that for every
free second-order variable in a formula there is a corresponding relation in a
database. The semantics of the FP should be rather clear, except the semantics
of the fixpoint subformulas. Consider a subformula (µV(y1, . . . , yl).ϕ)(x1, . . . , xl)
in a database B. We can treat a second-order variable V in a formula ϕ as a
relational symbol and evaluate this formula in a database B extended with this
symbol. In this way, after fixing a valuation α of free first-order variables in ϕ
we get an operator on l-ary relations, defined in the following way:

ϕ̂B(Q) = {(z1, . . . , zl) : B[Q/V], α[z1/y1, . . . , z1/yl] |=FP ϕ}
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(where α[z/y] denotes a valuation equal to α outside y and equal z on y)
Note, that ϕ may contain some free variables other than y1, . . . , yl. Because the
variable V occurs in the formula ϕ positively, the operator ϕ̂B is monotone.
Thus, by the Knaster-Tarski theorem [Tar55] there exists the least fixpoint of
this operator, equal to the sum of the following sequence:

∅ ⊆ ϕ̂B(∅) ⊆ ϕ̂B(ϕ̂B(∅)) ⊆ · · · (1)

Denote this sum by ϕ̂∞B . In this way, for a given valuation α, the expression
µV(y1, . . . , yl).ϕ in database B can be understood as an l-ary predicate. We can
now define the semantics of µ-formulas in as follows:

B, α |=FP (µV(y1, . . . , yl).ϕ)(x1, . . . , xl) iff (v(x1), . . . , v(xl)) ∈ ϕ̂B

(where v is equal to α on the set of variables and equal to |[·]| on the set of
constants). Similarly we define the semantics of νS(x).ϕ(t), as the greatest fix-
point of ϕ̂ (in this case we take intersection of the sequence |B||x| ⊇ ϕ̂(|B||x|) ⊇
ϕ̂(ϕ̂(|B||x|)) ⊇ · · ·).
If a formula ϕ has no free variables, we will often write B |=FP ϕ instead of
B, α |=FP ϕ. The following lemma will be useful:

Lemma7. Let B be an arbitrary database, α an arbitrary valuation and ϕ(x)
an arbitrary formula. Then set V = {t : B, α |=FP (µV(x).ϕ(x))(t)}, is equal to

{t : B[V/V], α |=FP ϕ(t)} (2)

(where t denotes a tuple of the carrier set elements, and x a tuple of the first-
order variables, such, that |t| = |x|).

Proof. Let ϕ̂ be an operator induced by ϕ(x). We have that V = ϕ̂∞ = ϕ̂(ϕ̂∞) =
ϕ̂(V), what is equal to (2). 2

5 The Complexity of FPk

In [Var95] Vardi considered several languages, each Lk obtained from a certain
language L by restricting the set of individual variables allowed in the formulas to
{x1, . . . , xk}. Note, that this does not bound the quantifier depth since variables
may be reused. In this way we get FPk from FP. We will show that there exists a
database B such that AnswerFP2(B, ·) is PSPACE-hard and, consequently, that
AnswerFP2(·, ·) is PSPACE-hard. This is the best lower bound because on the
other hand it is known that, for every k, AnswerFPk(·, ·) is in PSPACE ([Var95]),
and, consequently for every B, AnswerFPk(B, ·) is in PSPACE.

Theorem8. There exists a database B, such, that AnswerFP2(B, ·) is PSPACE-
complete

Proof. From the previous remarks it suffices to show PSPACE-hardness. The
proof goes by the reduction of the Quantified Boolean Formulas (QBF) problem.
Recall that the syntax of QBF is given by the following grammar:
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F ::= F ∧ F | F ∨ F | ∀xi. F | ∃xi. F | xi | ¬xi

The variables take the boolean values T and F. We can assume that each xi is
quantified only once. The QBF problem is a set {ψ : ψ is closed and |=QBF ψ}.
At first sight, one may think that we can reduce QBF to FPk by taking a database
B = 〈{T, F}〉 and translating a given QBF formula into a first-order formula by
translating every xi to (xi = T) and ¬xi to (xi = F). This attempt is not satisfac-
tory however, because the number of variables can not be bounded. Therefore we
have to use a bit more sophisticated method and make use of fixpoint operators.
Let B = 〈{T, F, A}〉. A function ξ transforming QBF formulas to FP2 formulas is
defined by structural induction.

ξ(ψ1 ∧ ψ2) = ξ(ψ1) ∧ ξ(ψ2)
ξ(ψ1 ∨ ψ2) = ξ(ψ1) ∨ ξ(ψ2)

ξ(∀xi.ψ) = ∀y ∈ {T, F}. µVi(x).

(
∨ x 6= A ∧ x = y

x = A ∧ ξ(ψ)

)
(A)

ξ(∃xi.ψ) = ∃y ∈ {T, F}. µVi(x).

(
∨ x 6= A ∧ x = y

x = A ∧ ξ(ψ)

)
(A)

ξ(xi) = Vi(T)
ξ(¬xi) = Vi(F)

Note, that in this construction there is a bijection between variables x1, . . . , xn
in a QBF formula and V1, . . . , Vn in an FP formula. In formulas µVi · · · there
is a free variable y, so the least fixpoint defined by this formula depends on the
actual value of y. If it is T then in the first iteration T enters to the least fixpoint
(F will never enter). This information will be further used in the evaluation of
subformulas Vi(T) and Vi(F).

Lemma9. |=QBF ψ iff B |=FP ξ(ψ)

Proof: The proof goes by induction on the structure of a QBF formula. We show
the following more general fact:
Let ψ(x1, . . . , x) be a QBF formula and α a valuation of the variables x1, . . . , xl

α |=QBF ψ iff T ψ(α) |=FP ξ(ψ) (3)

where T ψ(v) = B[v(x1)/V1, . . . , v(xl)/Vl]

1. Proof of the hypothesis for the literals xi and ¬xi is easy. We show it for ¬xi:
Let us fix a valuation v. If v |=QBF ¬xi then v(xi) = F. Thus |[Vi]|T ψ(v) = {F}.
Therefore T ψ(v) |=FP ξ(¬xi). On the other hand, if v 6|=QBF ¬xi then v(xi) =
T. Thus |[Vi]|T ψ(v) = {T}. Therefore T ψ(v) 6|=FP ξ(¬xi).

2. To prove the hypothesis for ∧ let us fix a valuation v and QBF formulas ψ1
and ψ2. Now:

v |=QBF ψ1 ∧ ψ2 iff v |=QBF ψ1 and v |=QBF ψ2 (4)

(by the induction hypothesis) iff
(

and
T ψ1(v) |=FP ξ(ψ1)
T ψ2(v) |=FP ξ(ψ2)

)
(5)
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Which, after extending T ψ1(v) and T ψ2(v) to T ψ1∧ψ2(v) is equivalent to

T ψ1∧ψ2(v) |=FP ξ(ψ1) and T ψ2∧ψ2(v) |=FP ξ(ψ2)

which holds if and only if T ψ1∧ψ2(v) |=FP ξ(ψ1 ∧ ψ2). Similarly we can prove
the induction step for ∨

3. The case of quantifiers is the most interesting one. Let us consider universal
quantifier (the proof for existential quantifier is similar). Take a QBF formula
∀xi.ψ and an arbitrary valuation v of its free variables. Suppose (3) holds
for ψ. From the definition of ξ we get:

ξ(∀xi.ψ) = ∀y ∈ {T, F}.(µVi(x).ϕ(x, y))(A) (6)

where

ϕ(x, y) =
(

∨ x 6= A ∧ x = y
x = A ∧ ξ(ψ)

)
(7)

Formula (µVi(x).ϕ(x, y))(A) has exactly one free variable: y. We will prove,
that

for every value p ∈ {T, F}
T ψ(v) |=FP (µVi(x).ϕ(x, p))(A) iff v[p/xi] |=QBF ψ

(8)

This fact is easily implies the induction hypothesis, because:

T ψ(v) |=FP ∀y ∈ {T, F}.(µVi(x).ϕ(x, y))(A)
iff for every p ∈ {T, F} we have T ψ(v) |=FP (µVi(x).ϕ(x, p))(A)
iff (from (8)) for every p ∈ {T, F} we have v[p/xi] |=QBF ψ
iff v |=QBF ∀xi.ψ

Let us now prove (8). Take an arbitrary p ∈ {T, F} as a value for y. We have,
that

T ψ(v) |=FP (µVi(x).ϕ(x, p))(A) (9)

is equivalent to
A ∈ V (10)

where V denotes the least fixpoint:

V = {r : T ψ(v) |=FP (µVi(x).ϕ(x, p))(r)} (11)

Now, after applying the Lemma 7 to the formula in (11), we get

V = {r : T ψ(v)[V/Vi] |=FP ϕ(r, p)} (12)

This equation will be sufficient for evaluating the value of V. We are mostly
interested in the value of this predicate on the element A. However, to evaluate
it we have to know the value of V on the set {T, F}. Take an arbitrary
q ∈ {T, F}. We have that q ∈ V if and only if T ψ(v)[V/Vi] |=FP ϕ(q, p)
which, by the definition of ϕ (7), is equivalent to

T ψ(v)[V/Vi] |=FP

(
∨ q 6= A ∧ q = p

q = A ∧ ξ(ψ)

)
(13)



9

Because q 6= A, we have that (13) is equivalent to T ψ(v)[V/Vi] |=FP (q = p).
Thus:

every q ∈ {T, F} belongs to V if and only if q = p (14)

Let us now evaluate the value of V on A, (i.e. evaluate (10)). Note, that in the
formula ϕ the variable Vi occurs only in the subformulas of the form Vi(T)
and Vi(F). Thus, after applying (14) to the equation (12), we get, that the
set V is equal to {r : T ψ(v)[{p}/Vi] |=FP ϕ(r, p)}. By the definition of T ψ

we have T ψ(v)[{p}/Vi] = T ψ(v[p/xi]), thus by the definition of ϕ we get
that (10) holds if and only if

T ψ(v[p/xi]) |=FP

(
∨ A 6= A ∧ A = p

A = A ∧ ξ(ψ)

)
(15)

which is equivalent to
T ψ(v[p/xi]) |=FP ξ(ψ) (16)

Now, from the induction hypothesis, (16) is equivalent to v[p/xi] |=QBF ψ
This observation completes the proof. 2

6 Complexity of restrictions of FPk

In this section we study the complexity of queries over languages obtained from
FPk by various restrictions of the syntax.

6.1 Bounded Number of Second-Order Variables

One can ask whether the bijection between Vi’s and xi’s in the proof of the
Theorem 8 is essential, i.e. whether it is possible to prove PSPACE-hardness
when we restrict also the number of second-order variables to some n. In this
section we show that the answer is positive when we ask about the combined
complexity, but it is negative for the expression complexity.
Let FPkn be a sublogic of FPk, such that the number of first-order variables in
its formulas is bounded by k and the number of second-order variables in its
formulas is bounded by n.

Combined Complexity. We will prove now the following

Theorem10. For every k ≥ 3, n ≥ 2 the AnswerFPkn
(·, ·) problem is PSPACE-

hard

Proof: The membership in PSPACE is trivial. It remains to prove the PSPACE-
hardness of AnswerFP3

2
. Let us fix a QBF formula ψ (with variables x1, . . . , xn).

We will show how to construct in a polynomial time a pair 〈 database Bψ, and
an FP3

2 formula ρ(ψ) 〉, such that:

|=QBF ψ iff Bψ |=FP ρ(ψ) (17)
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In our new construction we define a database in such a way that we will be able
to remember the valuation, representing it by relations in B. Let

Bψ = 〈{1, . . . , n, T, F, A}〉 [{1, . . . , n}/V ar, ∅/V0]

Below we present a function ρ that transforms the formula ψ to a FPkn formula,
proceeding top-down. In ϕ we use binary relation variables Vi. Then we will show
how to reduce the number of Vi’s to 2. States in the database Bψ (all, except A)
are used to remember the valuation in the following way:
The subformulas (c.f. definition below) µVd+1 · · · are intended to represent valu-
ation of the propositional variables x1, . . . , xn in the sense that Vd(i, T) holds iff
the value of xi is T and Vd(i, F) holds iff the value of xi is F. Note, that the actual
value of such subformulas will depend on the value of variables that occur free
in this formula. In this way, using fix-point formulas we shall be able to capture
the whole tree of possible valuations. We define a transformation ρ(ψ) = ξ(ψ, 0)
using auxiliary function ξ(ψ : QBF formulas d : IN) which is defined inductively
by the following clauses:

ξ(ψ1 ∧ ψ2, d) = ξ(ψ1, d) ∧ ξ(ψ2, d)
ξ(ψ1 ∨ ψ2, d) = ξ(ψ1, d) ∨ ξ(ψ2, d)

ξ(∀xi.ψ, d) = ∀y ∈ {T, F}. µVd+1(x, z).

∨ V ar(x) ∧
(

∨ x = i ∧ z = y
x 6= i ∧ Vd(x, z)

)
x = A ∧ ξ(ψ,d + 1)

 (A, 0)

ξ(∃xi.ψ, d) = ∃y ∈ {T, F}. µVd+1(x, z).

∨ V ar(x) ∧
(

∨ x = i ∧ z = y
x 6= i ∧ Vd(x, z)

)
x = A ∧ ξ(ψ,d + 1)

 (A, 0)

ξ(xi, d) = Vd(i, T)
ξ(¬xi, d) = Vd(i, F)

We claim, that (17) holds. The proof is similar to the one in Section 5. We will
skip it here, showing only the induction hypothesis:

for every QBF formula ψ with free variables x1, . . . , xn
every valuation v of these variables and every d ∈ IN
we have that α |=QBF ψ iff {(i, α(xi)) : i = 1, . . . , n} |=FP ξ(ψ, d)

(18)

Now observe that in each subformula of ρ(ψ) of the form µVd+1(x, z).ϕ, we have
that free2(ϕ) ∩ {V1, . . .} = {Vd}, therefore all other Vi’s “are not visible” from
ϕ and can be reused. Formally we do it by gluing all V2n’s into one variable and
all V2n+1’s into another. 2

Expression Complexity In the above construction the size of the database
was not bounded, and could be even linear in the size of a given QBF formula.
Below we argue that it is essential by showing the upper bound for the expres-
sion complexity. The proof is similar to the proof establishing the complexity of
AnswerFOk in [Var95]. The key observation is that for a fixed database, and a
fixed number of the first- and second-order variables, the arity of all relations is
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fixed too, and thus the number of all definable relations (and relations on rela-
tions) is bounded. This gives us PTIME as an easy upper bound. We can improve
it however by using a technique from [Lyn77]. Recall that a parenthesis grammar
is a context-free grammar with two distinguished terminals: “(” and “)” such that
each production is of the from A → (x) with x parenthesis free. Such a grammar
generates a parenthesis language. In our proof we make use of the the fact from
[Bus87] that all parenthesis languages are recognizable in ALOGTIME.

Theorem11. The AnswerFPkn
(B) problem is in ALOGTIME for every database

B every k and every n.

Proof sketch: Note, that we consider here complexity for which it is not known,
whether it contains PTIME. Thus we can not use Lemma 6 here. In the proof
therefore we do not forget about the tuple t and, for each database B, consider
the Answer(B, ·, ·) problem. We will show how, for a given database B, a number
k of the first-order variables and a number n of the second-order variables, to
construct a parenthesis grammar G, such that every formula ϕ ∈ FPkn and every
tuple t of the length l

B, t |=FP (y1, . . . , yl)ϕ iff t |=FP (y1, . . . , yl)ϕ ∈ L(G) (19)

Suppose, that x1, . . . , xk are first order variables and V1, . . . , Vn are second-order
variables (each of arity ar(Vi)). Let B = {|B|, σ, |[·]|} be an arbitrary database.
Moreover let V al be a set of all valuations of the variables x1, . . . , xk, let B
be a set of all extensions of a database B with symbols V1, . . . , Vn, and let
P(B × V al) = {T1, . . . , Tl}. The grammar consists of

– initial symbol S and a set of nonterminal symbols: {T1, . . . , Tl}
– a set of terminal symbols: all first-order variables, all tuples of them, all

second order variables and all symbols in B, ¬, ∧, ∨, (, ), |=FP, ., µ, ν, ∃ and ∀
– productions:

For every Ti, Ti1 , Ti2 , every (D, v) ∈ Ti every two variables x and y, every
two tuples of variables x and y we have:
S → (t |=FP (y1, . . . , yl)Ti) where t = ((v(y1), . . . , v(yl)))
Ti → (x = y) iff v(x) = v(y)
Ti → (x 6= y) iff v(x) 6= v(y)
Ti → (Rj(x)) iff Ti = {(D, v) : D, v |=FP (Rj(x)}
Ti → (¬Rj(x)) iff Ti = {(D, v) : D, v 6|=FP (Rj(x)}
Ti → (Vj(x)) iff Ti = {(D, v) : D, v |=FP (Vj(x)}
Ti → (Ti1 ∧ Ti2) iff Ti = Ti1 ∩ Ti2
Ti → (Ti1 ∨ Ti2) iff Ti = Ti1 ∪ Ti2
Ti → (∃y.Th) iff Ti = {(D, v) : ∃p. (D, v[p/y]) ∈ Th}
Ti → (∀y.Th) iff Ti = {(D, v) : ∀p. (D, v[p/y]) ∈ Th}
The most interesting is the case of the fixpoint formulas. Note, that for every
Th induces a following operator on relations on |B|:

ρTh(x)(V) = {z : (D[V/Vj ], v[z/x]) ∈ Th}
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For every Ti and every Th, such that the operator ρTh(x) is monotone, there
exists a least fixpoint ρ∞Th(x) of the ρTh(x) operator. For an arbitrary tuples
y and z (of the length ar(Vj)) of first-order variables we say that

Ti → ((µVj(x).Th)(y)) iff Ti = {(D, v) : (v(y1), . . . , v(yl)) ∈ ρ∞Th(x)}

A production for the greatest fixpoint is defined similarly.

We skip here the formal proof of (19) 2

6.2 Prefix Form

Define FP
k

formulas as an FPk formulas of the form

prefix of fix-point operators . first-order formula . arguments

(where arguments can be variables or constants). In the FP
k

formulas we will
write µV(x)←(y).ϕ instead of (µV(x).ϕ)(y). This makes them more readable.
It this section we will show, that the expression and combined complexities of

F̂P
k

are PSPACE-complete. Namely we show the following

Theorem12. There exists a database B, such that the Answer
F̂P
k problem is

PSPACE-complete.

Proof sketch Let B = 〈{0, 1, Set, T, F}〉 [{1}/Wp−1]. For a given QBF formula
φ = ∀p1∃p2 . . .∀pn−1∃pn.ϕ (where ϕ is a sentence which variables are among

p1, . . . , pn) we will show how to construct in PTIME an F̂P
k

formula χ, such
that

|=QBF φ iff B |=FP χ (20)

This will complete the proof since the QBF problem remains PSPACE-complete,
even when we restrict ourselves to formulas in the prefix form. The formula χ is
complex. To define it we first define a function ξ by the following clauses:

ξ(ϕ1 ∧ ϕ2) = ξ(ϕ1) ∧ ξ(ϕ2)
ξ(ϕ1 ∨ ϕ2) = ξ(ϕ1) ∨ ξ(ϕ2)

ξ(¬pn) = Wpn(F)
ξ(pn) = Wpn(T)

Then, using it, we define a formula FORMi
j (Table 1). Finally we define χ =

FORM1
n(Set, T, 0). Note, that in subformulas of the form

µWpi(x)←(x).(FORMi+1
n (x, y, z)) (21)

there are two parameters: y and z. Thus the value of the fixpoints defined by them
depends on the value of y and z. Moreover it can be shown, by applying 2∗(n−1)+
1 times Lemma 7 to (21), that every x, y, z ∈ {T, F, 0, 1} satisfy (21) iff x = y or
x = z. In this way we are able remember valuations of QBF variables. We define
C(p1, . . . , pi) to be an extension of the database B with symbols Wp1 , . . . , Wpn.
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FORMi
j(x,y, z) = µVpi (x,y, z) (x, y, z). µWpi (x) (x).

...
µVpj (x, y, z) (x, y, z). µWpj (x) (x).

(x = Set ∧ Wp−1(1) ∧Wp0(0) ∧Wp1(0)
∧ ((Vp1(Set, T, 1)) ∧ (Vp1(Set, F, 1))))

∨ (x = Set ∧ Wp0(0) ∧Wp1(1) ∧ Wp2(1)
∧ ((Vp2(Set, T, 0)) ∨ (Vp2(Set, F, 0))))

...
∨ (x = Set ∧ Wpl(0) ∧Wpl+1(1) ∧Wpl+2(1)

∧ ((Vpl+2(Set, T, 0)) ∨ (Vpl+2(Set, F, 0))))
∨ (x = Set ∧ Wpl+1(1) ∧Wpl+2(0) ∧Wpl+3(0)

∧ ((Vpl+3(Set, T, 1)) ∧ (Vpl+3(Set, F, 1))))
...

∨ (x = Set ∧ Wpn−3(0) ∧Wpn−2(1) ∧ Wpn−1(1)
∧ ((Vpn−1(Set, T, 0)) ∨ (Vpn−1(Set, F, 0))))

∨ (x = Set ∧ Wpn−2(1) ∧Wpn−1(0) ∧ Wpn(0)
∧ ((Vpn(Set, T, 1)) ∧ (Vpn(Set, F, 1))))

∨ (x = Set ∧ Wpn−1(0) ∧Wpn(1)
∧ ξ(ϕ))

∨ (x = y)
∨ (x = z)

Table 1. The definition of FORMi
j (we assume that the number l occuring in the

formula is even)

The interpretation of these symbols is given in the following table (here we assume
that i is even):

Wp0 Wp1 Wp2 Wp3 · · · · · · Wpi−2 Wpi−1 Wpi Wpi+1 · · · · · · Wpn−1 Wpn

0, T 1,p1 0,p2 1,p3 0,pi−2 1,pi−1 0,pi 0,pi 0,pi 0,pi

(in case i odd we have Wpi = · · · = Wpn = {1, pi}). In the proof we show that
for every odd i = 1, . . . , n and every b ∈ {T, F} we have that

B |=FP χ iff ∀p1.∃p2. . . .∃pi−1.∀pi.C(p1, . . . , pi) |=FP FORMi+1
n (Set;pi, 0)

(for i even, the quantifier prefix is: ∀p1.∃p2. . . .∀pi−1.∃pi.). Thus, for i = n, we
get that, B |=FP χ holds iff

∀p1.∃p2. . . .∀pn−1.∃pn.C(p1, . . . , pn) |=FP (FORMn+1
n (Set;pn, 0)) (22)
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what is equivalent to

∀p1.∃p2. . . .∀pn−1.∃pn.B [{T}/Wp0 , {p1}/Wp1, . . . , {pn}/Wpn ] |=FP ξ(ϕ)
(23)

Now, form the definition of ξ, it can be easily seen that (23) holds iff ψ holds
(recall, that p0 does not occur in ξ(ϕ)). 2

6.3 When Does the NP ∩ co-NP Bound Hold?

In this section we will show a syntax restriction of FPk, the combined complexity
of which is in NP ∩ co-NP.

Definition13. F̂Pk formulas are the FPk formulas satisfying the following con-
dition:
• For every subformula (θV (x1, . . . , xn).ϕ)(y1, . . . , yn) we require the set of free
variables in ϕ to be contained in {x1, . . . , xn}.

In the sequel we will use some results on the modal µ-calculus. We recall here
that the modal µ-calculus, as introduced by Kozen [Koz83], is a modal logic with
two dual fixpoint operators µ and ν. Its formulas are evaluated in the structures
of the form:

M = 〈S, Act, P rop, Q : Act → (S × S) → bool, ρ : Prop → S → bool〉

where: Act = {a1, . . . , an} is the set of actions
Prop = {p1, . . . , pm} is the set of propositional constants
Q is a function assigning binary relations on S to actions in Act
ρ is a function assigning the subset of S to every constant in Prop

The syntax of the modal µ-calculus is given by the following grammar:

F ::= F ∧ F | F ∨ F | µxi. F | νxi. F | 〈a〉 F | [a] F | xi | pi | ¬pi

Formal definition of the modal µ-calculus semantics can be found in [Koz83]. We
write M |= ψ to mean that ψ is satisfied in every state of M (i.e. s ∈ |[ψ]|M).

We will show that, for a fixed k ≥ 2, F̂P
k

is PTIME-equivalent to the modal
µ-calculus in the following sense:

Lemma14. There exists a polynomial-time transformation that for a given

database B produces a model MB and for a given F̂P
k

formula ϕ produces a
modal µ-calculus formula ψϕ, such that B |= ϕ iff MB |= ψϕ.

Lemma15. There exists a polynomial-time transformation that for a given
model M produces a database BM and for a given modal µ-calculus formula
ψ produces an F̂P

2
formula ϕψ, such that BM |= ϕψ iff M |= ψ.

The proof Lemma 15 is easy and we will skip it here. Since model-checking for
the modal µ-calculus is in NP ∩ co-NP [EJS93], Lemma 14 gives us:

Theorem16. The Answer
F̂P
k(·, ·) problem is in NP ∩ co-NP
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By Lemma 15 all lower bounds for the modal µ-calculus apply also to the
Answer

F̂P
k . Thus [ZSS94] we get:

Theorem17. The Answer
F̂P
k (·, ·) problem is PTIME-hard

Proof sketch of Lemma 14:

– every database B with a carrier set B and relational symbols R1, . . . , Rn is
translated to a model MB = 〈S, Act, P rop, Q, ρ〉

where S = Bk

Prop = {Rel1, . . . , Reln, equality}
Act = {change1, . . . , changek} ∪ {1, . . . , k}k (remember that k ≥ 2 is fixed)

ρ(Reli) = |[Ri]|B for i = 1, . . . , n (w.o.l.g we assume that all relations are k-ary)
ρ(equality) = {(x1, . . . , xk) : x1 = x2}
Q(changei) = {〈(x1, . . . , xk), (x1, . . . , xi−1, z, xi+1, . . . , xk)〉 :

x1, . . . , xk, z ∈ S}
Q((i1, . . . , ik)) = {〈(x1, . . . , xk), (xi1, . . . , xik)〉 : x1, . . . , xk ∈ S}

– The function τ transforming F̂Pk formulas into modal µ-calculus formulas
is given below. Recall, that we consider here only formulas satisfying condi-
tion •. Thus, if the arity of a relation variable is less than k, we can always
extend it. Thus we can assume that all relation variables are of arity k. The
variables in the modal µ-calculus formula are z1 . . . zn and they correspond
to the relational variables V1 . . .Vn in an F̂Pk formula.

τ(ψ1 ∧ ψ2) = τ(ψ1) ∧ τ(ψ2)
τ(ψ1 ∨ ψ2) = τ(ψ1) ∨ τ(ψ2)

τ(∀xi.ψ) = [changei]τ(ψ)
τ(∃xi.ψ) = 〈changei〉τ(ψ)

τ((µVi(x1, . . . , xk).ψ)(xi1 , . . . , xik)) = 〈(i1) . . . (ik)〉(µzi.τ(ψ))
τ((νVi(x1, . . . , xk).ψ)(xi1 , . . . , xik)) = 〈(i1) . . . (ik)〉(νzi.τ(ψ))

τ(xi = xj) = [(i, j, 1, . . . , 1)]equality
τ(Rj(xi1 , . . . , xik)) = [(i1, . . . , ik)](Relj)
τ(Vj(xi1 , . . . , xik)) = [(i1, . . . , ik)](zj)

Now it is easy to prove by structural induction that B, α |=FP ψ iff α ∈ |[τ(ψ)]|MB ,
what implies the correctness of the construction.
It is worth to note, that Lemmas 14 and 15 give us translations between models

and formulas independently. Thus the expression complexity of F̂P
k

is PTIME-
equivalent to the expression complexity of the modal µ-calculus. The best known
lower bound for it is PTIME [DJN96].

We also want to emphasize, that Vardi’s algorithm for evaluating FPk queries

from [Var95] works properly for F̂P
k
. Thus, as announced by Vardi, his algorithm

still can be viewed as a new proof of the membership of the model-checking
problem for the modal µ-calculus in NP ∩ co-NP.
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7 Conclusion

Below we summarize the results from this paper.

Language expression complexity combined complexity

FPk PSPACE-complete PSPACE-complete

FP
k

PSPACE-complete PSPACE-complete
FPkn ALOGTIME PSPACE-complete

F̂P
k

NP ∩ co-NP NP ∩ co-NP

We recall, that FPk denotes the fixpoint first-order logic with bounded number of
first-order variables, FP

k
denotes the prefix version of FPk, sublogic FPkn denotes

FPk with bounded number of second-order variables and F̂P
k

denotes the sublogic
of FPk defined in the Definition 13.
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