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Abstract

The complexity of maintaining a set under the operations Insert, Delete
and FindMin is considered. In the comparison model it is shown that any
randomized algorithm with expected amortized cost t comparisons per Insert
and Delete has expected cost at least n/(e22t) − 1 comparisons for FindMin.
If FindMin is replaced by a weaker operation, FindAny, then it is shown that
a randomized algorithm with constant expected cost per operation exists; in
contrast, it is shown that no deterministic algorithm can have constant cost
per operation. Finally, a deterministic algorithm with constant amortized
cost per operation for an offline version of the problem is given.
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1 Introduction

We consider the complexity of maintaining a set S of elements from a
totally ordered universe under the following operations:

Insert(x): inserts the element x into S,

Delete(x): removes from S the element x provided it is known where x
is stored, and

FindMin: returns the minimum element in S without removing it.

We refer to this problem as the Insert-Delete-FindMin problem. We
denote the size of S by n. The analysis is done in the comparison
model, i.e. the time required by the algorithm is the number of com-
parisons it makes. The input is a sequence of operations, given to the
algorithm in an online manner, that is, the algorithm must process the
current operation before it receives the next operation in the sequence.
The worst case time for an operation is the maximum, over all such
operations in all sequences, of the time taken to process the opera-
tion. The amortized time of an operation is the maximum, over all
sequences, of the total number of comparisons performed, while pro-
cessing this type of operation in the sequence, divided by the length of
the sequence.

Worst case asymptotic time bounds for some existing data struc-
tures supporting the above operations are listed in Table 1. The table
suggests a tradeoff between the worst case times of the two update
operations Insert, Delete and the query operation FindMin. We prove
the following lower bound on this tradeoff: any randomized algorithm
with expected amortized update time at most t requires expected time
(n/e2t) − 1 for FindMin. Thus, if the update operations have expected
amortized constant cost, FindMin requires linear expected time. On
the other hand if FindMin has constant expected time, then one of
the update operations requires logarithmic expected amortized time.
This shows that all the data structures in Table 1 are optimal in the
sense of the tradeoff, and they cannot be improved even by considering
amortized cost and allowing randomization.

For each n and t, the lower bound is tight. A simple data structure
for the Insert-Delete-FindMin problem is the following. Assume Insert
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Implementation Insert Delete FindMin
Doubly linked list 1 1 n
Heap [10] log n log n 1
Search tree [6, 8] log n 1 1
Priority queue [3, 4, 5] 1 log n 1

Table 1: Worst case asymptotic time bounds for different set imple-
mentations.

and Delete are allowed to make at most t comparisons. We represent a
set by dn/2te sorted lists. All lists except for the last contain exactly
2t elements. The minimum of a set can be found among all the list
minima by dn/2te−1 comparisons. New elements are added to the last
list, requiring at most t comparisons by a binary search. To perform
Delete we replace the element to be deleted by an arbitrary element
from the last list. This also requires at most t comparisons.

The above lower bound shows that it is hard to maintain the min-
imum. Is it any easier to maintain the rank of some element, not
necessarily the minimum? We consider a weaker problem called Insert-
Delete-FindAny, which is defined exactly as the previous problem, ex-
cept that FindMin is replaced by the weaker operation FindAny that
returns an element in S and its rank. FindAny is not constrained
to return the same element each time it is invoked or to return the
element with the same rank. The only condition is that the rank
returned should be the rank of the element returned. We give a ran-
domized algorithm for the Insert-Delete-FindAny problem with constant
expected time per operation. Thus, this problem is strictly easier than
Insert-Delete-FindMin, when randomization is allowed. However, we
show that for deterministic algorithms, the two problems are essen-
tially equally hard. We show that any deterministic algorithm with
amortized update time at most t requires n/24t+3 − 1 comparisons for
some FindAny operation. This lower bound is proved using an ex-
plicit adversary argument, similar to the one used by Borodin, Guibas,
Lynch and Yao [2]. The adversary strategy is simple, yet surprisingly
powerful. The same strategy may be used to obtain the well known
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Ω(n log n) lower bound for sorting. An explicit adversary for sorting
has previously been given by Atallah and Kosaraju [1].

The previous results show that maintaining any kind of rank infor-
mation online is hard. However, if the sequence of instructions to be
processed is known in advance, then one can do better. We give a deter-
ministic algorithm for the offline Insert-Delete-FindMin problem which
has an amortized cost per operation of at most three comparisons.

Our proofs use various averaging arguments which are used to de-
rive general combinatorial properties of trees. These are presented in
Section 2.2.

2 Preliminaries

2.1 Definitions and notation

For a rooted tree T , let leaves(T ) be the set of leaves of T . For a vertex,
v in T , define deg(v) to be the number of children of v. Define, for
` ∈ leaves(T ), depth(`) to be the distance of ` from the root and path(`)
to be the set of vertices on the path from the root to `, not including
`.

For a random variable X , let support[X ] be the set of values that X
assumes with non-zero probability. For any non-negative real valued
function f , defined on support[X ], we define the arithmetic mean and
geometric mean of f by

E
X

[f(X)] =
∑

x∈support[X]
Pr[X = x]f(x), and

GM
X

[f(X)] =
∏

x∈support[X]
f(x)Pr[X=x].

We will also use the notation E and GM to denote the arithmetic and
geometric means of a set of values as follows: for a set R, and any
non-negative real valued function f , defined on R, define

E
r∈R

[f(r)] =
1

|R|
∑
r∈R

f(r), and GM
r∈R

[f(r)] =
∏
r∈R

f(r)1/|R|.

It can be shown (see [7]) that the geometric mean is at most the arith-
metic mean.
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2.2 Some useful lemmas

Let T be the infinite complete binary tree. Suppose each element
of [n] = {1, . . . , n} is assigned to a node of the tree (more than one
element may be assigned to the same node). That is, we have a function
f : [n] → V (T ). For v ∈ V (T ), define wtf(v) = |{i ∈ [n] : f(i) = v}|,
df = Ei∈[n][depth(f(i))], Df = max{depth(f(i)) : i ∈ [n]} and mf =
max{wtf(v) : v ∈ V (T )}.

Lemma 1 For every assignment f : [n] → V (T ), the maximum num-
ber of elements on a path starting at the root of T is at least n2−df .

Proof. Let P be a random infinite path starting from the root. Then,
for i ∈ [n], Pr[f(i) ∈ P ] = 2−depth(f(i)). Then the expected number of
elements of [n] assigned to P is

n∑
i=1

2−depth(f(i)) = n E
i∈[n]

[2−depth(f(i))] ≥ nGM
i∈[n]

[2−depth(f(i))]

= n2−Ei∈[n][depth(f(i))] = n2−df .

Since the maximum is at least the expected value, the lemma follows.

Lemma 2 For every assignment f : [n] → V (T ), mf ≥ n/2df+3.

Proof. Let H = {h : mh = mf}. Let h be the assignment in H with
minimum average depth dh (the minimum exists). Let m = mh = mf ,
and D = Dh. We claim that

wth(v) = m, for each v ∈ V (T ) with depth(v) < D. (1)

For suppose there is a vertex v with depth(v) < D and wt(v) < m
(i.e. wt(v) ≤ m − 1). First, consider the case when some node w at
depth D has m elements assigned to it. Consider the assignment h′

given by

h′(i) def=


w if h(i) = v,
v if h(i) = w,
h(i) otherwise.
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Then h′ ∈ H and dh′ < dh, contradicting the choice of h. Next,
suppose that every node at depth D has less than m elements assigned
to it. Now, there exists i ∈ [n] such that depth(h(i)) = D. Let h′ be
the assignment that is identical to h everywhere except at i, and for i,
h′(i) = v. Then, h′ ∈ H and dh′ < dh, again contradicting the choice
of h. Thus (1) holds.

The number of elements assigned to nodes at depth at most D − 1
is m(2D − 1), and the average depth of these elements is

1
m(2D − 1)

D−1∑
i=0

mi2i =
(D − 2)2D + 2

2D − 1
≥ D − 2.

Since all other elements are at depth D, we have dh ≥ D − 2. The
total number of nodes in the tree with depth at most D is 2D+1 − 1.
Hence, we have

mf = m ≥ n

2D+1 − 1
≥ n

2dh+3 − 1
≥ n

2df+3 − 1
.

For a rooted tree T , let W` = ∏
v∈path(`) deg(v). Then, it can be

shown by induction on the height of tree that ∑
`∈leaves(T ) 1/W` = 1.

The following lemma is implicit in the work of McDiarmid [9].

Lemma 3 For a rooted tree T with m leaves, GM
`∈leaves(T )

[W`] ≥ m.

Proof. Since the geometric mean is at most the arithmetic mean, we
have

GM
`

[
1

W`
] ≤ È[

1
W`

] =
1
m

∑
`

1
W`

=
1
m

.

Now,

GM̀[W`] =
1

GM̀[1/W`]
≥ m.

3 Deterministic offline algorithm

We now consider an offline version of the Insert-Delete-FindMin prob-
lem. The sequence of operations to be performed is given in advance,
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however, the ordering of the set elements is unknown. The ith opera-
tion is performed at time i. We assume that an element is inserted and
deleted at most once. If an element is inserted and deleted more than
once, it can be treated as a distinct element each time it is inserted.

From the given operation sequence, the offline algorithm can com-
pute, for each element x, the time, t(x), at which x is deleted from the
data structure (t(x) is ∞ if x is never deleted).

The data structure maintained by the offline algorithm is a sorted
(in increasing order) list L = (x1, . . . , xk) of the set elements that can
become minimum elements in the data structure. The list satisfies
that t(xi) < t(xj) for i < j, because otherwise xj could never become
a minimum element.

FindMin returns the first element in L and Delete(x) deletes x from
L, if L contains x, i.e. x = x1. To process Insert(x), the algorithm
computes two values, ` and r, where r = min{i : t(xi) > t(x)} and
` = max{i : xi < x}. Notice that once x is in the data structure,
none of x`+1, . . . , xr−1 can ever be the minimum element. Hence, all
these elements are deleted and x is inserted into the list between x`

and xr. No comparisons are required among the elements to find r,
because r can be computed by a search for t(x) in (t(x1), . . . , t(xk)).
Thus, Insert(x) may be implemented as follows: starting at xr, step
backwards through the list, deleting elements until the first element
smaller than x is encountered.

The number of comparisons for an insertion is two plus the number
of elements deleted from L. By letting the potential of L be |L| the
amortized cost of Insert is |L′| − |L|+ # of element removed during the
Insert +2 which is at most 3 because the number of elements removed
is at most |L| − |L′| + 1. Delete only decreases the potential, and the
initial potential is zero. It follows that

Theorem 4 For the offline Insert-Delete-FindMin problem the amor-
tized cost of Insert is three comparisons. No comparisons are required
for Delete and FindMin.
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4 Deterministic lower bound for FindAny

In this section we show that it is difficult for a deterministic algorithm
to maintain any rank information at all. We prove

Theorem 5 Let A be a deterministic algorithm for the Insert-Delete-
FindAny problem with amortized time at most t = t(n) per update.
Then, there exists an input for which A takes at least n/24t+3 −1 com-
parisons to process one FindAny.

The Adversary. We describe an adversary strategy for responding
to the comparisons.

The adversary maintains an infinite binary tree and the elements
currently in the data structure are distributed among the nodes of this
tree. New elements inserted into the data structure are placed at the
root. For x ∈ S let v(x) denote the node of the tree at which x is.
The adversary maintains two invariants. For any distribution of the
elements among the nodes of the infinite tree, define the occupancy
tree to be the finite tree given by the union of the paths from every
non-empty node to the root. The invariants are

(A) If neither of v(x) or v(y) is a descendant of the other then x < y
is consistent with the responses given so far if v(x) appears before
v(y) in an inorder traversal of the occupancy tree, and

(B) If v(x) = v(y) or v(x) is a descendant of v(y), the responses given
so far yield no information on the order of x and y. More precisely,
in this case, x and y are incomparable in the partial order induced
on the elements by the responses so far.

The comparisons made by any algorithm can be classified into three
types, and the adversary responds to each type of the comparison as
described below. Let the elements compared be x and y.

• v(x) = v(y): Then x is moved to the left child of v(x) and y to the
right child and the adversary answers x < y.

• v(x) is a descendant of v(y): Then y is moved to the unique child
of v(y) that is not an ancestor of v(x). If this child is a left child
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then the adversary answers y < x and if it is a right child then the
adversary answers x < y.

• v(x) 6= v(y) and neither is a descendant of the other: If v(x) is
visited before v(y) in the inorder traversal of the occupancy tree,
the adversary answers x < y and otherwise the adversary answers
y < x.

The key observation is that each comparison pushes two elements
down one level each, in the worst case.

Maintaining ranks. We now give a proof of Theorem 5.
Consider the behavior of the algorithm when responses to its com-

parisons are given according to the adversary strategy above. Define
the sequences S1 . . . Sn+1 as follows.

S1 = Insert(a1) . . . Insert(an)FindAny.

Let b1 be the element returned in response to the FindAny instruction
in S1. For i = 2, 3, . . . n, define

Si = Insert(a1) . . . Insert(an)Delete(b1) . . .Delete(bi−1)FindAny

and let bi be the element returned in response to the FindAny instruc-
tion in Si. Finally, let

Sn+1 = Insert(a1) . . . Insert(an)Delete(b1) . . .Delete(bn).

For 1 ≤ i ≤ n, bi is well defined and for 1 ≤ i < j ≤ n, bi 6= bj. The
latter point follows from the fact that at the time bi is returned by a
FindAny, b1, . . . , bi−1 have already been deleted from the data structure.

Let T be the infinite binary tree maintained by the adversary. Then
the sequence Sn+1 defines a function f : [n] → V (T ), given by f(i) =
v if bi is in node v just before the Delete(bi) instruction during the
processing of Sn+1. Since the amortized cost of an update is at most t,
the total number of comparisons performed while processing Sn+1 is at
most 2tn. A comparison pushes at most two elements down one level
each. Then, writing di for the distance of f(i) from the root, we have∑n

i=1 di ≤ 4tn. By Lemma 2 we know that there is a set R ⊆ [n] with

9



at least n/24t+3 elements and a vertex v of T such that for each i ∈ R,
f(bi) = v.

Let j = minR. Then, while processing Sj, just before the FindAny
instruction, each element bi, i ∈ R is in some node on the path from
the root to f(i) = v. Since the element returned by the FindAny is
bj, it must be the case that after the comparisons for the FindAny are
performed, bj is the only element on the path from the root to the
vertex in which bj is. This is because invariant (B) implies that any
other element that is on this path is incomparable with bj. Hence,
these comparisons move all the elements bi, i ∈ R\j, out of the path
from the root to f(j). A comparison can move at most one element
out of this path, hence, the number of comparisons performed is at
least |R| − 1, which proves the theorem.

4.1 Sorting

The same adversary can be used to give a lower bound for sorting.
We note that this argument is fundamentally different from the usual
information theoretic argument in that it gives an explicit adversary
against which sorting is hard.

Consider an algorithm that sorts a set S, of n elements. The same
adversary strategy is used to respond to comparisons. Then, invariant
(B) implies that at the end of the algorithm, each element in the tree
must be in a node by itself. Let the function f : S → V (T ) indicate the
node where each element is at the end of the algorithm, where T is the
infinite binary tree maintained by the adversary. Then, f assigns at
most one element to each path starting at the root of T . By Lemma 1
we have 1 ≥ n2−d, where d is the average distance of an element from
the root. It follows that the sum of the distances from the root to the
elements in this tree is at least n log n, and this is equal to the sum
of the number of levels each element has been pushed down. Since
each comparison contributes at most two to this sum, the number of
comparisons made is at least (n log n)/2.
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5 Randomized algorithm for FindAny

We present a randomized algorithm supporting Insert, Delete and
FindAny using, on an average, a constant number of comparisons per
operation.

5.1 The algorithm

The algorithm maintains three variables: S, z and rank . S is the set
of elements currently in the data structure, z is an element in S, and
rank is the rank of z in S. Initially, S is the empty set, and z and rank
are null. The algorithm responds to instructions as follows.

Insert(x): Set S ← S ∪ {x}. With probability 1/|S| we set z to x
and let rank be the rank of z in S, that is, one plus the number
of elements in S smaller than z. In the other case, that is with
probability 1 − 1/|S|, we retain the old value of z; that is, we
compare z and x and update rank if necessary. In particular, if
the set was empty before the instruction, then z is assigned x and
rank is set to 1.

Delete(x): Set S ← S − {x}. If S is empty then set z and rank to null
and return.

Otherwise (i.e. if S 6= ∅), if x ≡ z then get the new value of z by
picking an element of S randomly; set rank to be the rank of z in
S. On the other hand, if x is different from z, then decrement rank
by one if x was smaller than z.

FindAny: Return z and rank .

5.2 Analysis

Claim 6 The expected number of comparisons made by the algorithm
for a fixed instruction in any sequence of instructions is constant.

Proof. FindAny takes no comparisons. Consider an Insert instruction.
Suppose the number of elements in S just before the instruction was

11



s. Then, the expected number of comparisons made by the algorithm
is s · (1/(s + 1)) + 1 · (s/(s + 1)) < 2.

We now consider the expected number of comparisons performed
for a Delete instruction. Fix a sequence of instructions. Let Si and
zi be the values of S and z just before the ith instruction. Note that
Si depends only on the sequence of instructions and not on the coin
tosses of the algorithm; on the other hand, zi might vary depending
on the coin tosses of the algorithm. We first show that the following
invariant holds for all i:

|Si| 6= ∅ =⇒ Pr[zi = x] =
1

|Si|
for all x ∈ Si. (2)

We use induction on i. For i = 1, Si is empty and the claim holds
trivially. Assume that the claim holds for i = `; we shall show that
then it holds for i = ` + 1. If the `th instruction is a FindAny, then S
and z are not disturbed and the claim continues to hold.

Suppose the `th instruction is an Insert. For x ∈ S`, we can have
z`+1 = x only if z` = x and we retain the old value of z after the
Insert instruction. The probability that we retain the old value of z is
|S`|/(|S`| + 1). Thus, using the induction hypothesis, we have for all
x ∈ S`

Pr[z`+1 = x] = Pr[z` = x] · Pr[z`+1 = z`] =
1

|S`|
· |S`|
|S`| + 1

=
1

|S`| + 1
.

Also, the newly inserted element is made z`+1 with probability 1
|S`|+1.

Since |S`+1| = |S`| + 1, (2) holds for i = ` + 1.
Next, suppose the `th instruction is a Delete(x). If the set becomes

empty after this instruction, there is nothing to prove. Otherwise, for
all y ∈ S`+1,

Pr[z`+1 = y]
= Pr[z` = x & z`+1 = y] + Pr[z` 6= x & z`+1 = y]
= Pr[z` = x] · Pr[z`+1 = y | z` = x] + Pr[z` 6= x] · Pr[z` = y | z` 6= x].

By the induction hypothesis we have Pr[z` = x] = 1/|S`|. Also, if z` = x
then we pick z`+1 randomly from S`+1; hence Pr[z`+1 = y | z` = x] =

12



1/|S`+1|. For the second term, by the induction hypothesis we have
Pr[z` 6= x] = 1 − 1/|S`| and Pr[z` = y | z` 6= x] = 1/(|S`| − 1) = 1/|S`+1|
(because |S`+1| = |S`| − 1). By substituting these, we obtain

Pr[z`+1 = y] =
1

|S`|
· 1
|S`+1|

+ (1 − 1
|S`|

) · 1
|S`+1|

=
1

|S`+1|
.

Thus, (2) holds for i = ` + 1. This completes the induction.
Now, suppose the ith instruction is Delete(x). Then, the probability

that zi = x is precisely 1/|Si|. Thus, the expected number of compar-
isons performed by the algorithm is

(|Si| − 2) · 1
|Si|

< 1.

6 Randomized lower bounds for FindMin

One may view the problem of maintaining the minimum as a game
between two players: the algorithm and the adversary. The adver-
sary gives instructions and supplies answers for the comparisons made
by the algorithm. The objective of the algorithm is to respond to the
instructions by making as few comparisons as possible, whereas the ob-
jective of the adversary is to force the algorithm to use a large number
of comparisons.

Similarly, if randomization is permitted while maintaining the min-
imum, one may consider the randomized variants of this game. We
have two cases based on whether or not the adversary is adaptive. An
adaptive adversary constructs the input as the game progresses; its
actions depend on the moves the algorithm has made so far. On the
other hand, a non-adaptive adversary fixes the instruction sequence
and the ordering of the elements before the game begins. The input it
constructs can depend on the algorithm’s strategy but not on its coin
toss sequence.

13



It can be shown that against the adaptive adversary randomization
does not help. In fact, if there is a randomized strategy for the al-
gorithm against an adaptive adversary then there is a deterministic
strategy against the adversary. Thus, the complexity of maintaining
the minimum in this case is the same as in the deterministic case. In
this section, we show lower bounds with a non-adaptive adversary.

The input to the algorithm is specified by fixing a sequence of
Insert, Delete and FindMin instructions, and an ordering for the set
{a1, a2, . . . , an}, based on which the comparisons of the algorithm are
answered.

Distributions. We will use two distributions on inputs. For the first
distribution, we construct a random input I by first picking a random
permutation σ of [n]; we associate with σ the sequence of instructions

Insert(a1), . . . , Insert(an), Delete(aσ(1)), . . . , Delete(aσ(n)), (3)

and the ordering
aσ(1) < aσ(2) < . . . < aσ(n). (4)

For the second distribution, we construct the random input J by pick-
ing i ∈ [n] at random and a random permutation σ of [n]; the instruc-
tion sequence associated with i and σ is

Insert(a1), . . . , Insert(an), Delete(aσ(1)), . . . , Delete(aσ(i−1)), FindMin,
(5)

and the ordering is given, as before, by (4).
For an algorithm A and an input I, let CU(A, I) be the number of

comparisons made by the algorithm in response to the update instruc-
tions (Insert and Delete) in I; let CF (A, I) be the number of compar-
isons made by the algorithm while responding to the FindMin instruc-
tions.

Theorem 7 Let A be a deterministic algorithm for maintaining the
minimum. Suppose

E
I
[CU(A, I)] ≤ tn. (6)

Then
GM

J
[CF (A, J) + 1] ≥ n

e2t
.
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Before we discuss the proof of this result, we derive from it the lower
bounds on the randomized and average case complexities of maintain-
ing the minimum. Yao showed that a randomized algorithm can be
viewed as a random variable assuming values in some set of determin-
istic algorithms according to some probability distribution over the set
[11]. The randomized lower bound follows from this fact and Theo-
rem 7.

Corollary 8 (Randomized complexity) Let R be a randomized al-
gorithm for Insert-Delete-FindMin with expected amortized time per up-
date at most t = t(n). Then the expected time for FindMin is at least
n/(e22t) − 1.

Proof. We view R as a random variable taking values in a set of de-
terministic algorithms with some distribution. For every deterministic
algorithm A in this set, let

t(A) def= E
I
[CU(A, I)]/n.

Then by Theorem 7 we have GM
J

[CF (A, J)+1] ≥
(
n

e

)
·2−t(A). Hence,

GM
R

[GM
J

[CF(R, J) + 1] ≥ GM
R

[
(
n

e

)
· 2−t(R)] =

(
n

e

)
· 2

− E
R

[t(R)]
.

Since the expected amortized time per update is at most t, we have
ER[t(R)] ≤ 2t. Hence,

E
R,J

[CF (R, J)] + 1 = E
R,J

[CF (R, J) + 1] ≥ GM
R,J

[CF (R, J) + 1] ≥ n

e22t
.

Thus, there exists an instance of J with instructions of the form (5), for
which the expected number of comparisons performed by R in response
to the last FindMin instruction is at least n/(e22t) − 1.

The average case lower bound follows from the arithmetic-geometric
mean inequality and Theorem 7.

Corollary 9 (Average case complexity) Let A be a deterministic
algorithm for Insert-Delete-FindMin with amortized time per update at
most t = t(n). Then the expected time to find the minimum for inputs
with distribution J is at least n/(e22t) − 1.
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Proof. A takes amortized time at most t per update. Therefore,

E
I
[CU(A, I)] ≤ 2tn.

Then, by Theorem 7 we have

E
J

[CF (A, J)] + 1 = E
J

[CF(A, J) + 1] ≥ GM
J

[CF (A, J) + 1] ≥ n

e22t
.

6.1 Proof of Theorem 7

The Decision Tree representation. Consider the set of sequences
in support[I]. The actions of a deterministic algorithm on this set
of sequences can be represented by a decision tree with comparison
nodes and deletion nodes. (Normally a decision tree representing an
algorithm would also have insertion nodes, but since, in support[I], the
elements are always inserted in the same order, we may omit them.)
Each comparison node is labeled by a comparison of the form ai : aj,
and has two children, corresponding to the two outcomes ai > aj and
ai ≤ aj. Each deletion node has a certain number of children and
each edge, x, to a child, is labeled by some element ax, denoting that
element ax is deleted by this delete instruction.

For a sequence corresponding to some permutation σ, the algorithm
behaves as follows. The first instruction it must process is Insert(a1).
The root of the tree is labeled by the first comparison that the algo-
rithm makes in order to process this instruction. Depending on the
outcome of this comparison, the algorithm makes one of two compar-
isons, and these label the two children of the root. Thus, the processing
of the first instruction can be viewed as following a path down the tree.
Depending on the outcomes of the comparisons made to process the
first instruction, the algorithm is currently at some vertex in the tree,
and this vertex is labeled by the first comparison that the algorithm
makes in order to process the second instruction. In this way, the pro-
cessing of all the insert instructions corresponds to following a path
consisting of comparison nodes down the tree. When the last insert
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instruction has been processed, the algorithm is at a delete node cor-
responding to the first delete instruction. Depending on the sequence,
some element, aσ(1) is deleted. The algorithm follows the edge labeled
by aσ(1) and the next vertex is labeled by the first comparison that the
algorithm makes in order to process the next delete instruction. In this
manner, each sequence determines a path down the tree, terminating
at a leaf.

We make two simple observations. First, since, in different se-
quences, the elements are deleted in different orders, each sequence
reaches a distinct leaf of the tree. Hence the number of leaves is ex-
actly n!. Second, consider the ordering information available to the
algorithm when it reaches a delete node v. This information consists
of the outcomes of all the comparisons on the comparison nodes on
the path from the root to v. This information can be represented as
a poset, Pv, on the elements not deleted yet. For every sequence that
causes the algorithm to reach v, the algorithm has obtained only the
information in Pv. If a sequence corresponding to some permutation
σ takes the algorithm to the delete node v, where ai is deleted, then
ai is a minimal element in Pv, since, in σ, ai is the minimum among
the remaining elements. Hence each of the elements labeling an edge
from v to a child is a minimal element of Pv. If this Delete instruction
was replaced by a FindMin, then the comparisons done by the FindMin
would have to find the minimum among these minimal elements. A
comparison between any two poset elements can cause at most one of
these minimal elements to become non-minimal. Hence, the FindMin
instruction would cost the algorithm deg(v) − 1 comparisons.

The proof. Let T be the decision tree corresponding to the deter-
ministic algorithm A. Set m = n!. For ` ∈ leaves(T ), let D` be the set
of delete nodes on the path from the root to `, and C` be the set of
comparison nodes on the path from the root to `.

Each input specified by a permutation σ and a value i ∈ [n], in
support[J] causes the algorithm to follow a path in T upto some delete
node, v, where, instead of a Delete, the sequence issues a FindMin
instruction. As argued previously, the number of comparisons made to
process this FindMin is at least deg(v) − 1. There are exactly n delete
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nodes on any path from the root to a leaf and different inputs cause
the algorithm to arrive at a different delete nodes. Hence

GM
J

[CF(A, J) + 1] ≥
∏

`∈leaves(T )

∏
v∈D`

(deg(v))1/nm. (7)

Since T has m leaves, we have using Lemma 3 that

m ≤ GM
`∈leaves(T )

[
∏

v∈path(`)
deg(v)]

= GM
`∈leaves(T )

[
∏

v∈C`

deg(v)] · GM
`∈leaves(T )

[
∏

v∈D`

deg(v)]. (8)

Consider the first term on the right. Since every comparison node
v has arity at most two, we have ∏

v∈C` deg(v) = 2|C`|. Also, by the
assumption (6) of our theorem,

E
`∈leaves(T )

[|C`|] = E
I
[CU(A, I)] ≤ tn.

Thus

GM
`∈leaves(T )

[
∏

v∈C`

deg(v)] ≤ GM
`∈leaves(T )

[2|C`|] ≤ 2E`[|C`|] ≤ 2tn.

From this and (8), we have

GM
`∈leaves(T )

[
∏

v∈D`

deg(v)] ≥ m2−tn.

Then using (7) and the inequality n! ≥ (n/e)n, we get

GM
J

[CF (A, J) + 1] ≥
∏

`∈leaves(T )

∏
v∈D`

(deg(v))1/nm

= ( GM
`∈leaves(T )

[
∏

v∈D`

deg(v)])1/n ≥ n

e2t
.

Remark. One may also consider the problem of maintaining the min-
imum when the algorithm is allowed to use an operator that enables
it to compute the minimum of some m values in one step. The case
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m = 2 corresponds to the binary comparisons model. Since an m-
ary minimum operation can be simulated by m − 1 binary minimum
operations, the above proof yields a lower bound of

1
m − 1

[
n

e22t(m−1) − 1
]

on the cost of FindMin, if the amortized cost of Insert and Delete is at
most t. However, by modifying our proof one can improve this lower
bound to

1
m − 1

[
n

em2t
− 1

]
.
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