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Objects as mobile processes

Hans Hüttel and Josva Kleist∗

October 29, 1996

Abstract

The object calculus of Abadi and Cardelli [AC96, AC94b, AC94a]
is intended as model of central aspects of object-oriented programming
languages. In this paper we encode the object calculus in the asyn-
chronous π-calculus without matching and investigate the properties
of our encoding.

1 Introduction

In [AC96, AC94b, AC94a] Abadi and Cardelli investigate several versions of
an object oriented calculus (the ς-calculus) with respect to its type system.
The primary motivation behind the ς-calculus is to find a simple foundation
for object oriented languages, just as the λ-calculus forms a foundation for
functional programming languages.

In the ς-calculus the central concept is that of an object. Objects are
built from object formation ([li = ς(xi)bi]) where we create an object with
methods li = ς(xi)bi, method activation (a.l) where we activate the method
named l in object a, and method override (a.l ⇐ ς(x)b) where the method
named l in object a is exchanged with the new method l = ς(x)b. Despite its
apparent simplicity, the ς-calculus has previously shown its ability to express
several object oriented features within the calculus and it is also possible to
encode the λ-calculus[Abr89].

In this paper we shall describe an encoding of the simplest version of
the ς-calculus into an asynchronous version of the π-calculus[PW92] and
investigate the properties of this encoding. In particular, the encoding is
sound under the operational semantics of the ς-calculus. We also show that
∗Address: Dep. of Computer Science, Aalborg University, Frederik Bajersvej 7, 9220
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our encoding is not fully abstract with respect to weak bisimulation in the
π-calculus and consider what constraints must be imposed on the π-calculus
to get full abstractness. The work presented in this paper is thus related
to the results achived by Sangiorgi in [San96] but arose independently. A
main difference is in the choice of calculus; Sangiorgi employs the matching
construct of the π-calculus, whereas the encoding presented in this paper
does not and restricts its attention to the asynchronous π-calculus.

An encoding of the ς-calculus into the asynchronous π-calculus is inter-
esting from several points of view. Firstly, most object oriented languages
works with pointers, whereas the ς-calculus uses explicit substitution. In the
π-calculus the basic entity is names that can be thought of as pointers; thus
an encoding of the ς-calculus into the π-calculus shows how to use pointers
to represent substitution. Secondly, the encoding presented in this paper
also hints at the possibility of using a model checker for the π-calculus to
verify properties of ς-calculus expressions. Thirdly, there is the implemen-
tation issue. When implementing programming languages on distributed
systems, asynchronous communication is usually considered more easy to
implement, so the encoding into an asynchronous calculus will also give an
idea of how to implement the ς-calculus or a language based on the ς-calculus
in a distributed setting. Finally, the π-calculus has also been put forward
as a possible theoretical model of object-oriented programming languages,
so an encoding will provide some basic insight into how one expresses object
oriented features in the π-calculus.

The structure of the rest of the paper is as follows: Section 2 intro-
duces the ς-calculus and explains its semantics. Section 3 gives the syntax
and semantics of the asynchronous π-calculus that we shall use as our tar-
get calculus. In Section 4 we present our encoding of the ς-calculus into
the asynchronous π-calculus and discuss alternative encodings. Section 5
and Section 6 regards operational correspondence of the encoding and rela-
tion between equivalences of ς-calculus terms and their encodings. Section 7
summarizes our results and relate them to other existing work.

2 The ς-calculus

The version of the ς-calculus we use is essentially the simple untyped object
calculus of [AC96]. Objects in the ς-calculus are given by:

a ::= [li = ς(xi)bi] objects
| x self variables
| a.l method activation
| a.l ⇐ ς(x)b method override
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Here xi ∈ SVar range over self variables and li ∈ MNames range over
method names. We let m(a) denote the set of method names and fv(a) the
set of free self variables in a.

We give the semantics for objects as a reduction semantics.
Let a = [li = ς(xi)bi] with li ∈ L, then:

a.lk ; bk{a/xk} lk ∈ L

a.l ⇐ ς(x)b ; [li = ς(xi)bi, l = ς(x)b] li ∈ L \ {l}

The activation of the method lk results in the method body being activated
with the self variable being bound to the original object. Method override
results in an object with the overridden method exchanged with the new
method. In the original version of the ς-calculus it is not allowed to add
methods to an object, a restriction introduced to keep the theory simple.
Since the ability to add methods does not interfere with our encoding, we
shall in the present paper allow addition of methods.

A context C[·] is an ‘incomplete’ ς-calculus term, and we write C[a] to
denote that it has been completed using the term a. The syntax of contexts
is given by:

C[·] ::= C[·].l | C[·].l ⇐ ς(x)b | [·]
Our final transition rule specifies the reduction strategy, which, given our

syntax of contexts, implies leftmost reductions:

a ; a′

C[a] ; C[a′]

Leftmost reduction implies that we in a term a.l or a.l ⇐ ς(x)b always reduce
a to an object before activating or overriding a method. That is, objects are
the values of this version of the ς-calculus.

To give an intuition of how the ς-calculus works, we shall present a few
simple examples (taken from [AC96])

let a = [l = ς(x)x.l] then a.l ; x.l{a/x} = a.l ; · · ·
let a′ = [l = ς(x)x] then a′.l ; x{a′/x} = a′

let a′′ = [l = ς(y)y.l ⇐ ς(x)x] then a′′.l ; a′′.l ⇐ ς(x)x ; a′′

The object a shows how we can get infinite behaviour through the use of self
variables. The object a′′ shows how an object can modify itself by performing
a method override on a self variable.
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3 The asynchronous π-calculus

The π-calculus [PW92] has previously shown its ability to encode both the
λ-calculus [Mil92] and certain object oriented languages [Wal95, San96].
In [Wal95] Walker encoded a variant of the programming language POOL
[Ame89] into the π-calculus and in [San96] Sangiorgi investigates another en-
coding of the ς-calculus into the π-calculus. Sangiorgi shows how to encode
the ς-calculus in a type-correct way into an extended version of the π-cal-
culus with a special case construct, which basically amounts to an extended
matching operator.

As the target calculus for our translation we instead go for as simple a
version of the π-calculus as possible. The version that we shall use is the
asynchronous π-calculus [CS96, Bou92, HT91, HK95].

The syntax of asynchronous π-calculus is in the present paper given by:

P ::= āb̃ | P |P | (νã)P | G | !G G ::= 0 | a(b̃).P | τ.P | G + G

We let a, b, . . . ∈ Names range over an infinite c ountable set of names, b̃
denote tuples of names, a tuple of the names a, b and c will be written as
〈a, b, c〉. P ∈ Proc range over processes, G ∈ GProc range over guarded
processes and Q ∈ Guard over guards. The use of guards ensures that we
only replicate and sum guarded expressions.

We let bn(P ), fn(P ) and n(P ), resp., denote the sest of bound names, free
names and names of the agent P .

The difference between the synchronous and asynchronous π-calculus lies
in the output construct. In the asynchronous π-calculus output is non-
blocking, this is seen in the syntax as the absence of output prefixing (āb.P ).
Instead, output is modelled as the parallel composition of an output atom
and the process (āb | P ). The use of asynchronous communication has sev-
eral advantages. Most importantly, several of the versions of bisimulation
equivalence, that are distinct in the synchronous setting, coincide in an asyn-
chronous setting. As a consequence, the algebraic theory becomes simpler
[HK95, CS96].

For simplicity we shall only present the semantics of the monadic π-cal-
culus, but it is easily extended to handle the polyadic case. The semantics
is given by a labelled transition system with labels:

α ::= x̄y | x̄(y) | xy

x̄y denotes the output of the free name y on the name x. Transmission of
bound names uses bound output x̄(y), indicating that we transmit the bound
name y over the channel x. The last label xy denotes the input of the name
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y over the name x. Table 1 shows the inference rules for the asynchronous
π-calculus, with the symmetric versions of [sync], [syncex], [comp] and [sum]
omitted. We shall identify alpha-convertible terms, i.e. up to bound names.

[τ ]
·

τ.P
τ- P

[ν]
P

α- P ′ a 6∈ n(α)
(νa)P α- (νa)P ′

[out]
·

āb
āb- 0

[outex]
P

āb- P ′ a 6= b

(νb)P
ā(b)- P ′

[in]
·

a(b).P ac- P{c/b}
[comp]

P
α- P ′ bn(α) ∩ fn(Q) = ∅

P |Q α- P ′|Q

[sum]
G

α- P

G + G′
α- P

[sync]
P

āb- P ′ Q
ab- Q′

P |Q τ- P ′|Q′

[rep]
G

α- P

!G α- P |!G
[syncex]

P
ā(b)- P ′ Q

ab- Q′ b 6∈ fn(Q)
P |Q τ- (νb)(P ′|Q′)

Table 1: The inference rules for the asynchronous π-calculus.

Just as in the synchronous π-calculus several definitions of bisimulation
exist (see [CS96] for an overview). In the present paper we shall adopt the
following definition, due to Amadio, Castellani and Sangiorgi [CS96]:

Definition 1 (Asynchronous bisimulation) A symmetric relation R is
an asynchronous bisimulation if for all P R Q, whenever:

• P α- P ′ and α is not an input, then Q α- Q′ and P ′ R Q′.

• P ab- P ′ then either Q ab- Q′ and P ′ R Q′ or Q τ- Q′ and
P ′ R (Q′|āb).

We write P ∼ Q if P R Q for some asynchronous bisimulaton R.

The definition of asynchronous bisimulation is as the standard defintion for
bisimulation except for the last part of the input case. This part expresses
that if a process absorbs what it has just emitted, this can be “absorbed” in
an internal action. A example of this (from [CS96]) is the following equational
law:

a(b).(āb | P ) + τ.P ∼ τ.P b 6∈ fn(P )
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Weak bisimulation (≈) is defined the usual way, by exchanging α- in
the above definition with the corresponding weak transition α=⇒.

Our primary motivation for choosing the asynchronous π-calculus instead
of the synchronous version is minimalism; we want to use as simple a version
of the π-calculus as possible. But the choice gives us some important ad-
vantages. Most importantly, the notion of bisimilarity is unique and yields
a congruence, a result that does not hold in the synchronous case or if we
add matching. Also, the equational theory is simpler – in the synchronous
case matching is needed to give an equational theory, whereas this is not
necessary in the asynchronous π-calculus.

We use the notation P
α-

d Q to indicate that P α- Q is the unique
transition possible from P . To enhance readability we also omit the restric-
tions of names that no longer appear in a process, for instance, (νo)(x̄y) will
be written as x̄y (formally, the two expressions are bisimlar).

4 Coding up the ς-calculus

The intuition behind our encoding is that the encoding of an object can
be used via its value channel. More precisely, as soon as an object reduces
to a value, an object reference is emitted on the value channel. An object
reference is then used to activate methods by sending a value name, an object
reference, and a method name to the object; the value name tells where we
expect the result to be returned, the method name is the name of the method
that we want to activate, the object reference that we pass is used if the called
method wants to activate other methods. This is necessary in the case where
a method has been overridden.

The polyadic π-calculus allows a straightforward typing discipline, called
sorting, which ensures that suitable names are always communicated. Our
encoding obeys the sorting:

Method names l : Method → (ObjRef)
Values v : Value → (ObjRef)
Object references o : ObjRef → (Method, ObjRef, Value)
Self variables x : Var

where v : Value → (ObjRef) expresses that v ranges over the set of value
channels and we only transmit object references over value channels.

We assume that the sets of method names and self variables in the above
sorting coincide with the set of method names and self variables in the ς-cal-
culus.
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4.1 The encoding

The encoding [[·]]v presented below is parametrized with a value name v
denoting the reference of the encoded object. The notation m(−).P denotes
m(x).P for some name x 6∈ fn(P ).

[[a.l]]v = (νv′)([[a]]v′ | v′(o).ō〈l, o, v〉)
[[[li = ς(xi)bi]]]v = (νo)(v̄o | !o(l′, o′, v′).(l̄′o′ |

∑
li(xi)[[bi]]v′))

[[x]]v = v̄x

[[a.l ⇐ ς(x)b]]v = (νv′)([[a]]v′ | v′(o).(νo′)(v̄o′ | !o′(l′′, o′′, v′′).
(l̄′′o′′ | l(x).[[b]]v′′ +

∑
m∈m(a)\{l}

m(−).ō〈l′′, o′′, v′′〉)))

Observe that the above encoding prohibits free self variables, since the
sorting prohibits the transmission of self variables over value names.

In the following we shall usually omit the index sets when they are obvious
from the context.

4.2 Notational conventions

To enhance the readability of encoded terms, we shall in the following use
the abbreviation:

o := [li = ς(xi)bi] = !o(l′, o′, v′).(l̄′o′ |
∑

li(xi).[[bi]]v′)

The intuition behind this ‘relay’ construct o := [li = ς(xi)bi] is that the object
[li = ς(xi)bi] resides at o. In other words, the object can have its methods
activated by transmitting a method name, an object reference and a value
name over the name o.

With this construct we can write the encoding [[[li = ς(xi)bi]]]v as (νo)(v̄o |
o := [li = ς(xi)bi]).

As can be seen from the encoding of method activation and override,
we select the actual method to be invoked by means of communication over
method names. This implies that the encoding might be messed up by π-
calculus contexts that use method names incorrectly and cause erroneous
transitions. For instance:

l(−) | [[[l = ς(x)x].l]]v
= l(−) | (νv′)((νo)(v̄′o | o := [l = ς(x)x]) | v′o′.ō′〈l, o′, v〉)
τ- l(−) | (νo)(o := [l = ς(x)x] | ō〈l, o′, v〉)

7



τ- l(−) | newo(o := [l = ς(x)x] | l̄o | l(x).v̄x)
τ- o := [l = ς(x)x] | l(x).v̄x

Observe how the input l(−) consumes the message that was intended for
method selection. To avoid this, we implicitly assume that the method names
are restricted at the outermost level in the encoding. Furthermore observe
that the encoding does not mess up things, since we always wait for the
output on a restricted name in the encoding (except when choosing methods).

We have already introduced the notation α-
d, we shall extend this no-

tation with transitions on the form P τ-
dl Q indicating that the internal

move from P to Q is the only possible transition except for actions on method
names. And when we remember that the method names are restricted away
at the outermost level and that our encoding does not create erroneous tran-
sitions, this implies that the transition is unique.

We use the notation a ⇑ to indicate that a has an infinite reduction
sequence, and we write a ⇓ if a reduces to an object. In the π-calculus we
use the same notation P ⇑ to indicate that P have an infinite sequence of
τ -moves, and P ⇓ to indicate that P after a sequence of τ -moves will do an
observable action.

4.3 Examples

To give the intuition of how the encoding works we shall consider a few
examples.

Our first example is the encoding of the following simple object:

a = [l = ς(x)x.l]

It only contains one method l, that when activated will activate itself indef-
initely, resulting in the infinite reduction sequence a.l ; a.l ; · · ·. In our
encoding this corresponds to the following behaviour:

[[a.l]]v

= (νv′)((νo)(v̄′o | o := [l = ς(x)x.l]) | v′(o′).ō′〈l, o′, v〉)
τ- (νo)(o := [l = ς(x)x.l] | ō〈l, o, v〉)
τ- (νo)(o := [l = ς(x)x.l] | l̄o | l(x).(νv′)(v̄′x | v′(o′).ō′〈l, o′, v〉))
τ- (νo)(o := [l = ς(x)x.l] | (νv′)(v̄′o | v′(o′).ō′〈l, o′, v〉))
τ- (νo)(o := [l = ς(x)x.l] | ō〈l, o, v〉)
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Figure 1: Method override and lookup

Our next example is somewhat more complicated and illustrates the en-
coding of method override. Consider the object

a = [l1 = ς(x)x, l2 = ς(x)b]

If we override a method then we get a new object with the overridden method
exchanged with the overriding one. In our encoding this is simulated by
generating a new “object” that handles activations of the overriding method
itself and delegates all other method activations to the original object. This
is illustrated in Figure 4.3.

The following shows how method override and lookup are handled by our
encoding:
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[[(a.l2 ⇐ ς(x)x.l1).l2]]v

= (νv′)((νv′′)((νo)(v̄′′o | o := a) | v′′(o∗).(νo′)(v̄′o′ |!o′(l′′, o′′, v′′).
(l̄′′o′′ | l2(x).[[x.l1]]v′′ + l1(−).ō∗〈l′′, o′′, v′′〉) | v′(o).ō〈l2, o, v〉)

τ- 2
d (νo′)((νo)(o := [l1 = ς(x)x, l2 = ς(x)b] |!o′(l′′, o′′, v′′).

(l̄′′o′′ | l2(x).[[x.l1]]v′′ + l1(−).ō〈l′′, o′′, v′′〉)) | ō′〈l2, o′, v〉)
= (νo′)((νo)(o := [l1 = ς(x)x, l2 = ς(x)b] |!o′(l′′, o′′, v′′).(l̄′′o′′ |

l2(x).(νv′)(v̄′x | v′(o).ō〈l1, o, v′′〉) + l1(−).ō〈l′′, o′′, v′′〉)) | ō′〈l2, o′, v〉)
τ- 3

dl (νo′)((νo)(o := [l1 = ς(x)x, l2 = ς(x)b] |!o′(l′′, o′′, v′′).(l̄′′o′′ |
l2(x).(νv′)(v̄′x | v′(o).ō〈l1, o, v′′〉) + l1(−).ō〈l1, x, v′′〉)) | ō′〈l1, o′, v〉)

τ- 2
dl (νo′, o)(!o(l′, o′, v′).(l̄′o′ | l1(x).v̄′x + l2(x).[[b]]v′) |!o′(l′′, o′′, v′′).

(l̄′′o′′ | l2(x).[[x.l1]]v′′ + l1(−).ō〈l′′, o′′, v′′〉) | ō〈l1, o′, v〉)
τ- 2

dl (νo′)((νo)(o := [l1 = ς(x)x, l2 = ς(x)b] |!o′(l′′, o′′, v′′).
(l̄′′o′′ | l2(x).[[x.l1]]v′′ + l1(−).ō〈l′′, o′′, v′′〉)) | v̄o′)

Observe how the object reference of the original receiver is passed on when
the receiver does not have the requested method itself. This ensures that
when the correct method is found, we know where to start looking for other
methods.

4.4 Alternative encodings

In [San96] (and a previous version of this paper) a somewhat different en-
coding of the untyped ς-calculus is presented. The difference is in the use of
matching instead of choice and communication:

[[a.l]]v = (νv′)([[a]]v′ | v′(o).ō〈l, o, v〉)
[[[li = ς(xi)bi]]] = (νo)(v̄(o) |!o(l′, o′, v′).(

∏
[l′ = li](νxi)(x̄io

′ | [[bi]]v′)))
[[x]]v = x(o).v̄o

[[a.l ⇐ ς(x)b]] = (νv′)([[a]]v′ | v′(o).(νo′)(v̄o′ |!o′(l′′, o′′, v′′).
([l′′ = l](νx)(x̄o′′ | [[b]]v′′) | [l′′ 6= l]ō〈l′′, o′′, v′′〉)))

Other possibilities exist: In [San96] the typed ς-calculus is translated into
an extended version of the ς-calculus with a special case construct instead
of matching. This encoding does not use the ‘relay’ construct when dealing
with method override. Instead the original object is setd a special message
with the name of the overriding method, which it then inserts instead of
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the original method. This implies that each method will need two method
names, one for method activation and one for method override.

5 Operational Correspondence

In this section we present number of results about our encoding, which to-
gether show the soundness of our encoding w.r.t. the operational semantics
of the two calculi.

Our first lemma is a substitution lemma. It states that the ‘relay’ con-
struct in parallel with an encoded object corresponds to binding an object
reference to a self variable within the object.

Lemma 1 Let a = [li = ς(xi)bi], then

(νo)(o := a | [[b]]v{o/x}) ∼ [[b{a/x}]]v

Proof. Induction in the structure of b.

b = y : We have two cases, either y = x and we have:

(νo)(o := a | [[x]]v{o/x}) = (νo)(o := a | v̄o)
= [[a]]v
= [[x{a/x}]]v

or y 6= x and:

(νo)(o := a | [[y]]v{o/x}) = (νo)(o := a | v̄y)
∼ [[y]]v
= [[y{a/x}]]v

b = b′.l : Assume w.l.o.g. that v′ 6∈ fn(o := a), then

(νo)(o := a | [[b′.l]]v{o/x})
= (νo)(o := a | (νv′)([[b′]]v′{o/x} | v′(o).ō〈l, o, v〉))
IH∼ (νv′)([[b′{a/x}]]v′ | v′(o).ō〈l, o, v〉)
= [[b′{a/x}.l]]v
= [[b.l{a/x}]]v

11



b = [li = ς(xi)bi] : Assume w.l.o.g. that xi 6= x, then

(νo)(o := a | [[[li = ς(xi)bi]]]v{o/x})
= (νo)(o := a | (νo′)(v̄o′ |!o′(l′′, o′′, v′′)(l̄′′o′′ |

∑
li(xi).[[bi]]v′′)))

∼ (νo′)(v̄o′) |!o′(l′′, o′′, v′′).(l̄′′o′′ | (1)∑
li(xi).(νo)(o := a | [[bi]]v′′)))

IH∼ (νo′)(v̄o′ |!o′(l′′, o′′, v′′).(l̄′′o′′ |
∑

li(xi).[[bi{a/x}]]v′′))
= [[[li = ς(xi)bi{a/x}]]]v
= [[[li = ς(xi)bi]{a/x}]]v

In (1) we distribute the replication over the sum. It can be shown that
this is valid if every free occurrence of o in each component is a negative
subject, that is o is only used for output.

b = b′.l ⇐ ς(y)c : Assume w.l.o.g. that y 6= x, then

(νo)(o := a | [[b′.l ⇐ ς(y)c]]v{o/x})
= (νo)(o := a | (νv′)([[b′]]v′ | v′(o∗).(νo′)(v̄o′ | !o′(l′′, o′′, v′′).

(l̄′′o′′ | l(y).[[c]]v′′ +
∑

m(−).ō∗〈l′′, o′′, v′′〉))){o/x})
∼ (νv′)((νo)(o := a | [[b′]]v′{o/x}) | v′(o∗).(νo′)(v̄o′ | (2)

!o′(l′′, o′′, v′′).(l̄′′o′′ | l(y).(νo)(o := a | [[c]]v′′{o/x}) +∑
m(−).ō〈l′′, o′′, v′′〉)))

IH∼ (νv′)([[b′{a/x}]]v′ | v′(o∗).(νo′)(v̄o′ | !o′(l′′, o′′, v′′).
(l̄′′o′′ | l(y).[[c{a/x}]]v′′ +

∑
m(−).ō∗〈l′′, o′′, v′′〉)))

= [[b{a/x}.l ⇐ ς(y)c{a/x}]]v
= [[(b.l ⇐ ς(y)c){a/x}]]v

The distribution of the replication in (2) sound for the same reasons as
in (1).

2

As an immediate corollary we get that the encoding is sound w.r.t. the
rule for method calls:

Corollary 1 Let a = [li = ς(xi)bi] for li ∈ L then

[[a.lj]]v ≈ [[bj{a/xj}]]v for all lj ∈ L

12



Proof. We have:

[[a.lj]]v = (νv′)((νo)(v̄′o | o := a) | v′(o′).ō′〈lj, o′, v〉)
τ-

d (νo)(o := a | ō〈lj , o, v〉)
τ-

dl (νo)(o := a | l̄jo |
∑

li(xi).[[bi]]v)
τ-

d (νo)(o := a | [[bj]]{o/xj})
∼ [[bj{a/xj}]]v

2

Using algebraic techniques from the asynchronous π-calculus, we can also
show that method override is sound:

Lemma 2 Let a = [li = ς(xi)bi] for li ∈ L, then

[[a.l ⇐ ς(x)b]]v ≈ [[[li = ς(xi)bi, l = ς(x)b]]]v

Proof. We have:

[[a.l ⇐ ς(x)b]]v
= (νv′)([[a]]v′ | v′(o′).(νo)(v̄o | !o(l′′, o′′, v′′).

(l̄′′o′′ | l(x).[[b]]v′′ +
∑

mi(−).ō′〈l′′, o′′, v′′〉))) mi ∈ m(a) \ {l}
τ-

d (νo∗)(!o∗(l′, o′, v′).(l̄′o′ |
∑

li(xi).[[bi]]v′) | (νo)(v̄o |
!o(l′′, o′′, v′′).(l̄′′o′′ | l(x).[[b]]v′′ +

∑
mi(−).ō∗〈l′′, o′′, v′′〉)))

Now we push the replication that represents the a object under the sum∑
m(−) and get:

(νo)(v̄o |!o(l′′, o′′, v′′).(l̄′′o′′ | l(x).[[b]]v′′ +
∑

mi(−).

(νo∗)(ō∗〈l′′, o′′, v′′〉 |!o∗(l′, o′, v′).(l̄′o′ |
∑

li(xi).[[bi]]v′))))

The above is valid due to the fact than whenever o∗ is a private name and
the overriding method is activated, this cannot happen with o∗ as the self
reference, that is, if the encoding of a is activated it will be through o.

Since o∗ does not occur free in any of the [[bi]]v′ this implies that we can
remove the replication of o∗ and replace the internal communication over o∗

with an internal move:

(νo)(v̄o |!o(l′′, o′′, v′′).(l̄′′o′′ | l(x).[[b]]v′′ +∑
mi(−).τ.(l̄′′o′′ |

∑
li(xi).[[bi]]v′′)))

13



Finally we can remove the innermost sum (
∑

li(xi).[[bi]]v′′) and instead
bind the self variables in the outermost sum:

∼ (νo)(v̄o |!o(l′′, o′′, v′′).(l̄′′o′′ | l(x).[[b]]v′′ +
∑

mi(xi).τ.τ.[[bi]]v′′)))

≈ (νo)(v̄o |!o(l′′, o′′, v′′).(l̄′′o′′ | l(x).[[b]]v′′ +
∑

mi(xi).[[bi]]v′′)))
= [[[li = ς(xi)bi, l = ς(x)b]]]v

2

With these lemmas we are now able to prove that reductions in the ς-
calculuscorrespond to transition sequences in the π-calculus. More precisely,
when an object a can do a reduction and become a′, then our encoding can
match that by doing a series of internal actions, resulting in a π-calculus
process being weakly bisimilar to a′.

Theorem 1 If a ; b then [[a]]v
τ- ∗ P ≈ [[b]]v.

Proof. Induction in the structure of a.

a = x: We have a 6;.

a = [li = ς(xi)bi]: Again a 6;.

a = a′.l: If a ; b it can be for two reasons:

i. a′ ; a′′ and [[a]]v = (νv′)([[a′]]v′ | v′(o).ō〈l, o, v〉). By induction
there exist a P such that [[a′]]v′

τ- ∗ P ≈ [[a′′]]v′. And then:

(νv′)(P | v′(o).ō〈l, o, v〉) ≈ (νv′)([[a′′]]v′ | v′(o).ō〈l, o, v〉) = [[a′′.l]]v

ii. a′ = [li = ς(xi)bi] with l = lj, b = bj{a′/xj}. We have

[[a]]v = (νv′)((νo)(v̄′o | o := [li = ς(xi)xi]) | v′(o′).ō′〈l, o′, v〉)
τ-

d (νo)(o := [li = ς(xi)xi] | ō〈l, o, v〉)
τ- 2

dl (νo)(o := [li = ς(xi)xi] | [[bj]]v{o/xj})︸ ︷︷ ︸
P

According to Lemma 1 we have P ∼ [[bj{[li = ς(xi)bi]/xj}]]v.

a = a′.l ⇐ ς(x)c: Again we have two cases.

i. a′ ; a′′ is handled as in the previous case.

14



ii. a′ = [li = ς(xi)bi] and b = [li = ς(xi)bi, l = ς(x)c]. According to
Lemma 2 we have:

[[[li = ς(xi)bi].l ⇐ ς(x)c]]v ≈ [[[li = ς(xi)bi, l = ς(x)c]]]v
2

Our encoding signals the reduction of ς-calculus term to an object as the
output of an object identifier, this we express as:

Theorem 2 If a ;∗ [li = ς(xi)bi] = b then [[a]]v
τ- ∗

dl

v̄(o)- ≈ o := b.

Proof. We use induction in the length of a ;n a′.

Basis n = 0: We must have a = [li = ς(xi)bi] and for the encoding we have

[[[li = ς(xi)bi]]]v = (νo)(v̄o | o := [li = ς(xi)bi])
v̄(o)- o := [li = ς(xi)bi]

Induction step: Assume that the theorem holds for sequences of reduction
steps of length n. We now consider a reduction sequence of length n+1,
that is we have

a ; a′ ;n b = [li = ς(xi)bi]

According to the induction hypothesis there exists a P such that:

[[a′]]v
τ- ∗

dl

v̄(o)- P ≈ o := b

According to Theorem 1 there exist a Q such that [[a]]v
τ- ∗ Q ≈ [[a′]]v.

We now have the following sequence:

[[a]]v
τ- ∗

dl Q ≈ [[a′]]v
τ- ∗

dl

v̄(o)- P ≈ o := b

Since Q ≈ [[a′]]v the must exist a Q′ such that

[[a]]v
τ- ∗ Q τ- ∗ v̄(o)- Q′ ≈ P ≈ o := b

2

The relationship between transitions in the π-calculus encoding and re-
ductions in the ς-calculus is somewhat more difficult to express, since the
π-calculus encoding may need to do some internal computation before being
ready to simulate an object. We relate reductions through the output of an
object identifier. If we after a series of internal actions see an external action,
then this is because the original ς-calculus term can reduce to an object.
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Theorem 3 If fv(a) = ∅ and [[a]]v
τ- ∗ α- P then α = v̄(o) and

a ;∗ [li = ς(xi)bi] = b and P ≈ o := b

Proof. We shall use induction in the number of τ -moves prior to an ob-
servable action.

Basis n = 0: The only process immediately capable of performing an ob-
servable action is:

[[[lx = ς(xx)ix]]]v
v̄(o)- o := [lx = ς(xx)ix]

And obviously the theorem holds. The other “possibility” [[x]]v is pro-
hibited.

Induction step: Assume that the theorem holds for τ -sequences of length
n. We now consider at τ -sequence of length n + 1 before an external
action.

For [[a]]v to have any τ -moves a must be either:

a = a′.l: Here we have

[[a′.l]]v = (νv′)([[a′]]v′ | v′(o).ō〈l, o, v〉) τ- n+1
P

Now [[a′]]v′ must have less than n+1 τ -moves before an observable
action (remember, we disregard observable actions from method
activations), since the only action possible action is with v′ as
subject, resulting in one internal communication in [[a]]v.
Therefore, by induction

[[a′]]v′
τ- m

dl

v̄′(o′)- Q ≈ o′ := c (m ≤ n)

and combining things we get

(νv′)([[a′]]v′ | v′(o).ō〈l, o, v〉) τ- m+1
dl (νo′)(o′ := c | ō′〈l, o′, v〉)

Applying the induction hypothesis once more

(νo′)(o′ := c | ō′〈l, o′, v〉) τ- k v̄(o)- ≈ o := b (k = n − m)

All in all

(νv′)([[a′]]v′ | v′(o).ō〈l, o, v〉) τ- m τ- τ- k v̄(o)- ≈ o := b
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a = a′.l ⇐ ς(x)c: In the encoding we have:

[[a′.l ⇐ ς(x)c]]v = (νv′)([[a′]]v′ | v′(o).(νo′)(v̄o′ |!o′(l′′, o′′, v′′).
(l̄′′o′′ | l(x).[[c]]v′′ + m(−).ō〈l′′, o′′, v′′〉)))

Using the same line of reasoning as in the previous case we get

(νv′)([[a′]]v′ | v′(o).(νo′)(v̄(o′) | !o′(l′′, o′′, v′′).
(l̄′′o′′ | l(x).[[c]]v′′ + m(−).ō〈l′′, o′′, v′′〉)))
τ- n+1 v̄(o)-

(νo′)(o′ := c′ |!o′(l′′, o′′, v′′).(l̄′′o′′ | l(x).[[c]]v′′ + (3)
m(−).ō〈l′′, o′′, v′′〉))

With c′ ≈ [li = ς(xi)bi]. Now according to Lemma 2 (4) is weakly
bisimilar to o′ := [li = ς(xi)bi, l = ς(x)c].

2

6 Equivalences for the ς-calculus

As an operational equivalence for the ς-calculus we shall use context equiv-
alence as defined in [GR95], except that we do not take the type of contexts
into account.

Definition 2 (Context equivalence) A relation R is a context ς-equivalence
if it is symmetric and a R b implies:

• If a ⇓ then b ⇓ and for all contexts C[·] we C[a] R C[b].

Two objects are context ς-equivalent (written a ' b) if a R b for some context
ς-equivalence.

In [GR95] Gordon and Rees show that context equivalence correspond to
bisimulation in a labelled transition system for ς-calculus terms.

The omission of type information has important implications. When we
restrict our attention to well-typed ς-calculus terms, we prohibit terms such
as [ ].l, that is, objects where we try to activate nonexisting methods. It
is quite easy to see that the only terms bisimilar are objects which also
terminate with the attempt to activate a nonexisting method.
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The use of restriction of method names at the outermost level has the
implication that the expected result, namely that weak bisimulation between
encoded terms implies context equivalence, does not hold. The problem is
that once we have restricted the method names away, we cannot activate any
methods and see how the encoding of the objects behaves. To illustrate the
problem, consider the following two objects, that are definitely not context
equivalent:

a = [l = ς(x)x] b = [l = ς(x)x.l]

With the restriction of method names at the outermost level we have:

[[a]]v
= (νl)((νo)(v̄o | !o(o′, l′, v′).(l̄′o′ | l(x).v̄′x))

v̄(o)- (νl)(!o(l′, o′, v′).(l̄′o′ | l(x).v̄′x))
∼ !o(l′, o′, v′).(l̄′o′ | (νl)(l(x).v̄′x)))
∼ !o(l′, o′, v′).l̄′o′

This is also the case for [[b]]v so we have [[a]]v ≈ [[b]]v but a.l ⇓ and b.l ⇑.
On the other hand, if we drop the restriction of method names, then it

is easily shown that weak bisimulation between encodings of terms implies
context equivalence of the original terms.

Theorem 4 If [[a]]v ≈ [[b]]v then a ' b

Proof. Assume that [[a]]v ≈ [[b]]v, then because ≈ is a congruence we have
Cπ[[[a]]v] ≈ Cπ[[[b]]v] for all π-calculus contexts, and in particular for contexts
that are encodings of some ς-calculus context. If Cπ[·] is the encoding of the ς-
calculus context C[·] then we have Cπ[[[a]]v] = [[C[a]]]v′ and Cπ[[[b]]v] = [[C[b]]]v′
for some v′.

Now we know from Theorem 3 that if [[C[a]]]v′ performs an observable
action on v′, then it is because C[a] terminates. Furthermore, if [[C[a]]]v′ ≈
[[C[b]]]v′ then [[C[b]]]v′ then must also have an observable action on v′, what
implies that C[b] must also terminate, and vice versa.

That is, if we have [[a]]v ≈ [[b]]v then we have a ' b. 2

The reverse implication of Theorem 4 does not hold; for instance

a = [l = ς(x)x] b = [l = ς(x)a]

18



If we do not allow addition of methods in method override, then we have
a ' b, but their encodings are easily distinguished. For the first we have the
following transition sequence:

[[a]]v
v̄(o)- o := a

o(l,o,v)- τ- ∗
dl

v̄(o)- o := a

And for the encoding of the second:

[[b]]v
v̄(o)- o := b

o(l,o,v)- τ- ∗
dl

v̄(o′)- o := b | o′ := a

If we allow addition of methods, then a and b are not context bisimilar, since
b after the activation of l will “lose” the added method.

It is not enough to allow the addition of methods, to see why consider:

a = [l = ς(x)x] b = [l = ς(x)x.l ⇐ ς(x)x]

These two object are congruent, even if we allow addition of methods, but
their encodings are not weak bisimilar since the overriding in b results in the
creation of a new object reference.

If fact, when we remove the restriction of method names we obtain a very
fine-grained equivalence between ς-calculus terms. This is essentially due to
the fact two objects are weakly bisimilar in their encoding when they activate
the same methods at the same time. For instance, consider:

a = [l = ς(x)[l1 = ς(y)x].l1] b = [l = ς(x)[l2 = ς(y)x].l2]

These two object are obviously equivalent with respect to their reductions,
but since the innermost methods have different names the encodings of a and
b are not weakly bisimilar.

To characterize ς-equivalence, we need to restrict ourselves to π-calculus
contexts which are encodings of ς-calculus contexts:

Definition 3 A symmetric relation Rv is a ςπ-bisimulation if P Rv Q im-
plies that if P τ- ∗

dl
α- P ′ then Q τ- ∗

dl
α- Q′, α = v̄(o) and

• For all l ∈ Method:

(νo)(P ′ | ō〈l, o, v〉) Rv (νo)(Q′ | ō〈l, o, v〉)

• For all l ∈ Method, x and c:

(νo, o′)(P ′ | v̄(o′).!o′(l′′, o′′, v′′).(l̄′′o′′ | l(x).[[c]]v′′ +
∑

m(x).ō〈l′′, o′′, v′′〉))
Rv

(νo, o′)(Q′ | v̄(o′).!o′(l′′, o′′, v′′).(l̄′′o′′ | l(x).[[c]]v′′ +
∑

m(x).ō〈l′′, o′′, v′′〉))
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Using the operational correspondence between ς-calculus terms and their
encoding we can prove that if two ς-calculus terms are ς-equivalent then
their encodings are contained in some ςπ-bisimulation.

Theorem 5 If a ' b, then there exist a ςπ-bisimulation Rv such that [[a]]v Rv

[[b]]v.

Proof. Let Rv= {([[c1]]v, [[c2]]v) | c1 ' c2}. Obviously we have [[a]]v Rv [[b]]v.
We now claim that Rv is a ςπ-bisimulation up to ≈.

Let [[c1]]v Rv [[c2]]v, we now consider what behaviour [[c1]]v can have.

[[c1]]v ⇑: By the operational correspondence this must be because c1 ⇑. Since
c1 ' c2, [[c2]]v must also diverge.

[[c1]]v
τ- ∗ P 6→: This implies that c1 ;∗ C[[li = ς(xi)bi].l] with li ∈ L1

and l 6∈ L1. Since c1 ' c2 we also have c2 ;∗ C[[lj = ς(xj)bj].l] with
lj ∈ L2 and l′ 6∈ L2 and again by the operational correspondence we
have [[c2]]v

τ- ∗ Q 6→.

[[c1]]v
τ- v̄(o)- P : This implies that a ;∗ [li = ς(xi)bi] with P ≈ o := [li =

ς(xi)bi]. Since c1 ' c2, c2 ; [lj = ς(xj)bj] with [li = ς(xi)bi] ' [lj =

ς(xj)bj] and therefore [[c2]]v
τ- v̄(o)- Q with Q ≈ o := [lj = ς(xj)bj].

By the definition of ' we must have [li = ς(xi)bi].l ' [lj = ς(xj)bj].l
and [li = ς(xi)bi].l ⇐ ς(c)x ' [lj = ς(xj)bj].l ⇐ ς(c)x. Now, using
Lemma 1, we have:

(νo)(P | ō(l, o, v)) ≈ [[[li = ς(xi)bi].l]]v
Rv [[[lj = ς(xj)bj].l]]v ≈ (νo)(Q | ō(l, o, v))

and Lemma 2

(νo, o′)(P | v̄(o′).!o′(l′′, o′′, v′′).(l̄′′o′′ | l(x).[[c]]v′′ +∑
m(−).ō〈l′′, o′′, v′′〉))

≈ [[[li = ς(xi)bi, l = ς(x)c]]]v
Rv [[[lj = ς(xj)bj, l = ς(x)c]]]v
≈ (νo)(Q | ō(l, o, v))

2

The reverse implication also holds; that is, if we can find a ςπ-bisimulation
for the encoding of two ς-calculus terms, then they are ς-equivalent.

Theorem 6 If [[a]]v Rv [[b]]v for some ςπ-bisimulation then a ' b.
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Proof. Let [[a]]v Rv [[b]]v for some ςπ-bisimulation. We now claim that a
and b have the same termination behaviour in all contexts.

Clearly, by the operational correspondence, if [[a]]v ⇑ then also a ⇑ and
the same holds for b.

Also by the operational correspondence, if [[a]]v
τ- v̄(o)- P then a ;∗

[li = ς(xi)bi] with P ≈ o := [li = ς(xi)bi] and similarly for b. Therefore a and
b must have the same termination behaviour. By definition of Rv this must
also hold for all context that a and b can be put in. 2

7 Conclusions and further work

In this paper we have described how to encode the simple untyped object cal-
culus of Abadi and Cardelli into the asynchronous π-calculus without match-
ing. We chose this calculus to see how simple a calculus we would need to
encode the ς-calculus. As this paper shows, it is possible to encode the ς-cal-
culus into our target calculus, but the price is somewhat high. The proofs
of operational correspondence rely on specific assumptions about the use
of method names in the encoding, and as Section 6 shows, weak bisimilarity
between encoded terms gives us a very fine-grained equivalence between ς-cal-
culus terms, since it requires two objects to have the same method activation
behaviour to be equivalent.

In [San96] Sangiorgi investigates well-typed encodings of the ς-calculus
into the π-calculus. His work is very similar to the work presented in this
paper ; however, Sangiorgi uses a version of the synchronous π-calculus ex-
tended with a case operator.

The authors are currently working on an encoding of the imperative ob-
ject calculus [AC95b, AC95a]. The imperative object calculus is interesting in
that it incorporates references to objects, a phenomenon common to many
object-oriented programming languages. Because of the presence of refer-
ences, the semantics of the imperative object calculus is quite similar to our
encoding.
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