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On a Question of A. Salomaa
The Equational Theory of Regular Expressions
over a Singleton Alphabet is not Finitely Based

Luca Aceto∗ Wan Fokkink† Anna Ingólfsdóttir‡

Abstract

Salomaa ((1969) Theory of Automata, page 143) asked whether the
equational theory of regular expressions over a singleton alphabet has a
finite equational base. In this paper, we provide a negative answer to this
long standing question. The proof of our main result rests upon a model-
theoretic argument. For every finite collection of equations, that are sound
in the algebra of regular expressions over a singleton alphabet, we build a
model in which some valid regular equation fails. The construction of the
model mimics the one used by Conway ((1971) Regular Algebra and Finite
Machines, page 105) in his proof of a result, originally due to Redko, to
the effect that infinitely many equations are needed to axiomatize equality
of regular expressions. Our analysis of the model, however, needs to be
more refined than the one provided by Conway ibidem.

AMS Subject Classification (1991): 08A70, 03C05, 68Q45, 68Q68,
68Q70.
CR Subject Classification (1991): D.3.1, F.1.1, F.4.1.
Keywords and Phrases: Regular expressions, equational logic, com-
plete axiomatizations.

1 Introduction

One of the classic topics in the theory of computation is the study of axiomatic
characterizations of the algebra of regular expressions. This field of research
has been active since Kleene’s original paper [8], where regular expressions
were first introduced, and has yielded a collection of very deep and beautiful
mathematical results. These we now briefly recall for the sake of historical
completeness. (The interested reader is invited to consult, e.g., [17, 6, 13, 10, 9]
∗BRICS (Basic Research in Computer Science), Centre of the Danish National Research

Foundation, Department of Computer Science, Aalborg University, Fr. Bajersvej 7E, 9220 Aal-
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for more information on the results that have been obtained within this line of
research.)

A theorem of Redko’s, whose proof was simplified and corrected by Pilling
[6, Chapter 11], gives an infinite, complete system of identities for commutative
regular expressions [15]. An infinite equational axiomatization of the theory
of regular expressions over a singleton alphabet was given by Redko in [14]
(cf. also [6, Chapter 4]). (Variations on the aforementioned results of Redko’s
that apply to regular expressions over a singleton alphabet with multiplicities
over the tropical semiring may be found in [5].) The construction of a complete
equational axiomatization for regular expressions over an arbitrary alphabet
was addressed by Conway in his seminal monograph [6]. Ibidem Conway pro-
posed three conjectures, whose solution would yield the desired complete set of
equations. It took many years, and Krob’s landmark paper [10], to settle two
of these conjectures of Conway’s, and to obtain the first complete equational
axiom system for the theory of regular expressions. An alternative equational
axiomatization for regular expressions, developed within the framework of iter-
ation theories [4], may be found in [3]. Finite implicational proof systems for
regular expressions have been developed by, e.g., Salomaa [16, 17] and Kozen
[9]. (The interested reader is invited to consult [10, Sect. 15] for a thorough
discussion of implicational proof systems for regular languages.)

The research reported in this study was inspired by a reading of [17, Chap-
ter III], where Salomaa gives a text-book presentation of results on the algebra
of regular expressions known up until 1969. On page 143 of op. cit., Salomaa
asked whether the equational theory of regular expressions over a singleton
alphabet, say {a}, has a finite equational base. In this paper, we provide a
negative answer to this long standing question. The proof of our main result
rests upon a model-theoretic argument. For every finite collection of equations,
that are sound in the algebra of regular expressions over the letter a, we build
a model in which some instance of the family of equations

C14.n(a) a∗ = (an)∗(1 + a + · · · + an−1) (n > 0)

fails. The construction of the model mimics the one used by Conway [6] in
his proof of a result to the effect that infinitely many equations are needed to
axiomatize equality of regular expressions over a countably infinite alphabet.
(The nonexistence of a finite equational axiomatization for the algebra of reg-
ular expressions was originally shown by Redko [14]. Redko’s proof-theoretic
argument shows that that the equational theory of regular expressions over an
alphabet containing at least two letters is not finitely based, cf. Thm. 6.2 in
[17].) Our analysis of the model, however, needs to be more refined than the
one provided by Conway ibidem (cf. the proof of Thm. 3.12).

The paper is organized as follows. We begin by briefly reviewing the syntax
and semantics of the language of regular expressions over a singleton alpha-
bet (Sect. 2). There we also introduce the problem addressed in the paper
(cf. Thm. 2.3), and outline our solution for it. The remainder of the paper is
devoted to the proof of our main technical result (Thm. 2.4). This is presented
in Sect. 3, and is articulated as follows. We begin by introducing a notion of

2



weight for regular expressions, and study some its properties (Sect. 3.1). Fi-
nally, for every finite set of equations sound in the algebra of regular expressions
over the letter a, we show how to build a model in which the equation C14.p(a)
fails for some prime number p (Sect. 3.2). This is sufficient to ensure that the
equality C14.p(a) cannot be proven from the finite collection of equations under
consideration.

2 The Problem

We assume familiarity with the basic notions of regular algebra, and refer the
interested reader to, e.g., [6, 13] for more information on the subject.

Let Var be a countably infinite set of variables, not containing the distin-
guished symbol a, with typical elements x, y, z. We shall use α to range over
{a} ∪ Var. The collection (REG(a)) of regular expressions over the alphabet
{a} ∪ Var is given by the following BNF grammar:

P ::= 0 | 1 | α | P + P | P · P | P ∗ .

The set of closed expressions, i.e., expressions that do not contain occurrences
of variables, is denoted by T(REG(a)). We shall use P,Q, R to range over
(REG(a)). In writing expressions over the above syntax, we shall always

assume that the operator · binds stronger than +, and occurrences of · will
often be omitted. With these conventions, the expression PQ + R stands for
(P · Q) + R. We shall use the symbol ≡ to stand for syntactic equality of
expressions. The set of variables occurring in an expression P will be written
Var(P ), and we shall use StarVar(P ) to stand for the set of variables occurring
within the scope of a star in P .

Remark: The constant 1 is, in fact, a short-hand for the regular expression 0∗.
However, its rôle in the algebra of regular expressions is so pervasive that, following
[6], we prefer to introduce it explicitly in the syntax.

A (closed) substitution is a mapping from variables to (closed) expressions in
the language (REG(a)). For every expression P and (closed) substitution σ,
the (closed) expression obtained by replacing every occurrence of a variable x
in P with the (closed) expression σ(x) will be written Pσ. We shall use the
notation [Q/x] to denote the substitution mapping the variable x to Q, and
acting like the identity on all the other variables.

Definition 2.1 An expression P ∈ (REG(a)) is ℵ-free iff it does not contain
occurrences of the symbol ℵ.

Notation 2.2 For I = {i1, . . . , in} a finite index set, we write
∑

i∈I Pi for
Pi1 + · · · + Pin . By convention,

∑
i∈∅ Pi stands for 0.

For an expression P and a non-negative integer n, we write

Pn ∆= P · P · · ·P︸ ︷︷ ︸
n-times

.

By convention, P 0 stands for 1.
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For a positive integer n, we use P<n as a short-hand for 1+P +P 2 + · · ·+
Pn−1.

Every closed expression P ∈ T(REG(a)) denotes a regular language L(P ) over
the alphabet {a}. This is defined thus:

L(0) ∆= ∅
L(1) ∆= {λ}
L(a) ∆= {a}

L(Q + R) ∆= L(Q) ∪ L(R)
L(QR) ∆= {st | s ∈ L(Q), t ∈ L(R)}
L(Q∗) ∆= {s1 · · · sn | n ≥ 0, si ∈ L(Q) (1 ≤ i ≤ n)}

where λ stands for the empty string, and st denotes the string obtained by
concatenating s and t.

The algebra Alg(T(REG(a))) of closed regular expressions modulo language
equivalence is constructed in standard fashion. That is, for P,Q ∈ (REG(a)),

Alg(T(REG(a))) |= P = Q ⇔
(for all closed substitutions σ : L(Pσ) = L(Qσ)) .

Each of these algebras has, in fact, the structure of an ordered algebra, in the
sense of [2], and, for P, Q ∈ (REG(a)),

Alg(T(REG(a))) |= P ≤ Q ⇔
(for all closed substitutions σ : L(Pσ) ⊆ L(Qσ)) .

In both cases, we say that the relevant (in)equation is valid, or sound. The
collection of equations that are valid in the algebra Alg(T(REG(a))) will be
denoted by E . We shall use V (respectively S) to stand for the equations in
E that relate closed (resp. a-free) expressions. Examples of equations in the
theory S are those in Table 1, called the classical axioms by Conway [6, page
25], and the laws

xy = yx

(x + y)∗ = x∗y∗ .

Unlike the classical axioms, the laws above only hold under the assumption
that the alphabet is a singleton.

The following identity is an easy consequence of the classical axioms:

0∗ = 1 .(1)

An example of an equation that is contained in E , but not in S, is

a∗ + x = a∗ .

Again, the soundness of the above law depends upon the assumption that the
alphabet contains only the letter a.
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C1 x + 0 = x C8 x(y + z) = xy + xz
C2 x + y = y + x C9 (x + y)z = xz + yz
C3 (x + y) + z = x + (y + z) C10 (xy)z = x(yz)
C4 x0 = 0 C11 (x + y)∗ = (x∗y)∗x∗

C5 0x = 0 C12 (xy)∗ = 1 + x(yx)∗y
C6 x1 = x C13 (x∗)∗ = x∗

C7 1x = x C14.n x∗ = (xn)∗x<n (n > 0)

Table 1: The classical axioms

Remark: As witnessed by the equation a∗ + x = a∗, the soundness of an identity
P = Q in the algebra Alg(T(REG(a))) entails neither that P and Q contain the same
variables, nor that StarVar(P ) coincides with StarVar(Q).

In [17, page 143] Salomaa asked whether the equational theories V and S are
finitely based, i.e., whether there exists a finite subset of E which proves all the
equations in those sets. As communicated to us by Salomaa [18], this problem
has been open since 1969, the year of publication of [17]. In the remainder of
this paper, we shall provide a negative answer to the aforementioned question
of Salomaa.

The main contribution of this study is summarized in the following negative
result.

Theorem 2.3 The equational theories E, V and S do not have a finite base,
i.e., no finite subset of E can prove all of the equations in any of the aforemen-
tioned theories.

In order to prove this theorem, we shall show that no finite collection of equa-
tions in E can prove all the instances of the equation schema

C14.n(a) a∗ = (an)∗a<n (n > 0) .

This is the import of the following result.

Theorem 2.4 For every finite set of equations in E, there is a prime number
p such that the equality C14.p(a) is not provable from the equations in that set.

Using Thm. 2.4, it is a simple matter to prove Thm. 2.3.
Proof of Thm. 2.3: We prove, first of all, that the equational theories V and E are
not finitely based. To this end, let EF be a finite subset of E . By Thm. 2.4, there exists
a prime number p such that the equality C14.p(a) is not provable from the equations
in EF . As C14.p(a) is contained in the set V—and, a fortiori, in E—, it follows that EF

is neither a base for V nor for E . Hence the equational theories V and E do not have a
finite base.

To see that the theory S has no finite base either, assume, towards a contradiction,
that EF is a finite base for it. In particular, the axiom system EF proves all of the
equations C14.n in Table 1. Instantiating these equations, we derive that EF proves all
of the equalities C14.n(a). However, this contradicts Thm. 2.4. 2

In light of the above discussion, all we need to do to prove Thm. 2.3 is to show
Thm. 2.4. The remainder of the paper will be devoted to a proof of this result.
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3 A proof of Thm. 2.4

The proof of Thm. 2.4 we now proceed to present is based on an adaptation of
a beautiful argument due to Conway (cf. [6, Thm. 2, page 105]). In op. cit.,
Conway offers two proofs of a theorem, originally due to Redko [14], to the effect
that equality of regular expressions cannot be axiomatized using a finite number
of equations. The argument we present below is inspired by the second of those
proofs (cf. [6, Pages 105–107]), and is model-theoretic in nature. In order to
show Thm. 2.4, for every finite set of equations that are valid in Alg(T(REG(a)))
we shall build a model that does not satisfy all of the instances of C14.n(a).
The construction of the model relies on the use of prime numbers, as do related
arguments presented in, e.g., [1, 6, 7, 11, 19, 20].

The proof of Thm. 2.4 will be delivered in two steps. We begin by studying
a notion of weight for the expressions in the language (REG(a)) that will be
useful in the proof of this result (Sect. 3.1). Finally, for every finite set of equa-
tions in E , we show how to build a model in which the equation C14.p(a) fails
for some prime number p larger than the weight of every expression mentioned
in the axiom system E (Sect. 3.2). This is sufficient to ensure that the equality
C14.p(a) cannot be proven from the equations under consideration.

3.1 Weight of a Regular Expression

The length of an expression P is inductively defined thus:

length(0) ∆= 0
length(1) ∆= 1
length(α) ∆= 1

length(P + Q) ∆= length(P ) + length(Q)
length(PQ) ∆= length(P )length(Q)
length(P ∗) ∆= 1 .

Note that the length of a regular expression that is simultaneously 0-free and
+-free is 1.

Definition 3.1 For an expression P , we use vars(P ) to denote the total number
of occurrences of variables in P , and weight(P ), the weight of the expression
P , to stand for 2vars(P)length(P ).

Example: For every positive integer n, the expression (an)∗a<n has length,

and weight, n. 2

The following properties of the length and weight of regular expressions will find
application in the technical developments to follow (cf. the proof of Thm. 3.12).

Lemma 3.2 Let N denote the number of occurrences of the variable x in the
expression Q.

1. Let [(a+a2)/x] denote the substitution mapping x to a+a2, and acting like
the identity on all the other variables. Then the length of Q[(a + a2)/x]
is at most 2N times the length of Q.
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2. If N > 0 and R is a closed +-free expression, then the weight of Q[R/x]
is strictly smaller than the weight of Q.

Proof: Statement 1 follows by a straightforward induction on the structure of Q.
Statement 2 is an immediate consequence of the fact that, as R is closed and +-free,
the length of Q is equal to that of Q[R/x], but vars(Q[R/x]) is strictly smaller than
vars(Q). 2

The crux of our proof of Thm. 2.4 is the construction, for every prime number
p, of an ordered algebra Mp over the signature of the language (REG(a)) with
the following properties:

P1 For every positive integer n, the equation C14.n(a) fails in Mp iff p divides
n.

P2 Every inequation P ≤ Q, that is sound in the algebra Alg(T(REG(a))),
where Q is an expression whose weight is smaller than p, is valid in Mp.

In fact, if we can construct the algebras Mp satisfying the above properties,
then Thm. 2.4 follows thus:

Proof of Thm. 2.4: Let EF = {Pi = Qi | i ∈ I} be a finite subset of E . Let m be
the supremum of the weights of the expressions Pi and Qi (i ∈ I). Choose p as the
least prime number greater than m. Then the equations in EF and all the instances
of C14.n(a) for n not divisible by p are valid in the algebra Mp (properties P1 and
P2). Moreover, the equation C14.p(a) fails in Mp (property P1). As Mp is a model
of the axiom system EF ∪ {C14.n(a) | n mod p 6= 0} in which C14.p(a) fails, it follows
that C14.p(a) is not provable from EF ∪ {C14.n(a) | n mod p 6= 0}. 2

In light of the previous discussion, in order to complete the proof of Thm. 2.4,
we are left to construct, for every prime number p, an ordered algebra Mp

having the properties P1 and P2 stated above.

3.2 The Algebra Mp

We shall now proceed to build, for every prime number p, an ordered algebra
Mp with the aforementioned properties. The construction we present mimics
the one used by Conway in his proof of the non-finite axiomatizability of the
theory of regular languages (cf. [6, pp. 105–107]).

Notation 3.3 In what follows, we shall write ω for the set of natural numbers
(with zero), and [n] will stand for the set {0, 1, . . . , n − 1}.

The carrier Mp of the algebra Mp is defined as follows:

• every subset of [p] is in Mp;

• the set of natural numbers ω is in Mp.

The elements of Mp will be partially ordered by set inclusion.
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Definition 3.4 Let p and q be integers. If a positive integer m divides the
difference p − q, we say that p is congruent to q modulo m and write p ≡ q
(mod m).

For every integer p, the unique q ∈ [m] such that p ≡ q (mod m) will be
written p mod m.

Let I and J be sets of integers. We define

(I + J) mod m
∆= {(i + j) mod p | i ∈ I, j ∈ J} .

In order to give the set Mp enough structure to serve as a suitable semantic do-
main for the language (REG(a)), we need to define the semantic counterparts
of the operations in its signature over it. To this end, we map the constants
0, 1 and a to the sets ∅, {0} and {1}, respectively, and stipulate that the
semantic counterparts of the other operations are given by the equations in
Table 2, where we use the meta-variables e and e′ to range over the set Mp.
Note that the operations in the algebra Mp are monotonic with respect to set
inclusion. Therefore we have given Mp the structure of an ordered algebra over
the signature of the language (REG(a)), in the sense of [2].

SUM e + e′ = e ∪ e′

COMP e · e′ =


ω if e = ω and e′ 6= ∅
ω if e 6= ∅ and e′ = ω
(e + e′) mod p otherwise

STAR e∗ =

{
{0} if e = ∅ or e = {0}
ω otherwise

Table 2: The operations of the algebra Mp

An Mp-environment is a mapping ρ from variables to the set Mp. For
an expression P and an Mp-environment ρ, we shall use Mp[[P ]]ρ to denote
the element of Mp that is associated with the expression P by the unique
homomorphic extension of ρ to (REG(a)). If P is a closed expression, then
Mp[[P ]]ρ is independent of the environment ρ. In that case, we shall simply
write Mp[[P ]] for the denotation of P in the algebra Mp. It is not hard to see
that the equations C1–13 in Table 1 are sound in the algebra Mp.

We now proceed to show that the algebra Mp meets the requirements P1
and P2 that we set out to achieve. To this end, note, first of all, that the
equation C14.n(a) fails in Mp if n is a multiple of p. In fact, in that case,

Mp[[a∗]] = ω 6⊆ [p] = Mp[[(an)∗a<n]] .

On the other hand, if p does not divide n then the equation C14.n(a) is valid
in Mp. This follows because

Mp[[a∗]] = ω = ({n mod p})∗Mp[[a<n]] = Mp[[an]]∗Mp[[a<n]] = Mp[[(an)∗a<n]]
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where the second equality from the left holds because of the assumption that n
is not divisible by p.

In light of the above discussion, it follows that the ordered algebra Mp

satisfies the requirement P1 set out on page 7. We shall now proceed to show
that requirement P2 is also met by Mp, i.e., that every inequation P ≤ Q,
with Q an expression of weight smaller than p, which is sound in the algebra
Alg(T(REG(a))), is valid in Mp.

As a stepping stone towards the proof of the fact that Mp meets requirement
P2, we shall now argue that the failure of the equation C14.p(a) in the algebra
Mp is paradigmatic. In fact, if P ≤ Q is an inequation that is sound in the
algebra Alg(T(REG(a))), and ρ is an Mp-environment such that Mp[[P ]]ρ 6⊆
Mp[[Q]]ρ, then it must be the case that Mp[[P ]]ρ = ω and Mp[[Q]]ρ = [p]
(cf. Lem. 3.8(2)). This implies that the algebra Mp is indeed very close to
being a model for the equational theory E . All that we should need to do to
turn Mp into such a model is to identify the elements ω and [p].

The following classic result on the solution of congruence equations (cf., e.g.,
[12, Corollary 2.9]) will find application in the proof of Lem. 3.7(1) to follow.

Theorem 3.5 Let p, q, r be integers with p and q relatively prime, i.e. with 1
as their greatest common divisor, and with q 6= 0. Then the equation

px ≡ r (mod q)

in the unknown x has an integer solution x1. All solutions are given by x =
x1 + jq, where j = 0,±1,±2, . . ..

Notation 3.6 For an Mp-environment ρ, let ρ̄ : Var → T(REG(a)) denote the
closed substitution which is defined by

ρ̄(x) ∆=
∑

i∈I ai if ρ(x) = I ⊆ [p]
ρ̄(x) ∆= a∗ if ρ(x) = ω .

We are now in a position to establish two technical lemmas (Lem. 3.7 and
Lem. 3.8). Both these results consist of two statements, the first of which is
only used in the proof of the second, and may be skipped on first reading.

Lemma 3.7

1. Let Q ∈ T(REG(a)). Suppose that p is a prime number and i ∈ [p].
If there exist a non-negative integer m and j ∈ {1, . . . , p − 1} such that
amp+j ∈ L(Q), then anp+i ∈ L(Q∗) for some non-negative integer n.

2. Let P ∈ (REG(a)) and let ρ be an Mp-environment. Suppose that p is a
prime number. Then, for every i ∈ [p], i ∈ Mp[[P ]]ρ iff anp+i ∈ L(Pρ̄) for
some non-negative integer n.

Proof: We prove the two statements separately.
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1. Let Q ∈ T(REG(a)). Assume that p is a prime number, and that i ∈ [p]. Sup-
pose, moreover, that there exist a non-negative integer m and j ∈ {1, . . . , p − 1}
such that amp+j ∈ L(Q). We shall prove that anp+i is contained in L(Q∗) for
some non-negative integer n.
As amp+j ∈ L(Q), the string ak(mp+j) is in the language denoted by Q∗, for
every non-negative integer k. We shall now argue that it is possible to choose k
in such a way that, for some non-negative integer n,

k(mp + j) = np + i .

To this end, note that such a k can be found iff the congruence equation in the
unknown k

jk ≡ i (mod p)

has a non-negative solution. This is an immediate consequence of Thm. 3.5,
because j and p are relatively prime.

2. Let P ∈ (REG(a)), and let p be a prime number. Assume that i ∈ [p]. We
prove the statement by induction on the structure of P , and proceed by a case
analysis on the form P may take.

- Case: P ≡ 0.
In this case, Mp[[P ]]ρ and L(P ρ̄) are both empty. The claim is thus vacu-
ously true.

- Case: P ≡ 1.
In this case, i ∈ Mp[[P ]]ρ holds only for i = 0, because Mp[[P ]]ρ = {0}.
Moreover, as P ρ̄ ≡ 1, the only string in L(P ρ̄) is λ.

- Case: P ≡ a.
In this case, i ∈ Mp[[P ]]ρ holds only for i = 1, because Mp[[P ]]ρ = {1}.
Moreover, as P ρ̄ ≡ a, the only string in L(P ρ̄) is a.

- Case: P ≡ x.
In this case, Mp[[P ]]ρ = ρ(x) and P ρ̄ = ρ̄(x). It follows easily from the
definition of ρ̄ that i ∈ ρ(x) iff ai ∈ L(ρ̄(x)).

- Case: P ≡ Q + R.
In this case, Mp[[P ]]ρ = Mp[[Q]]ρ ∪ Mp[[R]]ρ. So i ∈ Mp[[P ]]ρ iff either
i ∈ Mp[[Q]]ρ or i ∈ Mp[[R]]ρ. By induction, this is the case iff either L(Qρ̄)
or L(Rρ̄) contains a string of the form anp+i for some non-negative integer
n. Finally, this holds iff the language denoted by P ρ̄ ≡ Qρ̄ + Rρ̄ contains
a string of the form anp+i.

- Case: P ≡ QR.
As Mp[[P ]]ρ = Mp[[Q]]ρ ·Mp[[R]]ρ, it is not hard to see that i ∈ Mp[[P ]]ρ iff
j ∈ Mp[[Q]]ρ and k ∈ Mp[[R]]ρ, for some j, k ∈ [p] with (j + k) mod p = i.
By induction, this holds iff L(Qρ̄) and L(Rρ̄) contain strings of the form
alp+j and amp+k for non-negative integers l and m, respectively. Finally,
as (j + k) mod p = i, this is the case iff the language denoted by P ρ̄ ≡
(Qρ̄)(Rρ̄) contains a string of the form anp+i for some non-negative integer
n.

- Case: P ≡ Q∗.
As Mp[[P ]]ρ = (Mp[[Q]]ρ)∗, it is not hard to see that i ∈ Mp[[P ]]ρ iff either
j ∈ Mp[[Q]]ρ for some j ∈ {1, ..., p − 1} or i = 0. We shall now prove that
the language denoted by P ρ̄ ≡ (Qρ̄)∗ contains a string of the form anp+i for
some non-negative integer n iff either j ∈ Mp[[Q]]ρ for some j ∈ {1, ..., p−1}
or i = 0. We establish the two implications separately.
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– ‘Only If Implication’. Assume that the language denoted by P ρ̄ ≡
(Qρ̄)∗ contains the string anp+i for some non-negative integer n and
i 6= 0. We show that j ∈ Mp[[Q]]ρ for some j ∈ {1, ..., p− 1}.
As i 6= 0, by the definition of L((Qρ̄)∗), there exists a string in the
language denoted by Qρ̄ whose length is not a multiple of p. This string
is of the form alp+j for some non-negative integer l and j ∈ {1, ..., p−1}.
The inductive hypothesis now yields that j ∈ Mp[[Q]]ρ, and we are
done.

– ‘If Implication’. Assume that j ∈ Mp[[Q]]ρ for some j ∈ {1, ..., p−1}
or i = 0. We shall prove that the language denoted by P ρ̄ ≡ (Qρ̄)∗

contains a string of the form anp+i for some non-negative integer n.
The statement is trivial if i = 0, because λ ∈ L(P ρ̄).
Assume therefore that j ∈ Mp[[Q]]ρ for some j ∈ {1, ..., p − 1}. By
induction, this holds iff L(Qρ̄) contains a string of the form alp+j for
some non-negative integer l. Finally, by statement 1 of the lemma this
implies that the language denoted by P ρ̄ ≡ (Qρ̄)∗ contains a string of
the form anp+i for some non-negative integer n.

This completes the inductive argument for statement 2.

The proof of the lemma is now complete. 2

The main use of the above technical result will be in the proof of the following
lemma, which will be used repeatedly in the proof of Thm. 3.12 to follow.

Lemma 3.8 Let P, Q ∈ (REG(a)) and let ρ be an Mp-environment. Suppose
that Alg(T(REG(a))) |= P ≤ Q. Then:

1. If Mp[[P ]]ρ = ω, then either Mp[[Q]]ρ = ω or Mp[[Q]]ρ = [p].

2. If Mp[[P ]]ρ 6⊆ Mp[[Q]]ρ, then Mp[[P ]]ρ = ω and Mp[[Q]]ρ = [p].

Proof: Suppose that Alg(T(REG(a))) |= P ≤ Q. We prove the two statements of the
lemma separately.

1. As Mp[[P ]]ρ = ω, it follows that L(P ρ̄) contains strings of the form anip+i for
each i ∈ [p] (Lem. 3.7(2)). Since Alg(T(REG(a))) |= P ≤ Q, the language
denoted by P ρ̄ is included in that denoted by Qρ̄. Therefore L(Qρ̄) contains
each of the strings anip+i (i ∈ [p]). Again using Lem. 3.7(2), we obtain that
i ∈ Mp[[Q]]ρ for every i ∈ [p]. Hence, either Mp[[Q]]ρ = ω or Mp[[Q]]ρ = [p].

2. Suppose that the Mp-environment ρ is such that Mp[[P ]]ρ 6⊆ Mp[[Q]]ρ. We shall
show that Mp[[P ]]ρ = ω and Mp[[Q]]ρ = [p].
We begin by proving that Mp[[P ]]ρ = ω. To this end, assume, towards a con-
tradiction, that Mp[[P ]]ρ = I for some I ⊆ [p]. According to Lem. 3.7(2), the
language denoted by P ρ̄ has a string of the form anip+i for each i ∈ I. Since
Alg(T(REG(a))) |= P ≤ Q, the language L(Qρ̄) also contains a string of the
form anip+i for each i ∈ I. By Lem. 3.7(2) it follows that i ∈ Mp[[Q]]ρ for each
i ∈ I. Hence, Mp[[P ]]ρ ⊆ Mp[[Q]]ρ, which contradicts one of the assumptions of
the statement.
Thus Mp[[P ]]ρ = ω must hold. Since Mp[[P ]]ρ 6⊆ Mp[[Q]]ρ, it follows that
Mp[[Q]]ρ 6= ω. Hence, statement 1 of the lemma yields Mp[[Q]]ρ = [p].

The proof of the lemma is now complete. 2
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Definition 3.9

• We say that an expression P ∈ (REG(a)) is 0-reduced iff it is either 0
or 0-free.

• Let X be a set of variables in Var. An Mp-environment ρ is non-empty
over X iff ρ(x) is non-empty for every variable x ∈ X .

Fact 3.10

1. Every P ∈ (REG(a)) may be proven equal to a 0-reduced expression,
whose weight is at most that of P , using axioms C1–2, C4–5 in Table 1
and the derived law (1).

2. If P ∈ (REG(a)) is 0-free and the Mp-environment ρ is non-empty over
Var(P ), then Mp[[P ]]ρ 6= ∅.

In the proof of the fact that the algebra Mp satisfies requirement P2 on page 7,
we shall make use of some properties of the semantic mapping Mp[[·]]. For ease
of reference, these are collected in the following lemma.

Lemma 3.11 Let P ∈ (REG(a)) be 0-free, and let ρ be an Mp-environment
that is non-empty over Var(P ). Then the following statements hold:

1. If ρ(x) = ω for some variable x contained in Var(P ), then Mp[[P ]]ρ = ω.

2. If Mp[[P ]]ρ = {i} for some i ∈ [p], then ρ(x) is a singleton for every
variable x contained in Var(P ).

3. Assume that Mp[[P ]]ρ 6= ω, and that ρ maps every variable occurring in
P to a singleton. Then the length of P is greater than, or equal to, the
cardinality of Mp[[P ]]ρ.

4. If Mp[[P ]]ρ 6= ω, then ρ(x) is a singleton for every variable x contained
in StarVar(P ).

5. Assume that Mp[[P ]]ρ = ω, that ρ′ is non-empty over Var(P ) and coincides
with ρ over StarVar(P ), and that if ρ(x) = ω for an x ∈ Var(P ), then
ρ′(x) = ω. Then Mp[[P ]]ρ′ = ω.

6. Assume that Mp[[P ]]ρ 6= ω, that ρ′ coincides with ρ over StarVar(P ), and
that ρ′(x) 6= ω for x ∈ Var(P ). Then Mp[[P ]]ρ′ 6= ω.

Proof: All the statements can be shown by induction on the structure of the expression
P . The details are left to the reader. Here we only remark that the proof for statement 4
uses statement 2 to deal with the case in which P has the form Q∗ for some expression Q.
In fact, if P has that form and Mp[[P ]]ρ 6= ω, then, by axiom STAR in Table 2, Mp[[Q]]ρ
is included in {0}. Since Q is 0-free and ρ is non-empty over Var(Q), Fact 3.10(2)
yields that Mp[[Q]]ρ = {0}. Statement 2 then gives that ρ maps each variable in Q to
a singleton. 2

Remark: Statement 6 in the above lemma does, in fact, hold for arbitrary expressions
P and Mp-environments ρ. However, in what follows, we shall only use it in the
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restricted form presented above. The provisos of statements 1–5 are instead necessary
for their validity.

We are finally in a position to prove that the algebra Mp satisfies all the in-
equations P ≤ Q ∈ E , with Q an expression of weight smaller than p. This
implies that the algebra Mp does indeed meet requirement P2.

Theorem 3.12 If Alg(T(REG(a))) |= P ≤ Q and weight(Q) is smaller than
p, then Mp |= P ≤ Q.

Proof: Let P ≤ Q be an inequation that is sound in the algebra Alg(T(REG(a))),
but fails in Mp. We shall show that Q must have weight at least p.

Let the weight of an inequation P ≤ Q be the sum of the weigths of the expressions
P and Q. Assume that P ≤ Q is an inequation of minimum weight that is sound in the
algebra Alg(T(REG(a))), but not in Mp. Without loss of generality, we may assume
that the expressions P and Q are 0-reduced (Fact 3.10(1)), and, in fact, 0-free. Since
the inequation P ≤ Q fails in Mp, there exists an Mp-environment ρ such that

Mp[[P ]]ρ 6⊆ Mp[[Q]]ρ .

For later use in the proof, we argue, first of all, that ρ must be non-empty over Var(P )∪
Var(Q). In fact, assume, towards a contradiction, that there is a variable x occurring
in P or Q such that ρ(x) = ∅. Then,

Mp[[P [0/x]]]ρ = Mp[[P ]]ρ 6⊆ Mp[[Q]]ρ = Mp[[Q[0/x]]]ρ .

This implies that the inequation

P [0/x] ≤ Q[0/x]

fails in Mp. As the above inequation is valid in the algebra Alg(T(REG(a))), this
contradicts our assumption that the inequation P ≤ Q had minimum weight amongst
those valid in Alg(T(REG(a))) that fail in Mp (Lem. 3.2(2), as x occurs in either P or
Q).

We can now proceed to argue that Q must have weight at least p. As the inequation
P ≤ Q fails in Mp for the Mp-environment ρ, Lem. 3.8(2) yields that

Mp[[P ]]ρ = ω 6⊆ [p] = Mp[[Q]]ρ .

As Mp[[Q]]ρ 6= ω, Q is 0-free and ρ is non-empty over Var(Q), it follows that ρ maps
no variable in Q to ω (Lem. 3.11(1)), and that ρ maps every variable in StarVar(Q) to
a singleton set (Lem. 3.11(4)). We now proceed with the proof by distinguishing two
cases, depending on whether StarVar(P ) is included in StarVar(Q) or not.

• Case: StarVar(P ) ⊆ StarVar(Q).
Consider the Mp-environment ρ′ that is defined as follows:

ρ′(x) ∆= ρ(x) if x ∈ StarVar(Q)
ρ′(x) ∆= ρ(x) if ρ(x) = ω

ρ′(x) ∆= {0} otherwise .

Since ρ maps no variable in Q to ω and is non-empty over Var(P ) ∪ Var(Q), the
same holds for ρ′. Hence, Lem. 3.11(6) gives that Mp[[Q]]ρ′ 6= ω. Furthermore,
since StarVar(P ) is included in StarVar(Q), ρ′ coincides with ρ over StarVar(P ).
By construction, if ρ(x) = ω then ρ′(x) = ω. So, by Lem. 3.11(5), we may infer
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that Mp[[P ]]ρ′ = ω. As the inequation P ≤ Q fails in Mp for the Mp-environment
ρ′, Lem. 3.8(2) yields that

Mp[[P ]]ρ′ = ω 6⊆ [p] = Mp[[Q]]ρ′ .

As ρ′ maps each variable in Q to a singleton set, Lem. 3.11(3) now gives that
p ≤ length(Q) ≤ weight(Q), which was to be shown.

• Case: StarVar(P ) 6⊆ StarVar(Q).
Fix a variable x0 ∈ StarVar(P ) \ StarVar(Q). Consider the Mp-environment ρ′

that is defined as follows:

ρ′(x) ∆= ρ(x) if x ∈ StarVar(Q)
ρ′(x0)

∆= {1, 2}
ρ′(x) ∆= {0} otherwise .

Note, first of all, that ρ′ is non-empty over Var(P ) ∪ Var(Q) because so was ρ.
Moreover, since ρ maps no variable in Q to ω, the same holds for ρ′. Hence, an
application of Lem. 3.11(6) gives that Mp[[Q]]ρ′ 6= ω. Furthermore, since ρ′(x0)
is not a singleton, Lem. 3.11(4) gives that Mp[[P ]]ρ′ = ω. As the inequation
P ≤ Q fails in Mp for the Mp-environment ρ′, Lem. 3.8(2) yields that

Mp[[P ]]ρ′ = ω 6⊆ [p] = Mp[[Q]]ρ′ .

Let [(a+a2)/x0] stand for the substitution mapping x0 to the expression a+a2,
and acting like the identity on all the other variables. Consider now the Mp-
environment ρ′′ that is defined as follows:

ρ′′(x0)
∆= {0}

ρ′′(x) ∆= ρ′(x) otherwise .

By the standard interplay between substitutions and the interpretation mapping
Mp[[·]], we infer that:

[p] = Mp[[Q]]ρ′ = Mp

[[
Q[(a + a2)/x0]

]]
ρ′′ .

Lem. 3.2(1) yields that the length of Q[(a+a2)/x0] is at most 2vars(Q)length(Q),
that is the weight of Q. By construction, ρ′′ maps each variable to a singleton
set. An application of Lem. 3.11(3) now gives that the length of Q[(a + a2)/x0]
is greater than, or equal to, p. Thus, p ≤ 2vars(Q)length(Q), which was to be
shown.

This completes the proof of the theorem. 2

In light of the above discussion, we have finally completed the proof of Thm. 2.4,
and therefore of Thm. 2.3.
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