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Presheaf Models for Concurrency

Gian Luca Cattani and Glynn Winskel
BRICS? Computer Science Department
Aarhus University, Denmark

October 1996

Abstract

This paper studies presheaf models for concurrent computation. An
alm is to harness the general machinery around presheaves for the pur-
poses of process calculi. Traditional models like synchronisation trees and
event structures have been shown to embed fully and faithfully in particu-
lar presheaf models in such a way that bisimulation, expressed through the
presence of a span of open maps, is conserved. As is shown in the work of
Joyal and Moerdijk, presheaves are rich in constructions which preserve open
maps, and so bisimulation, by arguments of a very general nature. This pa-
per contributes similar results but biased towards questions of bisimulation
in process calculi. It is concerned with modelling process constructions on
presheaves, showing these preserve open maps, and with transferring such
results to traditional models for processes. One new result here is that a wide
range of left Kan extensions, between categories of presheaves, preserve open
maps. As a corollary, this also implies that any colimit-preserving functor
between presheaf categories preserves open maps. A particular left Kan ex-
tension is shown to coincide with a refinement operation on event structures.
A broad class of presheaf models is proposed for a general process calculus.
General arguments are given for why the operations of a presheaf model
preserve open maps and why for specific presheaf models the operations
coincide with those of traditional models.

*Basic Research in Computer Science, Centre of the Danish National Research Foundation.






1 Introduction

The paper [8] presented an abstract view of bisimulation, inspired by [7], applicable
to models for concurrency presented as categories, following the lines of [15]. A
central idea was to define bisimulation through a span of open maps and explore its
consequences over models for concurrency ranging from interleaving models like
transition systems to “independence” models like labelled event structures, and
later on Petri nets [10], in which concurrency or parallelism of actions is expressed
by some relation of independence.

This paper takes up the suggestion of [8] to study presheaf models for concurrent
computation. There are several reasons for doing this.

One reason is that, once one passes the barrier of unfamiliarity, they are an intu-
itively appealing model of nondeterministic computation. Starting with a category
of path objects (or observations) in which morphisms stand for an extension of
one path by another, nondeterministic computations are represented essentially
by gluing together computation paths in a manner reminiscient of the way a pow-
erdomain is built from a domain as a completion of its finite elements. More
accurately, forming presheaves is equivalent to adjoining all colimits to a category,
which corresponds to more than just adding directed colimits—the reason why
nondeterministic branching is also introduced.

As was argued in [8] presheaf models are promising generalisations of existing
models. This is because well-known models like synchronisation trees and labelled
event structures embed fully and faithfully into appropriate presheaf categories,
and, for general reasons, presheaves support operations such as those coming from
Kan extensions. One particular Kan extension, resulting in a functor between
presheaves over pomsets, was advanced as a good candidate for an operation of
refinement of the kind proposed for event structures. Here it is shown that this
Kan extension acts, when restricted to presheaves associated with event structures,
in the same way as the refinement operation in [9]. To highlight the gain of
working at a more abstract level than is common in concurrency theory, we mention
an important result of this paper, Lemma 3, which shows that a broad class of
operations, obtained as left Kan extensions, automatically preserve open maps. In
particular, it specialises to show that the refinement, obtained as a Kan extension,
preserves open maps and so bisimulation. Lemma 3 can also be read as saying
that any colimit-preserving functor between two presheaf categories preserves open
maps (see Corollary 4).

One point of approaching models for concurrency as categories is that operations
fundamental to process calculi appear automatically, as built out of universal con-
structions. An obvious question is whether these universal constructions preserve
open maps and therefore bisimulation. Our approach here is to prove that oper-



ations on presheaves preserve open maps and then, through results like Lemma 6
and Proposition 17, transfer these preservation properties to concrete models like
synchronisation trees and event structures.! Working with presheaves also avoids
some obstructions to a treatment of weak bisimulation on independence models,
though this topic is not dealt with here.

A more general, and probably the most important, motivation for presheaf mod-
els is the hope they give of making concurrency less separate a study. Through
presheaf models we are trying to bring concurrency theory within domain theory,
though with the proviso that this should be understood liberally enough to in-
clude generalisations of domain theory like those envisaged in “axiomatic domain
theory” [11, 5]. The paper [14] is a further step in this programme.

2 Traditional models

We focus on three traditional models for concurrency: transition systems, synchro-
nisation trees and event structures (see [15] for more background).

A transition system is a structure
(S,i, L, tran)

where

e S is a set of states with initial state i,

e L is a set of labels,

e tran C S x L x S is the transition relation. As usual, a transition (s, a, s') is
written as s —2— .

Let
T() = (So,io, Lo, tmno) and T1 = (Sl,il, Ll, tmnl)

be transition systems. A morphism f : Ty — T is a pair f = (0, A) where
e 0:Sy— Sy, such that o(ig) = i1, and
e \: Ly —, Li, a partial function?, which together satisfy
(s,a,s") € trang & A(a) defined
= (0(s),\a),o(s")) € trany, and
(s,a,s") € trang & A(a) undefined = o(s) = o(s').

!The paper [4] shows that any “P-factorisable functor” preserves open maps and so bisimula-
tion. In contrast we aim to take advantage of the preservation properties of universal construc-
tions, a strategy proposed in the conclusion of [8].

2We treat partial functions in the same way as in [15] using * to represent undefined.



Transition systems with morphisms form a category TS in which the composition
of morphisms is defined componentwise.

A synchronisation tree is a transition system whose graph has the form of a tree
with root the initial state. We write ST for the subcategory of synchronisation
trees.

Transition systems and synchronisation trees are often called “interleaving models”
because they represent parallel/concurrent composition by nondeterministically
interleaving the actions of processes. In contrast, event structures represent a
class of “independence models” (among them Petri nets) in which concurrency is
represented directly as a form of causal independence.

Define a (labelled) event structure to be a structure (E, <, Con, ) consisting of a
set E, of events which are partially ordered by <, the causal dependency relation,
a consistency relation C'on consisting of finite subsets of events, and a labelling
function | : E — L, which satisfy

{e' | ¢ < e} is finite,

{e} € Con,

YCXeCon=Y € Con,
XeCom&e<eeX=XU{e}eCon,

for all events e, ¢’ and their subsets X, Y.

Two events e, ¢’ € E are said to be concurrent (causally independent) iff
(ege &e Le&{ee}eCon).

A set, x, of events in F is said to be a configuration if it is

downwards-closed: Ve,e'. ¢/ <e € x =€ € x, and
consistent: VX. X finite & X Cx = X € Con.

A morphism of event structures consists of
(m,A) 1 B — E,

where £ = (E,<,Con,l),E' = (E',<',Con/,l') are event structures,
n: E —, E'is a partial function on events, A : L —, L’ is a partial function on
labelling sets such that
(i) Von=2Aol,
(ii) If z is a configuration of F, then nz is a configuration of E" and if for ey, e5 € x
their images are both defined with n(e;) = n(e2), then e; = es.
Let ES be the category of event structures with morphisms, as above, composed

componentwise. The definition of morphism on event structures is given rather
abruptly—see [15] for motivation.



The categories TS,ST and ES are rich in categorical constructions. In particular,
all the functors projecting to labelling sets in Set,, the category of sets with partial
functions, are cofibrations. While the projections to Set, associated with TS and
ST are fibrations, the projection of ES is not; there are cartesian liftings of total
functions but not of strictly partial functions.

The categories TS,ST and ES are related by coreflections: the inclusion functor
ST < TS has a right adjoint unfolding transition systems to trees; the functor
ST — ES identifying a synchronisation tree with an event structure has a right
adjoint serialising an event structure to a synchronisation tree. The coreflections
cut down to coreflections between the fibres. Preservation properties of adjoints
help in relating semantics in the different models. We normally refer to a fibre
over some set L, by adding the subscript L to the name of the category, e.g.,
ES; stand for the subcategory of those event structures whose set of labels is
L and whose morphisms (7, A) always have A = id,. The categories of models
have products, central in giving semantics to parallel compositions. Because the
projection TS — Set, forms a fibration, products in TS are expressible as products
in the fibre over the product of their labelling sets in the base category Set,. Such
a decomposition of product is not possible in ES because there are not cartesian
liftings of (partial) projections like L x, M —, M.

Constructions in the categories support a process language Proc. Its syntax is
given by
tu=mnil |at|ty & t1 |toxty | t]A|t{Z} | x| recx.t

where a is a label, A is a subset of labels and = is a total function from labels to
labels. All the operations, apart from prefixing, at, have a categorical status, as
being built out of universal constructions. Most simply, the term nil denotes the
initial object, to X t; the product of those objects denoted by t¢, t;, and recursive
definitions rec x.t are treated through the help of w-colimits. The other operations
make use of the categories being fibred over Set.. Restriction ¢ [ A is defined
via cartesian lifting over an inclusion associated with A, and relabelling t{=} via
cocartesian liftings over =. The sum of two processes to @ t; is defined by a fibre
coproduct of the result of sending them over a union of their labelling sets by
cocartesian liftings. See [15] for details.

3 Bisimulation from open maps

A (computation) path of a transition system with labelling set L is reasonably
taken to be a finite sequence of transitions that the transition system can perform.
It takes the shape of a string of labels in L. Strings L* form a (partial order)
category in which a morphism represents the extension of one string s to another



s’ (s is an initial prefix of §'). It is convenient to identify strings L* with the
subcategory of ST consisting of those special synchronisation trees consisting of
a single branch. To take account of the added independence structure of event
structures, the shape of their computation paths is taken to be a finite pomset.
The category Pomy is taken to be the subcategory of ESy, for a labelling set L,
consisting of those finite event structures in which all finite subsets of events are
in the consistency relation.

We can obtain a general definition of bisimulation from open maps, which roughly
speaking are morphisms with the property that any extension of a computation
path in the range can be matched by an extension in its domain.

Assume a category of models M (this can be a fibre in any of the categories of
models we are considering) and a choice of path category, a subcategory P <— M
consisting of path objects (these could be branches, or pomsets) together with
morphisms expressing how they can be extended.

Whenever, for m : P — () a morphism in P, a “square”

P—r-X
m‘ ‘f
Qv

in M commutes, i.e. g om = f o p, meaning the path fopin Y can be extended
via m to a path ¢ in Y, then there is a morphism p’ such that in the diagram

p—rL—x
mp, ‘f
Qv

the two “triangles” commute, i.e. p’ om = p and f o p’ = ¢, meaning the path p
can be extended via m to a path p’ in X which matches ¢. When the morphism f
satisfies this condition we shall say it is P-open.

Two objects X1, Xo of M are said to be P-bisimilar iff there is a span of P-open
morphisms f1, fo: X
f fa

Xy X
In the case of traditional models we obtain known equivalences: for transition
systems TSy or synchronisation trees STy, L*-bisimulation coincides with Park
and Milner’s strong bisimulation; for event structures ESp, Pomj bisimulation

coincides with strong history-preserving bisimulation due to Bednarczyk refining
ideas of van Glabbeek and Goltz, Rabinovitch and Traktenbrot [2, 9, 12].



4 Presheaf models

Given a path category P we can build the category P of presheaves over P. The
objects of P consist of functors P”? — Set, to the category of sets. The morphisms
of P are natural transformations between functors. Intuitively a presheaf F :
P’ — Set can be thought of as specifying for a typical path object P the set
F(P) of paths from P. It acts on a morphism m : P — @ in P to give a function
F(P) «— F(Q) : F(m) saying how @Q-paths restrict to P-paths.

A model, like a transition system or a labelled event structure, gives rise to a
presheaf. For a category of models M and a choice of path category forming a
subcategory P <— M, there is a canonical functor from the category of models
M to the category of presheaves P. The functor, M — P, takes an object X
of M to the presheaf M(—, X)—more intuitively, it takes the model X to the
presheaf which for each path object P yields the set of paths M(P, X) from P
into X. The canonical functor takes a morphism f : X — Y in M to the natural
transformation, M(—, f) : M(—, X) — M(—,Y), whose component at an object
P of P is the function M(P, X) — M(P,Y") taking p to f o p—intuitively, a path
p: P — X in X is taken to a path fop: P—-Y inY.

As remarked in [8], the canonical functors are full and faithful embeddings for
synchronisation trees and event structures with respect to appropriate path cate-
gories.

Theorem 1
(i) The canonical functor from STy, to L* is full, faithful and dense.
(i) The canonical functor from ESy to Pomy is full, faithful and dense.

In the situation where the path category P of a model M has an initial object 0, a
rooted presheafis a presheaf F' in which F(0) is a singleton. The full subcategory
of rooted presheaves of L* is equivalent to the category ST,. In fact, it is not
hard to see that a presheaf X in L* corresponds to a collection of synchronisation
trees in which the set of “roots” corresponds bijectively to the set X(e), where €
is the empty string, the initial object in L*. While the canoniczif_ﬂctor from ESp,
always yields a rooted presheaf, not all rooted presheaves in Pom; are obtained
in this way. Full subcategories of rooted presheaves play an important role in our
approach. Bisimulation in the subcategories of rooted presheaves coincides with
bisimulation in the categories of concrete models:?

Proposition 2

(i) Two synchronisation trees, over labelling set L, are L*-bisimilar (i.e. strong
bisimilar) iff their corresponding presheaves, under the canonical embedding,

3 Alternatively, one can restrict to surjective open maps in the full category of presheaves to
obtain a similar correspondence.



are related by a span of open maps in the full subcategory of rooted presheaves
of L*.

(1) Two event structures, over labelling set L, are Pomp-bisimilar (i.e. strong
history-preserving bisimilar) iff their corresponding presheaves, under the
canonical embedding, are related/li a span of open maps in the full sub-

category of rooted presheaves of Pomp.

Working with categories of presheaves we can use Kan extensions (see [3], vol.1).
A key result of this paper is then the following that states that a wide class of left
Kan extensions preserve open maps, thus making them a powerful tool in showing
operations preserve bisimulation:

Lemma 3 Let F : P — Q be a functor where P,Q are small categories. The left
Kan extension Lan,, I preserves open maps:

If h is a P-open map in P, then Lan,, F(h) is a Q-open map in Q.

Since all colimit-preserving functors G from a presheaf category P to a presheaf
category Q are obtained to within isomorphism as left Kan extensions Lan, (G o
yp), we deduce the following general preservation property:

Corollary 4 Assume G : P — Q is a colimit-preserving functor. If h is a P-open
map in P, then G(h) is a Q-open map in Q.

In the case of a functor F' : P — Q between small categories we denote by F
the left Kan extension Lany,(yq o F') and by F* its right adjoint which acts by
composition with F'.

Lemma 5 Let F': P — Q be a functor between small categories. Let Fy = F* be
the adjunction described above between P and Q. Then

(i) If h is a P-open map, then Fi(h) is Q-open map.

(ii) If h is a Q-open map, then F*(h) is P-open map.
If P and Q have initial objects then F\ preserves rooted presheaves. Moreover, if F
preserves the initial objects then F™* preserves rooted presheaves.

Thus we have the pleasing situation that open maps and bisimulation are preserved
along both the directions of the adjunction F; 4 F™.

As will be seen, Lemma 5 is useful in showing that bisimulation is a congruence
with respect to the operations of process calculi. Some familiar adjunctions reap-
pear as special instances. Suppose that F' above is understood as the functor
L* — Pomy, identifying a string with a (linear) pomset. The adjunction F; - F*
extends, via the canonical embeddings, the familiar coreflection between synchro-
nisation trees ST, and event structures ES;. Lemma 5 implies the intuitively
clear fact that bisimulation is preserved by the inclusion of synchronisation trees
in event structures, and that the right adjoint serialising an event structure to a
synchronisation tree preserves bisimulation.



To illustrate the power of these general results we consider a form of refinement on
event structures, which arises as a left Kan extension. One well-known operation
of refinement on event structures is that of van Glabbeek and Goltz (refer to [9]
for their definition) where a function 6 “refining” labels in L to finite pomsets
over M is extended to an operation R(f) on event structures—roughly, a copy of
the pomset 6(a) is plugged in for each occurrence of the label a and the pomsets’
events inherit causal dependency and conflict from the host event structure. Such
a refining function 6 extends in the same way to a functor R(6)" : Pom; — Pom),.
As remarked in [8], the functor R(f)], obtained as a left Kan extension, is a good
candidate for the extension of this refinement to presheaves including those corre-
sponding to event structures. But does the functor R(6); act like the operation of
refinement R(f) on event structures? More precisely, if we let ¢y : ES, —. Pom;,
and ¢y : ESy — Pom m denote the canonical embeddings, do we have

R(0)i(cL(E)) = ca(R(0)(E)) ?
Yes, by the following general Lemma (instantiate R(f) for F' and read Pomy, for
Pr, ESy for Er, etc. ):
Notation: For any category C, we denote its class of objects by | C|.

Lemma 6 Let Py and Py be two small categories. Let iy, : P, — Er and iy :
Py — Eam be two dense full and faithful embeddings. Let ¢ : Ep — P, and
ey Em — P be the associated canonical embeddings.

Suppose F': E;, — Enr is a functor. Let F' = F oiy. Then

Lany, (cpyo FYoc, =cpy o F

if for any E € |Er| and Q 2 FE, there exist P € |Pr|, g0 : Q — F'P and
fp i i(P) — E with g = Ffpo gg and such that for any other factorisation
g = Ffprogg there exists an o : P — P’ such that fpoa = fp and g = Fpaogg:

Q ———— F(E)
qQ F(fp)
@ TP rye)
F(;a)
FP

Remark: The “factorisation” condition of the lemma implies that the functor
F : Ep — Eu preserves the canonical colimits associated with the objects of Ep,
(which is equivalent to the conclusion of the lemma). The “factorisation” condition



can be weakened to a necessary condition by requiring that any two factorisations
are connected by a chain of morphisms like o above.

As a left Kan extension, the operation R(f); on presheaves preserves open maps
and so bisimulation by Lemma 5, and consequently so does refinement R(#) on
event structures—an example where we transfer abstract, general properties of
presheaves to a concrete model.

5 Presheaf models for Proc

In giving a presheaf semantics to Proc we must address a minor clumsiness. Terms
of Proc can have different labelling sets, whereas the presheaf categories up to
now have been with respect to a particular labelling set. However we can “glue”
all the presheaf categories together using the Grothendieck-fibration construction
(see [3], vol.2).

To emphasise its generality, we give semantics to Proc with respect to a general
class of presheaf models defined as follows.

A presheaf model for Proc consists of a functor from Set. to Cat, the category
of small categories, which sends A : L —, M to A : P, — Py such that:

e For each set L, the category Pr has an initial object; the functors A, for
A L —, M, preserve initial objects.
e For each set L and element a, there exists a prefixing functor
a(—=) : P — PLufa}-
A process with labelling set L is to denote a rooted presheaf over Pr. Of course,
there are further conditions that one could expect a presheaf model to satisfy,
but this definition suffices for our purposes. Sometimes, to emphasise over which
path categories we are taking a presheaf model we describe a presheaf model as a
presheaf model on (path categories) Pr, where L is understood to range over sets.

5.1 The Grothendieck construction

Given a presheaf model on Py, we can glue together all the fibres, consisting of
categories of rooted presheaves over P, to form a fibration over Set, which we
call Groth(Pr):

Objects: pairs (X, L) with L € |Set,| and X a rooted presheaf over Py,
Arrows: pairs (f,\) : (X, L) — (Y, M) with A\: L —, M and f: X — X*(Y).

The composition of arrows is (g, u)o(f, \) = (\*(g)of, uoA). Clearly the projection
(X, L) — L is the object part of a functor = : Groth(Pr) — Set.. Intuitively, the
Grothendieck construction glues the various fibres together; it adds arrows between



presheaves (possibly over different fibres), to allow for the possibility of a partial
relabelling of actions.

Because of Lemma 5, for A : L. —, M we have an adjunction A - \* between
presheaf categories Py, and Py which cuts down to an adjunction between the fibres
of rooted presheaves. The adjunctions ensure that the Grothendieck fibration is in
fact a bifibration; the cocartesian lifting of A with respect to X is (nx,A) : X —
M(X) where ny : X — A*A(X) is the component of the unit of the adjunction at
X.

By Lemma 5, the adjunctions preserve open maps across the fibres. Within the
fibres the product and coproduct preserve open maps—by an elementary argument
in the case of product, and making use of the disjointness of the coproduct of rooted
presheaves.

Lemma 7 For A\ : L —, M, the functors A\ and \* preserve open maps in the
fibres of Groth(PL).

Product and coproduct functors within the fibres of Groth(Pr) preserve open maps.

5.2 Semantic Constructions in Groth(Py)

As a preliminary to giving a presheaf semantics to Proc, we describe the main
constructions involved and show that they preserve open maps.

Products: The category Groth(Pr) has products. Product can be constructed
as follows. Given (X, L), (Y, M) € |Groth(Pr)|. Define

(X, L) x (Y, M) = (70*(X) x 72" (Y), L x,, M)

where L & Lx, M = M are the projections of the product in Set,. Because the
product in Groth(Pr,) decomposes into functors preserving open maps by lemma 7,
we see that:

Proposition 8 The functor x preserves open maps; if f is an open map in Pr
and g is an open map in Par, then f X g is an open map in Prx, .

Sum: Let (X, L), (Y, M) € |Groth(PL)|. Define
(X, L) & (Y, M) = (in(X) + tann(Y), LU M)

where L ‘% L UM 2% M are the injections of the coproduct in Set,. Sum is built
up from open-map preserving functors by lemma 7, so:

Proposition 9 The functor & preserves open maps.

Remark: This sum construction is not the coproduct because of the choice of
labelling set for the sum. It can be shown that, if [i,ipn] : L+ M — LU M, the

10



mediating map from the coproduct of sets, then

Restriction: Let A be a set and let (X, L) € |Groth(Pr)|. Then consider the
inclusion map 7 : AN L <— L and define the restriction of X to AN L to be

(X,L)IA = (i*(X),ANL) .

By lemma 7, restriction preserves open maps:

Proposition 10 If f : X — Y is an open map in the fibre over L, then
fIA : XTA — YA is open in the fibre over AN L.

Relabelling: Let = : L — M be total. Take (X, N) as usual, define Zy : N —

MU N with o
Z(z) = { E(x) ifrxel

T otherwise

Consider the truncation of =y to its image set, i.e. =y : N — =y N. Define the
relabelling to be
(X, N)[E] = Em(X),ENN) .
By lemma 7, relabelling preserves open maps:
Proposition 11 If f : X — Y is an open map in the fibre over L, then
fIZ] : X[Z] — Y[Z] is open in the fibre over ZyN.
Prefixing: Suppose we have a label set L and an element a. By taking a left Kan
extension we extend the prefixing functors to a(—) : Py, — P Lu{a}- By Lemma 5:

Proposition 12 If f : X — Y s open in the fibre over L, then a(f) : a(X) —
a(Y) is open in the fibre over LU {a}.

Recursion: Letting F': Groth(Pr) — Groth(Pr) be a functor, define rec(F') to
be the colimit lim wpr where

wr: w — Groth(Pr)
n —  F"((0,0)).

Here 0 is the unique, up to isomorphism, rooted presheaf over Pg. Any F"((0, ()))
consists of a pair (X, L,) with X,, € |PL,|, and we can express the colimit as a
pair (X, L), where L is the colimit in Set, of the L,, and X is the colimit in Py, of
all the cocartesian liftings of the X,,.

All our term constructors are continous with respect to w-chains, hence rec(F)
determines a fixed point. So the construction above yields a denotation for a
recursively defined process in terms of an w-colimit of presheaves over a common

11



path category. We would like to deduce the bisimulation of recursive processes
rec x.t, rec y.u from bisimulation between the open terms ¢ and u. Such open
terms give rise to endofunctors on Groth(Pr). Thus, we start by extending the
notion of open map, and therefore bisimulation, to functors.

Definition: Let a be a natural transformation between two functors whose codomain
Groth(Pr). We say «a is open if each of its components is open in a fibre Py.

We consider two endofunctors F,G on Groth(Pyr) bisimilar if there is another
endofunctor R and a span of open natural transformations o : R — F and [ :
R — G relating them.

Definition: Let I be an endofunctor of Groth(Pr). Define wr : w — Groth(Pr)
as follows
wr(n) = F™(0) and wp(n <m) = F*(0pm—n())

where Opm-n(g) is the unique arrow from the initial rooted presheaf to F~"(0).

Proposition 13 Let F, R be endofunctors of Groth(Pr) and let o : R — X be
a natural transformation. Then there is a natural transformation w, : Wr — Wr.
Moreover if a is open and X preserve open morphisms, then w, is open.

Open maps are preserved in passing to the colimit, in particular:

Proposition 14 Let wp,wp : w — P and wa : wp — wr, be as above, with we
open, then the arrow limw, : limwgr — limwg, uniquely determined by the univer-
sal property of the colimit, is an open map in the fibre over the colimiting labelling
set.

Consequently, if two endofunctors F, G ranging over Groth(Py) are bisimilar and
preserve open maps, then the colimits rec(F'), rec(G) are bisimilar. A term with
a free variable, built-up from the constructions of this section, will determine an
endofunctor on Groth(Pr,) wich preserves open maps by this section’s propositions.
It follows that if two open terms ¢ and u are bisimilar, i.e. induce bisimilar functors,
then the recursive definitions rec x.t and rec y.u are bisimilar.

5.3 Denotational semantics
We define the denotational semantics, with respect to an environment
p:Vars — |Groth(PL)|,

inductively on the structure of the terms in Proc.

Nil: [Nil] , = the unique, up to isomorphism, rooted presheaf over Py.

Variables: [z] , = p(z)

12



Sum: [t1 @ 2], = [t:], @ [ta],

Product: [t1 x to] , = [ta] , % [t=],

Restriction: Let A be a set. [t1]A] ) = [t1] IA

Relabelling: Let = : L — M be total. [t:[E]], = [t1] [E]

Prefiring: Let a be a label, then [at] = a([t] )

Recursion: Let t be any term, and let x be a variable (possibly free in t). Given
any environment p the term ¢ and the variable x determine an endofunctor

ty: Groth(Pr) — Groth(PL)
X = [t

Define [recz.t]p = rec(t)

All of the constructions of Section 5.2, those used in giving the semantics above,
preserve open maps and so bisimulation. Hence, we can deduce that for any
presheaf model, the bisimulation equivalence associated with spans of open maps
is a congruence for the language Proc.

5.4 Concrete models revisited

The semantics and results specialise to the specific presheaf models on path cat-
egories L* and Pomy, for sets L; as prefixing functors a(—) we take the obvious
prefixing of strings and pomsets by an occurrence of the element a. We can now
transfer the results from the presheaf models to the concrete models of synchroni-
sation trees and event structures by noting that the canonical embeddings between
fibres ST, — L* and ES;, — Pomy, extend to full and faithful embeddings from ES
and ST to presheaf models by the next proposition. We give first some notation
to facilitate its reading.

Notation: If F': C — B is a cofibration we write by oqc : Cy — Cp for the functor
that provides us with the cocartesian liftings of the arrow « : & — b. Hence we
write a§ for the cocartesian arrow at ¢ projecting to .. For any other f: ¢ — ¢
we write fnc for the unique arrow such that f = foc 0 a§

Proposition 15 Let F : C — B and G : D — B be two cofibrations. For any
b€ |B|, let Cy and Dy be the fibres over b. Suppose that for any b, iy : Co — Ds
is a full and faithful embedding and that for any o : b — b the following diagram
commutes:

,L'/

b
Cy Dy
ay ap
ip
Co Dy

13



Then there is a full and faithful embedding i : C — D such that for any object ¢ €
| Cy |, i(c) = ip(c) and for any f: ' — c with F(f) =b b, i(f) = ip(fac) 0 ozl.Db(C)

We have stated this result for cofibrations (rather than, equivalently, for fibrations)
because event structures form a cofibration (and not a fibration) over Set,. The
embeddings of event structures and synchronisation trees in the respective presheaf
categories satisfy the property of the proposition above. Hence, specialising to the
case of event structures:

Corollary 16 There embedding ¢ : ES — Groth(Pomp), given in Proposition 15
is dense, full and faithful.

It follows that ¢ : ES — Groth(Pomy) preserves products, and it can be checked
that coproducts are preserved, too.

Proposition 17 The embedding of ¢ : ES — Groth(Pomp) preserves products,
coproducts, cocartesian liftings, and cartesian liftings of inclusions.

A denotational semantics of Proc in event structures ES is given in [15]. Deno-
tations are built up in the same way as in section 5.2, using the same universal
constructions; for example the denotation of ¢; X t is built up as a product in
ES, while the denotation of a restriction is got from a cartesian lifting. With the
help of Proposition 17 we can show that the embedding ¢ preserves the semantics
of Proc. The only construction needing a separate treatment is prefixing. We
can prove that the “standard” event-structures semantics of Proc in [15]—write
ES [t] for the denotation of a term ¢ as in event structure, coincides with that in the
presheaf model on Pom;—write [t] for the denotation of a term ¢ in presheaves
over pomsets. The proof is straightforward (but for some technicalities in the
treatment of recursion).

Theorem 18 Let p : Vars — |ES| be an environment function. Then for any
term t of Proc

c(BS[t,) = [, -

By proposition 2(ii), open maps and bisimulation coincide, via the canonical em-
beddings, in ES;, and the fibre over L in Groth(Pomy). Hence we can transfer the
congruence property deduced for the presheaf semantics to deduce, in particular,
that strong history-preserving bisimulation is a congruence for the language Proc.

6 Relations with domain theory

One hope in moving to more abstract presheaf models is to be able to relate the
theory of concurrency with the theory of domains, though this has to be understood
in a generalised sense, in which domains can be proper categories, not just complete
partial orders.
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Finitely accessible categories [1], the category-analogue of algebraic complete par-
tial orders, are obvious candidates for such generalised domains; roughly a finitely
accessible category has a “basis” of “finite” (finitely presentable) objects from
which every object is obtainable as a directed colimit. As proposed in [14], one
can view the presheaf construction on the basis of a finitely accessible category as a
form of powerdomain construction. In [14] it is indicated how the bicategory Prof
of profunctors (or distributors, in the terminology of [3], vol.1) provides a frame-
work in which one can solve domain equations for path categories. The bicategory
of profunctors, or equivalently, the category where the objects are presheaf cate-
gories and the morphisms are colimit-preserving functors, should be thought of as
a category of nondeterministic domains.

The framework in [14] is applied to give a denotational semantics to a value-passing
process language with late semantics. More recently lan Stark and the authors
have been combining these results with those of [13, 6] to produce presheaf models
for the m-calculus with both early and late semantics. It is also possible to give a
presheaf semantics to process languages which permit processes to be passed, and
not just discrete values or names, though in this case we do not yet have a good
understanding of the notion of bisimulation induced by open maps—in the other
cases mentioned bisimulation in the model coincides with a traditional operational
definition and is well understood. So far all the presheaf models coping with
higher-order features are based on an “interleaving” treatment of concurrency, as
presently we cannot see how to combine facility at higher-order with independence
of the kind found in event structures and Petri nets.
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