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The Computational Complexity of Some
Problems of Linear Algebra

Jonathan F. Buss∗ Gudmund S. Frandsen†

Jeffrey O. Shallit∗

September 30, 1996

Abstract

We consider the computational complexity of some problems deal-
ing with matrix rank. Let E, S be subsets of a commutative ring R.
Let x1, x2, . . . , xt be variables. Given a matrix M = M(x1, x2, . . . , xt)
with entries chosen from E ∪ {x1, x2, . . . , xt}, we want to determine

maxrankS(M) = max
(a1,a2,...,at)∈St

rank M(a1, a2, . . .at)

and
minrankS(M) = min

(a1,a2,...,at)∈St
rank M(a1, a2, . . .at).

There are also variants of these problems that specify more about the
structure of M , or instead of asking for the minimum or maximum

∗Supported in part by grants from the Natural Sciences and Engineering Research
Council (NSERC) of Canada and by the Information Technology Research Centre
(ITRC) of Ontario. Address: Department of Computer Science, University of Water-
loo, Waterloo, Ontario N2L 3G1, CANADA. Email: jfbuss@math.uwaterloo.ca and
shallit@graceland.uwaterloo.ca
†Supported by the ESPRIT Long Term Research Programme of the EU, under project

number 20244 (ALCOM-IT), and by Basic Research in Computer Science (BRICS), Cen-
tre of the Danish National Research Foundation. Address: Department of Computer
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gsfrandsen@daimi.aau.dk

1



rank, ask if there is some substitution of the variables that makes the
matrix invertible or noninvertible.

Depending on E, S, and on which variant is studied, the complex-
ity of these problems can range from polynomial-time solvable to ran-
dom polynomial-time solvable to NP-complete to PSPACE-solvable to
unsolvable.

1 Introduction

We consider the computational complexity of some problems of linear algebra
— more specifically, problems dealing with matrix rank.

Our mathematical framework is as follows. If R is a commutative ring,
then Mn(R) is the ring of n × n matrices with entries in R. The rows αi of
a matrix are linearly independent over R if

∑
i ciαi = 0 (with ci ∈ R) implies

ci = 0 for all i, and similarly for the columns.
The determinant of M = (aij)1≤i,j≤n is defined by

detM =
∑

P=(i1,i2,...,in)

(sgnP )a1,i1a2,i2 · · · an,in,

where

P =
(

1 2 · · · n
i1 i2 · · · in

)
is a permutation of {1, 2, . . . , n}. A matrix is invertible over R if and only if
its determinant is invertible over R [10].

The rank of a matrix M is the maximum number of linearly independent
rows. Rank can also be defined as the maximum number of linearly indepen-
dent columns, and it is well-known [10] that these two definitions coincide.
We denote the rank of M as rank M . An n × n matrix is invertible iff its
rank is n.

A k×k submatrix of M is the array formed by the elements in k specified
rows and columns; the determinant of such a submatrix is called a k × k
minor. The rank of M can also be defined as the maximum size of an
invertible minor.

The problems we consider are along the following lines: let E, S be two
subsets of R. We are given an n × n matrix M = M(x1, x2, . . . , xt) with
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entries chosen from E ∪ {x1, x2, . . . , xt}, where the xi are distinct variables.
We want to compute

maxrankS(M) = max
(a1,a2,...,at)∈St

rank M(a1, a2, . . . , at) (1)

minrankS(M) = min
(a1,a2,...,at)∈St

rank M(a1, a2, . . . , at). (2)

Evidently there is no need to distinguish between column rank and row
rank in this definition. We do not necessarily demand that we be able to
exhibit the actual t-tuple that achieves the maximum or minimum rank.

One operation that we will frequently use in this paper is taking a list of
matrices M1, M2, . . . , Mk and constructing a large matrix M by placing each
of the Mi consecutively on the main diagonal, and zeroes elsewhere. For the
result we write M = diag(M1, M2, . . . , Mk). In this case, we have

detM =
∏

1≤i≤k

detMi; (3)

minrankS(M) ≥
∑

1≤i≤k

minrankS(Mi); (4)

maxrankS(M) ≤
∑

1≤i≤k

maxrankS(Mi). (5)

We will show that, depending on the arrangement of the variables in M ,
and on the sets E, S, the complexity of the minrank and maxrank problems
ranges from being in P to being unsolvable.

There are several reasons for studying these problems. First, the problems
seem — to us, at least — natural questions in linear algebra. Second, a
version of the minrank problem is very closely related to determining the
minimum rank rational series that approximates a given formal power series
to a given order; see [7, 16] and Section 15 of the present paper. Third,
the maxrank problem is related to the problem of matrix rigidity which has
recently received much attention [17, 6, 11], and may help explain why good
bounds on matrix rigidity are hard to obtain.
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2 Some examples

Before describing our complexity results, we illustrate the minrank and max-
rank problems with some examples. First, consider the matrix

M =

 x1 x2 2
4 x1 4
0 0 x3

 .

Then minrank(M) = 1, attained at (x1, x2, x3) = (2, 1, 0). Also,
maxrank(M) = 3, attained at (x1, x2, x3) = (2, 2, 1).

Note that both minrankS(M) and maxrankS(M) may depend on S. For
example, if S = Q and

M =
[

1 x
x 2

]
then minrankS(M) = 2, while if S = R then minrankS(M) = 1, as can easily
be seen by taking x =

√
2. Similarly if S = R and

M =
[

1 x
x −2

]

then minrankS(M) = 2, while if S = C then minrankS(M) = 1, as can be
seen by taking x =

√
2i. Clearly minrankS(M) ≥ minrankS′(M) if S ⊆ S ′.

A similar phenomenon occurs for the maxrank problem. For example, if
S = GF (2), the finite field with two elements, and

M =
[

x x
1 x

]
,

then maxrankS(M) = 1. On the other hand, if S = GF (4), then
maxrankS(M) = 2, as can be seen by taking x = α, where α is a generator
of the multiplicative group of S. Clearly maxrankS(M) ≤ maxrankS′(M) if
S ⊆ S ′.

3 Summary of Results

Most of our complexity results for the computation of minrank and max-
rank are naturally phrased in terms of the decision problems given in Table 1.
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Fixed: R, a commutative ring.
E, S ⊆ R.

Input: M , an n × n matrix with entries from E ∪ {x1, . . . , xt}.
k, a non-negative integer.

Problem Input Decide
MINRANK M, k min(a1,...,at)∈St rank M(a1, . . . at) ≤ k ?
MAXRANK M, k max(a1,...,at)∈St rank M(a1, . . . at) ≥ k ?
SING M ∃(a1, . . . , at) ∈ St such that detM(a1, . . . at) = 0 ?

NONSING M ∃(a1, . . . , at) ∈ St such that detM(a1, . . . at) 6= 0 ?

Table 1: Decision problems.

MAXRANK
S E NONSING SING MINRANK

GF (q) {0, 1} ⊆ E ⊆ GF (q) NP-complete
Z r.e.; undecidable
Q r.e.; NP-hard
R {0, 1} ⊆ E ⊆ Q RP PSPACE; NP-hard
C

Table 2: Complexity bounds for decision problems.

We have introduced two special problems, SING(ularity) and
NONSING(ularity), which could possibly be easier than the more general min-
rank/maxrank problems.

Table 2 summarizes our results on the complexity of the four decision
problems. We put the problems MAXRANK and NONSING together, since we
have not been able to separate their complexities, although we do not know
whether they have the same complexity in general. We have good evidence
that the MINRANK and SING problems do not in general have the same com-
plexity. Over C, the MINRANK problem is NP-hard (Section 11), whereas SING
has a random polynomial-time solution (Section 5).

The exact value of E is not important for our bounds. All our lower
bounds are valid for E = {0, 1} and all our upper bounds are valid when
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E is Q or a finite-dimensional field extension of Q (respectively, when E is
GF (q) or a finite-dimensional field extension of GF (q), when the character-
istic is finite). For the upper bounds, we assume the input size to be the
total number of bits needed to list each separate entry of the matrix M ,
representing numbers using the standard binary representation, representing
constants in a finite-dimensional algebraic extension by arithmetic modulo
an irreducible polynomial, and representing polynomials by the vectors of
their coefficients. The upper bounds are also robust in another sense. We
can allow entire multivariate polynomials (with coefficients from E) in a sin-
gle entry of the matrix M and still preserve our upper bounds, provided
such a multivariate polynomial is specified by an arithmetic formula using
binary multiplication and binary addition, but no power symbol, so that the
representation length of a multivariate polynomial is at least as large as its
degree.

S is significant for the complexity, as shown in Table 2. However, our
upper and lower bounds for S = C are valid for S being any algebraically
closed field (if S has finite characteristic, E must also, of course).

The results of Table 2 fall in three groups according to the proof tech-
nique used. The random polynomial-time upper bounds use a result due to
Schwartz [15]. The undecidability result for Z uses a combination of Valiant’s
result that the determinant is universal [18] and Matiyasevich’s proof that
Hilbert’s Tenth Problem is unsolvable [12]. All the remaining problems of the
result table (those that are not marked either RP or undecidable) are equiv-
alent (under polynomial-time transformations) to deciding the existential
first-order theory over the field S. The equivalence implies the NP-hardness
of all these problems, and lets us use results by Ierardi [9] and Canny [3]
to obtain the PSPACE upper bounds for C and R, respectively. Since it is
presently an open problem whether the existential first-order theory overQ is
decidable or not, we suspect it will be difficult to determine the decidability
status of MINRANK and SING over Q.

We also consider the special case when each variable in the matrix occurs
exactly once. None of our lower bound proofs are valid under this restriction,
and we have improved some of the upper bounds. See Table 3 for a summary.
The improved upper bounds all rely on the determinant polynomial being
multi-affine when no variable occurs twice. In such a case the RP-algorithm
for singularity over C can be generalized to work for singularity over any
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MAXRANK
S E NONSING SING MINRANK

GF (q) GF (q) NP
Z r.e.
Q
R Q RP PSPACE
C

Table 3: Upper bounds for decision problems, when each variable occurs
exactly once.

field.
For a very special kind of matrix, viz. row-partitionable matrices where

each variable occurs exactly once, we give in Section 15 a polynomial time
algorithm for computing the minimum possible rank. The algorithm works
in the case where S is any field.

Since minrank is at least NP-hard to compute over Z or a field, one might
consider the existence of an efficient approximation algorithm. Suppose, how-
ever, that for some fixed S (S being Z or a field) and E = {0, 1}, there is
a polynomial time algorithm that when given matrix M = M(x1, . . . , xt)
always returns a vector (a1, . . . , at) ∈ St satisfying rank (M(a1, . . . , at)) ≤
(1 + ε) · minrankS(M). Then the assumption P 6= NP implies ε ≥ 7

1755 ≈
0.0039886, as we prove in Section 13. The proof uses reduction from
MAXEXACT3SAT; i.e., we use a known nonapproximability result for
MAXEXACT3SAT [1] combined with a MAXSNP-hardness proof for the min-
rank approximation problem.

4 Computing maxrank over infinite fields

In this section we show how to compute maxrank with a (Monte-Carlo)
random polynomial-time algorithm over any infinite field.

We will also show that to solve the problem for R = S = F , it suffices to
consider the case R = S = Z, when F contains Z.
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Our main tool is the following lemma, adapted from a paper of
Schwartz [15]:

Lemma 1 Let p(x1, x2, . . . , xt) be a multivariate polynomial of total degree
at most d which is not the zero polynomial, and let F be a field containing
at least 2d distinct elements. Then if V is any set of 2d distinct elements of
F , p(a1, a2, . . . , at) = p(a) 6= 0 for at least 50% of all a ∈ V d.

Theorem 2 Let M = M(x1, x2, . . . , xt) be a n × n matrix with entries in
F ∪ {x1, x2, . . . , xt}. Let V ⊆ F be a set of at least 2n distinct elements (If
Z ⊆ F then V = {−n, 1 − n, . . . , −1, 0, 1, 2, . . . , n} may be used). Choose a
t-tuple (a1, a2, . . . , at) ∈ V t at random. Then with probability at least 1/2, we
have

maxrankF (M) = rank M(a1, a2, . . . , at).

Proof. Suppose maxrankF (M) = k. Then there exists some t-tuple
(a1, a2, . . . , at) ∈ F t such that rank M(a1, a2, . . . , at) = k. Hence, in particu-
lar, there must be some k × k minor of M(a1, a2, . . . , at) with nonzero deter-
minant. Consider the corresponding k×k submatrix M ′ of M(x1, x2, . . . , xt).
Then the determinant of M ′, considered as a multivariate polynomial p in the
indeterminates x1, x2, . . . , xt, cannot be identically zero (since it is nonzero
when x1 = a1, . . . , xt = at). It now follows from Lemma 1 that p is nonzero
for at least half of all elements of V t. Thus for at least half of all these t-
tuples (a1, a2, . . . , at), the corresponding k × k minor of M must be nonzero,
and hence M(a1, a2, . . . , at) has rank at least k. Since maxrankF (M) = k,
it follows that rank M(a1, a2, . . . , at) = k for at least half of the choices
(a1, a2, . . . , at) ∈ V t.

The theorem implies a random polynomial-time algorithm to compute
maxrankF (M) over an infinite field F . Choose r t-tuples of the form
(a1, a2, . . . , at) independently at random, and compute rank M(a1, a2, . . . , at)
for each of them, obtaining ranks b1, b2, . . . , br. Then with probability at least
1 − 2−r, we have maxrankF (M) = max1≤i≤r bi.

It also follows from Theorem 2 that over an infinite field F , the quantity
maxrank(M) cannot change when we consider an extension field F ′ with
F ⊆ F ′, or when we consider an infinite subset S ⊆ F . The algorithm runs
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exactly the same way so long as V ⊆ S ⊆ F ⊆ F ′. In particular, if F has
characteristic zero, maxrankF (M) = maxrankZ(M). Therefore the theorem
also implies that the decision problem MAXRANK is in the complexity class RP
for E = Q and Z ⊆ S.

5 The singularity problem over an algebraically
closed field

In this section we consider the complexity of the decision problem SING in
the case R = S = F , where F is an algebraically closed field. We will show
that in this case, SING ∈ RP. First, we prove the following lemmas.

Lemma 3 Let p(x1, x2, . . . , xt) be a multivariate polynomial over an infinite
field F . Then p is identically zero iff p is the zero polynomial.

Proof. If p is the zero polynomial, then the result is clear.
Otherwise assume p is not the zero polynomial. We prove the result by

induction on t, the number of variables. If t = 1, then p is a univariate
polynomial of degree d for some d ≥ 1. This polynomial has at most d
zeroes, and since F is infinite, p(a) 6= 0 for all but finitely many a ∈ F .

Now assume the result is true for all t < k; we prove it for t = k. Choose
a variable x in p that occurs with highest degree, say d, and write p as a
polynomial in x with multivariate coefficients, say p = zdx

d + · · · + z1x + z0.
Since p is nonconstant, we have d ≥ 1. Now zd is a polynomial in k − 1
in variables that is not the zero polynomial; hence by induction zd is not
identically zero. Choose an assignment to the variables such that zd 6= 0,
and call the new polynomial q = q(x). Then q is not the zero polynomial,
and hence by induction is not identically zero.

Lemma 4 Let p(x1, x2, . . . , xt) be a nonconstant multivariate polynomial
over a field F . Then if F is algebraically closed, p takes on all values in F .

Proof. We prove the result by induction on t, the number of variables. If
t = 1, then p = p(x) is a nonconstant univariate polynomial. To show p takes
on all values in F , consider the equation p(x) − c = 0 for c ∈ F . Since F is
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algebraically closed, this equation has a solution x = x0, and then p(x0) = c.
Since c was arbitrary, the result follows.

Now consider the case t > 1. Write p = y1 +y2 + · · ·+yr, where each yi is
a (possibly constant) monomial of the form aix

ei1
1 xei2

2 · · · xeit
t . Furthermore,

assume that all terms are collected, so that we never have

i 6= j and (ei1, ei2, . . . , eit) = (ej1, ej2, . . . , ejt). (6)

Choose a term yi in which some variable, say x, occurs in the form xe,
and e is as large as any exponent occurring in any monomial of p. Since p is
nonconstant, we must have e ≥ 1. Now think of p as a polynomial in x with
multivariate coefficients, and write p = zexe + · · · + z1x + z0, where each zi

is a polynomial in the remaining variables. We claim that ze is not the zero
polynomial; if it were, then (6) would be violated. Hence by Lemma 3 there
is some assignment to the variables in ze that makes it nonzero. Make this
assignment to all variables in p; the result is a nonconstant polynomial in x,
and the argument for t = 1 then applies.

Theorem 5 If R = S = F , and F is algebraically closed, then SING ∈ RP.

Proof. Consider the following algorithm: Let V ⊆ F be a set of at least 2n
distinct elements (if Z ⊆ F then V = {−n, 1 − n, . . . , −1, 0, 1, 2, . . . , n} may
be used). Choose r t-tuples a1, a2, . . ., ar at random from V t, and evaluate
the determinant detM(ai) for 1 ≤ i ≤ r. If at least two different values are
obtained, return “yes”. If all the values obtained are the same, and all are
nonzero, return “no”. If all the values are the same, and all are zero, return
“yes”.

We claim that if there exists a t-tuple a such that detM(a) = 0, then
this algorithm returns the correct result with probability at least 1− 1/2r−1 ,
while if there is no such t-tuple, the algorithm always returns the correct
result.

To prove the claim, define p(x1, x2, . . . , xt) = detM(x1, x2, . . . , xt), a mul-
tivariate polynomial. If p is nonconstant, then by Lemma 4 it takes on all
values in F , including 0. If p is constant and nonzero, then it cannot take
on the value 0. Finally, if p is constant and zero, then it clearly takes on the
value 0.

It now follows that our algorithm always returns the correct result except
possibly when all the values obtained are the same and nonzero. In this
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case we return “no”, whereas if we are unlucky the answer could possibly be
“yes”. However, if the polynomial p is not the constant polynomial, then the
polynomial p − p(a1) is nonzero, and by Lemma 1 we know p(ai) 6= p(a1)
with probability at least 1/2 for 2 ≤ i ≤ r. It follows that the probability of
making an error in this case is bounded by 1/2r−1.

6 Universality of the determinant

In this section, we prove a result that underlies all our lower bounds for
the singularity and minrank problems: that any multivariate polynomial
is the determinant of a fairly small matrix. The result was first proven by
Valiant [18], but since we need a slightly modified construction and the result
is fundamental to our lower bound proofs, we make this paper self-contained
and give the details of the construction.

To state the result, we need a few definitions. Let an arithmetic formula
F be a well-formed formula using constants, variables, the unary operator
{−} and the binary operators {+, ·}. The length of a formula F (denoted by
|F |) is defined as the total number of occurrences of constants, variables and
operators. For example

|3xy − z − 3| = |3 · x · y + (−(z)) + (−(3))| = 11

and
|3(x + y − 4) + 5z| = |3 · (x + y + (−(4))) + 5 · z| = 12.

(Note that our definition of formula length is not the same as Valiant’s.)

Proposition 6 Let R be a commutative ring. Let F be an arithmetic for-
mula using constants from E ⊆ R and variables from {x1, . . . , xt}.

For some n ≤ |F | + 2, we may in time nO(1) construct an n × n matrix
M with entries from E ∪ {0, 1} ∪ {x1, . . . , xt} such that pF = detM and
minrankR(M) ≥ n−1, where pF denotes the polynomial described by formula
F .

Proof. We use a modified version of Valiant’s construction [18]. The main
difference is that we insist that the rank of the constructed n × n matrix
cannot be less than n − 1 under any substitution for the variables. We
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also consider the negation operation explicitly, which allows us to avoid the
use of negative constants in the formula, when wanted. Our construction
is essentially a modification of Valiant’s construction to take care of these
extra requirements combined with a simplification that leads to matrices of
somewhat larger size than Valiant’s original construction.

Let a formula F be given. The construction falls in two parts. In the
first part, we construct a series-parallel s-t-graph GF with edge weights from
E∪{1}∪{x1, . . . , xt} by induction on the structure of F as sketched in Figure
1. To such a series-parallel s-t-graph GF , we associate the polynomial

p(GF ) =
∑

π is s-t-path in GF

(−1)length(π) ·
∏

e an edge of π
weight(e).

By induction in the structure of F , one may verify that pF = p(GF ).
In the second part of the construction, we change GF into a cyclic graph

G′F by adding an edge from t to s of weight 1 and adding self-loops with
weight 1 to all vertices different from s. The matrix M = {mij} is simply
the weight matrix for G′F ; i.e., mij is the weight of the edge from vertex i to
vertex j if it exists and mij = 0 otherwise. The determinant of M is a sum of
monomials, where each monomial is the product of the weights in a specific
cycle cover of G′F (with sign ±1 depending on the length of the cycles). But
because of the special form of G′F each cycle cover will consist of a number
of self-loops (possibly zero) and a single cycle arising from an s-t-path in GF

combined with the added edge from t to s. Hence, each s-t-path in GF gives
rise to one monomial in detM , and the sign of the monomial will be −1 if
and only if the path has odd length. Thus detM = p(GF ) = pF .

To see the lower bound on minrank, consider the (n−1)×(n−1) submatrix
M ′ of M arising from erasing the column and row corresponding to the
vertex s. The determinant of M ′ has one monomial for each cycle cover of
G′F − {s}. However, removing the vertex s breaks all cycles corresponding
to paths from s to t in GF , but with s removed all the remaining vertices
have a self loop, so there is precisely one cycle cover and it consists of all the
self-loops. Since all the self-loops have weight 1, we find that detM ′ = 1, so
minrankR(M) ≥ n − 1.

The bound 2 + |pF | on the size of GF arises because the graph GF has in
addition to the vertices s and t at most one vertex for each application of a
rewrite rule from Figure 1.
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The series-parallel s-t-graph GF with edge weightsFormula F

c 1

x

ts

sVariable x

Constant c

s = s1F = −F1 GF1 t
1

t1 = s2

s = s1F = F1 · F2 GF2GF1

GF2

t = t1 = t2F = F1 + F2 s = s1 = s2

GF1

t = t2

t1

t
1

Figure 1: Inductive construction of GF .
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F : x1(x2 − 4x3 + x4) + x5

1

1

1

1

1 1
11

1 1
x1 1 x2

1

x5

1

x4

4

1 x3

11

1

x1 1 x2

1

x5

1

x4

4

1 x3

11

1

ts

GF : s t

1

G′F :

M =



0 x1 0 0 0 0 0 0 0 x5 0
0 1 1 0 0 0 0 0 0 0 0
0 0 1 x4 x2 4 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 x3 0 0
0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0 0 1


detM = x1(x2 − 4x3 + x4) + x5

Figure 2: Constructing a matrix with specified determinant.
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Figure 2 illustrates the construction given in this proof on a specific ex-
ample.

7 The singularity problem over the integers

In this section we prove that the decision problem SING is unsolvable for
S = Z and E = {0, 1}.

Theorem 7 (Undecidability of SING over Z)
Given a matrix M = M(x1, . . . , xt) with entries from {0, 1}∪{x1, . . . , xt},

it is undecidable whether there exist a1, . . . , at ∈ Z such that
detM(a1, . . . , at) = 0

Proof. We reduce from Hilbert’s Tenth Problem [12]. An instance of Hilbert’s
Tenth Problem is a Diophantine equation p(x1, . . . , xt) = 0, where p is a
multivariate polynomial with integer coefficients. We construct a formula for
p using only +, −, ·, 0, 1 in addition to the indeterminates by replacing each
integer constant c ≥ 2 having binary representation c =

∑l
i=0 bi2i with the

formula

b0 + (1 + 1)[b1 + (1 + 1)[b2 + (1 + 1)[b3 + · · · + (1 + 1)[bl] · · ·]]].

By the construction of Proposition 6, the resulting formula fp for the poly-
nomial p(x1, . . . , xt) is turned into a matrix M = M(x1, . . . , xt) such that
detM(x1, . . . , xt) = p(x1, . . . , xt). The assertion of the theorem follows from
the undecidability of Hilbert’s Tenth Problem.

8 Existential first-order theories

In this section, we describe the syntax of existential first order theories over
fields and state some complexity results for the corresponding decision prob-
lems. We will apply this later to our rank problems.

For any field F , we have arithmetic operations +, ·, constants 0, 1 and
equality relation =. Adding the Boolean operations ∧, ∨, ¬ and the existen-
tial quantifier ∃, we get the first order language specified by the following
grammar. (Note that we require all quantifiers to be collected in a prefix to
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the formula, thereby avoiding implicit universal quantification and alterna-
tion of quantifiers.)

V ::= x1 | x2 | x3 | · · · | xn | · · ·
C ::= 0 | 1
AT ::= V | C
T ::= AT | (T+ T) | (T · T)
AF ::= T = T
BF ::= AF | (¬BF) | (BF ∧ BF) | (BF ∨ BF)
F ::= BF | ∃ V F

A sentence is a formula with no free variables (all variables are bound by
quantifiers).

We say that sentence ϕ is true in the field F (the field F is a model of
the sentence ϕ), if the sentence evaluates to true, when quantifications are
interpreted over elements in F, and arithmetic operations and constants are
given the natural interpretations, and we write

F |= ϕ.

For a more formal definition of the semantics, see, for example, Enderton [5].
Examples:

GF (2) 6|= ∃x. x2 + x + 1 = 0;
Q |= ∃x∃y. xy = 1 ∧ x2 6= 1;
R 6|= ∃x∃y. (1 − x)y = 1 ∧ x(1 − y) = 1;
C |= ∃z. z2 + 1 = 0.

The examples use both squaring and subtraction, which are shorthands
for more complicated formulas using {+, ·} only. For example,

∃x∃y. (1 − x)y = 1 ∧ x(1 − y) = 1

is shorthand for

∃x∃y∃x′∃y′. (1 + x′)y = 1 ∧ x(1 + y′) = 1 ∧ x + x′ = 0 ∧ y + y′ = 0.

For a field F , we define the existential theory of F :

ETh(F ) = {ϕ : F |= ϕ}.

The decision problem for ETh(F ) is: on input ϕ, decide whether F |= ϕ.
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F Upper bound on ETh(F ) reference
GF (q) NP
Q recursively enumerable
Qp doubly exponential space Egidi, 1993 [4]
R PSPACE Canny, 1988 [3]; Renegar, 1992 [14]
C PSPACE Ierardi, 1989 [9]

Table 4: Upper bounds on deciding ETh(F )

Proposition 8 For F being any fixed field, ETh(F ) is NP-hard.

Proof. We reduce from 3SAT. Let C be an instance of 3SAT; i.e.,

C ≡ C1 ∧ C2 ∧ · · · ∧ Ck

where Ci ≡ (li1 ∨ li2 ∨ li3) and lij ∈ {y1, y2, . . . , yt} ∪ {y1, y2, . . . , yt}.
We modify C to be an arithmetic formula fC by replacing each yi with the
atomic formula xi = 1 and replacing each yi with the atomic formula xi = 0.
Clearly,

C is satisfiable iff F |= ∃x1 ∃x2 · · · ∃xt . fC.

The NP-hardness follows from the NP-hardness of 3SAT.

The complexity of deciding ETh(F ) seems to depend on the field F .
Table 4 summarizes the upper bounds that we are aware of.

ETh(GF (q)) is in NP for any fixed finite field (GF (q)), since one may
replace the variables with nondeterministically chosen field elements and eval-
uate the resulting variable free formula in polynomial time.

Similarly, ETh(Q) is recursively enumerable, but to the best of our knowl-
edge it is still an open problem whether ETh(Q) is in fact decidable.

The doubly exponential space bound for the field of p-adic numbers, Qp

(for some fixed prime p) is proven for a more general theory than the one
considered here. It is quite conceivable that a better bound can be found for
our existential sentences.

One may get a PSPACE bound for C as a corollary to the PSPACE
bound for R, since arithmetic in C can be represented by arithmetic on pairs
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F = GF (q) Rewrite rules
Step 1 t(x) = 0 → t(x)q−1 = 0
Step 2 ¬t(x) = 0 → 1 − t(x) = 0

(t1(x) = 0) ∨ (t2(x) = 0) → t1(x) · t2(x) = 0
(t1(x) = 0) ∧ (t2(x) = 0) → 1 − (1 − t1(x)) · (1 − t2(x)) = 0

Step 3 t(x) = 0 → detM ′(x) = 0

Table 5: Transforming an existential sentence to a singularity problem.

of numbers in R. However, the proof of Ierardi [9] uses a different technique
and holds for any algebraically closed field.

9 Decision problems over finite fields

In this section, we prove that both the singularity problem and the nonsingu-
larity problem over a fixed finite field are as hard as deciding the correspond-
ing existential first-order theory. In particular, all four decision problems
that we defined are NP-hard (and NP-complete).

Lemma 9 Let F = GF (q) be a fixed finite field.
Given an existential sentence ∃x1 · · · ∃xt. ϕ(x1, . . . xt) of length m, we

can in time nO(1) construct two n×n matrices M ′ and M ′′ with entries from
{0, 1} ∪ {x1, . . . , xt}, where n = O(mq) such that

∃x1 · · · ∃xt. ϕ(x1, . . . xt) iff ∃(a1, . . . , at) ∈ F t. detM ′(a1, . . . , at) = 0

and

∃x1 · · · ∃xt. ϕ(x1, . . . xt) iff ∃(a1, . . . , at) ∈ F t. detM ′′(a1, . . . , at) 6= 0.

Proof. To construct matrix M ′, we modify the unquantified formula ϕ using
the rewriting rules of Table 5.

Initially, we may assume that each atomic logic formula is on the form
t(x) = 0, for some arithmetic term t(x). In step 1, we use the fact that over
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F = GF (q) Rewrite rules
Step 1 t(x) = 0 → 1 − t(x)q−1 6= 0
Step 2 ¬t(x) 6= 0 → 1 − t(x) 6= 0

(t1(x) 6= 0) ∨ (t2(x) 6= 0) → 1 − (1 − t1(x)) · (1 − t2(x)) 6= 0
(t1(x) 6= 0) ∧ (t2(x) 6= 0) → t1(x) · t2(x) 6= 0

Step 3 t(x) 6= 0 → detM ′′(x) 6= 0

Table 6: Transforming an existential sentence to a nonsingularity problem

the field GF (q), the function x 7→ xq−1 maps 0 to 0 and maps any nonzero
number to 1.

Following step 1, we may assume that any arithmetic term takes only
values in {0, 1} under all possible assignments to variables. This assumption
should make the correctness of the three rewrite rules in step 2 obvious.

When no more rewrite rules from step 2 are applicable, we have com-
pressed ϕ(x) to an equivalent atomic formula t(x) = 0. In step 3, we con-
struct a matrix M ′ such that detM ′ = t(x) using Proposition 6.

When using the rewriting rules, any arithmetic term occurring on the
right hand side of a rule is an arithmetic formula and should stay a formula;
i.e., it should not be expanded into a sum of monomials, since such a sum
could be exponentially large.

The construction of matrix M ′′ is completely analogous, using the rewrite
rules of Table 6.

Corollary 10 Let F be a fixed finite field GF (q). For S = F and {0, 1} ⊆
E ⊆ GF (q), the decision problems MAXRANK, NONSING, MINRANK and SING
are all NP-complete.

Proof. Clearly, these problems are in NP, since we may nondeterministically
guess an assignment to the variables, and compute the rank of the resulting
constant matrix in polynomial time.

The NP-hardness follows from Lemma 9 combined with Proposition 8.
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F = Q or R Rewrite rules
Step 1 ¬(F1 ∧ F2) → (¬F1) ∨ (¬F2)

¬(F1 ∨ F2) → (¬F1) ∧ (¬F2)
Step 2 ¬t(x) = 0 → 1 − z · t(x) = 0
Step 3 t(x′) = 0 → t(x′)2 = 0
Step 4 (t1(x′) = 0) ∨ (t2(x′) = 0) → t1(x′) · t2(x′) = 0

(t1(x′) = 0) ∧ (t2(x′) = 0) → t1(x′) + t2(x′) = 0
Step 5 t(x′) = 0 → detM(x′) = 0

Table 7: Transforming an existential sentence to a singularity problem, over
Q and R.

10 Lower bounds for singularity over Q and
R.

In this section, we prove that the singularity problem over either of the fields
Q and R is as hard as deciding the corresponding existential first-order theory.
In particular, the problems are NP-hard.

Lemma 11 Let F be either of the fields Q or R.
Given an existential sentence ∃x1 · · · ∃xt. ϕ(x1, . . . xt) of length m, we

can in time nO(1) construct an n × n matrix M with entries from {0, 1} ∪
{x1, . . . , xt′}, where n = O(m) such that

∃x1 · · · ∃xt. ϕ(x1, . . . xt) iff ∃(a1, . . . , at′) ∈ F t′. detM(a1, . . . , at′) = 0.

Proof. The proof is analogous to the proof of Lemma 9, but we handle
negation differently.

To construct the matrix M , we modify the unquantified formula ϕ using
the rewriting rules of Table 7.

Steps 3-5 in Table 7 correspond closely to steps 1-3 in Table 5, except
that we have no rule for negation. The first two steps of Table 7 serve to
remove negation.

In step 1, we use de Morgan’s laws to move all negations down so that
they are applied directly to the atomic formulas.

In step 2, we replace each negated atomic formula by an unnegated for-
mula. We introduce a new variable z for each such atomic formula, which
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represents the inverse of the term t(x). These new variables must be exis-
tentially quantified.

In step 3, we use the fact that over each of the fields Q and R, the function
x 7→ x2 maps 0 to 0 and maps any nonzero number to a positive number.

Following step 3, we may assume that any arithmetic term takes only
nonnegative values under all possible assignments to the variables. This
assumption should make the correctness of the two rewrite rules in step 4
obvious.

When no more rewrite rules from step 4 are applicable, we have com-
pressed ϕ(x) to an equivalent atomic formula t(x′) = 0. In step 5, we con-
struct a matrix M such that detM = t(x′) using Proposition 6.

Corollary 12 Let F be one of the fields Q or R. The decision problem SING
for S = F and E = {0, 1} is NP-hard.

Proof. Immediate from Lemma 11 and Proposition 8.

11 Lower bound for minrank over a field

We have just proven for the specific fields GF (q), Q and R that the decision
problem SING is as hard as deciding the corresponding existential first order
theory. It is unlikely that this result can be generalized to an arbitrary field,
since we have found a random polynomial-time algorithm for SING over C
and the existential first-order theory is NP-hard over any field, in particular
over C. However, only one step in the proofs of Lemmas 9 and 11 does not
seem to generalize to an arbitrary field — namely the reduction of a sys-
tem (conjunction) of equations to a single equation, which is necessary for
encoding a general existential sentence as a singularity problem. However,
we observe that a system of equations can be encoded as a single minrank
problem. In this section, we show that over any field the more general deci-
sion problem MINRANK is indeed as hard as the corresponding existential first
order theory. Our construction will also lead to an alternative proof for the
hardness of the singularity problem over the fields GF (q), Q and R.

Lemma 13 Let F be a field.
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Given an existential sentence ∃x1 · · · ∃xt . ϕ(x1, . . . , xt), of length m, we
can in time mO(1) construct an equivalent existential sentence
∃x1 · · · ∃xt′ . ψ(x1, . . . , xt′) such that ψ contains neither negation nor dis-
junction; i.e., ψ is a conjunction of atomic formulas,

ψ(x′) ≡ p1(x′) = 0 ∧ · · · ∧ pr(x′) = 0

for some arithmetic formulas pi, i = 1, . . . r, and

F |= ∃x. ϕ(x) iff F |= ∃x′. ψ(x′).

Proof. First we remove all negations from ϕ, using the rewriting rules of
step 1 and 2 in Table 7, which are valid in any field.

Without loss of generality, we may therefore assume that we are given
the existential sentence

∃x1 · · · ∃xt . ϕ(x1, . . . , xt)

where ϕ is an unquantified formula without negations using variables
x1, . . . , xt.

Let ϕ have s subformulas f1, . . . , fs, each of which may be atomic or
composite. For each such subformula fi, we introduce a new (existentially
quantified) variable zi, and we construct a new formula f ′i that is either
atomic or the conjunction of two atomic formulas. The f ′is will be constructed
such that

∃x1 · · · ∃xt. “fi is satisfied”
m

∃x1 · · · ∃xt∃z1 · · · ∃zt. “zi = 0 and f ′j is satisfied
for all subformulas fj of fi (including fi)”.

(7)

If f1 is the subformula corresponding to the entire formula ϕ, the implications
yield

∃x . ϕ(x)
m

∃x, z. z1 = 0 ∧ f ′1(x, z) ∧ · · · ∧ f ′s(x, z).

For each original subformula fi the new formula f ′i is constructed as
described in Table 8. By induction in the structure of fi, one may verify
that this construction does satisfy (7), from which the theorem follows.
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fi f ′i
pi(x) = 0 pi(x) = zi

fj ∨ fk zj · zk = zi

fj ∧ fk zj · zk = zi ∧ zj + zk = zi

Table 8: Subconstruction for elimination of ∨.

Lemma 14 Let F be a field.
Given an existential sentence ϕ of length m, we can in time nO(1) con-

struct an integer k and an n × n matrix with entries from {0, 1} ∪
{x1, x2, . . . , xt}, where n = O(m) such that

minrankF (M) ≤ k iff F |= ϕ.

Proof. Let an existential sentence be given. First we remove all negations
and disjunctions using the construction of Lemma 13.

Without loss of generality, we may therefore assume that we are given
the existential sentence

∃x. p1(x) = 0 ∧ · · · ∧ pr(x) = 0

for some arithmetic formulas pi, i = 1, . . . r.
By Proposition 6, we may for each pi(x1, . . . , xt) find an ni×ni matrix Mi

with entries from {0, 1} ∪ {x1, x2, . . . , xt} such that detMi = pi(x1, . . . , xt)
and minrankF (Mi) ≥ ni − 1.

Let n =
∑r

i=1 ni, let k =
∑r

i=1(ni−1), and construct the n×n matrix M by
placing M1, . . . , Mr consecutively on the main diagonal and zeroes elsewhere.
Clearly, minrankF (M) ≥ k and rank M = k only when all the polynomials
pi are simultaneously zero; therefore minrankF (M) ≤ k iff F |= ϕ.

Corollary 15 Let F be a field. The decision problem MINRANK for S = F
and E = {0, 1} is NP-hard.

Proof. Immediate from Lemma 14 and Proposition 8.

Lemma 13 can also be used to give alternative proofs for Lemmas 9 and
11.
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Lemma 16 Let an existential sentence ∃x1 · · · ∃xt. ϕ(x1, . . . xt) of length m
be given.

If F = GF (q) is a fixed finite field, then we can in time nO(1) construct
two n×n matrices M ′ and M ′′ with entries from {0, 1}∪{x1, . . . , xt}, where
n = O(mq) such that

F |= ∃x1 · · · ∃xt. ϕ(x1, . . . xt) iff ∃(a1, . . . , at) ∈ F t. detM ′(a1, . . . , at) = 0

and

F |= ∃x1 · · · ∃xt. ϕ(x1, . . . xt) iff ∃(a1, . . . , at) ∈ F t. detM ′′(a1, . . . , at) 6= 0.

If F is one of the fields Q and R then we can in time nO(1) construct an
n×n matrix M with entries from {0, 1}∪{x1, . . . , xt}, where n = O(m) such
that

F |= ∃x1 · · · ∃xt. ϕ(x1, . . . xt) iff ∃(a1, . . . , at) ∈ F t. detM(a1, . . . , at) = 0.

Proof. Let an existential sentence be given. First we remove all negations and
disjunctions using the construction of Lemma 13. Without loss of generality,
we may therefore assume that we are given the existential sentence

∃x. p1(x) = 0 ∧ · · · ∧ pr(x) = 0

for some arithmetic formulas pi, i = 1, . . . r.
If F is the finite field GF (q), we use the property that the function

x 7→ xq−1 maps 0 to 0 and maps any nonzero number to 1; i.e.,

GF (q) |= ∃x. p1(x) = 0 ∧ · · · ∧ pr(x) = 0
m

GF (q) |= ∃x. 1 − (1 − p1(x)q−1) · . . . · (1 − pr(x)q−1) = 0
m

GF (q) |= ∃x. (1 − p1(x)q−1) · . . . · (1 − pr(x)q−1) 6= 0.

If F is one of the fields Q and R, we use the property that the function
x 7→ x2 maps 0 to 0 and maps any nonzero number to a positive number,
i.e.,

F |= ∃x. p1(x) = 0 ∧ · · · ∧ pr(x) = 0
m
F |= ∃x. p1(x)2 + · · · + pr(x)2 = 0.

One may now construct the matrices with the postulated properties using
Lemma 6.
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12 Upper bounds for minrank over a field

In this section, we prove that the minrank problem over a field is no harder
than deciding the corresponding existential first order theory. Combined
with our earlier results, this implies that the decision problem MINRANK is
in fact equivalent (under polynomial-time transformations) to deciding the
corresponding existential first-order theory. In addition we inherit the upper
bounds of Table 4.

We start by giving the reduction for matrices that use only constants 0
and 1, and afterwards extend the result to more general constants.

Lemma 17 Let F be a field.
Given an n × n matrix M with entries from {0, 1} ∪ {x1, x2, . . . , xt}, and

some k ≤ n, we may in time nO(1) construct an existential sentence ϕ such
that

minrankF (M) ≤ k iff F |= ϕ.

Proof. Given (n × n) matrix M with variables x1, x2, ..., xt and constants
from {0, 1}, we express (in a first-order existential sentence) the assertion
that some k columns of M span all columns of M . For this purpose we
introduce n new variables y1, y2, . . . , yn in addition to the variables already
occurring in M . Define the modified matrixM ′, where M ′

ij = yj · Mij; i.e.,
each column of M ′ is a multiple (possibly zero) of the corresponding column
in M . We also introduce n2 new variables z11, . . . , znn forming an n × n
matrix Z. The assertion minrank(M) ≤ k is now equivalent to the following
assertion: it is possible to choose the yj’s and zij’s in such a way that at most
k of the yj’s are nonzero and the matrix equation M ′ · Z = M holds.

Our sentence will be an existential quantification of a conjunction of two
formulas. The first one f1 will assert that at most k of the yj’s are nonzero,
and the second one f2 will assert that the matrix equation M ′ ·Z = M holds.

Construction of f1: We use the elementary symmetric functions defined
by

σj(y1, . . . , yn) =
∑

A⊆{1,...,n} ∧ |A|=j

∏
i∈A

yi,

for j = 1, . . . , n. These functions satisfy the following property: there are at
most k nonzero yj’s if and only if

σk+1(y1, . . . , yn) = 0 ∧ σk+2(y1, . . . , yn) = 0 ∧ · · · ∧ σn(y1, . . . , yn) = 0.
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The “only if” direction is trivially satisfied. For the “if” direction one
can prove the result by induction: For the basis of the induction consider
σn(y1, . . . , yn) =

∏n
i=1 yi. If σn(y1, . . . , yn) = 0 then, since F contains no zero

divisors, we must have some yi = 0, and without loss of generality assume
yn = 0. Since yn = 0, σn−1(y1, . . . , yn) reduces to

∏n−1
i=1 yi, and the argument

can be repeated to prove that in total at most k of the yj’s are nonzero.
We need to find a short formula expressing that σj(y1, . . . , yn) = 0. Con-

sider the polynomial p(z, y1, y2, . . . , yn) = (z + y1)(z + y2) · · · (z + yn) =
zn + σ1(y1, . . . , yn)zn−1 + · · · + σn(y1, . . . , yn). Using this equality, the school
method for multiplying out polynomials gives an arithmetic circuit of size
O(n3) that computes σj(y1, . . . , yn) for all j = 1, . . . , n simultaneously. This
circuit can be understood as a straight-line program of length s = O(n3)
using the operations {+, ·}. Let the atomic formula hi be w = u+ v (respec-
tively w = u · v) if the i’th line of the straight-line program is w ← u + v
(respectively w ← u · v). Without loss of generality, we may assume that the
variables used in the straight-line program are w1, . . . , ws in addition to input
variables y1, . . . , yn and output variables s1, . . . , sn computing σ1, . . . , σn. A
suitable formula for f1 is

f1 ≡ h1 ∧ · · · ∧ hs ∧ sk+1 = 0 ∧ · · · ∧ sn = 0.

Construction of f2: We need to express that M ′ ·Z = M . The ij’th entry
in the matrix product is

∑n
k=1 ykMikzkj. Therefore construct the atomic

formula

gij ≡ y1Mi1z1j + y2Mi2z2j + · · · + ynMinznj = Mij,

and define
f2 ≡ g11 ∧ g12 ∧ · · · ∧ gnn.

The sentence required by the lemma is thus

minrankF (M) ≤ k ≡
∃x1 · · · ∃xt ∃y1 · · · ∃yn ∃z11 · · · ∃znn ∃w1 · · · ∃ws ∃s1 · · · ∃sn . f1 ∧ f2.

We restricted the constants in our existential sentences to 0 and 1 in order
to apply the upper bounds of Table 4. However, an analogue of Lemma 17
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does actually hold for the minrank problem over matrices containing algebraic
constants, because algebraic constants can be defined by short first-order
sentences.

• Over any field, the constant 2 is defined by

ϕ(x) ≡ x = 1 + 1.

• Over a field with characteristic different from 2, the constant −3
2 is

defined by
ϕ(x) ≡ x · (1 + 1) + 1 + 1 + 1 = 0.

• Over R, the constant
√

2 is defined by

ϕ(x) ≡ ∃y. x · x = 1 + 1 ∧ y · y = x

(The last part ensures that we get the positive of the two square roots.)

• Over any field, the constant 15 is defined by

ϕ(x) ≡ ∃y∃z∃w. x = 1+y+z+w ∧ y = 1+1 ∧ z = y+y ∧ w = z+z

(We use a repeated doubling strategy to make the defining formula have
length proportional to the usual binary representation of the integer
15.)

• Over C, the constants i and −i are defined by

ϕ(x, y) ≡ x · x + 1 = 0 ∧ y · y + 1 = 0 ∧ x + y = 0

(Note that i and −i can not be defined separately, since i alone can
only be defined up to conjugation, the only nontrivial isomorphism on
C.)

If F is a field, define its prime field to be the intersection of all subfields
of F [8, §V.5]. Clearly, the prime field underlying C and R is Q, and GF (q) is
a finite-dimensional algebraic extension of its underlying prime field (which
is GF (p) for some prime p). For a field F let AF be the set of all numbers
that are algebraic over the prime field underlying F .
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Proposition 18 Let P be a prime field. Let {e1, . . . , et} ⊆ AP . Let F be
the smallest extension field containing all the constants {e1, . . . , et}. Let a
standard representation of F as a k-dimensional vector space over P (with
vector arithmetic defined using an irreducible polynomial) be given. Let the
representation of the constants {e1, . . . , et} as vectors of binary numbers be
given.

It is possible to construct an existential first order formula ϕ(x1, . . . , xt)
defining {e1, . . . , et} in time polynomial in the combined bit length of all the
constant representations.

Proof. Left to the reader.

The generalization of Lemma 17 is the following.

Lemma 19 Let F be a field. Let F ′ be a finite dimensional algebraic exten-
sion of the prime field underlying F . Let E ⊆ F ′(⊆ AF ).

Given an n×n matrix M with entries from E∪{x1, x2, . . . , xt}, and some
k ≤ n, we may in time (ns)O(1) construct an existential sentence ϕ such that

minrankF (M) ≤ k iff F |= ϕ,

where s denotes the maximum bit length of the representation of an entry in
M (using binary numbers/quotients for prime field elements and vectors of
these for algebraic numbers).

Proof. Use the construction from the proof of Lemma 17 combined with the
construction of Proposition 18.

Corollary 20 Let F be a field. Let F ′ be a finite dimensional algebraic
extension of the prime field underlying F . Let S = F and let {0, 1} ⊆ E ⊆
F ′.

The decision problem MINRANK is equivalent (under polynomial-time trans-
formations) to deciding ETh(F ).

If F is one of the fields Q or R, then the decision problems SING and
MINRANK are equivalent by polynomial-time transformation.

If F is a fixed p-adic field Qp, then the decision problem MINRANK is solv-
able in doubly exponential space.

If F is one of the fields R and C then the decision problem MINRANK is in
PSPACE.
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Proof. Immediate from Lemmas 19, 14, 11 and the bounds cited in Table 4.

13 Tight approximation of minrank is NP-
hard

In this section, we consider the following approximation problem (parametri-
zed with ε > 0) associated with the minrank problem.

(1 + ε)-APXMINRANK

Let R be a commutative ring. Let E, S ⊆ R.

Input: a matrix M = M(x1, . . . , xt) with entries in E ∪ {x1, . . . , xr}.

Output: some a1, . . . , at ∈ S such that

rank M(a1, . . . , at) ≤ (1 + ε) · minrankS(M).

We prove that (1 + ε)-APXMINRANK is NP-hard for ε sufficiently small,
when R is Z or a field. The tool will be reduction from the approximation
version of EXACT3SAT. Consider the following problem.

(1 − ε)-MAXEXACT3SAT

Input: a conjunction of clauses C = C1 ∧ · · · ∧ Ck, where each
clause contains exactly three distinct literals Ci = (li1 ∨ li2 ∨ li3),
and each literal is one of the Boolean variables {y1, . . . , yr} or its
negation.

For (b1, . . . , br) ∈ {0, 1}r, let numb(C, b1, . . . , br) be the number
of clauses in C that are satisfied under the assignment yi 7→ bi,
and let

maxnumb(C) = max
(b1,...,br)∈{0,1}r

numb(C, b1, . . . , br).

Output: some truth assignment b1, b2, . . . , br ∈ {0, 1} such that

numb(C, b1, . . . , br) ≥ (1 − ε) · maxnumb(C).
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Proposition 21 For ε < 1
27 there is no polynomial-time algorithm for (1 −

ε)-MAXEXACT3SAT unless P = NP.

Proof. See Bellare et al. [1, pages 48ff].

To prove the non-approximability of minrank, we need a special type of
reduction first defined by Papadimitriou and Yannakakis [13]. Since we only
use the reduction in a single case, we specialize the definition to the concrete
application.

Given E, S ⊆ R, MAXEXACT3SAT is said to L-reduce to APXMINRANK with
parameters α, β, if there exist two polynomial time computable functions f
and g such that for a given instance C of MAXEXACT3SAT,

1. Algorithm f produces matrix M with entries in E ∪ {x1, . . . , xt} such
that

minrankS(M) ≤ α · maxnumb(C);

2. Given any substitution (a1, a2, . . . , at) ∈ St for the variables in M , g
produces a truth assignment (b1, b2, . . . , br) ∈ {0, 1}r such that

|maxnumb(C) − numb(C, b1, b2, . . . , br)| ≤
β · |minrankS(M) − rank M(a1, a2, . . . , at)|.

L-reduction preserves approximability.

Proposition 22 Let E, S ⊆ R be given. If MAXEXACT3SAT L-reduces to
APXMINRANK with parameters α, β ≥ 0 and (1 + ε)-APXMINRANK has a poly-
nomial time solution then (1 − αβε)-MAXEXACT3SAT has a polynomial time
solution.

Proof. The polynomial time solution for (1 − αβε)-MAXEXACT3SAT works
as follows. Given an instance C(y1, . . . , yr) of MAXEXACT3SAT, compute an
instance M(x1, . . . , xt) of APXMINRANK using the function f . Find a sub-
stitution (a1, . . . , at) for (x1, . . . , xt) using the polynomial time solution for
(1 + ε)-APXMINRANK, and transform this substitution into a truth assignment
(b1, . . . , br) for (y1, . . . , yr) using the function g. We verify the (1 − αβε)
bound by a computation:
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|maxnumb(C) − numb(C, b1, . . . , br)|
≤ β · |minrankS(M) − rank M(a1, . . . , at)|
≤ βε · minrankSM

≤ αβε · maxnumb(C).

Lemma 23 Let R be a commutative ring without zero divisors, and let
{0, 1} ⊆ S ⊆ R and E = {0, 1}. MAXEXACT3SAT L-reduces to APXMINRANK
with parameters α = 65

7 and β = 1.

Proof. First, we describe the function f . Assume we have an instance of
MAXEXACT3SAT, viz. a conjunction of clauses C = C1 ∧ · · · ∧ Ck, where each
clause contains three distinct literals Ci = (li1 ∨ li2 ∨ li3), and each literal is
one of the Boolean variables {y1, . . . , yr} or its negation.

For each clause Ci, there will be a 12 × 12 matrix Mi, containing four
smaller 3 × 3 matrices down the diagonal and zeroes elsewhere. The four
smaller matrices are one for each of the three variables occurring in the
clause and one for the clause itself.

Each Boolean variable yj is represented by two arithmetic variables xj1

and xj2. The variable xj1 being zero represents yj being true, and xj2 being
zero represents yj being false. We can ensure that not both of xj1 and xj2

are zero by requiring
xj1 + xj2 = 1 (8)

We allow the case that neither xj1 nor xj2 is zero.
For each of the three variables occurring in a clause, there will be a matrix

ensuring (8); i.e., for s = 1, 2, 3, if lis = yj or lis = yj then

Ais =

 1 xj1 xj2

1 1 0
1 0 1


The matrix Ais always has rank at least 2, and has rank exactly 2 when (8)
is satisfied, since detAis = 1 − xj1 − xj2.

If Ci = (yj1 ∨ yj2 ∨ yj3), the fourth matrix will be

Bi =

 xj11 1 0
0 xj21 1
0 0 xj31


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(If yj occurs in Ci instead of yj, then replace xj1 with xj2 in matrix Bi.)
The matrix Bi always has rank at least 2, and has rank exactly 2 when

xj11 = 0 or xj21 = 0 or xj31 = 0.
The function f returns the matrix

M = diag(M1, . . . , Mk), where Mi = diag(Ai1, Ai2, Ai3, Bi).

Clearly, f can be computed in polynomial time.
Clearly, minrankS(M) ≤ k·(4·2)+(k−maxnumb(C)) = 9k−maxnumb(C).

We know that maxnumb(C) ≥ 7k
8 , since the expected fraction of true clauses

using a random truth assignment is at least 7
8 . Combining, we get that

minrankS(M) ≤ 9k − maxnumb(C)

≤ 9 · 8
7
maxnumb(C) − maxnumb(C)

=
65
7

maxnumb(C),

which proves the assertion about α.
We still need to describe the function g. Let a substitution

a11, a12, . . . , ar1, ar2 ∈ S2r for the arithmetic variables in M be given. Con-
struct a truth assignment b1, . . . , br for the Boolean variables in C as follows.
If aj1 = 0, then let bj = 1, otherwise if aj2 = 0 then let bj = 0, but if both
aj1 6= 0 and aj2 6= 0 then let bj take an arbitrary value. Clearly, g can be
computed in polynomial time.

If clause Ci is not satisfied under the truth assignment b1, . . . , br, then
matrix Mi will have rank at least 9 under the substitution a11, a12, . . . , ar1, ar2,
because either aj1 = aj2 = 0 for some variable yj occurring in Ci and then
one of Ais will have rank 3, or matrix Bi will have rank 3.

Therefore, k − numb(C, b1, . . . , br) ≤ rank M(a11, a12, . . . , ar1, ar2) − 8k,
which combined with our earlier inequality, minrankS(M) ≤
9k − maxnumb(C), implies

maxnumb(C) − numb(C, b1, . . . , br)
≤ 9k − minrankS(M) + rank M(a11, a12, . . . , ar1, ar2) − k − 8k
= rank M(a11, a12, . . . , ar1, ar2) − minrankS(M),

which proves the assertion about β.
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Theorem 24 Let R be a commutative ring without zero divisors, and let
{0, 1} ⊆ S ⊆ R and E = {0, 1}. For ε < 7

1755 ≈ .0039886 there is no
polynomial time solution for (1 + ε)-APXMINRANK unless P = NP.

Proof. Combine Propositions 21 and 22 with Lemma 23.

14 The case when each variable occurs ex-
actly once

In previous sections we have been considering matricesM = M(x1, x2, . . . , xt)
with entries in E ∪ {x1, x2, . . . , xt}, and each variable can occur arbitrarily
often in M . In this section and the next, we restrict our attention to matrices
where each variable occurs exactly once, and we call such matrices eveo.

Definition. A polynomial p(x1, x2, . . . , xt) is said to be multi-affine over a
field F if, for every substitution of all variables but one (say xi) with field
elements, the result can be expressed in the form axi + b with a, b ∈ F .

Alternatively, p is multi-affine if every variable occurs with degree 0 or 1
in every term. For example, 2xyz + 3z + 4x + 5 is multi-affine over Q. Note
that the determinant of an eveo matrix is multi-affine.

The following lemmas will prove useful. We say that a polynomial
p(x1, x2, . . . , xt) is identically zero over a field F if p(a1, a2, . . . , at) = 0 for all
a1, a2, . . . , at ∈ F .

Lemma 25 Let p be a multi-affine polynomial over a field F . Then p is
identically zero over F iff p is the zero polynomial.

Note that this theorem is not necessarily true for polynomials in which
variables occur with higher degree; for example, the polynomial x2 −x is not
the zero polynomial, but is identically zero over GF (2).

Proof. If p is the zero polynomial, the result is evident.
Now assume p is not the zero polynomial. We will prove by induction

on the number of variables that p is not identically zero. If t = 1, then
p(x) = ax + b, and at least one of a, b is nonzero. If b is nonzero, then we
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can set x = 0 to get a nonzero value. If a is nonzero, then set x = (1 − b)/a
to get the value 1.

Now assume the result is true for t < k variables; we prove it for t = k
variables. Let p = qx + r, where q, r are multi-affine polynomials in k − 1
variables. Then since p is not the zero polynomial, either q or r must be
different from the zero polynomial. By induction. either q or r takes a
nonzero value. Substitute values for the k − 1 variables to obtain ax + b,
where not both a and b are zero. Then, as above, ax + b takes a non-zero
value in F .

Corollary 26 A multi-affine polynomial is identically zero over a field F iff
it is identically zero over some extension field F ′ ⊇ F .

Lemma 27 A multi-affine function over a field is either constant or takes
all values in the field.

Proof. The proof is by induction on d, the number of variables. If d = 1,
then p(x) = ax + b. If p is non-constant, then a 6= 0. Then to get p(x) = c,
choose x = (c − b)/a.

Otherwise, p is a function of t ≥ 2 variables. Choose any variable that
occurs at least once, say x. Write p = ax + b, where a, b are multi-affine
polynomials in t − 1 variables. The polynomials a and b cannot be both
constant. If a is a constant, choose any assignment of variables to b, forcing
b to take the value b′; now set x = (b′ − c)/a. If a is non-constant, then by
induction it takes on all values in F , so choose an assignment to the variables
in a that makes it nonzero; this can be done by Lemma 25. This assignment
of variables gives a the value a′ and b the value b′, and now set x = (b′−c)/a′.

Theorem 28 For all fields F , and all eveo matrices M , we can compute
maxrankF (M) in random polynomial time.

Proof. We mimic the proof of Theorem 2. Let M be an n×n eveo matrix. If
the field F has at least 2n elements, then the proof goes through essentially
unchanged, with V any subset of F of cardinality 2n. Otherwise, choose an
appropriate field extension F ′ with at least 2n elements. By Corollary 26 a
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minor is not identically zero over F ′ iff it is not identically zero over F , so
we may compute maxrank over F ′ instead of over F .

Now recall the singularity problem.

Theorem 29 If F is a field, and M is an eveo matrix, then the decision
problem SING is in the complexity class RP.

Proof. By Lemmas 25 and 27, it is enough to ensure that the determinant
detM is not a nonzero constant polynomial. Mimic the proof of Theorem 5,
using Corollary 26, if necessary, to extend the base field.

15 The minrank problem for row-partitionable
matrices

In this section we show that the minrank problem is solvable in determinis-
tic polynomial time if the matrix has a certain special form, in which each
variable appears only once and there is a division between the variable and
non-variable entries.

More formally, let M be an m × n matrix with entries chosen from
E ∪ {x1, x2, . . . , xt}. We say that M is row-partitionable if

(a) each variable xi occurs exactly once in M ; and

(b) for each row i there exists an index ki such that aij ∈ E if 1 ≤ j ≤ ki,
and aij 6∈ E if ki < j ≤ n.

As an example, the following matrix is row-partitionable:

M =


3 7 −2 x1 x2

2 4 x3 x4 x5

−3 5 6 2 x6

7 2 9 1 4


The main motivation for this subproblem comes from the theory of ratio-

nal series; for an introduction to this area, see [2]. Let f be a formal power
series in noncommuting variables over a field F . Then f is said to be rational
if it can be expressed using the operations sum, product, and quasi-inverse
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(the map sending x → 1/(1 − x)). The series f is said to be recognizable if
the coefficient of the term corresponding to w (which is written as (f, w)) can
be computed as follows: there is a matrix-valued homomorphism µ, a row
matrix λ, and a column matrix γ such that (f, w) = λµ(w)γ. A well-known
theorem due to Schützenberger (e.g., [2, Thm. 6.1]) proves that a formal
power series is rational iff it is recognizable. In this case the dimension of the
smallest possible matrix representation (the dimension of the square matrix
γλ) is an invariant called the rank of the rational series. The following prob-
lem now arises [7, 16]: given a (not necessarily rational) formal power series
f , compute the smallest possible rank Rf (n) of any rational series agreeing
with f on all terms of total degree at most n.

It can be shown that this number Rf (n) is equal to the minrank of an
associated Hankel-like matrix M(f, n). More specifically, we have Rf (n) =
minrankF (M(f, n)), where the rows of M(f, n) are labeled with words w of
length ≤ n, the columns are labeled with words x of length ≤ n, and the
entry in the row corresponding to w and the column corresponding to x is
(f, wx) if |wx| ≤ n, and a unique indeterminate otherwise. It is easy to see
that this particular M(f, n) is row-partitionable.

Consider the following algorithm.

MR(M = (aij)1≤i≤m,1≤j≤n)
(1) rearrange rows so that k1 ≥ k2 ≥ · · · ≥ km;
(2) if there exists u, 1 ≤ u ≤ k1 such that a1u 6= 0,

set r ← 1; T ←{1}
else

set r ← 0; T ←∅
(3) for s = 2 to m do

if the vector (as1, as2, . . . , as,ks) is not linearly
dependent on (aij)i∈T, 1≤j≤ks

set r ← r + 1; T ←T ∪ {s}
(4) return(r)

Theorem 30 Let F be a field. Then algorithm MR correctly computes
minrankF (M) and uses O(m3n) field operations.
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To prove correctness, we first observe that the reordering in step (1)
cannot change minrankF (M).

Next, we observe that the following invariants hold before the loop step
corresponding to s is performed:

(a) for all possible assignments to the variables, the rows in the set T are
linearly independent;

(b) for each assignment to the variables in the rows of T , there exists an
assignment to the variables in the rows T = {1, 2, . . . , s − 1} − T such
that each of the rows in T is dependent on a row of T .

These invariants clearly hold after step (2). We now prove by induction on
s that they hold throughout the algorithm.

Suppose the invariants hold up to step s − 1. At step s, we consider
row s of M . If (as1, . . . , as,ks) is not dependent on (aij)i∈T, 1≤j≤ks , then for
any assignment of the variables row s of M is not dependent on the rows
in T , so by adding s to T we preserve part (a) of the invariant, and part
(b) is unaffected. If, on the other hand, a = (as1, . . . , as,ks) is dependent on
M ′ = (aij)i∈T, 1≤j≤ks , then write a as a linear combination of the rows of M ′.
We can then assign the variables in row s of M appropriately so that the
entire row s is a linear combination of the rows of T . Then part (b) of the
invariant is preserved, and part (a) is unaffected. This completes the proof
of correctness.

To complete the proof of the theorem, it suffices to observe that we can
test to see if row s is dependent on rows of T in at most O(m2n) field
operations, and this step is performed at most m times.
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