
B
R

IC
S

R
S

-96-32
P

.S
.T

hiagarajan:
R

egularTrace
E

ventS
tructures

BRICS
Basic Research in Computer Science

Regular Trace Event Structures

P. S. Thiagarajan

BRICS Report Series RS-96-32

ISSN 0909-0878 September 1996

Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through World Wide
Web and anonymous FTP:

http://www.brics.dk/
ftp://ftp.brics.dk/pub/BRICS

Regular Trace Event Structures

P.S. Thiagarajan∗

BRICS†

Department of Computer Science
University of Aarhus

Ny Munkegade
DK-8000 Aarhus C, Denmark

September, 1996

Abstract

We propose trace event structures as a starting point for construct-
ing effective branching time temporal logics in a non-interleaved set-
ting. As a first step towards achieving this goal, we define the notion
of a regular trace event structure. We then provide some simple char-
acterizations of this notion of regularity both in terms of recognizable
trace languages and in terms of finite 1-safe Petri nets.

0 Introduction

This paper may be viewed as a first step towards the construction of effective
branching time temporal logics in a non-interleaved setting. We believe the
∗On leave from School of Mathematics, SPIC Science Foundation, Madras, India
†Basic Research In Computer Science,
Centre of the Danish National Research Foundation.

1

study of such logics will yield the formal basis for extending – to a branching
time framework – the partial order based verification techniques that have
been established in the linear time world [GW, Pel, Val].

For achieving the stated goal one must identify the structures over which
the logics are to be interpreted. We propose here objects called trace event
structures as suitable candidates. We also initiate their systematic study by
pinning down the notion of regularity for these structures.

Trace event structures constitute a common generalization of trees and
(Mazurkiewicz) traces. In a linear time setting, moving from sequences to
traces has turned out to be a very fruitful way of going from total orders to
partial orders. Trees, which may be viewed as objects obtained by gluing
together sequences, constitute the basic structures in the branching time
world. Hence it seems worthwhile to glue together traces and consider the
resulting structures, called trace event structures as a basic class of structures
for settings in which the underlying temporal frames have the flavour of both
branching time and non-interleaved behaviours.

A good deal of the solutions to the decidability and model checking prob-
lems for branching time logics hinges on the notion of a regular labelled tree.
For instance, SnS, the monadic second order theory of n-branching trees,
is decidable because the decision problem for this logic can be reduced (as
shown in the famous paper by Rabin [Rab]) to the emptiness problem for
tree automata running over labelled infinite trees. The emptiness problem
for these tree automata is decidable because the language of labelled infinite
trees accepted by a tree automaton is non-empty only if it accepts a regular
labelled tree.

Thus, to test the effectiveness and adequacy of automata and logics to
be interpreted over trace event structures, one must understand what are
regular trace event structures. Here we provide an obvious definition and
some simple characterizations of this notion of regularity.

We start with a presentation of trace structures. We do so because they
are known in the literature [NW, PK] and the means for going back and forth
between trace structures and trace event structures is also well-understood.
Indeed, in [PK] a number of branching time temporal logics over trace struc-
tures are considered. However these logics turn out to be undecidable. In

2

our view, the key to obtaining useful and yet decidable branching time log-
ics over trace structures is to suitably limit the quality of the objects over
which quantification is to be allowed. We feel that the study of trace event
structures will help in identifying the required restrictions.

In section 2 we define regular trace structures and provide an “event-
based” characterization of regularity. Trace event structures are introduced
in section 3. The notion of regularity and its characterization is transported
from trace structures to trace event structures in section 4. Labelled trace
event structures are introduced in section 5 and regular labelled trace event
structures are characterized in this section.

The result concerning labelled trace event structures turns out to be –
in an event-based language – a conservative extension of the standard result
concerning regular labelled trees (see for instance [Tho]). In section 6 we
show that regular trace event structures and their labelled versions can be
identified with unfoldings of finite 1-safe Petri nets. In the concluding section
we discuss future work.

1 Trace Structures

A (Mazurkiewicz) trace alphabet is a pair (DR, I) where DR is a finite
non-empty alphabet set and I ⊆ DR × DR is an irreflexive and symmetric
relation called the independence relation. We will often refer to DR as the
set of directions.

Example 1.1 As a running example we shall use the trace alphabet (DR0, I0)
where DR0 = {l, m, r} and I0 = {(l, r), (r, l)}. 2

As usual, DR∗ is the set of finite words generated by DR and ε is the
null word. The independence relation I induces the natural equivalence re-
lation ∼I . It is the least equivalence relation contained in DR∗×DR∗ which
satisfies:

• If σ, σ′ ∈ DR∗ and (a, b) ∈ I then σabσ′ ∼I σbaσ′.

3

The ∼I-equivalence classes are called (finite Mazurkiewicz) traces. [σ]∼I
will denote the ∼I-equivalence class containing σ. We let TR(DR, I) be the
set of traces over (DR, I). In other words, TR(DR, I) = DR∗/∼I . Where
(DR, I) is clear from the context, we will write [σ] instead of [σ]∼I and we
will write TR instead of TR(DR, I).

Example 1.1 (cont.) Let TR0 be the set of traces over (DR0, I0). Then
{lrm, rlm} is a member of TR0. Note also that [lmr] = {lmr}. 2

Traces can be ordered in an obvious way. This ordering relation v(DR,I)

⊆ TR × TR is given by

• [σ] v(DR,I) [σ′] iff there exists σ′′ ∈ DR∗ such that σσ′′ ∈ [σ′].

It is easy to observe that v(DR,I) is a partial order. From now on, we shall
almost always write v instead of v(DR,I) whenever (DR, I) is clear from the
context. Abusing notation, we shall also use v to denote the restriction of
v to a given subset of TR.

Example 1.1 (cont.) In TR0, we have [r] v [llrm]. We also have [lmr] 6v
[rml] and [rml] 6v [lmr]. 2

We can now define one of the primary objects of interest in this paper.

Definition 1.2 Let (DR, I) be a trace alphabet. A trace structure over
(DR, I) is a subset B ⊆ TR(DR, I) of traces which satisfies the following
conditions.

(TS1) If [σ] ∈ B and [σ′] v [σ] then [σ′] ∈ B.

(TS2) If [σa], [σb] ∈ B with σ ∈ DR∗ and (a, b) ∈ I then [σab] ∈ B.

2

4

Trace structures have a well-understood relationship with prime event
structures ([RT, NW]). This relationship, which finds a clean and general
presentation in [NW], will play a central role in the present work. Trace
structures have been called trace systems in a logical setting [PK].

We shall adopt the standpoint that trace structures represent distributed
behaviours in a branching time framework just as traces represent distributed
behaviours in a linear time framework (see for instance [Thi]). Let B ⊆
TR(DR, I) be a trace structure. Then B is supposed to stand for the poset
(B, v). The crucial new feature – in contrast to the classical setting – is
that some elements of B might have a common future due to the causal
independence of directions as permitted by I . Indeed, the classical setting is
restored whenever I = ∅.

Example 1.1 (cont.) {[ε], [l], [r], [lm], [lr], [lrm]} is a trace structure over
(DR0, I0). The Hasse diagram of the behaviour captured by this structure is
shown in fig. 1.1. 2

[ε]

x x x
x x x
x x x
x

DDD
DDD

DDD

[l]

FFF
FFF

FFF
[r]

z z
z z
z z
z z

[lm] [lr]

[lrm]
Figure 1.1

As this example suggests, we have a very generous notion of a branching
time behaviour at this stage. In the classical setting (i.e. when I = ∅), one
would demand that the tree represented by a trace structure should have
“proper” frontiers; for each node either all its successors must be present
or none must be present. This demand is usually made for obtaining clean
automata theoretic constructions. At present we do not have a good notion

5

of automata running over trace (event) structures. Hence we shall ignore
the issue of proper frontiers and work with the generous class of behaviours
admitted by def. 1.2.

It will be convenient to establish the link between trace languages and
I-consistent word languages. A trace language is just a subset of TR. The
word language L ⊆ DR∗ is said to be I-consistent in case [σ] ⊆ L for every
σ ∈ L. In other words, either all members of a trace are in L or none of
them are in L. It is easy to see that subsets of TR and I-consistent subsets
of DR∗ represent each other. Through the remaining sections, we shall often
refer to this connection via the map ts : 2TR → 2DR∗ given by

ts(L̂) =
⋃

{[σ] | [σ] ∈ L̂}.

Clearly, for every L̂ ⊆ TR, ts(L̂) is an I-consistent subset of DR∗. We
shall often apply ts to a trace structure. After all, a trace structure can be
viewed as a trace language which satisfies the two closure properties (TS1)
and (TS2).

2 Regular Trace Structures

Through the rest of the paper we fix a trace alphabet (DR, I) and often refer
to it implicitly. We let a.b.d range over DR and let σ, σ′, and σ′′ with or
without subscripts range over DR∗ . D is the dependence relation given by
D = (DR ×DR)− I . The notations and terminology developed so far w.r.t.
(DR, I) will be assumed throughout. For convenience, we will often write σ
instead of [σ] in talking about traces. From the context it should be clear
whether we are referring to the word σ or the trace [σ].

Definition 2.1

(i) Let B ⊆ TR be a trace structure and σ ∈ B. Then Bσ = {σ′ | σσ′ ∈ B}.

(ii) The equivalence relation RB ⊆ B × B is given by:

σ RB σ′ iff Bσ = Bσ′.

6

(iii) The trace structure B is regular iff RB is of finite index. 2

Our main goal is to characterize the regularity of objects called labelled trace
event structures to be introduced in section 5. They will be labelled versions
of the event structure representations of trace structures. With this as moti-
vation, the rest of this section will be devoted to establishing an event-based
characterization of regular trace structures. We note that the regularity of
a trace structure just guarantees that it has an ultimately periodic shape.
However, for the labelled objects dealt with later, our definition will amount
to a conservative extension of the notion of a regular labelled tree.

It should be clear that the trace structure (B, v) is regular iff B is a
recognizable subset of TR. It will be convenient to first bring this out in a
more formal fashion.

We say that L̂ ⊆ TR is recognizable iff ts(L̂) is a recognizable (equiv-
alently, regular) subset of DR∗. For L ⊆ DR∗ we denote by ≡L the right
congruence contained in DR∗ × DR∗ which is induced by L via

σ ≡L σ′ iff ∀σ′′.[σσ′′ ∈ L iff σ′σ′′ ∈ L].

From the well-known fact that L is a recognizable subset of DR∗ iff ≡L is of
finite index, the next observation is immediate.

Proposition 2.2 The following statements are equivalent:

(i) (B, v) is a regular trace structure.

(ii) B ⊆ TR is recognizable. 2

For the event-based characterization we are after, it is necessary to define
so-called prime elements of TR. Suppose σ 6= ε. Then last(σ) is the letter
that appears last in σ.

We say that σ is prime iff σ 6= ε and there exists d such that last(σ′) = d
for every σ′ ∈ [σ].

Example 2.3 In TR0, [llrm] is prime but [lmlr] is not. 2

7

For each σ, we define pr(σ) = {σ′ | σ′ is prime and σ′ v σ}. Of course,
pr(σ) = ∅ only if σ = ε. Finally, for L̂ ⊆ TR we set pr(L̂) =

⋃
σ∈L̂ pr(σ).

It turns out prime traces constitute the building blocks of the poset of
traces (TR, v). To bring this out, let the compatibility relation ↑⊆ TR×TR
be defined as: σ ↑ σ′ iff there exists σ′′ such that σ v σ′′ and σ′ v σ′′. Further,
if X ⊆ TR then tX will denote the l.u.b. of X (under v) in TR if it exists.
The next set of results have been assembled from [NW].

Proposition 2.4

(i) Suppose X ⊆ TR such that σ ↑ σ′ for every σ, σ′ ∈ X. Then tX exists.

(ii) σ = tpr(σ) for every σ.

(iii) Let B be a trace structure and X ⊆ B such that tX exists in TR.
Then tX ∈ B.

(iv) Let B be a trace structure and σ ∈ TR. Then σ ∈ B iff pr(σ) ⊆ B.

The rest of the section will be devoted to establishing the following char-
acterization of regular trace structures.

Theorem 2.5 Let B be a trace structure. Then the following statements are
equivalent.

(i) B is regular.

(ii) pr(B) is recognizable. 2

We shall show that B is recognizable iff pr(B) is recognizable. Theorem 2.5
will then follow at once from proposition 2.2.

Lemma 2.6 Suppose the trace structure B is recognizable. Then pr(B) is
also recognizable.

8

Proof: Let L = ts(B). Then L is recognizable and hence there exists a de-
terministic finite state automaton A operating over DR such that L(A), the
language recognized by A, is L. Now consider the deterministic automaton
Atop = (Q, →, qin, F) also operating over DR defined by

• Q = 2DR

• → ⊆ Q×DR×Q is given by: X
d→ Y iff Y = (X −D(d))∪{d} where

D(d) = {d′ | d′ D d}.

• qin = ∅.

• F = {{d} | d ∈ DR}.

It is easy to see that L(A) ∩ L(Atop) = Lpr where Lpr = ts(pr(B)). 2

For showing the converse of lemma 2.6 we shall make use of Zielonka’s theo-
rem [Zie] and the gossip automaton [MS]. For presenting Zielonka’s theorem
we need to introduce asynchronous automata operating over distributed al-
phabets. A distributed alphabet is a family {Σp}p∈P where P is a finite set
of processes (sequential agents) and each Σp is a finite set of actions; the
set of actions the agent p participates in. We associate a distribution func-
tion locΣ̃ : Σ → 2P with Σ̃ where Σ =

⋃
p∈P Σp is the global alphabet and

locΣ̃(x) = {p | x ∈ Σp} for each x in Σ. This in turn induces canonically
the trace alphabet (Σ, IΣ̃) where IΣ̃ ⊆ Σ × Σ is obtained via: x IΣ̃ y iff
locΣ̃(x) ∩ locΣ̃(y) = ∅.

On the other hand, a trace alphabet can be implemented as a distributed
alphabet in many different ways. Here we shall exclusively work with max-
imal D-cliques. For our specific trace alphabet (DR, I) we call p ⊆ DR a
maximal D-clique in case p is a maximal subset of DR with the property
p × p ⊆ D. We let P = {p1, p2, . . . , pK} be the set of maximal D-cliques of
(DR, I). We let p, q range over P and P, Q range over non-empty subsets of
P . For Q = {pi1 , pi2, . . . , pil} with i1 < i2 . . . < il we will often instead write
Q = {i1, i2, . . . , il}. This will be especially convenient when dealing with the
gossip automaton.

9

P , viewed as the names of a set of processes gives rise to the distributed
alphabet D̃R = {DRp}p∈P where DRp = p for each p. This distributed
alphabet implements (DR, I) in the sense that the canonical trace alphabet
induced by D̃R is exactly (DR, I).

Example 2.3 (cont.) The maximal D-cliques of (DR0, I0) are {l, m} and
{m, r}. Hence the distributed alphabet obtained via maximal D-cliques is
D̃R0 = {{l, m}, {m, r}}. 2

In what follows, we shall often have to deal with P-indexed families of
the form {Xp}p∈P and DR-indexed families of the form {Yd}d∈DR. In both
cases, we shall often write {Xp} and {Yd} respectively.

An asynchronous automaton over D̃R = {DRp} is a structure A =
({Sp}, {→d }, Sin, F) where the various parts of A are defined as follows. In
doing so, we shall also develop some terminology and notations.

• Each Sp is a finite non-empty set of states called p-states. They are the
local states of the agent p.

S =
⋃

p∈P Sp is the set of local states. A Q-state is a map s : Q → S
such that s(q) ∈ Sq for each q in Q. We let SQ denote the set of Q-
states and call SP , the set of global states. A d-state is just a Q-state
where Q = loc

D̃R
(d). Recall that loc

D̃R
(d) = {p | d ∈ p}.

We let Sd denote the set of d-states. If P ⊆ Q and s is a Q-state then
(s)P is the restriction of s to P .

• →d ⊆ Sd × Sd for each d.

• Sin ⊆ SP is the set of global initial states.

• F ⊆ SP is the set of global finite states.

From now on we shall only consider asynchronous automata operating
over the fixed distributed alphabet D̃R = {DRp}. Hence we will almost
always suppress mention of D̃R and write loc instead of loc

D̃R
.

10

Let A = ({Sp}, {→d}, Sin, F) be an asynchronous automaton. Then
{→ d} induces the global transition relation → A ⊆ SP × DR × SP given
by:

Let s, s′ ∈ SP and d ∈ DR. Then s
d→A s′ iff the following conditions are

satisfied:

(i) ((s)d, (s′)d) ∈→ d.

(ii) ∀p /∈ loc(d). s(p) = s′(p).

Let prf (σ) be the set of prefixes of σ. Then a run of A over σ is a map
ρ : prf(σ) → SP such that ρ(ε) ∈ Sin and for every σ′d ∈ prf (σ), ρ(σ′) d→A
ρ(σ′d). The run ρ is accepting iff ρ(σ) ∈ F . The language recognized by A
is denoted as L(A) and is defined to be the least subset DR∗ satisfying:

σ ∈ L(A) iff there exists an accepting run of A over σ.

We say that A is deterministic in case →A is a deterministic transition
relation. In other words, s

d→A s′ and s
d→A s′′ imply s′ = s′′. Moreover,

|Sin| = 1. We shall say that A is complete in case A has a run over every σ
in DR∗. Zielonka’s theorem can be phrased as follows.

Theorem 2.7 Let L̂ ⊆ TR and ts(L̂) = L. Then L̂ is recognizable iff
there exists a deterministic complete asynchronous automaton A such that
L(A) = L.

2

For presenting the gossip automaton we need the notion of a local view of a
trace. The p-view of σ is denoted as ↓p (σ) and is defined as: ↓p (σ) = t{σ′ |
σ′ ∈ pr(σ) and last(σ′) ∈ p}. Noting that t∅ = {ε}, it follows easily that
↓p (σ) is well-defined for every σ.

The next set of observations follows easily from the definitions and [NW].

11

Proposition 2.8

(i) For every σ, σ = tp∈P ↓ p(σ).

(ii) Suppose B is a trace structure and σ ∈ TR. Then σ ∈ B iff ↓ p(σ) ∈ B
for every p. 2

We can now define a function which will pick out the agent in Q which has
the latest information – among the agents in Q – at a trace about some agent
(which might or might not be in Q).

Accordingly, latestQ : TR × P → Q is defined as:

latestQ(σ, p) = q̂ provided q̂ is the agent in Q with least index which
has the property that ↓j (↓q (σ)) ⊆ ↓j (↓q̂ (σ)) for every q ∈ Q. Recall
that P = {p1, p2, . . . , pK}. In dealing with the gossip automaton, we will
often write i instead of pi (with i ∈ {1, 2, . . . , K}). The gossip automaton
computes the latestQ using only a bounded amount of information. For our
purposes, the key result proved in [MS] can be phrased as follows:

Theorem 2.9 There exists an effectively constructible deterministic com-
plete asynchronous automaton

AΓ = ({Γp}, {⇒d}, Γin, ΓP)

such that for each Q = {i1, i2, . . . , in} ⊆ P there exists an effectively com-
putable function gossipQ = Γi1 × Γi2 . . . × Γin × P → Q such that, for every
σ and every p,

latestQ(σ, p) = gossipQ (ν(i1), ν(i2), . . . , ν(in), p)

where ρΓ(σ) = ν and ρΓ is the unique run of ρΓ over σ. 2

Thus, by examining the Q-states of AΓ at ρΓ(σ), we can, with a bit of work,
determine which agent among Q has the latest information about p at σ.

Using the gossip automaton we can associate with each asynchronous au-
tomaton, a second asynchronous automaton Apr with the following property.

12

Fix σ and suppose that A reaches the global state s(p) after running over
↓p (σ) (i.e. after running over some member of ts(↓p (σ)). Further suppose
that Apr reaches the global state ŝ after running over σ and AΓ (the gossip
automaton) reaches the global state ν after running over σ. Then for each
p, it will be the case that ŝ(p) = (s(p), ν(p)).

Using this association between A and Apr we can easily obtain the result
we are after. Let A = ({Sp}, {→ d}, Sin, F). Recall that AΓ = ({Γp}, {⇒d},
Γin, ΓP). We now define the asynchronous automaton Apr = ({Ŝp}, {Rd}, Ŝin, F̂)
as follows:

• For each q, Ŝq = SP × Γq .

• Let ŝ, t̂ ∈ Ŝd with ŝ(p) = (s(p), νp) and t̂(p) = (t(p), δp) for each p in
loc(d). Then (ŝ, t̂) ∈ Rd iff the following conditions are satisfied:

(i) ((s(p))d, (t(p))d) ∈→d. Recall that (s)d is s restricted to loc(d) in
case s is a Q-state with loc(d) ⊆ Q.

(ii) (νd, δd) ∈ ⇒d where νd and δd are the two d-states of AΓ satisfying
νd(p) = νp and δd(p) = δp for every p ∈ loc(d).

(iii) Suppose loc(d) = Q = {i1, i2, . . . , in}, q ∈ Q and p /∈ Q. Then
t(q)(p) = s(q̂)(p) where q̂ = gossipQ(νi1, νi2 , . . . , νin, p). Recall that
ŝ(x) = (s(x), νx) foe every x ∈ loc(d).

(iv) For every p, q ∈ loc(d), t(p) = t(q).

• Let Sin = {sin} and Γin = {νin}. Then Ŝin = {ŝin} where for each p,
ŝin(p) = (sin, νin(p)).

• Let ŝ ∈ ŜP with ŝ(p) = (s(p), νp) for each p. Then ŝ ∈ F̂ iff s(p) ∈ F for
every p.

Lemma 2.10 Let B be a trace structure. Suppose pr(B) is recognizable.
Then B is also recognizable.

Proof: Let ts(pr(B)) = L. Then by theorem 2.7, there exists a deterministic
complete asynchronous automaton A such that L(A) = L. Now consider the

13

automaton Apr associated with A and constructed as specified above. Then
we claim that L(Apr) = L′ where L′ = ts(B).

To see this, for each σ let ρσ (ρ̂σ) be the unique run of A (Apr) over σ.
Then induction on the length of σ accompanied by an examination of the
definitions will yield the following:

Fact: Let ρ̂σ(ρ) = ŝ with ŝ(p) = (s(p), νp) for each p. Let σq ∈ ts(↓q (σ)) and
ρσq (σq) = s. Then s(q) = s.

Hence from the definition of Apr it follows that σ ∈ L(Apr) iff ↓p (σ) ⊆
L(A) = L for every p. But then according to proposition 2.8, σ ∈ B iff
↓ p(σ) ∈ B for every p. Consequently, σ ∈ L′ iff ↓ p(σ) ⊆ L for every p. Thus
σ ∈ L′ iff σ ∈ L(Apr) as required. 2

Theorem 2.5 now follows at once from lemmas 2.6, 2.10 and prop. 2.2.
Lemma 2.10 admits a direct proof as shown in [DM]. However, for the net
theoretic characterization of regularity that we obtain later, it is necessary
to have our construction underlying the proof of lemma 2.10.

3 Trace Event Structures

We now wish to view trace structures as prime event structures. In this rep-
resentation the causality, conflict and concurrency relation that glue together
a trace structure will become explicit. The main motivation for considering
this representation is that we expect the automata theoretic treatment of
trace structures to be carried out in terms of their prime event structure
representations.

We start with a notation concerning posets. Let (X, ≤) be a poset and
Y ⊆ X. Then ↓ Y = {x | ∃y ∈ Y, x ≤ y} and ↑ Y = {x | ∃y ∈ Y, y ≤ x}.
Whenever Y is a singleton with Y = {y} we will write ↓ y (↑ y) instead of
↓ {Y } (↑ {Y }).

A prime event structure is a triple ES = (E, ≤, #) where (E, ≤) is a
poset and # ⊆ E × E is an irreflexive and symmetric relation such that the
following conditions are met:

14

• ↓ e is a finite set for every e ∈ E.

• For every e1, e2, e3 ∈ E, if e1#e2 and e2 ≤ e3 then e1#e3.

E is the set of events and ≤ is the causality relation. # is the conflict relation.

As usual, the states of a prime event structure will be called configura-
tions. We say that c ⊆ E is a configuration iff c =↓ c and (c× c)∩ # = ∅. It
is easy to see that ∅ is always a configuration and more interestingly, ↓ e is a
configuration for every event e. We let C∞ES be the set of (finite and infinite)
configurations and CES denote the set of finite configurations of ES.

It will be useful to introduce two derived relations associated with a prime
event structure. Let ES = (E, ≤, #) be a prime event structure. Then
l⊆ E × E is defined as: e l e′ iff e < e′ (i.e. e ≤ e′ and e 6= e′) and for
every e′′, if e ≤ e′′ ≤ e′ then e = e′′ or e′′ = e′. In other words, l=< − <2.

Next we define the minimal conflict relation #µ ⊆ E × E via:

e #µ e′ iff (↓e× ↓e′) ∩ # = {(e, e′)}.

A DR-labelled prime event structure is a quadruple ES = (E, ≤, #, λ)
where (E, ≤, #) is a prime event structure and λ : E → DR is a labelling
function. We can now present the proposed event structure representation
of trace structures.

Definition 3.1 A trace event structure over (DR, I) is a DR-labelled prime
event structure ES = (E, ≤, #, λ) which satisfies the following requirements
(with e, e′ ranging over E):

(TES1) e #µ e′ implies λ(e) 6= λ(e′)

(TES2) If e l e′ or e #µ e′ then (λ(e), λ(e′)) ∈ D

(TES3) If (λ(e), λ(e′)) ∈ D then e ≤ e′ or e′ ≤ e or e # e′.

2

15

Thus a trace event structure is a DR-labelled prime event structure in
which the DR-orientation of the events (as specified by the labelling function)
respects the independence relation I . This is captured by the conditions
(TES2) and (TES3). The first condition (TES1) merely reflects the fact that
if [σ] = [σ′] then [σd] = [σ′d]. These remarks might be easier to appreciate
once we explain how trace structures and trace event structures represent
each other. But first we shall consider some examples.

In diagramatic descriptions of labelled prime event structures the poset of
events ordered by the causality relation will be shown by its Hasse diagram.
The elements of the minimal conflict relation will be shown as squiggly edges.
The conflict relation is then the relation uniquely induced by the causality
and the minimal conflict relations. The events will be drawn as boxes.

Example 3.1 Recall (DR0, I0) with DR0 = {l, m, r} and I0 = {(l, r), (r, l)}.
In fig. 3.1 (a) and 3.1 (b) and 3.1 (c) we show three examples of DR0-labelled
prime event structures. None of them constitutes a trace event structure over
(DR0, I0).

e1 l /o/o/o l e2 l e1

��

r e2

e1 l /o/o/o r e2

||y y y
y y y
y y

""F
FFF

FF
FF

e3 r m e4

(a) (b) (c)

Figure 3.1

In fig. 3.1 (a) we have e1 #µ e2 with λ(e1) = λ(e2). In fig. 3.1 (b)
we have e1 l e2 with (λ(e1) = λ(e2)) /∈ D. In fig. 3.1 (c) we have two
violations. Firstly e1 #µ e2. But (λ(e1) = λ(e2)) /∈ D. Secondly we have
(λ(e3), λ(e4)) ∈ D but e3 � e4, e4 � e3 and (e3, e4) /∈ #.

Example 3.2 In fig. 3.2 we show an infinite trace event structure over
(DR0, I0).

16

m

��� �
� �
� �
� �

�� ��?
??
??
??
?

l /o/o/o

�� ��>
>>
>>
>>
>
/o/o/o m /o/o/o /o/o/o r

��� �
� �
� �
� �

��

l /o/o/o

�� ��>
>>
>>
>>
>
/o/o/o m /o/o/o /o/o/o r

��� �
� �
� �
� �

��

l /o/o/o /o/o/o m /o/o/o /o/o/o r

Figure 3.2

Example 3.3 Let (DR1, I1) be the trace alphabet with DR1 = {l, r} and
I1 = ∅. Then every trace over this trace alphabet is a singleton. In figure 3.3
we show a trace event structure over (DR1, I1). It may be viewed as an event
structure representation of the full binary tree DR∗1.

l

��� �
� �
� �
� �

��<
<<
<<
<<
<

/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o r

��� �
� �
� �
� �

��<
<<
<<
<<
<

l /o/o/o/o/o/o/o/o r l /o/o/o/o/o/o/o/o/o l

Figure 3.3

Let ESi = (Ei, ≤i, #i, λi), i = 1, 2 be a pair of DR-labelled prime event
structures. We say that ES1 and ES2 are isomorphic – and denote this by
ES1 ≡ ES2 – iff there exists a bijection f : E1 → E2 such that e1 ≤1 e′1
iff f(e1) ≤2 f(e′1) and e1 #1 e′1 iff f(e1) #2 f(e′1) for every e1, e′1 ∈ E1.
Furthermore we require λ2(f(e1)) = λ1(e1) for every e1 ∈ E1.

17

Let T RS(DR, I) be the class of trace structures over (DR, I) (written
from now on as just T RS). Let T ES(DR, I) be the class of trace event
structures over (DR, I) (written from now on as T ES). Using the maps
tes : T RS → T ES and est : T ES → T RS we will bring out the fact that
T RS and T ES are different but equivalent descriptions of the same class of
objects.

Let B ∈ T RS. Then tes(B) = (E, ≤, #, λ) where:

• E = pr(B).

• ≤ is v restricted to pr(B) × pr(B).

• # = {(σ, σ′) | σ, σ′ ∈ pr(B) and σ 6↑ σ′}.
(Recall that σ ↑ σ′ iff there exists σ′′ ∈ TR such that σ v σ′′ and
σ′ v σ′′.)

• λ(σ) = last (σ) for every σ ∈ pr(B).

To define the map est we must consider linearizations of the configurations
of a trace event structure and read off traces from these linearizations using
the labelling function. Let ES = (E, ≤, #, λ) be a trace event structure and
let c ∈ CES. Then ρ ∈ E∗ is called a linearization of c iff it is a linearization
of the poset (c, ≤c) where ≤c is ≤ restricted to c × c. More precisely, ρ is
required to satisfy:

• No event e ∈ E − c appears in ρ.

• Every event e ∈ c appears exactly once in ρ.

• If e, e′ ∈ c with e < e′ then e appears before e′ in ρ.

We let lin(c) be the set of linearizations of the configuration c. By abuse
of notation, we use λ to also denote the unique homomorphic extension of
λ : E →DR to λ : E∗ →DR∗. In other words λ(ε) = ε and λ(ρe) = λ(ρ)λ(e)
for ρ ∈ E∗. Finally, we define λ(c) = {λ(ρ) | ρ ∈ lin(c)}.

Let ES = (E, ≤, #, λ) ∈ T ES. Then est(ES) = {[σ] | σ ∈ λ(c) for some
c ∈ CES. From the results of [NW] it is straightforward to establish the
following:

18

Proposition 3.2

(i) tes is well defined. In other words, tes(B) ∈ T ES for every B ∈ T RS.

(ii) est is well defined. In other words, est(ES) ∈ T RS for every ES ∈
T ES.

(iii) est(tes(B)) = B for every B ∈ T RS.

(iv) tes(est(ES)) ≡ ES for every ES ∈ T ES. 2

It is in the sense of (iii) and (iv) trace event structures and trace structures
represent each other. A strong version of this statement in a categorical
setting can be found in [NW]. To conclude this section, we show in fig. 3.4,
the trace event structure corresponding to the trace behaviour of fig. 1.1.

l

 A
AA
AA
AA
A

��

r

~> ~> ~>
~> ~>
��

m m

Figure 3.4

4 Regular Trace Event Structures

Our goal here is to transport the notion of regularity from trace structures
to trace event structures. As before, the material in this section also will be
developed w.r.t. the fixed trace alphabet (DR, I).

Let ES = (E, ≤, #, λ) be a trace event structure and c ∈ CS. We define
#(c) = {e′ | ∃e ∈ c. e # e′}. We then denote the substructure rooted at c as
ES\c and define it to be the quadruple ES\c = (E′, ≤′, #′, λ′) where

• E′ = E − (c ∪ #(c)).

• ≤′ is ≤ restricted to E′ × E′.

19

• #′ is # restricted to E′ × E′.

• λ′ is λ restricted to E′.

Proposition 4.1 Let ES = (E, ≤, #, λ) be a trace event structure and c ∈
CES. Then ES\c is also a trace event structure.

Proof: Let ES\c = (E′, ≤′, #′, λ′). From the definitions it is clear that
ES\c is a DR-labelled prime event structure. We must verify that λ′ respects
I in the required sense.

Suppose x, y ∈ E′ with x l′ y. We must show that (λ′(x), λ′(y)) ∈ D. It
suffices to show that x l y (in ES) because then (λ(x), λ(y)) ∈ D due to the
fact that ES is a trace event structure and λ′(x) = λ(x) and λ′(y) = λ(y).

So assume for contradiction that there exists z ∈ E such that x < z < y
in ES. If z ∈ E′ then we have x <′ z <′ y as well which would contradict
x l′ y. But z /∈ E′ implies z ∈ c or z ∈ #(c). If z ∈ c then c =↓ c leads to
x ∈ c which contradicts x ∈ E′. If z ∈ #(c) then for some z′ ∈ c it is the
case that z′ # z. But then z < y and hence z′ # y so that y ∈ #(c) which
contradicts y ∈ E′. Hence it must be the case that x l y.

Next suppose that x, y ∈ E′ with x #′µ y. Again it suffices to show that
x #µ y (in ES) because then we can easily conclude (λ′(x), λ′(y)) ∈ D. So
assume for contradiction that (x, y) /∈ #µ. Note that x #′µ y implies x #′ y
and hence x # y.

If (x, y) /∈ #µ, then there exists a pair (x′, y′) in (↓x× ↓y) ∩ # such that
(x′, y′) 6= (x, y). Assume without loss of generality that x′ 6= x. Then x′ < x
and y′ ≤ y. Hence x′#y. Suppose x′ ∈ E′. Then x′ <′ x and x′ #′ y as well,
leading to the contradiction that (x, y) /∈ #′µ.

So assume that x′ /∈ E′. Hence x′ ∈ c or x′ ∈ #(c). If x′ ∈ c then
x′#y leads to y ∈ #(c) which contradicts y ∈ E′. If x′ ∈ #(c) then x′#z
for some z ∈ c. But then x′ < x leads to z # x which in turn implies that
x ∈ #(c). But this contradicts x ∈ E′. Hence x #µ y and consequently
(λ′(x), λ′(y)) ∈ D as required.

Now suppose that x, y ∈ E′ such that (λ′(x), λ′(y)) ∈ D. Then (λ(x), λ(y)) ∈

20

D. Since ES is a trace event structure we must have x ≤ y or y ≤ x or x # y.
Hence x ≤′ y or y ≤′ x or x #′ y as required. 2

We can now define regularity of trace event structures.

Definition 4.2 Let ES be a trace event structure.

(i) RES ⊆ CES × CES is given by:

c RES c′ iff ES\c ≡ ES\c′.

(ii) ES is regular iff the equivalence relation RES is of finite index. 2

It should be clear that the trace event structure ES is regular iff est(ES) is
a regular trace structure. It will be worthwhile to establish this connection
precisely.

Recall that if B is a trace structure with σ ∈ B then Bσ = {σ′ | σσ′ ∈ B}.

Lemma 4.3 Let ES be a trace event structure with c ∈ CS and σ ∈ λ(c).
Then est(ES\c) = Bσ.

Proof: Follows easily from the definitions and the constructions in [NW].2

Proposition 4.4 The trace event structure ES is regular iff est(ES) is a
regular trace structure.

Proof: Follows easily from lemma 4.3 and prop. 4.1. 2

Let ES = (E, ≤, #, λ) be a trace event structure and e ∈ E. Then ↓ e can
be identified with the trace λ(↓e). We now wish to show that ES is regular
iff for every d, the collection of d-labelled events, viewed as a collection of
traces, is recognizable. Let ES = (E, ≤, #, λ) be a trace event structure.

21

We let Ed = {e | e ∈ E and λ(e) = d}. We next define, for each d, the trace
language LES

d via:

LES
d = {[σ] | σ ∈ λ(↓e) for some e ∈ Ed}.

The matching notion for trace structures will be denoted prd(B). More pre-
cisely, if B is a trace structure then prd(B) = {σ | σ ∈ pr(B) and last(σ) = d}.
The next observation again follows from [NW] easily.

Proposition 4.5 Let ES = (E, ≤, #, λ) be a trace event structure and
est(ES) = B. Let f : CES →B be given by f(c) = λ(c) for every c ∈ CES.
Then:

(i) f is an isomorphism between the posets (CES, ⊆) and (B, v).

(ii) f({↓e | e ∈ E}) = pr(B).

(iii) f({↓e | e ∈ Ed}) = prd(B).

(iv) LES
d = prd(B) for every d. 2

We can now state the main result of this section.

Theorem 4.6 The trace event structure ES is regular iff LES
d is recognizable

for every d.

Proof:
⇒ Suppose ES = (E, ≤, #, λ) is regular and est(ES) = B. Then by
prop. 4.4, (B, v) is regular and hence by theorem 2.5, pr(B) is recognizable.
Let A be a deterministic finite state automaton recognizing L = ts(pr(B)).
Now recall the automaton Atop = (Q, →, qin, F) constructed in the proof
of lemma 2.6. Consider the automaton Atop

d obtained from Atop by setting
Atop

d = (Q, →, qin, Fd) where Fd = {{d}}. Let Ld be the language recognized
by Atop

d . It is easy to verify that Ld = ts(prd(TR)). Hence ts(prd(B)) =
L ∩ Ld. Consequently prd(B) is recognizable for each d. But now from prop.
4.5 (part (iv)) we also have that LES

d is recognizable for each d.

22

⇐ Suppose LES
d is recognizable for each d. Then by prop. 4.5 (part

(iv)), prd(B) is recognizable for each d where B = est(ES). But this implies
that pr(B) =

⋃
d∈DR prd(B) is recognizable and hence, by theorem 2.5, B is

regular. Prop. 4.4 now tells us that ES is also regular. 2

5 Labelled Trace Event Structures

Through the rest of the paper fix Σ, a finite non-empty set of labels.

Definition 5.1 A Σ-labelled trace event structure is a pair LES = (ES, ϕ)
where ES = (E, ≤, #, λ) is a trace event structure (over (DR, I)) and ϕ :
E →Σ is a labelling function. 2

Note that LES has an “internal” labelling function λ. This function ori-
ents the events along the directions in DR while respecting the independence
relation I in the manner specified in section 3. On the other hand, ϕ is an
“external” and, in the present setting, unrestricted labelling function which
labels the events by members of Σ.

One could ask why not start with Σ-labelled trace structures? The an-
swer is that a variety of negative results are at present available concerning
logics interpreted over trace structures and related models (see for instance
[LPRT, PK]). These results suggest that trace structures accompanied by
unrestricted labelling functions will not be a tractable collection of objects.
Indeed an observation due to Walukiewicz [Wal] suggests that even trace
structures accompanied by unrestricted labelling functions will not consti-
tute a tractable collection of objects. (We will say a little more about this in
the concluding section.) Nevertheless we feel that it will be fruitful to study
of Σ-labelled trace event structures and identify the required restrictions in
some suitable logical and/or automata theoretic framework. These notions
can then be transported, if necessary, to trace structures at a later stage.

Since Σ is fixed we shall often say “labelled” to mean “Σ-labelled”. Let
LESi = (ESi, ϕi), i = 1, 2 be a pair of labelled trace event structures with
ESi = (Ei, ≤i, #i, λi). Then LES1 and LES2 are said to be isomorphic

23

(also denoted by abuse of notation as LES1 ≡ LES2) iff there exists a trace
event structure isomorphism f : E1 → E2 such that λ1(e1) = λ2(f(e1)) for
every e1 ∈ E1. Thus the isomorphism is also required to respect the external
labelling.

Definition 5.2 Let LES = (ES, ϕ) be a labelled trace event structure with
ES = (E, ≤, #, λ).

(i) Suppose c ∈ CES. Then LES\c = (ES ′, ϕ′) where ES ′ = (E′, ≤′,#′, λ′) =
ES\c and ϕ′ is ϕ restricted to E′.

(ii) The equivalence relation RLES ⊆ CES × CES is given by:

c RLES c′ iff LES\c ≡ LES\c′.

(iii) LES is regular iff RLES is of finite index. 2

The main result of this section is a conservative extension of the classical
characterization of regular Σ-labelled trees [Tho]. To formulate this result let
LES = (ES, ϕ) be a labelled trace event structure with ES = (E, ≤, #, λ).
Let x ∈ Σ. Then LLES

x ⊆ TR is defined as:

[σ] ∈ LLES
x iff σ ∈ λ(↓e) for some e ∈ ϕ−1(x).

Theorem 5.3 The labelled trace event structure LES = (ES, ϕ) is regular
iff LLES

x is a recognizable trace language for every x ∈ Σ.

Proof: Let ES = (E, ≤, #, λ). Consider the trace alphabet (D̂R, Î) where
D̂R = DR × Σ and Î ⊆ D̂R × D̂R is given by

((a, x), (b, y)) ∈ Î iff (a, b) ∈ I.

Let ÊS = (E, ≤, #, λ̂) where λ̂ : E →D̂R is given by:

λ̂(e) = (d, x) iff λ(e) = d and ϕ(e) = x.

24

Clearly ÊS is a trace event structure over (D̂R, Î). Moreover the labelled
trace event structure LES is regular iff the trace event structure ÊS is reg-
ular. By theorem 4.6, ÊS is regular iff LÊS

d̂
is a recognizable trace language

for every d̂ ∈ D̂R. Now define, for each x ∈ Σ, the trace language LÊS
x via:

LÊS
x =

⋃
{LÊS

d̂
| d̂ ∈ DR × {x}}.

Clearly LÊS
x is recognizable for each x if LÊS

d̂
is recognizable for each d̂ ∈ D̂R.

Conversely, suppose LÊS
x is recognizable for each x ∈ Σ. Then it is easy to

verify (using the automaton Atop constructed in the proof of lemma 2.6) that
LÊS

d̂
is recognizable for each d̂ ∈ D̂R.

But now the required result follows from the easy observation that LES
x =

LÊS
x for each x ∈ Σ. 2

6 A Net Theoretic Characterization

The basic result shown in [NPW] says that every 1-safe Petri net unfolds into
a prime event structure. Later results appearing in a uniform setting (see
[NW] for exact references) show in fact that 1-safe Petri nets and prime event
structures represent each other in a strong sense. Based on this connection
we show here that regular trace event structures and (labelled) finite 1-safe
Petri nets are strongly related to each other.

We shall define here a 1-safe Petri net to be a quadruple N = (B, E, F, Min)
where (B, E, F) is a net and Min ⊆ B is the initial marking. (B, E, F) is a
net in the sense B is a set of conditions, E is the set of events with B∩E = ∅.
Furthermore F ⊆ (B×E)∪(E ×F) is the flow relation. We say that N is fi-
nite if both B and E are finite sets. From now by “Petri net” we shall mean
“1-safe Petri net”. As usual, for x ∈ B ∪ E, we set •x = {y | (y, x) ∈ F}
and x• = {y | (y, x) ∈ F}. The dynamics of N are captured by the asso-
ciated transition system TSN = (RMN , → N , Min) where RMN ⊆ 2B and
→N ⊆ RMN × E × RMN are the least sets satisfying:

25

• Min ∈ RMN .

• Suppose M ∈ RMN and e ∈ E such that •e ⊆ M and (e•−•e)∩M = ∅.
Then M ′ ∈ RMN and M

e→N M ′ where M ′ = (M −•e) ∪ e•.

RMN is the set of reachable markings of N . FSN , the set of firing
sequences of the Petri net N = (B, E, F, Min) is the least subset of E∗

defined as follows. In doing so, it will be convenient to also build up the
relation //

∗ N

• ε ∈ FSN and Min
//

∗ N Min

• Suppose τ ∈ FSN , Min
//

∗
τ

N M and M //e

N M ′ . Then τe ∈ FSN

and Min
//

∗
τe

M ′ .

In what follows, we will define notion of an es-unfolding (event structure
unfolding) of only finite 1-safe Petri nets. This silliness is mainly due to
the fact we have chosen to phrase the basic notions of trace theory in terms
of finite trace alphabets in order to appeal to the automaton theoretic con-
structions for recognizable trace languages. The material to follow that is
concerned with unfoldings can however be easily modified to apply to the
whole class of Petri nets.

The finite Petri net N = (B, E, F, Min) gives rise to the trace alphabet
(E, IN) where IN = {(e1, e2) | (•e1 ∪ e•1)∩ (•e2 ∪ e•2) = ∅}. For τ ∈ E∗ let [τ]N
denote the ∼IN -equivalence class containing τ .

Now for every τ ∈ FSN it is easy to see that [τ]N ⊆ FSN . Clearly FSN
is prefix-closed. Furthermore, τe, τe′ ∈ FSN and e IN e′ implies τee′ ∈ FSN .
Thus BN = {[τ]N | τ ∈ FSN} is a trace structure with ts(BN) = FSN . We
let ESN denote tes(BN) and call ESN the es-unfolding of N . Note that
according to prop. 3.2, ESN is a trace event structure over (E, IN).

Let X be a finite non-empty set of labels. Then an X-labelled Petri net is
a pair LN = (N , lb) where N = (B, E, F, Min) is a Petri net and lb : E → X
is a labelling function.

26

Let LN = (N , lb) be an X-labelled Petri net and ESN = (Ê, ≤̂, #̂, λ̂).
Then we let ESLN denote the X-labelled prime event structure ESLN =
(Ê, ≤̂, #̂, lb o λ̂) and call it the es-unfolding of LN .

We can now state our net theoretic characterisation of regular trace event
structures.

Theorem 6.1 The trace event structure ES over (DR, I) is regular iff there
exists a finite DR-labelled Petri net LN = (N , lb) such that ES is isomorphic
to ESLN . 2

One half of the theorem is quite easy to prove.

Lemma 6.2 Suppose LN = (N , lb) is a finite DR-labelled Petri net such
that ESLN is a DR-labelled trace event structure. Then ESLN is regular.

Proof: Let ESN = (Ê, ≤̂, #̂, λ̂) so that ESLN = (Ê, ≤̂, #̂, lb o λ̂). Let
ES = (Ê, ≤̂, #̂) and N = (B, E, F, cin). Recall that ESN is a trace event
structure over (E, IN). Define now the map µ : CES →RMN via µ(c) = M

provided there exists τ ∈ λ̂(c) such that Min
//

∗
τ

N M .

It is easy to check that µ is well defined. Next define the equivalence
relation RN ⊆ CES × CES as:

c RN c′ iff µ(c) = µ(c′).

The number of equivalence classes of this equivalence relation is at most 2|B|.

Claim Suppose c RN c′. Then c RESN c′ and in fact c RESLN c′.

If the claim holds then the index of RESLN is at most 2|B| and hence
ESLN is regular. To see that the claim holds let τ ∈ λ̂(c) and τ ′ ∈ λ̂(c′).
Then from µ(c) = µ(c′) it follows that ∀τ ′′ ∈ E∗, ττ ′ ∈ FSN iff ττ ′′ ∈ FSN .
This observation at once leads to the claim. 2

27

To prove the second half of theorem 3.1, we will prune away some local
transitions of the automaton Apr that was constructed to prove lemma 2.10.
To be precise, let A = ({Sp}, {→ d}, Sin, F) be a deterministic and complete
asynchronous automaton operating over {DRp}. Recall that p ranges over
P , the set of maximal D-cliques of (DR, I) with DRp = p for each p.

Let Apr = ({Ŝp}, {Rd}, Ŝin, F̂) be the deterministic complete asynchronous
automaton constructed from A as in the proof of lemma 2.10. We now define
the asynchronous automaton Bpr = ({S̃p}, { d}, S̃in, F̃) as follows:

• S̃p = Ŝp for each p.

• For each d, d is the least subset of Rd which satisfies: Suppose (ŝ, t̂) ∈
Rd with ŝ(p) = (s(p), νp) and t̂(p) = (t(p), δp) for each p ∈ loc(d). Then
(ŝ, t̂) ∈ d iff s(p) ∈ F and t(p) ∈ F for each p ∈ loc(d). Recall that
s(p) ∈ SP , the set of global states of A and F is the set of global final
states of A.

• S̃in = Ŝin.

• F̃ is the least subset of S̃P (the set of global states of Bpr) which
satisfies: Suppose σ ∈ DR∗ such that ρ̃σ is a run of Bpr with ρ̃σ(σ) = s̃.
Then s̃ ∈ F̃ .

It is easy to observe that Bpr is also a deterministic asynchronous automa-
ton. However it might not be complete. In fact, its characteristic feature is
that it accepts a word iff it has a run over the word.

Lemma 6.3 Let B be a regular trace structure over (DR, I) with ts(B) = L.
Then there exists an asynchronous automaton B operating over {DRp} such
that L(B) = L. Moreover, for every σ ∈ DR∗ − L, B has no run over σ.

Proof: Since B is regular, L is recognizable. Let A be a deterministic and
complete asynchronous automaton with A = ({Sp}, {→ d}, Sin, F) such that
L(A) = L. Let Apr = ({Ŝp}, {Rd}, Ŝin, F̂) be the automaton constructed
from A as in the proof of lemma 2.10. Finally, let Bpr be the deterministic
asynchronous automaton constructed from Apr as detailed above. We wish to

28

argue that Bpr has the properties required by the lemma. We shall decompose
the argument into three steps.

Claim 1 L(Apr) = L(A).

Claim 2 L(Bpr) = L(Apr).

Claim 3 Let σ ∈ DR∗. Then σ ∈ L(Bpr) iff Bpr has a run over σ.

To see that claim 1 must hold, we note that, by the construction of Apr,
σ ∈ L(Apr) iff ↓ p(σ) ⊆ L(A) for every p. But from the fact that B is a trace
structure it follows from prop. 2.8, that σ ∈ L(A) iff ↓ p(σ) ⊆ L(A) for every
p. Hence indeed L(Apr) = L(A).

To settle claim 2, we consider σ ∈ DR∗ and proceed by induction on |σ|
to show that ρ̃ : Prf(σ) → S̃P is a run of Bpr over σ iff ρ̃σ is the accepting
run of Apr over σ.

Suppose |σ| = 0 so that σ = ε. Since L is prefix-closed, ε ∈ L and hence
the basis step follows immediately from the definitions.

So suppose σ = σ′d. First assume that ρ̃ : Prf(σ) → S̃ is a run of Bpr over
σ. Let ρ̃σ′ be the restriction of ρ̃ to Prf(σ′). By the induction hypothesis,
ρ̃σ′ is the accepting run of Apr over σ′. Let ρ̃(σ′) = ŝ and ρ̃(σ′d) = t̂. Then
((ŝ)d, (t̂)d) ∈ d⊆ Rd and consequently ρ̃ is also the run of Apr over σ.

Suppose ρ̃ is not an accepting run of Apr over σ. Then t̂ /∈ F̂ . Hence,
by the definition of F̂ , it must be the case that t(p) /∈ F for some p. Let
t̂(p) = (t(p), δp) for each p.

If p /∈ loc(d) then ŝ(p) = t̂(p) and hence ŝ /∈ F̂ . But this contradicts the
fact that ρ̃σ′ is the accepting run of Apr over σ′. So suppose that p ∈ loc(d).
We now have t(p) /∈ F and p ∈ loc(d) which contradicts that ((ŝ)d, (t̂)d) ∈ d.
Hence it must be the case that t̂ ∈ F̂ .

On the other hand, if ρ̃ : prf(σ) → S̃ is the accepting run of Apr over σ.
Then from the fact that L is prefix-closed, it follows that σ′ ∈ L and hence
ŝ ∈ F̂ where ρ̃(σ) = t̂ and ρ̃(σ′) = ŝ. Consequently ((ŝ)d, (t̂)d) ∈ d. But
then by the induction hypothesis, ρ̃ restricted to prf(σ′) is a run of Bpr over
σ′. Consequently ρ̃ is a run of Bpr over σ = σ′d.

29

Claim 3 follows at once from the definition of F̃ . Hence Bpr has the
properties required by the lemma. 2

With these preparations out of the way, we can now deal with the second
half of the proof of theorem 6.1.

Lemma 6.4 Suppose ES is a regular trace structure over (DR, I). Then
there exists a finite DR-labelled Petri net LN = (N , lb) such that ES is
isomorphic to ESLN .

Proof: Let est(ES) = B and ts(B) = L. B is a regular trace structure by
prop. 4.4 and hence B ⊆ TR is recognizable by prop. 2.2. Consequently, by
theorem 2.7, there exists a deterministic complete asynchronous automaton
A = ({Sp},

{→ d}, Sin, F) such that L(A) = L. Let Apr = ({Ŝp}, {Rd}, Ŝin, F̂) and
Bpr = ({S̃p}, { d}, S̃in, F̃) be the deterministic asynchronous automaton
constructed from A as in the proof of the previous lemma. In what follows,
we will assume without loss of generality that if p 6= q then S̃p ∩ S̃q = ∅ and
that if a 6= b then a ∩ b= ∅.

We define the DR-labelled finite Petri net LN = (N , lb) with N =
(B, E, F, Min) as follows:

• B = S̃ =
⋃

p S̃p.

• E =
⋃

d d.

• F = {(s̃(p), (s̃, t̃)) | (s̃, t̃) ∈ d and p ∈ loc(d) for some d}
∪{((s̃, t̃), t̃(p)) | (s̃, t̃) ∈ d and p ∈ loc(d) for some d}.

• Min = {s̃in(p) | p ∈ P} where S̃ = {s̃in}.

• For each e ∈ E, lb(e) = d provided e ∈ d.

By abuse of notation let the unique extension of lb to E∗ (with co-domain
DR∗) also be denoted lb.

30

Claim 1 Let τ ∈ E∗. Then τ ∈ FSN iff lb(τ) ∈ L.

Claim 2 Let τ, τ ′ ∈ FSN . Then τ vIN τ ′ iff lb(τ) v lb(τ ′).

It is tedious but straightforward to prove these two claims. The required
result then follows easily. 2

Thus theorem 6.1 is now established. A simple consequence is that one
can now obtain a similar characterization of regular Σ-labelled trace event
structures in terms of finite Σ-labelled Petri nets.

Corollary 6.5 Let ES be a Σ-labelled trace event structure over (DR, I).
Then ES is regular iff there exists a finite Σ-labelled Petri net LN = (N , lb)
such that ES is isomorphic to ESLN .

Proof: Consider the trace alphabet (D̂R, Î) where D̂R = DR × Σ and
Î = {((a, x), (b, y)) | a I b}. Then following the lines of the proof of theorem
6.1, we can easily extract the corollary from theorem 6.4. 2

7 Conclusion

In this paper we have introduced the notion of a regular trace event struc-
ture. We view trace event structures as a common generalization – in an
event-based framework – of trees and Mazurkiewicz traces. As pointed out
earlier, the notion of a trace event structure and hence that of a trace struc-
ture admitted here is rather generous. Even trace event structures whose
underlying prime event structures have an empty conflict relation will be
allowed. Surely this is not what one intends when talking about branching
time behaviours. In the case of (finite) trees the required branching structure
is guaranteed by typing the nodes with arities or by demanding that each
node should have all its successors or none of its successors present in the
tree. Something similar will have to be done for trace event structure. The
possibilities that are available are many. It is not clear at present what is
the best way to proceed.

31

We do not know at present what is the proper monadic second order
logic for trace event structures. As mentioned earlier, blind generalization
over configurations (i.e. over traces in the setting of trace structures) will
at once result in an undecidable logic. Surprisingly enough, it turns out,
as pointed out by Walukiewicz [Wal] that a logic over trace event struc-
tures which permits quantification over events will also be undecidable. To
see this, consider the trace alphabet (DR0, I0) with DR0 = {l, m, r} and
I0 = {(l, r), (r, l)}. Then the events corresponding to the set of prime traces
{ln1, rn2m | n1 ≥ 0, n2 ≥ 0} can be used to code up the two-dimensional grid.
Thus we must find a suitable restriction on trace event structures in order to
arrive at branching time legics that are decidable and hopefully interesting.

Recently, Huhn and Niebert [HN] have proposed what may be called
confusion-free trace event structures as a suitable class of objects. They also
formulate a related class of automata and show that the emptiness problem
for these automata is decidable. We feel that confusion-freeness is a much
too drastic restriction and one should look for a larger class of trace event
structures. It is however not clear at present what this larger class ought to
be.

Our notion of regular trace event structures gives rise to an interesting
conjecture which appears to be difficult to prove. First note that for a prime
event structure ES = (E, ≤, #) we can define the equivalence relation RES ⊆
CES × CES via:

c RES c′ iff ES\c ≡ ES\c′.

(The notion of isomorphism that ≡ captures is the natural one.)

Next we say that e ∈ E is enabled at c ∈ CES iff e /∈ c and c∪{e} ∈ CES.
Let en(c) be the set of events enabled at the configuration c.

Finally, we say that ES is regular iff RES is of finite index and there
exists an integer k such that |en(c)| ≤ k for every c ∈ CES.

Conjecture The prime event structure ES is regular iff it is isomorphic to
the es-unfolding of a finite 1-safe Petri net.

32

References

[DM] V. Diekert and A. Muscholl: Deterministic Asynchronous Automata
for Infinite Traces, Acta Informatica, 31, (1994) 379-397.

[GW] P. Godefroid and P. Wolper: A Partial Approach to Model Checking,
Information and Computation, 110 (1994) 305-326.

[HN] M. Huhn and P. Niebert: Towards Automata for branching time and
partial order, Proc. of CONCUR’96, LNCS 1119 (1996), 611-627.

[LPRT] K. Lodaya, R. Parikh, R. Ramanujam and P.S. Thiagarajan: A
Logical Study of Distributed Transition Systems, Information and
Computation, 119 (1995) 91-118.

[MS] M. Mukund and M.S. Sohoni: Keeping track of the latest gossip:
Bounded time-stamps suffice, Proc. FST & TSC’93, LNCS 761
(1993) 388-399.

[NPW] M. Nielsen, G. Plotkin and G. Winskel: Petri nets, Event structures
and Domains I, Theor. Comput. Sci., 13 (1980) 86-108.

[NW] M. Nielsen and G. Winskel: Trace Structures and other Models for
Concurrency, In: V. Diekert and G. Rozenberg (eds.), The Book of
Traces, World Scientific, Singapore (1995) 271-305.

[Pel] D. Peled: All from one, one for all: On model checking using repre-
sentatives. Proceedings of CAV’93, LNCS 697 (1993) 409-424.

[PK] W. Penczek and R. Kuiper: Traces and Logic, In: V. Diekert and G.
Rozenberg (eds.), The Book of Traces, World Scientific, Singapore
(1995) 307-379.

[Rab] M.O. Rabin: Decidability of second order theories and automata on
infinite trees, Trans. Amer. Math. Soc., 141: 1-35, 1969.

[RT] B. Rozoy and P.S. Thiagarajan: Event Structures and Trace
Monoids, Theoretical Computer Science, 91 (1991) 285-313.

[Thi] P.S. Thiagarajan: A Trace Based Extension of Linear Time Tempo-
ral Logic, Proc. 9th IEEE LICS (1994) 438-447.

33

[Tho] W. Thomas: Automata on infinite objects, In: J. van Leeuwen
(ed.) Handbook of Theoretical Computer Science, Volume B, North-
Holland, Amsterdam (1990) 130-191.

[Val] A. Valmari: Stubborn Sets for Reduced State Space Generation,
LNCS 483 (1990) 491-515

[Wal] I. Walukiewicz. Private communication.

[Zie] W. Zielonka: Notes on finite asynchronous automata, R.A.I.R.O. –
Inf. Théor. et Appl., 21 (1987) 99-135.

34

Recent Publications in the BRICS Report Series

RS-96-32 P. S. Thiagarajan. Regular Trace Event Structures.
September 1996. 34 pp.

RS-96-31 Ian Stark. Names, Equations, Relations: Practical Ways
to Reason about `new'. September 1996. ii+22 pp.

RS-96-30 Arne Andersson, Peter Bro Miltersen, and Mikkel Tho-
rup. Fusion Trees can be Implemented with AC0 Instruc-
tions only. September 1996. 8 pp.

RS-96-29 Lars Arge. The I/O-Complexity of Ordered Binary-
Decision Diagram Manipulation. August 1996. 35 pp.
An extended abstract version appears in Staples, Eades,
Kato, and Moffat, editors, Algorithms and Computation:
6th International Symposium, ISAAC '95 Proceedings,
LNCS 1004, 1995, pages 82–91.

RS-96-28 Lars Arge.The Buffer Tree: A New Technique for Optimal
I/O Algorithms. August 1996. 34 pp. This report is a
revised and extended version of the BRICS Report RS-
94-16. An extended abstract appears in Akl, Dehne, Sack,
and Santoro, editors, Algorithms and Data Structures:
4th Workshop, WADS '95 Proceedings, LNCS 955, 1995,
pages 334–345.

RS-96-27 Devdatt Dubhashi, Volker Priebe,and Desh Ranjan.Neg-
ative Dependence Through the FKG Inequality. July 1996.
15 pp.

RS-96-26 Nils Klarlund and Theis Rauhe. BDD Algortihms and
Cache Misses. July 1996. 15 pp.

RS-96-25 Devdatt Dubhashi and Desh Ranjan.Balls and Bins: A
Study in Negative Dependence. July 1996. 27 pp.

RS-96-24 Henrik Ejersbo Jensen, Kim G. Larsen, and Arne Skou.
Modelling and Analysis of a Collision Avoidance Protocol
using SPIN and UPPAAL. July 1996. 20 pp. Presented at
DIMACS Workshop SPIN96 – 2nd International SPIN Ver-
ification Workshop on Algorithms, Applications, Tool Use,
Theory(Rutgers University, New Jersey, USA, August 5,
1996).

