
B
R

IC
S

R
S

-96-30
A

ndersson
etal.:

F
usion

Trees
can

be
Im

plem
ented

w
ith

A
C 0Instructions

only

BRICS
Basic Research in Computer Science

Fusion Trees can be Implemented with
AC0 Instructions only

Arne Andersson
Peter Bro Miltersen
Mikkel Thorup

BRICS Report Series RS-96-30

ISSN 0909-0878 September 1996

Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

Fusion trees can be implemented with AC0

instructions only

Arne Andersson
Lund University
arne@dna.lth.se

Peter Bro Miltersen∗

BRICS†, University of Aarhus
bromille@daimi.aau.dk

Mikkel Thorup
University of Copenhagen

mthorup@diku.dk

Abstract

Addressing a problem of Fredman and Willard, we implement fusion
trees in deterministic linear space using AC0 instructions only.

1 Introduction

Fredman and Willard [FW93], based on earlier ideas of Ajtai, Fredman, and
Komlos [AFK84], introduced the fusion tree. A fusion tree is a data structure
maintaining a subset S of U = {0, 1, . . . , 2w−1} under insertions, deletions,
predecessor and successor queries (i.e. for any element x of U , we can find
the predecessor and successor of x in S), and rank queries (i.e. for any
element x of U , we can find the number of elements of S smaller than or
equal to x). The model of computation for the fusion tree is a random access
machine whose registers contain w-bit words (i.e. members of U), and with an
∗Supported by the ESPRIT Long Term Research Programme of the EU under project

number 20244 (ALCOM-IT).
†Basic Research in Computer Science, Centre of the Danish National Research

Foundation

1

instruction set which includes unit-cost addition, subtraction, multiplication,
comparison, and bit-wise Boolean AND. The fusion tree maintains a set of size
n using O(n) space and amortized time O(log n/ log log n) per operation. An
immediate corollary to the existence of the fusion tree is that n w-bit keys
can be sorted in time O(n log n/ log log n) and space O(n) on a RAM with
word size w.

Fredman and Willard points out that multiplication is not an AC0 in-
struction, that is, there is no circuits for multiplication of constant depth
and of size (number of gates) polynomial in the word length. Here, the gates
are negations, and ∧- and ∨-gates with unbounded fan-in. They pose as
an open question if the fusion tree can be implemented using AC0 instruc-
tions only. The motivation for this question is obvious: AC0 is the class
of functions which can be computed in constant time in a certain model of
hardware, and it is therefore arguably questionable to assume unit-cost for
executing operations outside of this class.

In this paper, we solve this problem by showing that, given a small set
of non-standard AC0 instructions in addition to the more standard ones
(addition, comparison, bitwise Boolean operations, and shifts), the fusion
tree can be implemented, with the same asymptotic space and time bounds
as in [FW93].

Our presentation can also be seen as an alternative explanation of the
basic mechanisms in fusion trees. We believe that our use of special-purpose
instructions in place of the ingenious use of multiplication in [FW93] may
make our presentation easier to understand for the casual reader.

2 Model of computation and notation

We use a RAM with word size w and we consider n w-bit keys that can be
treated as binary strings or (unsigned) integers. We assume for convenience
that the keys are all different, this implies that w ≥ log n. We shall also
assume that

√
w is a power of two.

A w-bit word will sometimes be viewed as a concatenation of
√

w fields.
Each field is of length

√
w − 1; to the left of each field is the test bit of the

field. By a bit pointer we mean a (log w)-bit key, such a key can be used to
specify a bit-position within a word. W.l.o.g we assume that log w <

√
w−1

and hence a bit pointer fit in a field. As an example, if w = 64 a word

2

contains 8 fields of length 7, one test bit is stored with each field.
We will use upper-case characters to denote words and lower-case char-

acters to denote fields. For any bit-string α, we use |α| to denote its length,
and for i = 1, . . . , |α|, α[i] is the ith bit in α. In particular, α[1] is the
leftmost, and α[|α|] is the rightmost bit of α. Also, for 1 ≤ i ≤ j ≤
|α|, α[i..j] = α[i] · · ·α[j]. Finally, int(α) is number represented by α, i.e.
int(α) =

∑|α|
i=1 2iα[|α| − i]. Note that our indexing of words is slightly non-

standard, it is more common to index words from right to left, starting with
0. However, in the main technical part of this paper it is most convenient
to think of words as strings, and these are usually indexed from left to right
starting with index 1.

Apart from the standard AC0 instructions (comparison, addition, bitwise
Boolean operations and shift), we use the following ones:

LeftmostOne(X): returns a bit pointer to the leftmost 1 in X. A simple
depth 2 circuit of quadratic size is indicated by:

∀i ≤ w : int(LeftmostOne(X)) = i ⇐⇒ (
i−1∧
j=1

¬x[j]) ∧ x[i].

In fact, LeftmostOne(X) can be implemented with standard instruc-
tions. Converting X to floating point representation is a standard
operation, and afterwards, we just need to return the exponent.

Duplicate(x, d): Returns a word containing copies of the field x in the d
rightmost fields.

Select(X, K): The first
√

w − 1 fields in K are viewed as bit pointers; a
field is returned, containing the selected bits in X. Not all fields need
to be used. The test bit of a used field is 1. A depth 3 circuit of size
O(w3/2) is indicated by:

∀i ≤
√

w : Select(X, K)[i] = K[ib]∧
√
w∨

j=1
(j = int(K[ib+1..(i+1)b−1])∧X[j])

Furthermore, we assume that the constants b =
√

w − 1 and k = log
√

w are
known, b is the length of a field.

3

3 The AC0 fusion tree

Lemma 1 Let Y be a word where the d rightmost fields contain one b-bit
key each. Furthermore, assume that the d keys are sorted right-to-left, the d
rightmost test bits are 0, and that all bits to the left of the d used fields (and
their test bits) are 1. Then, given a b-bit key x, we can compute the rank of
x among the keys in Y in constant time.

Proof: The crucial observation is due to Paul and Simon [PauSim80]; they
observed that one subtraction can be used to perform comparisons in parallel.

Let M be a key where the d rightmost test bits are 1 and all other bits
are 0. In order to compute the rank of x among the keys in Y , we place d
copies of x in the d rightmost fields of a word X. We let the test bits of those
fields be 1. By the assignment R ← (X − Y) AND M the ith test bit from
the right in R will be 1 if and only if x ≥ yi. All other test bits (as well as
all other bits) in R will be 0. Hence, from the position of the leftmost 1 in R
we can compute the rank of x.

We implement this in the function PackedRank below. First, we compute
d, the number of keys contained in Y . This is the same number as the
number of set test bits in NOT Y , which can be determined using the function
LeftField below. Next, we create the word X and the mask M . Finally, we
make the subtraction and extract the rank.

For clarity, we introduce two simple AC0 functions.

FillTestBits(d): returns a word where the d rightmost test bits are set
and all other bits are zeroes. Can be implemented with shift, bitwise
logical operations, and Duplicate.

LeftField(Y): If the leftmost 1 in Y is a test bit, and if all test bits to
the right of this test bit are set, the number of set test bits is returned.
This can be computed as b + 1 − (LeftmostOne(Y) − 1)/(b + 1). We
don’t have a division operation, but since b+1 = 2k, we can implement
the division by a right shift by k.

Algorithm A: PackedRank (Y, x)
A.1. d ← LeftField(NOT Y).
A.2. M ← FillTestBits(d).

4

A.3. X ← Duplicate(x, d) OR M .
A.4. R ← (X − Y) AND M .
A.5. return LeftField(R).

PackedRank clearly runs in constant time.

Lemma 2 Given a word Y and a key x as in Lemma 1, we can generate a
new word where x is properly inserted among the keys in Y in constant time.

Proof: We need a function InsertField(Y, x, i): Insert x as the (i + 1)’st
field from the right in Y and set x’s test bit to 0. This can easily be imple-
mented with shift and bitwise Boolean operations.

The function InsertKey below implements the lemma.

Algorithm B: InsertKey (Y, x)
B.1. return InsertField(Y, x, PackedRank(Y, x)).

Lemma 3 Given d sorted w-bit keys, d ≤
√

w, a static data structure can be
constructed in O(d) time and space, such that it supports neighbour queries
in O(1) worst-case time.

Proof: The main idea is to make use of significant bit positions. View the
set of w-bit sorted keys Y1, . . . , Yd as stored in a binary trie. Each key is
represented as a path down the trie, a left edge denotes a 0 and a right edge
denotes a 1. We get the significant bit positions by selecting the levels in
the trie where there is at least one binary (that is, non-unary) node. These
bit positions can be computed by taking the position of the first differing
bit between all pairs of neighbouring keys in Y1, . . . , Yd. By extracting the
significant bits from each key we create a set of compressed keys y1, . . . , yd.
Since the trie has exactly d leaves, it contains exactly d − 1 binary nodes.
Therefore, the number of significant bit positions, and the length of a com-
pressed key, is at most d − 1. Since d − 1 ≤

√
w − 1 = b, we can pack these

compressed keys in linear time by repeated calls to InsertKey in Lemma 2.
We need the following AC0 functions, which can be implemented in a

straightforward way:

5

DiffPtr(X, Y): returns a bit pointer to the leftmost differing bit between
X and Y . (Can be implemented as LeftmostOne(X XOR Y).)

Fill(X, p): X is a word and p is a bit pointer. Returns a copy of X where
all bits to the right of position p have the same value as the bit in
position p. If p = w + 1, Fill(X, p) = X. (Can be implemented by
shifting, addition, and bitwise Boolean operations.)

The procedure Construct takes as input a set of keys Y1, . . . , Yd and
computes the set of significant bit positions; pointers to these positions are
concatenated in sorted order in the word K. Next, a set of compressed
keys are created by selecting the bits specified in K from Y1, . . . , Yd. These
compressed keys are packed in the word Y .

Algorithm C: Construct (Y1, . . . , Yd)
C.1. K ← 0.
C.2. For i ← 1 to d − 1, K ← InsertKey(K, DiffPtr(Yi, Yi+1)).
C.3. Y ← 0.
C.4. For i ← 1 to d, Y ← InsertKey(Y, Select(Yi, K)).

When implemented as above, the same bit-pointer may be packed several
times in K. This makes no difference.

We can now compute the rank of a query key X in constant time. Let
x = Select(X, K) and let pX denote the longest common prefix of X and
any key in Y1, . . . , Yd. Let yi denote the compressed version of Yi. Let
q1 < q2 < · · · < qd−1 be the significant bit positions and let qd = w + 1.
Then x[j] = X[qj] and yi[j] = Yi[j]. Note that if yi1[1..j] = yi2[1..j], then
Yi1 [1..qj+1 − 1] = Yi2 [1..qj+1 − 1].

Lemma 4 If x has rank i in y1, . . . , yd, then either Yi or Yi+1 start by pX .

Proof: Let i′ be such that Yi′ has the prefix pX . Let j be the maximal index
such that qj ≤ |pX |. Then yi′[1..j] = x[1..j]. However, since i is the rank of x,
we either have x = yi or yi < x < yi+1. This means that for i′′ equal to either
i or i+1, we have yi′′[1..j] = yi′[1..j]. Hence Yi′′[1..qj+1 −1] = Yi′ [1..qj+1 −1],
but qj+1 − 1 ≥ |pX |, so Yi′′ must share the prefix pX with Yi′ .

6

Lemma 5 Consider a key Z that starts by pX and where all remaining bits in
Z have the same value as X’s first distinguishing bit. Set z = Select(Z, K).
Let z0 be the result of setting the last bit of z to 0, and let z1 be the result of
setting it to 1. Then z ∈ {z0, z1}, and then the rank of of X among Y1, . . . , Yd
is either that of z0 or that of z1 among y1, . . . , yd.

Proof: Clearly Z has the same rank as X among Y1, . . . , Yd. Let i be the
rank of z among y1, . . . , yd. If yi 6= z, then i is the correct rank of X. The
same holds if Yi = Z = X. However, suppose that yi = z and Yi 6= Z.
Suppose that the first distinguishing bit X[|pX |+ 1] of X is 0. Then there is
some j > |pX |, j 6∈ {q1, . . . , qd−1}, such that Yi[j] = 1. Hence Yi > Z. Since
yi′ = yi implies Yi′ = Yi, we conclude that the rank of Z among Y1, . . . , Yd is
the rank of z1 among y1, . . . , yd.

If X[|pX| + 1] = 1, symmetrically we have that the rank of Z among
Y1, . . . , Yd is the rank of z0 among y1, . . . , yd.

We can use the first lemma to compute the length of pX and hence the
position of X’s first distinguishing bit. Once this position is known, we can
apply the second lemma to find the proper rank of X.

We encode this in the function Rank below. The variable p is used to
store the position of X’s first distinguishing bit.

Algorithm D: Rank(X)
D.1. i ← PackedRank(Y, Select(X, K)).
D.2. If i = 0, p ← DiffPtr(X, Y1);
D.3. else p ← max(DiffPtr(X, Yi), DiffPtr(X, Yi+1))
D.4. Z ← Fill(X, p).
D.5. z ← Select(Z, K).
D.6. i ← PackedRank(Y, z).
D.7. If Yi ≤ Z < Yi+1, return i;
D.8. else z[b] ← ¬z[b]; return PackedRank(Y, z).

The original method by Fredman and Willard is slightly different. Instead of
filling the query keys with 1s (or 0s) and making a second packed searching,
they use a lookup table of size Θ(d2) in a node of degree d.

7

The proof of our main theorem is similar to that of Fredman and Willard.
Note that we can allow the B-tree nodes to have higher degree than in the
original fusion tree:

√
w compared to w1/6.

Theorem 6 A set can be maintained using linear space under insertion,
deletion, predecessor, successor, and rank queries with O(log n/ log log n)
amortized time per operation on an AC0 RAM.

Proof: The proof proceeds as in [FW93]:
Lemma 3 allows us to implement a B-tree [BM72] node of degree d ≤

√
w.

Searching in such a node takes constant time while splitting, merging, and
adding/removing keys take O(d) time. By keeping traditional, comparison-
based, weight-balanced trees of size Θ(d) at the bottom of the B-tree, we
can ensure that at most every Θ(d)’th update causes any change in a B-tree
node.

The number of B-tree levels is O(log n/ log d) and the height of a weight-
balanced tree is O(log d). Since w > log n/ log log n, we can choose d =
Θ(

√
log n) and the theorem follows.

References

[AFK84] M. Ajtai, M.L. Fredman, and J. Komlos, Hash functions for
priority queues, Information and Computation 63:217–225, 1984.

[BM72] R. Bayer and E.M. McCreight, Organization and maintenance of
large ordered indexes, Acta Informatica 1(3):173–189, 1972.

[FW93] M.L. Fredman and D.E. Willard. Surpassing the information the-
oretic bound with fusion trees. Journal of Computer and System
Sciences, 47:424–436, 1993.

[PauSim80] W. J. Paul and J. Simon. Decision trees and random access
machines. In Proc. International Symp. on Logic and Algorithmic,
Zürich, pages 331–340, 1980.

8

Recent Publications in the BRICS Report Series

RS-96-30 Arne Andersson, Peter Bro Miltersen, and Mikkel Tho-
rup. Fusion Trees can be Implemented with AC0 Instruc-
tions only. September 1996. 8 pp.

RS-96-29 Lars Arge. The I/O-Complexity of Ordered Binary-
Decision Diagram Manipulation. August 1996. 35 pp.
An extended abstract version appears in Staples, Eades,
Kato, and Moffat, editors, Algorithms and Computation:
6th International Symposium, ISAAC '95 Proceedings,
LNCS 1004, 1995, pages 82–91.

RS-96-28 Lars Arge.The Buffer Tree: A New Technique for Optimal
I/O Algorithms. August 1996. 34 pp. This report is a
revised and extended version of the BRICS Report RS-
94-16. An extended abstract appears in Akl, Dehne, Sack,
and Santoro, editors, Algorithms and Data Structures:
4th Workshop, WADS '95 Proceedings, LNCS 955, 1995,
pages 334–345.

RS-96-27 Devdatt Dubhashi, Volker Priebe,and Desh Ranjan.Neg-
ative Dependence Through the FKG Inequality. July 1996.
15 pp.

RS-96-26 Nils Klarlund and Theis Rauhe. BDD Algortihms and
Cache Misses. July 1996. 15 pp.

RS-96-25 Devdatt Dubhashi and Desh Ranjan.Balls and Bins: A
Study in Negative Dependence. July 1996. 27 pp.

RS-96-24 Henrik Ejersbo Jensen, Kim G. Larsen, and Arne Skou.
Modelling and Analysis of a Collision Avoidance Protocol
using SPIN and UPPAAL. July 1996. 20 pp. Presented at
DIMACS Workshop SPIN96 – 2nd International SPIN Ver-
ification Workshop on Algorithms, Applications, Tool Use,
Theory(Rutgers University, New Jersey, USA, August 5,
1996).

RS-96-23 Luca Aceto, Wan J. Fokkink, and Anna Inǵolfsdóttir. A
Menagerie of Non-Finitely Based Process Semantics over
BPA∗: From Ready Simulation Semantics to Completed
Tracs. July 1996. 38 pp.

