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Abstract

Ordered Binary-Decision Diagrams (OBDD) are the state-of-the-
art data structure for boolean function manipulation and there ex-
ist several software packages for OBDD manipulation. OBDDs have
been successfully used to solve problems in e.g. digital-systems de-
sign, verification and testing, in mathematical logic, concurrent sys-
tem design and in artificial intelligence. The OBDDs used in many of
these applications quickly get larger than the avaliable main memory
and it becomes essential to consider the problem of minimizing the
Input/Output (I/O) communication. In this paper we analyze why
existing OBDD manipulation algorithms perform poorly in an I/O
environment and develop new I/O-efficient algorithms.

*An extended abstract version of this paper was presented at the Sixth International
Symposium on Algorithms and Computation (ISAAC’95).

fThis work was partially supported by the ESPRIT II Basic Research Actions Program
of the EC under contract No. 7141 (project ALCOM II). Part of the work was done while
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fAcronym for Basic Research in Computer Science, a Center of the Danish National
Research Foundation.



1 Introduction

Many problems in digital-systems design, verification and testing, mathemat-
ical logic, concurrent system design and artificial intelligence can be expressed
and solved in terms of boolean functions [8]. The efficiency of such solutions
depends on the data structures used to represent the boolean functions, and
on the algorithms used to manipulate these data structures. Ordered Binary-
Decision Diagrams (OBDDs) [7, 8] are the state-of-the-art data structure for
boolean function manipulation and they have been successfully used to solve
problems from all of the above mentioned areas. There exist implementa-
tions of OBDD software packages for a number of sequential and parallel
machines [5, 6, 22, 23]. Even though there exist very different sized OBDD
representations of the same boolean function, OBDDs in real applications
tend to be very large. In [5] for example, OBDDs of Gigabyte size are ma-
nipulated in order to verify logic circuit designs, and researchers in this area
would like to be able to manipulate OBDDs orders of magnitude larger. In
such cases the Input/Output (I/O) communication becomes the bottleneck
in the computation.

Until recently most research, both theoretical and practical, has concen-
trated on finding small OBDD representations of boolean functions appearing
in specific problems [6, 8, 17, 24|, or on finding alternative succinct repre-
sentations while maintaining the efficient manipulation algorithms [13]. The
limit on the size of the problem instances one has been able to solve in prac-
tice has generally been determined by the ability to find representations that
fit in internal memory of the machine used to solve the problem. The under-
lying argument for concentrating on the problem of limiting the size of the
OBDDs then seems to have been that as soon as they get to large—larger
than the available main memory—generating a large number of page faults,
resulting in dramatically increasing running times, is inevitable. Very re-
cently however, researchers have instead begun to consider 1/O issues arising
when the OBDDs get larger than the available internal memory, and exper-
imental results show that very large runtime speedups can be achieved with
algorithms that try to minimize the access to external memory as much as
possible [5, 23]. These speedups can be achieved because of the extremely
large access time of external storage medias, such as disks, compared to the
access time of internal memory. In the coming years we will be able to solve
bigger and bigger problems due to the development of machines with larger
and faster internal memory and due to increasing CPU speed. This will



however just increase the significance of the I/O bottleneck since the devel-
opment of disk technology lacks behind developments in CPU technology. At
present, technological advances are increasing CPU speed at an annual rate
of 40-60% while disk transfer rates are only increasing by 7-10% annually [25].

In this paper we analyze why existing OBDD manipulation algorithms
perform poorly in an I/O environment and develop new I/O-efficient algo-
rithms.

1.1 I/0O Model and Previous Results

We will be working in the parallel disk model [1, 31] which models the I/O
system of many existing workstations. The model has the following param-
eters:

# of elements in the problem instance;

# of elements that can fit into main memory;
= # of elements per disk block;

= # of parallel disks,

ow < =
I

where M < N and 1 < DB < M/2. Depending on the size of the data
elements, typical values for workstations and file servers in production today
are on the order of M = 10° or 10" and B = 103. Values of D range up to
10% in current disk arrays.

An I/O operation (or I/O) in the model is the process of simultaneously
reading or writing D blocks of data, one block of B contiguous elements to
or from each of the D disks. The I/O-complexity of an algorithm is simply
the number of I/Os it performs. Internal computation is free, and we always
assume that the N elements initially are stored in the first N/DDB blocks of
each disk. Thus reading all the input data requires N/DB 1/Os. We will
use the term scanning to describe the fundamental primitive of reading (or
writing) all items in a set stored contiguously in external memory by reading
(or writing) the blocks of the set in a sequential manner.

Early work on external-memory algorithms concentrated on sorting and
permutation related problems [1, 11, 20, 21, 30, 31]. More recently researchers
have designed external-memory algorithms for a number of problems in dif-
ferent areas. Most notably 1/O-efficient algorithms have been developed for
a large number of computational geometry [4, 14] and graph problems [10].
Other related papers are [27] and [12] that address the problem of computing
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the transitive closure of a graph under some restrictions on the size of the
graph, and propose a framework for studying memory management problems
for maintaining connectivity information and paths on graphs, respectively.
Also worth noticing in this context is [18] that addresses the problem of
storing graphs in a paging environment, but not the problem of performing
computation on them, and [3] where a number of external (batched) dynamic
data structures are developed. Finally, it is demonstrated in [9, 29] that the
results obtained in the mentioned papers are not only of theoretical but also
of great practical interest.

While N/DB is the number of I/Os needed to read all the input,’ Aggar-
wal and Vitter [1] proved that ©(2% log /s %) = O(sort(N))? is the number
of 1/Os needed to sort N elements. Furthermore, they proved that the num-
ber of 1/Os needed to rearrange N elements according to a given permutation
is ©(min{N/D,sort(N)}) = O(perm(N)).? They also developed algorithms
with I/O bounds matching these lower bounds in the D = 1 model. Later
the results have been extended to the general model [20, 19, 30, 31]. In [10] it
was shown that the permutation lower bound also applies to a large number
of fundamental graph problems.

Taking a closer look at the fundamental bounds for typical values of B
and M reveals that because of the large base of the logarithm, log,,z % is
less than 3 or 4 for all realistic values of N, M and B. This means that
the sorting bound in all realistic cases will be smaller than N/D, such that
perm(N) = sort(N). In practice the term in the bounds that really makes
the difference is the DB-term in the denominator of the sorting bound. As
typical values of DB are measured in thousands, going from a Q(N) bound—
as we shall see is the worst-case 1/O performance of many internal-memory
algorithms—to the sorting bound, can be really significant in practice.

1.2 OBDDs and Previous Results

An OBDD is a branching program with some extra constraints. A branching
program is a directed acyclic graph with one root, whose leaves (sinks) are
labeled with boolean constants. The non leaves are labeled with boolean
variables and have two outgoing edges labeled 0 and 1, respectively. If a
vertex is labeled with the variable x; we say that it has index i. If f is the

'We refer to N/DB as the linear number of I/Os.
2For simplicity we write sort(N) and perm(NN), suppressing M, B and D.



Figure 1: OBDD representations of the functions x1 A zo V x3 and z1 A x4 V
o A5V 3 Axg. The left children are 0-successors and the right 1-successors.
All edges are directed downwards.

Boolean function represented by the branching program, an evaluation of
f(ai,...,a,) starts at the root and follows for a vertex labeled x; the out-
going edge with label a;. The label of the sink reached in this way equals
f(ai,...,a,). An OBDD is a branching program for which an ordering of the
variables in the vertices is fixed. For simplicity we assume that this ordering
is the natural one, z,...,z,, that is, if a vertex with label z; is a successor
of a vertex with label z;, the condition j > i has to be fulfilled. Figure 1
shows two examples of OBDDs. Note that an OBDD representing a boolean
function of n variables can be of size 2", and that different variable order-
ings lead to representations of different size. There exist several algorithms
(using heuristics) for choosing a variable ordering that minimizes the OBDD
representation of a given function [17, 24].

In [7] Bryant proved that for a given variable ordering and a given boolean
function there is (up to isomorphism) exactly one OBDD—called the reduced
OBDD—of minimal size. Bryant also proved that iterated use of the following
two reduction rules on an OBDD with at most one 0-sink and one 1-sink
yields the reduced OBDD: 1) If the two outgoing edges of vertex v lead to
the same vertex w, then eliminate vertex v by letting all edges leading to v
lead directly to w. 2) If two vertices v and w labeled with the same variable
have the same 1-successor and the same 0-successor, then merge v and w into
one vertex. The OBDDs in Figure 1 are both reduced. Bryant [7] gave an
algorithm for reducing an OBDD G with |G| vertices in O(|G|log |G|) time.
Later algorithms running in O(|G|) time have been developed [8, 26].

The most fundamental operations on OBDDs are the following:



e Given an OBDD representing f, compute if f can be satisfied.
e Given two OBDDs representing f; and fy, compute if f; = fs.

e Compute from OBDDs representing f; and fo an OBDD for f = f1® fo,
where ® is some boolean operator.

The first two operations can easily be performed on reduced OBDDs.
From a computational point of view the fundamental operations are therefore
the reduce operation and the apply operation, as we shall call the operation
which computes the reduced OBDD for the function obtained by combining
two other functions by a binary operator. In [7] an O(|G1]| - |Ga|) time algo-
rithm for using the apply operation on two OBDDs of size |G| and |Gy is
developed. This algorithm relies on a depth first traversal algorithm. In [22]
a breadth first traversal algorithm with the same time bound is given.

Even though the I/O system (the size of the internal memory) seems to be
the primary limitation on the size of the OBDD problems one is able to solve
practically today [5, 6, 7, 8, 23|, it was only very recently that OBDD ma-
nipulation algorithms especially designed to minimize I/O were developed.
In [23] Ochi, Yasuoka and Yajima realized that the traditional depth first
and breadth first apply algorithms do not perform well when the OBDDs
are too large to fit in internal memory, and they developed alternative al-
gorithms working in a levelwise manner.®> These algorithms were obtained
by adding extra vertices to the representation (changing the OBDD defini-
tion) such that the index of successive vertices on any path in an OBDD
differs by exactly one. This makes the previously developed breadth first al-
gorithm [22] work in a levelwise manner. Implementing the algorithms they
obtained runtime speedups of several hundreds compared to an implementa-
tion using depth first algorithms. Very recently Ashar and Cheong [5] showed
how to develop levelwise algorithms without introducing extra vertices, and
conducted experiments which showed that on large OBDDs their algorithms
outperform all other known algorithms. As the general idea (levelwise algo-
rithms) are the same in [22] and [5], we will only consider the latter paper
here. Finally, it should be mentioned that Klarlund and Rauhe in [16] report

3When we refer to depth first, breadth first and levelwise algorithms we refer to the way
the apply algorithm traverse the OBDDs. By levelwise algorithm we mean an algorithm
which processes vertices with the same index together. All known reduce algorithms work
in a levelwise manner.



significant runtime improvements when working on OBDDs fitting in inter-
nal memory and using algorithms taking advantage of the blocked transport
of data between cache and main memory.

In the algorithms in [5] no explicit I/O control is used. Instead the algo-
rithms use a virtual memory space and the I/O operations are done implicitly
by the operation system. However, explicit memory management is done in
the sense that memory is allocated in chunks/blocks that match the size of
an I/0 block, and a specific index is associated with each such block. Only
vertices with this index are then stored in such a block. This effectively
means that the OBDDs are stored in what we will call a level blocked man-
ner. The general idea in the manipulation algorithms is then to try to access
these level blocked OBDDs in such a way that the vertices are accessed in
a pattern that is as levelwise as possible. On the other hand we in this pa-
per assume that we can explicitly manage the 1/O. This could seem to be
difficult in practice and time consuming in terms of internal computation.
However, as Vengroff and Vitter show in [29]—using the transparent parallel
I/O environment (TPIE) developed by Vengroff [28]—the overhead required
to manage 1/O can be made very small.

1.3 Our Results

In this paper we analyze why the “traditional” OBDD manipulation algo-
rithms perform poorly when the OBDDs get large, by considering their 1/0
performance in the parallel disk model. Furthermore we develop new I1/0O-
efficient algorithms.

First we show that all existing reduce algorithms—including the algo-
rithms developed with I/O in mind [5]—in the worst case use Q(|G]) 1/Os
to reduce an OBDD of size |G|. We show that this is even the case if we
assume that the OBDD is blocked in external memory in some for the algo-
rithm “natural” or favorable way by the start of the algorithm—depth first,
breadth first or level blocked.* Then we show that for a special class of algo-
rithms, which includes all existing algorithms, Q(perm(|G|)) is a lower bound
on the number of I/Os needed to reduce an OBDD of size |G|. We show that
this is even the case if we assume one of the blockings mentioned above, and
even if we assume another intuitively good blocking. Previous 1/O lower

4“When we refer to a blocking as e.g. a depth first blocking, we refer to a blocking where
the vertices are assigned to blocks in the way they are met in a depth first traversal.



bounds on graph problems all assume general blockings. Finally, we develop
an O(sort(|G|) I/O reduce algorithm. Thus our algorithm is asymptotically
optimal in all realistic I/O-systems, among algorithms from the special class
we consider.

We then go on and analyze the existing apply algorithms in the parallel
disk model. Again we show that in the worst case all existing algorithms
use Q(|G1] - |G2]) 1/O0s, and that this also holds for natural blockings of the
involved OBDDs. We also develop an O(sort(|R])) 1/O apply algorithm.
Here |R| denotes the size of the resulting un-reduced OBDD. Our algorithm
is thus asymptotically optimal in all realistic I/O-systems assuming that we
have to do a reduction step after the use of the apply algorithm.

We believe that the developed algorithms could be of enormous practi-
cal value, as the constants in the asymptotic I/O bounds are all small. As
mentioned in [5] large runtime improvements open up the possibility of cre-
ating OBDDs for verifying very large portions of chips, something considered
impossible until now.

The rest of the paper is organized with a section for each of the OBDD
manipulation algorithms. For simplicity we only consider the one disk model
in these two sections. In Section 4 we then discuss extension of our results
to the general D-disk model. We end the paper with a concluding section.

2 The Reduce Operation

Our discussion of the reduce operation is divided into three main parts. In
Subsection 2.1 we present the existing reduce algorithms in order to be able
to analyze their I/O-behavior in Subsection 2.2. For natural reason these
two subsection will be rather discussing, and not very mathematically strict
as Subsection 2.3 where we prove a lower bound on the number of I/Os
needed to reduce a given OBDD. Finally, we in Subsection 2.4 present our
new 1/O-efficient reduce algorithm.

In our discussions of reduce algorithms—and in the rest of this paper—we
assume that an OBDD is stored as a number of vertices and that the edges
are stored implicitly in these. We also assume that each vertex knows the
indices (levels) of its two children. The same assumptions are made in the
existing algorithms. This means that the fundamental unit is a vertex (e.g.,
an integer—we call it the id of the vertex) with an index, and an id and an
index (and maybe a pointer) for each of the two children. The vertices also
contain a few other fields used by the apply and reduce algorithms.



2.1 Reduce Algorithms

All reduce algorithms reported in the literature basically works in the same
way. In order to analyze their I/O behavior, we in this section sketch the
basic algorithm and the different variations of it.

The basic reduce algorithm closely follows an algorithm for testing whet-
her two trees are isomorphic [2]. The algorithm processes the vertices level-
wise from the sinks up to the root, and tries to use the two reduction rules
discussed previously on each vertex. When the root is reached the reduced
OBDD has been obtained, as the reduction rules cannot be used on any of
the vertices in the OBDD. More precisely the algorithm assigns an integer
label to each vertex in the OBDD such that a unique label is assigned to
each unique sub-OBDD: First, two distinct labels are assigned to the sink
vertices—one to the 1-sinks and one to the 0-sinks—and then the vertices
are labeled level by level (index by index). Assuming that all vertices with
index greater than ¢ have been processed, a vertex v with index 7 is assigned
a label equal to that of some other vertex that has already been relabeled,
if and only if one of two conditions is satisfied (one of the two reduction
rules can be used). First, if the labels of v’s children are equal the vertex
is redundant and it is assigned a label equal to that of the children (R1).
Secondly, if there exists some already processed vertex w with index ¢ whose
left and right children have the same labels as the left and right children of v,
respectively, then the sub-OBDDs rooted in v and w is isomorphic, and v is
assigned the same label as w (R2). When all vertices have been relabeled the
OBDD consisting of precisely one vertex for each unique label is the reduced
OBDD corresponding to the original one.

The reduction algorithm comes in three variants (disregarding 1/0 issues
for now), and the main difference between them is the way they decide if
reduction rule R2 can be used on a given vertex. When processing vertices
with index ¢ Bryant’s original algorithm [7] sorts the vertices according to the
labels of their children such that vertices which should have assigned the same
label end up next to each other in the sorted sequence. The time complexity
of the algorithm is dominated by the time used to sort the vertices, such that
the algorithm runs in time O(|G|log |G|). Later, Bryant [8] gave an algorithm
which instead of sorting the vertices maintain a (hash) table with an entry
for each unique vertex seen so far. When processing a vertex a lookup is
made in the table to see if an isomorphic vertex has already been labeled.
If not the vertex is given a new unique label and inserted in the table. The



implementations reported in [5, 6, 22, 23| all use this general idea. From a
theoretical point of view the table uses a lot of space, namely O(n - |G|?), but
using “lazy initialization” [2] the running time of the algorithm can be kept
at O(|G), as that is the number of entries in the table which is actually used.
Finally, the algorithm by Sieling and Wegener [26] also sorts the vertices with
a given index according to the labels of the children, but uses the bounded
size of the label domain to do so with two phases of the well-known bucket
sort algorithm. First, the vertices are partitioned according to the label of
the 0-successor, and in a second bucket sort phase the non-empty buckets are
partitioned according to the 1-successor. Vertices that end up in the same
bucket is then assigned the same label. The algorithm runs in O(|G|) time.

2.2 The I/0O behavior of Reduce Algorithms

The basic reduce algorithm by Bryant [7] starts by doing a depth first traver-
sal of the OBDD in order to collect the vertices in lists according to their
indices (levels). If one does not assume anything about the way the vertices
are blocked—which probably is most realistic, at least if one works in a vir-
tual memory environment and uses pointers to implement the OBDDs—an
adversary can force the algorithm to use Q(|G|) I/Os just to do this traversal:
If we call the vertex visited as number 7 in a depth first traversal for v;, the
adversary simply groups vertex vi, varq1, Vaari1, - - -, U(B—1)M+1 together into
the first block, va, vary2, Vanrse, - - -, V(B—1)m+2 into the second block, and so
on. This results in a page fault every time a new vertex is visited. Even if
one assumes that the OBDD is blocked in a breadth first manner, or even
in a level manner, it is fairly easy to realize that the depth first traversal
algorithm causes Q(|G|) page faults in the worst case.

So let us assume that the OBDD is blocked in a depth first manner, such
that the traversal can be performed in O(|G|/B) 1/Os. At first it seems that
the algorithm still uses Q(|G|) 1/Os, as it during the traversal outputs the
vertices to n different lists (one for each index), and as an adversary can
force it never to output two consecutive vertices in the depth first order to
the same list. However, in practice this would not be to bad, as we typically
have that n < |G| and that n actually is smaller than M /B, which means
that we can reserve a block in internal memory for each of the n lists and
only do an output when one of these blocks runs full. Then we only use
O(|G|/B) 1/0Os to produce the lists. In general an algorithm which scans
through the OBDD and distribute the vertices to one of n lists will perform
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Figure 2: I/O behavior of reduce algorithms (B = 2).

well in practice. As we will discuss below this is precisely the idea used in
the algorithm by Ashar and Cheong [5].

So let us then assume that we have produced the index lists (and thus
a level blocking of the OBDD) in a acceptable number of 1/Os, and analyze
how the different variations of the basic algorithm then perform. Recall that
all the variations basically sort the vertices with a given index according to
the labels of their children. This means that when processing vertices with a
given index the children have to be “visited” in order to obtain their labels.
Assuming noting about the order in which this is done, it is not difficult to
realize that an algorithm can be forced to do an 1/O every time it visits a
child. Actually, this holds whatever blocking one has—depth first, breadth
first or level blocking—mainly because the vertices can have large fan-in. As
an example of this, consider the part of an OBDD in Figure 2. We assume
that the OBDD is level blocked and that B =2 and M/B = 3, that is, that
the main memory can hold 3 blocks. Now consider the process of visiting the
children of each vertex in block 1 through 3, assuming that a least recently
used (LRU) like paging strategy is used. First we load block 1 and start to
visit the children of the leftmost vertex. To do so we load block 4 and then
block 5. Then we continue to visit the children of the second vertex in block
1. To do so we have to make room for block 7, so we flush block 4 from
internal memory. Then we can load block 7 and continue to load block 6,
flushing block 5. This process continues, and it is easy to realize that we do
an 1/0 every time we visit a vertex. Similar examples can be given for depth
first and breadth first blockings.

The above problem is also realized in [5], and in order to avoid some of
the randomness in the memory access the algorithm presented there visits
the children in level order. This is accomplished by scanning through the
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vertices, distributing each of them to two of n lists according to the index
(level) of their children. As discussed above this can be done I/O-efficient in
practice. Then these lists are processed one at a time and the desired labels
are obtained. The algorithm follows the general philosophy mentioned earlier
that as the vertices are stored levelwise they should also be accessed levelwise.
But still it is not hard to realize that also this algorithm could be forced to do
an I/O every time a child is accessed, because there is no correlation between
the order in which the children on a given level are visited and the blocks
they are stored in. For example using the strategy on the OBDD in Figure 2
still results in a page fault every time a child is visited. To summarize, all
variations of the basic algorithm use Q(|G|) I/O in the worst case to obtain
the labels of the children—even the algorithm designed with I/O in mind.
Furthermore, there seems to be no simple blocking strategy that avoids this.

Finally, there is the actual sorting step. It is difficult to say how many
I/Os the basic algorithm uses on this task, as a number of different sorting
algorithms could be used and as some of them might actually perform rea-
sonably in an I/O environment. It is however easy to realize that the (hash)
table approaches [5, 8] perform poorly on large OBDDs, as there is no regu-
lar pattern in the access to the table. Also the bucket approach used in [26]
performs poorly because of the random pattern in which the (large number
of) buckets are accessed.

To summarize, all known algorithms use Q(|G|) 1/Os in the worst case
to reduce an OBDD of size |G|. As mentioned, this number could be very
large compared to the linear or the sorting 1/O bounds. There are several
reasons why the algorithm in [5] still performs so relatively well in practice.
We believe that the main reason is that the OBDDs used in the experiments
in [5], even though they are large, still are small enough to allow one level
of the OBDD to fit in internal memory. This, together with the intuitively
correct levelwise blocking and access to the table, results in the large runtime
speedups compared to other algorithms. A main reason is also to be found
in the apply algorithm which we discuss in Section 3.

2.3 1I/0 Lower Bound on the Reduce Operation

After analyzing the I/O performance of existing reduce algorithms, we will
now prove a lower bound on the number of I/Os we have to use in order
to reduce an OBDD. As mentioned in the introduction, Aggarwal and Vit-
ter [1] proved a lower bound on the number of I/Os needed to permute N
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elements. They used a counting argument where they counted the number
of permutations one can produce with a given number of 1/Os and com-
pared this to N! We will use the same kind of technique to prove a lower
bound on the reduce operation. However, while the current permutation is
well defined throughout an algorithm for the permutation problem, this is
generally not the case in graph computations like the reduce operation. In
the permutation case one can regard the main and external memory as one
big memory, and it is then easy to define the current permutation as the
N elements are all present somewhere in this memory throughout the algo-
rithm. On the contrary elements (vertices) may disappear and new ones may
be created during a reduce operation. In the extreme case all the vertices
of an input OBDD are removed by a reduce operation and replaced by one
(sink) vertex. In order to prove permutation-like bounds on graph problems,
that is, bounds expressing the fact that in the I/O-model it is in general
hard to rearrange elements according to a given permutation, we thus re-
strict our attention to a specific class of reduce algorithms. Intuitively, the
class consists of all algorithms that work by assigning labels to vertices, and
check if the reduction rules can be used on a vertex by checking the labels
of its children. The assumption is that the children of a vertex are loaded
into internal memory (if they are not there already) when their new label is
checked. All known reduction algorithms belong to this class and the one
we develop in Section 2.4 does as well. In order to define the class precisely,
we in Section 2.3.1 define a pebble game played on a graph. We also discuss
its relation to I/O-complexity. Then we in Section 2.3.2 consider a specific
graph and prove a lower bound for playing the game on this graph. This
result is then used to prove an 1/0O lower bound on the reduce operation. We
prove the lower bound for a number of specific blockings.

2.3.1 The (M, B)-Blocked Red-Blue Pebble Game

In [15] Hung and Kung defined a red-blue pebble game played on directed
acyclic graphs in order to define I/O-complexity. In their game there were
no notion of blocks. Here we define a game which is also played on directed
graphs with red and blue pebbles, but otherwise is rather different form
the Hung and Kung game. Among other things our game takes blocks into
account.

An mentioned our (M, B)-blocked red-blue pebble game is played on a
graph. During the game the vertices of the graph hold a number of pebbles
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colored red or blue. The blue pebbles contain an integer each, called the
block index. Also the edges of the graph will be colored blue or red. A con-
figuration is a pebbled graph with colored edges. In the start configuration
all vertices contain precisely one blue pebble and all edges are blue. Fur-
thermore, precisely B pebbles have the block index 1, precisely B have block
index 2, and so on up to V/B (we assume without loss of generality that B
divides the number of vertices V). Throughout the game at most M — B
pebbles may be red. A terminal configuration is one where all pebbles are
blue and all edges red. The rules of the game are the following:

Rule 1: (Input) Blue pebbles with the same block index may be colored red.

Rule 2: (Output) Up to B red pebbles may be colored blue and given the
same block index, while all other pebbles with that block index are
removed from the game.

Rule 3: New red pebbles may be placed on any vertex with a red pebble.

Rule 4: The edge (v;, v;) may be colored red if both vertices v; and v; contain
at least one red pebble.

A transition in the game is an ordered pair of configurations, where the
second one follows from the first one by using one of the above rules. A
calculation is a sequence of transitions of which the first configuration is the
start configuration. A calculation is complete if it ends with the terminal
configuration. We define the pebble 1/0-complexity of a complete calculation
to be the number of transitions in the calculation defined by the use of rule
one or two.

Playing the pebble game on a graph models an 1/O algorithm with the
graph as input, and pebble I/O-complexity corresponds to I/O-complexity
as defined in the introduction. Blue pebbles reflect vertices stored on disk
and red pebbles vertices stored in main memory. In the start configura-
tion the graph is stored in the first V//B blocks on disk. Rule one and two
then correspond to an input and output respectively, while rule three al-
lows copying of vertices in internal memory (and thus storing of the same
vertex in different blocks on disk). Finally, rule four—together with the def-
inition of terminating configuration—defines the class of algorithms we want
to consider, namely algorithms where for every edge (v;, v;) in the graph, the
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algorithm at some point in the computation holds both vertices v; and v; in
main memory at the same time.

Note that in the pebble game the external memory is divided into what
is normally called tracks, as we read and write blocks of elements to or
from a block of external memory with a unique block index. However, lower
bounds proved in the pebble model also hold in the model discussed in the
introduction, as an I1/O reading or writing a portion of two tracks can be
simulated with a constant number of 1/Os respecting track boundaries.

2.3.2 Pebble I/0O Lower Bound on the Reduce Operation

In [10] the following generalization of the permutation lower bound from [1]
is proved:

Lemma 1 Let A be an algorithm capable of performing (NV)*N¢ different
permutations on an input of size N, where 0 < o < 1 and ¢ are constant.
Then at least one of these permutations requires ©(perm(N)) 1/Os.

Using this lemma an Q(perm(V)) lower bound can be shown on the num-
ber of I/Os needed to solve the prozimate neighbors problem [10]. The proxi-
mate neighbors problem is defined as follows: Initially, we have N elements in
external memory, each with a key that is a positive integer k& < N/2. Exactly
two elements have each possible value of k. The problem is to permute the
elements such that, for every k, both elements with k£ are in the same block.
In [10] the proximate neighbors problem is used to prove lower bounds on a
number of important graph problems. We define a variant of the proximate
neighbors problem called the split prozimate neighbors problem (SPN). This
problem is defined similar to the proximate neighbors problem, except that
we require that the keys of the first N/2 elements in external memory (and
consequently also the last N/2 elements) are distinct. Furthermore, we re-
quire that the keys of the first N/2 elements are sorted. Following the proof
of the lower bound on the proximate neighbors problem we can prove the
following:

Lemma 2 Solving SPN requires Q(perm(N)) 1/Os in the worst case, that
is, there exists an instance of SPN requiring Q(perm(N)) I/0Os.

Proof: There are (N/2)! distinct split proximate neighbors problems. We
define a block permutation to be an assignment of elements to blocks. For
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each of the distinct problems an algorithm will do some permutation in order
to reach a block permutation that solves it. We want to estimate how many
distinct problems one block permutation can be solution to. Consider the first
block of a given block permutation. This block contains B/2 elements from
the first part of the split proximate neighbors problem and B/2 elements from
the last part. The elements have precisely B/2 different keys ki, ks, ..., kp/2.
Now let i1,4y,...,ip/2 be the indices of the elements from the last half of
the problem, that is, the positions of the elements in the input configuration.
The block permutation in hand can only be a solution to problems in which
the keys ki, ks, ..., kp/e are distributed among the elements with indices
i1,12,...,1p/2 in the start configuration. This can be done in (5B/2)! different
ways. This holds for all the N/B blocks in the block permutation, and
therefore ((B/2)!")¥/B is an upper bound on the number of distinct problems
one block permutation can be a solution to. Thus we have that %
is a lower bound on the number of block permutations an algorithm solving

SPN must be able to perform. As (;V§2)N/B =0 (%), and as we
can rearrange the elements within each block of a block permutation in an
additional N/B I/Os, the algorithm could produce (N!)!/? permutations.

The bound then follows from Lemma 1. O

Using SPN we can now prove a lower bound on the number of pebble 1/0s
needed to complete a specific pebble game. Lemma 2 tells us that there exists
at least one SPN instance X of size N which requires Q(perm(N)) I/Os. We
can now obtain an algorithm for X from a pebble game by imagining that
the elements in X are written on some of the pebbles in a specific graph.
Figure 3 shows how we imagine this encoding. The marked vertices are the
ones containing elements from X, and the vertices to the left of the vertical
dotted line contain the first half of the elements. Vertices containing elements

Figure 3: Graph used to obtain SPN algorithm from pebble game (B = 8).
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with the same key are connected with an edge. In the start configuration the
pebbles in the dotted boxes (blocks) have the same block identifier.” We can
now prove the following:

Lemma 3 Completing the pebble game on the graph in Figure 3 takes at
least Q(perm(N)) pebble 1/Os.

Proof: Any sequence of transitions S that completes the game can be used
to construct an I/O algorithm for the hard SPN instance X (or rather a
sequence of I/Os that solve X). The I/O algorithm first scans through X
to produce a configuration where the first block contains the first B/2 input
elements, the next the next B/2 elements and so on. This is done in O(N/B)
[/Os. Then it simulates the pebble I/Os in S, that is, every time a rule one
transition is done in S involving vertices used in the encoding of X, the
algorithm performs a similar input, and every time a rule two transition
involving vertices used in the encoding is done it performs a similar output.
Now every time an edge between vertices used in the encoding is colored red
in the game (using a rule four transition), two elements with the same key
in X are in main memory. When this happens the I/O algorithm puts the
two elements in a special block in main memory. We have such a spare block
because the pebble game was designed only to use M — B internal memory.
The block is written back to disk by the algorithm when it runs full. Thus
when the pebble game is complete the 1/O algorithm will have produced a
set of blocks on disk solving the SPN problem on instance X. However there
is one complication, as the pebble game allows copying of elements. We did
not allow copying of elements in the SPN lower bound proof, so the solution
to X should consist of the original elements on not of copies. But given the
sequence of 1/Os solving X produced above, we can easily produce another
sequence solving X which do not copy elements at all, simply by removing all
elements except for those constituting the final solution. As the number of
1/Os performed by the algorithm is bounded by O(N/B)+O(|S|) the lemma
follows. O

Having proved a lower bound on the number of pebble 1/Os needed to
complete a (M, B)-blocked pebble game on the graph in Figure 3, we can
now easily prove a lower bound on the number of pebble 1/Os needed by a
reduce operation. First we build a complete tree on top of the base blocks

5We assume without loss of generality that 2 and B divide N.
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Figure 4: a) One block of top blocking in the breadth first blocking lower
bound (B = 8). b) One of the “fill blocks” in proof of Lemma 6 and 7.

|
base blocks |
|

Figure 5: Top-blocking in the depth first blocking lower bound.

as we shall call the blocks in Figure 3. The tree is blocked as pictured in
Figure 4a), and we obtain a breadth first blocked OBDD containing O(N)
vertices. In a similar way we can obtain a depth first blocked OBDD of size
O(N) by building the tree pictured in Figure 5 on top of the base blocks.
As Lemma 3 also holds for these extensions of the graph in Figure 3, and as
reducing such a graph completes the pebble game on the graph, we get the
following.

Lemma 4 Reducing a breadth first or depth first blocked OBDD with |G|
vertices requires Q)(perm |G|)) pebble 1/Os in the worst case.

Recall that the OBDDs in [5] are level blocked. It is easy to repeat the
above proof for a level blocked OBDD and thus Lemma 4 also holds for such
blockings. But proving these lower bounds does not mean that we could not
be lucky and be able to reduce an OBDD in less 1/Os, presuming that it
is blocked in some other smart way.® However, when we later consider the

6We would then of course also have to worry about maintaining such a blocking between
operations.
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apply operation it turns out that the blockings we have considered (depth,
breadth and level) are in fact the natural ones for the different algorithms for
this operation. Intuitively however, the best blocking strategy for the class of
reduce algorithms we are considering, would be a blocking that minimizes the
number of pairs of vertices connected by an edge which are not in the same
block—what we will call a minimal-pair blocking. But as we will prove next,
a slightly modified version of the breadth first blocking we just considered
is actually such a minimal-pair blocking. Thus the lower bound also holds
for minimal-pair blockings. The modification consists of inserting a layer of
the blocks in Figure 4b) between the base blocks and the blocked tree on top
of them. The blocks are inserted purely for “proof-technical” reasons, and
the effect of them is that every path of length less than B between a marked
vertex in the left half and a marked vertex in the right half of the base blocks
must contain one of the edges between marked vertices.

In order to prove that the blocking of the graph G in Figure 3 and 4
is indeed a minimal-pair blocking, we first state the following lemma which
follows directly from the fact that every vertex in GG has at least in-degree
one.

Lemma 5 For all blockings of G every block must have at least one in edge.

Now intuitively the blocking in Figure 3 and 4 is a minimal-pair blocking
because all blocks, except for the base blocks, have one in edge, and because
the vertices in the base blocks cannot be blocked in a better way than they
are, that is, they must result in at least half as many edges between vertices in
different blocks as there are marked vertices—we call such edges pair breaking
edges. We will formalize and prove this in the next series of lemmas.

Call the first N/2 marked vertices in Figure 3 for a-vertices, and the last
N/2 marked vertices for b-vertices. These vertices are the “special” vertices,
because they have edges to each other and to the multi fan-in sink vertices
(we call the sink vertices c-vertices). We now consider a block in an arbitrary
blocking of G containing one or more of these special vertices.

Lemma 6 Let K be a block containing ay a-vertices and their correspond-
ing c-vertices and as a-vertices without their corresponding c-vertices, to-
gether with by b-vertices with their c-vertices and by b-vertices without their
c-vertices, such that ay,as, by and by are all < B/2, and such that at least one
of the a;’s and one of the b;’s are non zero. K has at least ay+ao+by+bs+k
pair breaking edges, where k is the number of a1, as, by, by that are non zero.
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Proof: First we assume without loss of generality that all a; a-vertices are
from the same base block. This is the best case as far as pair breaking edges
are concerned, because they are all connected to the same c-vertex. Similarly,
we assume that all by b-vertices are from the same base block. Finally, we
make the same assumption for the as a-vertices and the by b-vertices without
their corresponding c-vertices. Making these assumptions we are left with
vertices from at most four base blocks. If we can prove the lemma for this
particular configuration it also holds for all other configurations.
We divide the proof in cases according to the value of a; and b;:

e a; =0

In this configuration every a-vertex accounts for at least two pair break-
ing edges—namely the two edges to the c-vertices corresponding to the
as a-vertices. But then it is easy to realize that a and b vertices ac-
counts for as + by + by pair breaking edges. One of the edges of the a
vertices accounts for as of them. For every b-vertex its corresponding
a-vertex is either not one of the as a-vertices, in which case the b-vertex
itself accounts for a pair-breaking edge, or it is one of the a-vertices,
in which case the other of the a-vertices pair breaking edges with a ¢
vertex can be counted. Finally, because of the “fill blocks” above the
base blocks (Figure 4), we cannot connect the base blocks except with
edges between a and b vertices. This means that every base block must
contribute with one pair breaking edge not counting a-b edges. This
gives the extra k pair breaking edges.

oalzl,blzl

To hold a and b-vertices and the two c-vertices we use a1 +as+b1+by+2
of K’s capacity of B vertices. The number of pair breaking edges in
a block consisting of only these vertices is a3 + 2(B/2 — a1) + 3as +
by + (B/2 — by) + 2bs + |(a1 + a2) — (b1 + b2)|. The first two terms
correspond to the a; a-vertices and the third term to the ay a-vertices—
not counting edges between a and b vertices. Similarly, the next three
terms correspond to the b-vertices. The last term counts the minimal
number of pair breaking edges corresponding to edges between a and b
vertices in the block (assuming that as many as possible are “paired”).

Now we add vertices one by one in order to obtain the final block K.
We add them in such a way that when adding a new vertex, it has an
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edge to at least one vertex already in the block (if such a vertex exists).
Because we cannot connect the base blocks except with a-b edges (again
because of the “fill blocks”), one added vertex can at most decrease
the number of pair breaking edges by one. Assuming that every added
vertex decreases the number of pair breaking edges by one, we end up
with a block with a1 +2(B/2—a1)+3a2+ b1+ (B/2—b1) +2bs + | (a1 +
az) — (b1 +b2)| — (B — (a1 +az+b1 +by+2)) =3as+2bs+ B/2—a; +
|(a1 4 ag) — (b1 +b2)|+ a1+ ag + by + by +2 pair breaking edges. We want
to prove that this number is at least a; +as+0b, +bs+ k, which is indeed
the case if 3ay 4+ 2by + B/2 — a1 + |(a1 + a2) — (by + b2)| > k — 2. This
again trivially holds because a; < B/2 and because k is only greater
than 2 if ay and/or bs is non zero.

aZl,blzo

As by = 0, b, must be non zero. Doing the same calculations as in the
previous case we find that the lemma holds if 3as + 2bs — a3 + |a; +
a9 — b2| Z k—1.

Now if a; + as > by we get that 4as + by should be grater than or equal
to k — 1, which is trivially fulfilled as k = 2 if a3 = 0 and 3 otherwise.

If a1 + as < by we get that 2as + 3by — 2a; should be greater than or
equal to k — 1. This is again trivially fulfilled (under the assumption
ai; + as S bg)

O

Now we want to remove the ay, as, by, by < B/2 assumption from Lemma 6.

In the proof the assumption was used to easily be able to bound the number
of pair breaking edges between c-vertices in K and a and b-vertices outside
the block. Note that if one of the variables is greater than B/2 then the
others must be less than B/2.

Lemma 7 Let K be a block containing ay a-vertices and their correspond-
ing c-vertices and as a-vertices without their corresponding c-vertices, to-
gether with by b-vertices with their c-vertices and by b-vertices without their
c-vertices, such that at least one of the a;’s and one of the b;’s are non zero.
K has at least a1 4 as+ by + ba+ k pair breaking edges, where k is the number
of ay,as, by, by that are non zero.
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Proof: Asin the proof of Lemma 6 we assume that all (or as many as possible)
a and b-vertices of the same type are in the same base block. Taking a closer
look at the proof of Lemma 6 quickly reveals that the proof works even if as
or by is greater than B/2. The proof also works if a; = 0, so we are left with
the following two cases:

e by >B/2(and 1 <a < B/2)

The block consisting of only a and b-vertices and the corresponding c-
vertices have at least a1 +2(B/2—ay)+3a2+ b1+ (B/2—(by — B/2)) +
2by+ | (a1+a2) — (b1+b2) | = 3ao+2bs+2B—a+ | (a1+a2) — (b1+b2) | pair-
breaking edges. Assuming that the rest (B—(a;+as+b;+b2+3)) of the
vertices in the block all brings the number of pair breaking edges down
by one, the lemma follows from the fact that the following inequality
is trivially satisfied 3as + 2bs + B — a3 + (a1 + az) — (b + bo)| > k — 3.

® a| > B/2
We divide the proof in two:

The number of pair breaking edges “produced” by a and b-vertices
is at least a; + 2(B/2 — (a1 — B/2)) + 3as + by + (B/2 — by) +
20y + [(a1 + a2) — (b1 + b2)| leading to the following inequality
3as + 2by + 3/2B — ay + |(a1 + ag) — (by + b2)| > k — 3. This
inequality is trivially satisfied as a; < B.

— b =0 (and by > 1)
Using the same argument the satisfied inequality is 3as + 2bs +

B —ay + |(a1 +az) — (b1 + b2)| > k —3.
O

We can now prove the main lemma:

Lemma 8 The breadth first blocking of G in Figure 3 and 4 is a minimal-
pair blocking.

Proof: First note that Lemma 7 also holds (trivially) if a block only contains
vertices of one type. It then follows that every a and b-vertex must result
in at least one pair breaking edges. Furthermore, every c-vertex (or rather
every base block) must result in at least one additional pair breaking edge.
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Thus the blocking in Figure 3 obtains the minimal number of pair breaking
edges. From Lemma 5 we furthermore know that every other block must
have at least one in edge. The lemma then follows from the fact that the
blocking in Figure 4 only has one in edge. O

Now we have proved that the intuitively best blocking for the reduction al-
gorithm, as well as all the intuitively best blockings for the apply algorithms,
all result in a lower bound of Q(perm(NV)) I/Os on the reduce operation. The
results can be summarized as follows.

Theorem 1 Reducing an OBDD with |G| vertices— depth first, breadth first,
minimal-pair or level blocked—requires Q(perm(|G|)) pebble 1/O0s in the worst
case.

2.4 1/0O-Efficient Reduce Algorithm

Recall that one of the main problems with existing reduce algorithms with
respect to I/O is that when they process a level of the OBDD they perform
a lot of I/Os in order to get the labels of the children of vertices on the
level. Our solution to this problem is simple—when a vertex is given a label
we “inform” all its immediate predecessors about it in a “lazy” way using
an external priority queue developed in [3]. On this priority queue we can
do a sequence of N insert and deletemin operations in O(sort(N)) I/Os in
total. After labeling a vertex we thus insert an element in the queue for all
predecessors of the vertex, and we order the queue such that we on higher
levels simply can perform deletemin operations to obtain the required labels.

In order to describe our algorithm precisely we need some notation. We
refer to a vertex and its label with the same symbol (e.g. v). The index or
level of a vertex is referred to as id(v), and the 0-successor and 1-successor are
referred to as low(v) and high(v), respectively. In order to make our reduce
algorithm I/O-efficient, we start the algorithm by creating two sorted lists of
the vertices in the OBDD we want to reduce. The first list (L1) contains the
vertices sorted according to index and secondary according to label—that is,
according to (id(v),v). Put another way, the list represents a level blocking
of the OBDD. The second list (L2) contains two copies of each vertex and it
is sorted according to the index of their children and secondarily according to
the labels of their children. That is, we have two copies of vertex v ordered
according to (id(low(v)), low(v)) and (id(high(v)), high(v)), respectively. To
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create L1—for any blocking of the OBDD—we just scan through the vertices
in the OBDD, inserting them in a priority queue ordered according to index
and label, and then we repeatedly perform deletemin operations to obtain
L1. Thus we use O(sort(N)) I/Os to produce L1. L2 can be produced in the
same number of I/Os in a similar way.

We are now ready to describe our new reduce algorithm. Basically it
works like all the other algorithms. We process the vertices from the sinks
up to the root and assign a unique label to each unique sub-OBDD root.
We start by assigning one label to all 0-sinks and another to all 1-sinks.
This is done just by scanning through L1 until all sinks have been processed.
During this process—and the rest of the algorithm—we output one copy of
each unique vertex to a result list. After labeling the sink vertices we insert
an element in the priority queue for each vertex that has a sink as one of its
children. The elements contain the label of the relevant child (sink), and the
queue is ordered according to level and label of the “receiving” vertex (the
vertex having a sink as child). This is accomplished by merging the list of
sinks with the appropriate (first) elements in L2. Now assume that we have
processed all vertices above level ¢ and want to process level i. In the priority
queue we now have one or two elements for each vertex that has a child on
a lower level than 7. In particular we have two elements for every vertex on
level 7. Because the elements in the priority queue are ordered according to
(1d(v),v), we can thus just do deletemin operations on the queue until we
have obtained the elements corresponding to vertices on level 7. At the same
time we merge the elements with L1 in order to “transfer” the labels of the
children to the relevant vertices in L1. Then we proceed like Bryant [7]; we
sort the vertices according to the labels of the children (with an I/O optimal
sorting algorithm [1, 31]), and use the reduction rules to assign new labels.
Then we sort the vertices back into their original order, merge the resulting
list with L2, and insert the appropriate elements (vertices with a child on
level i) in the priority queue—just like after assigning labels to the sinks.
When we reach the root we have obtained the reduced OBDD.

In order to analyze the I/O use of the algorithm, note that a linear number
of operations in the size of the OBDD is performed on the priority queue.
Thus we in total use O(sort(|G|)) I/Os to manipulate the queue. The 1/O
use of the rest of the algorithm is dominated by the sorting of the elements
on each level, that is, by O(sort(|G|)) in total. We then have:

Theorem 2 A |G| vertex OBDD G can be reduced in O(sort(|G|)) 1/Os.
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3 The Apply Operation

We divide our discussion of the apply operation into subsections on existing
algorithms, their I/O-behavior, and on our new I/O-efficient algorithm.

3.1 Apply Algorithms

The basic idea in all the apply algorithms reported in the literature is to use
the formula

@ fo=7-(fi

to design a recursive algorithm. Here f|,,—, denotes the function obtained
from f when the argument z; is replaced by the boolean constant b. Using
this formula Bryant’s algorithm [7] works as follows: Consider two functions
f1 and f5 represented by OBDDs with roots vy and vy. First, suppose both
v1 and vy are sinks. Then the resulting OBDD consists of a sink having
the boolean value value(vy) ® value(vy). Otherwise, suppose that at least
one of the vertices is not a sink vertex. If id(vy) = id(ve) = i the resulting
OBDD consists of a root vertex with index ¢, and with the root vertex in the
OBDD obtained by applying the apply operation on low(v;) and low(vsy) as
0-child and with the root vertex in the OBDD obtained by applying the apply
operation on high(vy) and high(vs) as 1-child. Thus a vertex u with index i
is created and the algorithm is used recursively twice to obtain low(u) and
high(u). Suppose on the other hand (and without loss of generality) that
id(v1) = ¢ and id(ve) > i. Then the function represented by the OBDD
with root v, is independent of z; (because of the fixed variable ordering),
that is, fa|z,—0 = fa|z,=1 = f2. Hence, a vertex u with index ¢ is created,
and the algorithm is recursively applied on low(v;) and v, to generate the
OBDD whose root becomes low(u), and on high(vi) and ve to generate the
OBDD whose root becomes high(u). This is basically the algorithm except
that in order to avoid generating the OBDD for a pair of sub-OBDDs more
than once—which would result in exponential (in 7) running time—dynamic
programming is used: During the algorithm a table of size |Gi| - |G2| is
maintained. The zy’th entry in this table contains the result (the label of
the root vertex) of using the algorithm on the vertex in the OBDD for f;
with label 2 and the vertex in the OBDD for f, with label y, if it is already
computed. Before applying the algorithm to a pair of vertices it is checked
whether the table already contains an entry for the vertices in question. If

xizl)

2i=0 @ falzi=0) + Ti * (filz;=1 @ fo
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that is the case the result already computed is just returned. Otherwise, the
algorithm continues as described above and adds the root vertex to the table.
It is straightforward to realize that Bryant’s algorithm runs in O(|G| - |G2|)
time (the size of the dynamic programming table). Note that it is proved
in [7] that there actually exist reduced OBDDs representing functions f; and
fo such that the size of fi ® fo is O(|G4| - |Gal).

Due to the recursive structure Bryant’s algorithm works in a depth first
manner on the involved OBDDs. In [22] an algorithm algorithm working in
a breadth first manner is developed in order to perform OBDD manipula-
tion efficiently on a CRAY-type supercomputer. This algorithm works like
Bryant’s, except that recursive calls (vertices which need to have their chil-
dren computed—we call them requests) are inserted in a queue (the request
queue) and computed one at a time. This leads to a breadth first traversal
of the involved OBDDs. Also this algorithm uses dynamic programming and
runs in O(|Gy| - |Ga|) time.

As previously discussed, I/O issues are then taken into account in [5] and
an O(|G1] - |Gs]) time algorithm working in a levelwise manner is developed.
As in the case of the reduce algorithm it is assumed that the OBDDs are
stored levelwise and the general idea is then to work as levelwise as possible
on them. Basically the algorithm works like the breadth first algorithm,
but with the request queue split up into n queues—one for each level of the
OBDDs. When a new request is generated it is placed in the queue assigned
to the level of the vertex corresponding to the request. The queues are then
processed one at a time from the queue corresponding to the top level and
down. This way the OBDDs are traversed in a levelwise manner. Also before
a new request is inserted in a queue it is checked if a duplicate request has
already been inserted in the queue. This effectively means that the dynamic
programming table and the request queues are “merged” into one structure.
Finally, much like the way the reduce algorithm in [23] obtains the new labels
of the children of a vertex in level order, the requests on a given level are
handled in sorted order according to the levels of the requests issued as a
consequence of them. As previously the motivation for this is that it assures
that lookups for duplicate requests are done in a levelwise manner.

In order to obtain a canonical OBDD all the presented algorithms run the
reduce algorithm after constructing a new OBDD with the apply operation.
It should be noted that Bryant in [8] has modified his depth first algorithm
such that the reduction is performed as an integrated part of the apply algo-
rithm. The algorithm simply tries to use the reduction rules after returning
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from the two recursive calls. While it is easy to check if R1 can be applied, a
table of the already generated vertices is used to check if R2 can be applied.
The advantage of this modified algorithm is that redundant vertices, which
would be removed in the following reduction step, is not created and thus
space is saved. The algorithms not working in a depth first manner [5, 22, 23]
cannot perform the reduction as an integrated part of the apply algorithm.

3.2 The I/O-Behavior of Apply Algorithms

Like we in Section 2.2 analyzed the existing reduce algorithms in the parallel
disk model, we will now analyze the different apply algorithms in the model.
In the following |R| will be the size of the un-reduced OBDD resulting from a
use of the apply algorithm on two OBDDs of size |G| and |Gs|, respectively.
We first analyze why the depth first [7] and breadth first [22] algorithms
perform so poorly in an I/O-environment, and then we take a closer look at
the algorithms developed with I/O in mind.

As in the case of the reduce algorithm it is not difficult to realize that
assuming nothing about the blocking (which is probably the most realistic
in practice) it is easy for an adversary to force both the depth first and the
breadth first algorithm to do an I/O every time a new vertex in Gy or G is
visited. This results in an overall use of Q(|R|) I/Os, that is, O(|G4| - |G2])
[/Os in the worst case. It is equally easy to realize that breadth first and
level blockings are just as bad for the depth first algorithm [7], and depth
first and level blockings just as bad for the breadth first algorithm [22]. So
let us assume that the OBDDs are blocked in some “good” way with respect
to the used traversal scheme. Still the algorithms perform poorly because of
the lack of locality of reference in the lookups in the dynamic programming
table. To illustrate this we take a closer look at the depth first algorithm [7]
assuming that the OBDDs are depth first blocked. Again, if we do not assume
anything about the blocking of the dynamic programming table, it is easy to
realize that in the worst case every access to the table results in a page fault.
If we were able to block the table as we like, the only obvious way to block
it would be in a depth first manner (Figure 6a): Assume that the algorithm
is working on vertex v; in GGy and v in GG5. The algorithm now makes one
of the following recursive calls: v; and low(vs), low(vy) and vy, or low(vy)
and low(vy). Before doing so it makes a lookup in the dynamic programming
table. Thus the table should be blocked as indicated in Figure 6a) as we
would like the corresponding part of the table to be in internal memory.
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B B B
B B B
B B B
a) b)

Figure 6: a) Dynamic programming table. b) I/O performance of algorithm
in [5].

Note that with the blocking in Figure 6a) the algorithm would at least make
a page fault on every v/ B lookup operation. But actually it is much worse
than that, which can be illustrated with the example in Figure 6b). Here a
depth first blocking of an OBDD is indicated. It is also indicated how the
O-children of the “right” vertices can be chosen in an almost arbitrary way.
This in particular means that an adversary can force the algorithm to make
a lookup page fault every time one of these vertices is visited. As the number
of such vertices is O(]G|) the algorithm could end up making a page fault for
almost every of the |R| vertices in the new OBDD.

After illustrating why the breadth first and depth first algorithms perform
poorly, let us shortly consider the algorithm especially designed with 1/O in
mind [5]. Recall that this algorithm maintains a request queue for each
level of the OBDDs, which also functions as the dynamic programming table
divided into levels, and that it processes one level of requests in the order
of the levels of the requests issued as a consequence of them. It is relatively
easy to realize that in the worst case a page fault is generated every time one
of the request queues is accessed as dynamic programming table. The reason
is precisely the same as in the case of the depth first algorithm, namely
that there is no nice pattern in the access to the table—mot even in the
access to one level of it. As previously, we therefore cannot block the queues
efficiently and we again get the Q(|R|) worst-case I/O behavior. The natural
question to ask is of course why experiments then show that this approach
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can lead to the mentioned runtime speedups. The answer is partly that the
traditional depth first and breadth first algorithms behave so poorly with
respect to I/Os that just considering I/0O issues, and actually try to block
the OBDDs and access them in a “sequential” way, leads to large runtime
improvements. Another important reason is the previously mentioned fact
that in practical examples n is much smaller than M /B, which means that
a block from each of the n queues fits in internal memory. However, we
believe that one major reason for the experimental success in [5] is that the
OBDDs in the experiments roughly are of the size of the internal memory
of the machines used. This means that one level of the OBDDs actually fits
in internal memory, which again explains the good performance because the
worst case behavior precisely occurs when one level does not fit in internal
memory.

3.3 1I/O-Efficient Apply Algorithm

The main idea in our new apply algorithm is to do the computation levelwise
as in [5], but use a priority queue to control the recursion. Using a priority
queue we do not need a queue for each level as in [5]. Furthermore, we do not
check for duplicates when new requests are issued, but when they are about
to be computed. Recall that the main problem with the previous levelwise
algorithm precisely is the random lookups in the queues/tables when these
checks are made. Instead of checking for duplicates when new requests are
issued, we just insert them in a priority queue and perform the checks when
removing requests from the queue. We do so simply by ordering the queue
such that identical requests will be returned by consecutive deletemin oper-
ations. This way we can in a simple way ignore requests that have already
been computed.

In order to make our algorithm work efficiently we need the vertices
of each of the OBDDs sorted according to level and secondary according
to label. This representation can easily be constructed in O(sort(|G;|) +
sort(|Gs|)) I/Os in the same way as we constructed the list L1 in the re-
duce algorithm. For convenience we now use four priority queues to control
the recursion (instead of one). They all contain requests represented by a
pair of vertices, one from (G; and one from G5. The first queue V' contains
pairs (v, w) where id(v) < id(w), and is ordered according to the level and
label of v. Thus V contains requests which should be processed at level
id(v) and which can be processed without obtaining new information about
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w. Similarly, the second queue W contains pairs where id(v) > id(w), or-
dered according to (id(w),w). The last two priority queues Fy and Ey
contain pairs where id(v) = id(w), and are ordered according to (id(v),v)
and (id(w),w), respectively.

We do the apply in a levelwise manner starting from the root vertices.
We label the vertices in the resulting OBDD R with pairs of labels from
G; and G3. The algorithm starts by comparing the indices of the two
root vertices v and w, and creates the root vertex (v,w) of R with index
equal to the lowest of the two indices. If id(v) < id(w) it then makes two
new vertices (low(v),w) and (high(v),w) with indices min(id(low(v)), id(w))
and min(id(high(v)),id(w)), respectively, and “connects” (v,w) to these
two vertices. Similarly, if id(v) > id(w) it makes the vertices (v, low(w))
and (v, high(w)), and if id(v) = id(w) the vertices (low(v),low(w)) and
(high(v), high(w)). Now the algorithm makes two recursive calls in order
to construct the OBDDs rooted in the two newly created vertices. As the
recursion is controlled by the priority queues this is done by inserting the
vertices/requests in these queues. The level on which a given vertex/request
(u1,us2) is to be processed is determined by min(id(uy),id(usz)). Therefore
(u1,uz) is inserted in V' if id(u1) < id(uz) and in W if id(uy) > id(ug). If
id(uy) = id(ug) it is inserted both in Ey and in Eyy.

Now assume that the algorithm has processed all levels up to level ¢ — 1.
In order to process level i we do the following: We do deletemin operations
on V in order to obtain all requests in this queue that need to be processed on
level 7. As discussed above we only process one copy of duplicate requests. As
all requests (uy,uz2) in V' have id(u1) < id(ug) all new requests generated as
a consequence of them are of the form (low(uy), us) or (high(uy),usz). Thus
we do not need any new information about wus to issue the new requests.
During the process of deleting the relevant requests from the queue we there-
fore simply “merge” the requests with the representation of Gy in order to
obtain the information needed. We process level 7 requests in W in a similar
way. Finally, we process level ¢ requests in Fy and Ey. We know that all
vertices in these queues have id(u;) = id(uz) = 4, which means that they
will create requests of the form (low(uy),low(us)) and (high(uy), high(us)).
Therefore we need to obtain new information from both G; and G5. Thus we
do deletemin operations on Fy and “merge” the result with the representa-
tion of (G, collecting the information we need from this OBDD. During this
process we also insert the resulting vertices in Eyy. Finally, we do deletemin
operations on Fy and “merge” with G5 to obtain the information we need
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to issue the relevant new requests.

When the above process terminates we will have produced R, and the
analysis of the I/O-complexity of the algorithm is easy: Each vertex/request
is inserted in and deleted from a priority queue a constant number of times.
Thus we directly obtain the following from the I/O bounds of the priority
queue operations.

Theorem 3 The apply operation can be performed in O(sort(|R|)) 1/Os.

4 Extension of Results to D-disk Model

As promised we should make a few comments about our results in the D-disk
model. As far as the lower bound is concerned, we can of course just divide
our bound in the one-disk model by D and the obtained bound will then be
a lower bound in the parallel disk model. It turns out that this bound can
actually be matched, that is, we can obtain a speedup proportional to the
number of disks.

To obtain the upper bounds in this paper we only used three basic “prim-
itives”; scanning, sorting and priority queues. Scanning through N elements
can easily be done in O(N/DB) 1/Os in the parallel disk model and as already
mentioned we can also sort optimally in the model. Furthermore, it is proved
in [3] that the priority queue can also take full advantage of parallel disks.
Both the sorting algorithms and the priority queue on parallel disks work un-
der the (non-restrictive in practice) assumption that 4DB < M — M'/?+8 for
some 0 < < 1/2. Thus with the same assumption all the results obtained
in this paper holds in the parallel disk model.

5 Conclusion and Open Problems

In this paper we have demonstrated how all the existing OBDD manipulation
algorithms in the worst case make on the order of the number of memory
accesses page faults. This is the reason why they perform poorly in an 1/0
environment. We have also developed new OBDD manipulation algorithms
and proved their optimality under some natural assumptions.

We believe that the developed algorithms are not only of theoretical but
also of practical interest—especially if we make a couple of modifications. If
we represent the OBDDs in terms of edges instead of vertices (where each
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edge “knows” the level of both source and sink) and block them in the way
they are used by the apply algorithm, it can be realized that our apply al-
gorithm automatically produce the blocking used by the (following) reduce
algorithm. The reduce algorithm can then again produce the blocking used
by the (next) apply algorithm. This can be done without extra I/O use,
basically because the apply algorithm works in a top-down manner while the
reduce algorithm works in a bottom-up manner. With this modification the
algorithms are greatly simplified and we save the 1/Os used to create the
special representations of the OBDDs used in the reduce and apply algo-
rithms. Furthermore, it is also easy to realize that we can do with only one
priority queues in the apply algorithm. As the constants in the I/O bounds
on the priority queue operations are all small, the constants in the bounds
of the developed OBDD manipulation algorithms are also small. Also it is
demonstrated in [29] that the overhead required to explicitly manage I/0O can
be made very small, and therefore we believe that our algorithms could lead
to large runtime speedups on existing workstations. We hope in the future
to be able to implement the priority queue data structure in the Transpar-
ent Parallel I/O Environment (TPIE) developed by Vengroff [28] in order to
verify this.

A couple of questions remains open, namely if it is possible to prove
an O(perm(N)) I/O lower bound on the reduce operation assuming any
blocking, and if it is possible to prove a lower bound on the apply operation
without assuming that a reduce step is done after the apply.
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