¥¢-96-Sd SOldd

|02010.1d 92UBPIOAY UOISI||0D B JO SISAjeuy pue Bul|[spo e 18 uasuar

BRICS

Basic Research in Computer Science

Modelling and Analysis of
a Collision Avoidance Protocol
using SPIN and UPPAAL

Henrik Ejersbo Jensen
Kim G. Larsen

Arne Skou
BRICS Report Series RS-96-24
ISSN 0909-0878 July 1996

Copyright (© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work

Is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recenpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540

DK - 8000 Aarhus C

Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/

ftp ftp.brics.dk (cd pub/BRICS)

Modelling and Analysis of a Collision
Avoidance Protocol using SPIN and
UPPAAL

Henrik Ejersbo Jensen Kim G. Larsen Arne Skou

BRICS; Aalborg University, Denmark, E-mail: {ejersbo,kgl,ask}@iesd.auc.dk.

Abstract

This paper compares the tools SPIN and UPPAAL by modelling and
verifying a Collision Avoidance Protocol for an Ethernet-like medium.
We find that SPIN is well suited for modelling the untimed aspects of the
protocol processes and for expressing the relevant (untimed) properties.
However, the modelling of the media becomes ackward due to the lack
of broadcast communication in the PROMELA language. On the other
hand we find it easy to model the timed aspects using the UPPAAL tool.
Especially, the notion of committed locations supports the modelling of
broadcast communication. However, the property language of UPPAAL
lacks some expessivity for verification of bounded liveness properties, and
we indicate how timed testing automata may be constructed for such prop-
erties, inspired by the (untimed) checking automata of SPIN.

1 DMotivation

During the last few years, the SPIN tool [Hol91] has attracted much interest
from university people teaching formal methods and from industrial developers.
Its merits include a simple yet powerful design language based on asynchronous
channels, as well as an expressive logic for property verification. However, until
recently [TC96], it has not been possible to apply SPIN to verification of real
time systems.

In this paper we compare the existing (untimed) SPIN with a recent real
time tool, UPPAAL, which is based on timed automata specifications. This is
done through application of the tools on a small protocol® for collision avoidance
on an Ethernet-like broadcast medium. The untimed properties are verified
on a PROMELA model and the real time properties are verified on a timed
automata model.

*Basic Research in Computer Science, Centre of the Danish National Research Foundation.
1Qur example is inspired by a recent paper by Karsisto and Valmari [KV96]

1 DMotivation 2

1.1 The Example

We assume that a number of stations are connected on an Ethernet-like medium,
see Figure 1, that is, the basic protocol is of type CSMA/CD. On top of this
basic protocol, we want to design a protocol without collisions?, that is, we want
to guarantee a lower bound on the transmission delay of a buffer - assuming that
the medium does not loose or corrupt data and also assuming that the stations
function properly?. The basic (obvious) idea of the protocol is to introduce a
dedicated master station, which in turn asks the other stations if they want to
transmit data to another station. However, the master has to take into account
the possible buffer delays within the receiving stations. Hence, we want the
protocol to enjoy the following properties:

Master Slave 1 Slave 2 Slave 3

Ethernet

Figure 1: The Ethernet

Collision cannot occur.

The transmitted data eventually reach their destination.

Data which are received, have been transmitted by a sender.

e Assuming error-free transmission, there is a known upper bound on the
transmission delay.

Assuming that we know the buffer delays introduced by the medium and the
slave stations, it should not be difficult to make an reasonable estimate of the
upper bound by hand — assuming that the master makes enquiries according to
a round-robin strategy. However, if we want to exploit the potential parallelism,
it might very well be that one can find a more intrinsic strategy, which decreases
the upper bound. Hence we would like to check for the following additional

property:

e Does there exist a slave schedule with an upper bound being smaller than
the sum of the individual slave delays?

2Applicable for e.g. real time plants.
3Well known classical protocols exist to handle these error cases.

2 Modelling and Verification in SPIN 3

1.2 Paper Organization

In section 2 we present a PROMELA model for the protocol, and we verify
the above untimed properties. In section 3 we introduce UPPAAL and present
the protocol model — applying the notion of committed locations to model
broadcast. We verify the remaining timed properties and we indicate how
one may extend UPPAAL with a more expressive logic than the existing one.
Finally, in section 4, we sum up and compare the two tools on different aspects.

2 Modelling and Verification in SPIN

In this section we describe the modelling and verification of the Collision Avoid-
ance Protocol using the design language PROMELA [Hol91] and the validation
tool SPIN [Hol91, Hol]. We first present the PROMELA design and we then
discuss the verification of this. The interesting verifications include verifying
that no collisions occur and that data is delivered correctly between users.

2.1 The PROMELA design

Our basic modelling of the protocol consists of four slave processes and one
master process. Master and slaves communicate using an independent process
which models the communication medium (the Ethernet). The need for an
independent process to model the medium is influenced by the need to model
the mediums broadcast behaviour and the fact that we want the medium to be
able to 'detect’ collisions. The medium is modelled to be erroneous in the sense
that it can loose messages, and to model the fact that slaves can loose messages
independently, loss is modelled explicitly in the slaves. Finally the above model
exists in a ’testing environment’ consisting of one user process per slave. Slaves
ask their user processes for data when they are enquired from the master, and
in response user processes can either send data or indicate that they are not
interested in sending anything. In this case the enquiry moves on to the next
slave in round—-robin fashion.

Message Format. All inter process communications are modelled by mes-
sage passing on channels. Four different types of channels are used, each of zero
capacity implying rendez-vous communication, see Figure 2. As we have used
an independent process to model the medium, it is quite natural to model the
communication between the master and the medium and between the slaves and
the medium as synchronous. Messages from master and slaves to the medium
are communicated on the channel to_medium, and messages from the medium
are broadcasted using the channels from_medium[N] where N indicates the num-
ber of slaves plus one (the master). Messages between slaves and their users
are communicated on channels In[N] and out[N].

All messages passing the medium are formatted using three fields indicating
the sender, the receiver and the type of data sent. The master’s id is 0 and
the slaves are numbered from 1 to N—1. Data types include ENQ indicating an

2 Modelling and Verification in SPIN 4

enquiry from the master, and numbers in the range 0 to N—1 modelling data
sent between users.

chan to_medium = [0] of {byte, byte, byte}
/* channel to the medium : {sender, receiver, data} */

chan from_medium[N] = [0] of {byte, byte, byte}
/* channels from medium to each of master and slaves */

chan in[N] = [0] of {byte, byte}
/* channels between user and slave parts */

chan out[N] = [0] of {byte}
/* channels between user and slave parts */

Figure 2: Message Channel Formats

The Master. The master process, see Figure 3, passes enquiries round to
slaves in round-robin fashion. Having sent an enquiry the master waits until
it receives data and then it sends an enquiry to the next slave. If messages
are lost the master will wait until ’silence’ is detected and then it will send
the next enquiry. Detecting silence is modelled by the timeout statement of
SPIN which by default blocks until nothing in the full system is executable and
then it becomes executable itself. Actually the master always wait for timeout
before sending the next enquiry. This is because the silence of the system either
is due to message loss as described above, or that a message has been correctly
delivered at all slaves and at the master. In the later situation all processes will
be listening for data i.e. no statements are executable besides timeout.

proctype master()

{
byte sender;
byte receiver;
byte data;
byte next;

next=1;
to_medium!0,next,ENQ; /* enquiring the first slave */

do

22 from_medium[0]?sender,receiver,data

o1 timeout -> next=next%(N-1)+1;to_medium!O,next,ENQ
od

Figure 3: The Master

2 Modelling and Verification in SPIN 5

The Medium. As mentioned we use an independent process to model the
behaviour of the communication medium; the Ethernet. The fundamental prop-
erty of the medium is that it broadcasts messages to all processes connected to
the medium. In PROMELA there exists no broadcast primitive, so we model
this explicitly using an approach where the medium, when receiving data from
either the master or a slave, sends this data to all other processes connected
to the medium in turn. Of course we would like this sequence of events to
be atomic, but although PROMELA features an atomic primitive to ensure
atomicity on a sequence of statements, this can not be used in our situation, as
in general no blocking statements are allowed in atomic enclosings. The atom-
icity requirement says that no processes connected to the medium may start
sending before the broadcast sequence of the medium is done. We model this
by not allowing the medium to listen before the end of the broadcast. How-
ever, communications between users and slaves are allowed to interleave the
broadcast.

The medium process itself can not loose messages (ignore them). This is
because we want the possibility of the individual slaves to loose messages and
therefore loss is modelled explicitly in the slaves.

The part of the medium code at the accept_collision label, see Figure 4,
is for verification and will be discussed further in section 2.2.

The Slaves. The slave processes listens for messages at the medium, and
whenever a message is communicated the slaves either ignores it (loss) or reads
it. In the later case the slaves now determine what type of message is received
and whether this message is addressed to them or not. If the message contains
data (not enquiry) addressed to the slave, the slave sends the data along to its
user. If the message is an enquiry from the master, the enquired slave asks its
user whether it is interested in sending messages or not. In the former case the
slave passes the messages on to the medium. See Figure 5.

The Users. The final part of the PROMELA design consists of the envi-
ronment of the protocol, namely the user processes communicating with the
slaves. The users can be seen as a sort of an testing environment for verifying
the protocol, and further commenting will be given in section 2.2.

During the development of the above design we used the simulation facility
of the validation tool SPIN to support early fault detection. Especially the
message sequence chart (MSC) facility was very supportive in examining the
communication pattern of our design.

2.2 Verification in SPIN

Using the simulation facilities of SPIN gives a first confidence in the correct
behaviour of the design, as we can run’ the protocol and see that there exists
behaviours of our model that meet our expectations. Running the simulations
we can for instance see, that there is a possibility that messages get lost and
that the master in these situations sends on the enquiry to the next slave.

2 Modelling and Verification in SPIN 6

proctype medium()
{

byte sender;
byte receiver;
byte data;
byte i;

do
:: to_medium?sender,receiver,data ->

i=0;
if
2 (D) ->do
oo 1<=N-1 ->
if
I i==sender -> skip
:: il=sender -> from_medium[i]!sender,receiver,data
fi;
i=i+l
2 i>N-1 -> break
od
:: to_medium?sender,receiver,data -> goto accept_collision
fi
od;

accept_collision: do
2 () -> skip
od /* collision detected */

Figure 4: The Medium

Fortunately, we can also see that messages (data) can be sent correctly from
user to user.

The main aim of the designed protocol is to avoid collisions in the medium,
so we want to verify this property. Furthermore, we want to verify that when
data is sent between users — and not lost — then receiving users will actually get
the data that is addressed to them. That is, messages can not get miss—directed
in the medium.

Verifying that collisions are avoided is done by forcing the medium to enter
an acceptance cycle if collisions occur, see Figure 4. The medium process will
enter the acceptance cycle labelled accept_collision if medium can participate
in two consecutive synchronizations on channel to_medium. By consecutive we
mean with no broadcast delivery in between the receivings. Using SPIN to
perform a full state space search including partial order reductions verifies that
no acceptance cycles exist in the design.

Verifying that messages are correctly delivered to user processes is done
using the testing environment consisting of the user processes. On request
from their slaves users either indicate that they are not interested in sending
data, or they send along data to their ’successor’ which is simply interpreted as

3 Modelling and Verification in UPPAAL 7

proctype slave(byte id)

{
byte sender;
byte receiver;
byte data;
byte ny_receiver;
byte ny_data;
do
o2 from_medium[id]?sender,receiver,data ->
if
o1 datal=ENQ ->
if
12 receiver==id -> out[id]!data
11 receiver!=id -> skip
fi
;1 data==ENQ && receiver==id ->
in[id]?ny_receiver,ny_data;
to_mediumlid,ny_receiver,ny data
11 data==ENQ && receiver!=id -> skip
fi
o2 from_medium[id]?sender,receiver,data /* message loss */
od
}

Figure 5: The Slaves

the user with process id one greater than the sending user. To guarantee that a
correct unique receiving can be verified, the data send to the successor will be
the id of the successor. Unique user id’s are passed to user and slave processes
on instantiation. Now, the user processes are forced into an acceptance cycle
if they receive data from their slaves that do not correspond to the user id. See
Figure 6. Using SPIN we verify that no acceptance cycles of the above nature
exists.

3 Modelling and Verification in UPPAAL

The main purpose of the Collision Avoidance Protocol is to ensure an upper
bound on the user communication delay in the Ethernet by avoiding collisions.
In this above context it is obviously interesting to include timing in the de-
sign and to verify timing properties of the protocol. The PROMELA /SPIN
framework does not yet allow the modelling of quantitative time.

In this section we describe the modelling and verification of the Collision
Avoidance Protocol including real-time using the verification tool UPPAAL.
We consider the process of transforming our PROMELA design to UPPAAL
format. First, we introduce the UPPAAL tool and underlying model. Then, we

3 Modelling and Verification in UPPAAL 8

proctype user(byte id; chan cin,cout)

{
byte data;

do
11 cout?data ->
if
:: datal=id -> goto accept_wrong_data
:: data==id -> skip
fi
:: cinl!0,0 /* not interested */
oocin!(id%(N-1)+1), (id%(N-1)+1)
od;

accept_wrong_data:

do
2 (1) -> skip /* wrong data received */
od

Figure 6: The Users

consider the design of the timed protocol and finally we consider the verification
of timing properties.

3.1 The UPPAAL tool

UPPAAL is a tool suite for automatic verification of safety and bounded live-
ness properties of real-time systems modeled as networks of timed automata
extended with data variables [YPD94, LPY95a, BLL"95], developed during
the past two years. In this section, we summarize the main features of UP-
PAAL, applications to various case—studies and provide pointer to the theoret-
ical foundation.

UPPAAL consists of a graphical user interface based on Autograph, that
allows system descriptions to be defined graphically and a model-checker that
combines on-the-fly verification with a symbolic technique reducing the verifi-
cation problem to that of solving simple constraint systems [YPD94, LPY95a].
The current version of UPPAAL is able to check for invariant and reachabil-
ity properties, in particular whether certain combinations of control-nodes of
timed automata and constrains on variables are reachable from an initial con-
figuration. Bounded liveness properties can be checked by reasoning about the
system in the context of a testing automata. In order to facilitate debugging,
the model-checker will report a diagnostic trace in case the verification proce-
dure terminates with a negative answer [LPY95b].

The current version of UPPAAL is implemented in C++. An overview of
UPPAAL is shown in Figure 7, and contains the following;:

3 Modelling and Verification in UPPAAL 9

verifyta

const rai nt
sol vers ‘'yes’
AN /
—={ atg2ta K checkta = search

“no’’
! A

| engi ne S s D
|

|

1

trace
hs2ta gener at or diagnostic
trace

.atg

i

Figure 7: Overview of Uppaal

atg2ta A compiler from the graphical representation (.atg) of a network of
timed automata, to the textual representation in UPPAAL (.ta).

hs2ta A filter that automatically transforms linear hybrid automata where the
speed of clocks is given by an interval into timed automata [OSY94], thus
extending the class of systems that can be analyzed by Uppaal.

checkta Given a textual representation (in the .ta-format) of a network of
timed automata, checkta performs a number of simple but in practice
useful syntactical checks.

verifyta A model-checker that combines on-the-fly verification with constraint
solving techniques [YPD94, LPY95a].

During the past year, we have applied UPPAAL to a number of case-studies.
To meet requirements arising from the case studies, the UPPAAL model and
model—checker have been further extended with a number of new features:

Committed Locations. UPPAAL adopts hand-shaking synchronization be-
tween components in a network. A very recent case-study on the verification
of Philips Audio Control Protocol with bus-collisions [BGK™96] shows that we
need to further extend the UPPAAL model with committed locations to model
behaviors such as atomic broadcasting in real-time systems. The notion of com-
mitted locations is introduced in [BGK'96]. Our experiences with UPPAAL
show that the notion of committed locations implemented in UPPAAL is not
only useful in modeling real-time systems but also yields significant reductions
in time- and space-usages in verifying such systems.

Urgent Actions. In order to model progress properties UPPAAL uses a
notion of maximal delay that requires discrete transitions to be taken within
a certain time bound. However, in some examples, e.g. the Manufacturing
Plant [DY95], synchronization on certain channels should happen immediately.
For this reason the UPPAAL model was extended with urgent channels, on
which processes should synchronize whenever possible [BLL"95]. The notion

3 Modelling and Verification in UPPAAL 10

of urgent channels (also known as urgent actions in the literature) has been
implemented in both HyTech and Kronos.

Diagnostic Traces. Ideally, a model-checker should be able to report diag-
nostic information whenever the verification of a particular real-time system
fails. UPPAAL reports such information by generating a diagnostic trace from
the initial state to a state violating the property. The usefulness of this kind
of information was shown during the debugging of an early version of Philips
Audio-Control Protocol [LPY95b].

UPPAAL has been applied to a number of case-studies and benchmark ex-
amples, including: several versions of Fischers Protocol [AL93], two version of
Philips Audio-Control Protocol [BPV94, LPY95b, BGK196], a Steam Genera-
tor [Abr95], a Train Gate Controller [HHWT95], a Manufacturing Plant [DY95],
a Mine-Pump Controller [JBW196] and a Water Tank [OSY94].

The growing list of succesfully completed real—size verification case—studies
and recently initiated collaboration with danish industry makes us believe that
the UPPAAL is reaching a level of maturity where it can be applied to real
industrial case-studies.

3.2 The UPPAAL design

Having already made the PROMELA protocol design actually made the mod-
elling using timed automata a relatively easy task. The time spent on the timed
automata design has been considerably less than the time spent on the initial
PROMELA design.

The fundamental automata design is quite similar to the PROMELA de-
sign in the sense that the same type of processes are modelled. That is, each
PROMELA process is matched by a timed automaton in the new design. The
main differences in the models, besides the timing, considers the way communi-
cation between processes take part and the way the broadcasting behaviour of
the medium is expressed. In the timed automata model used in UPPAAL there
is no channel primitive and the only means of interaction between automata is
by pure synchronization of atomic actions. Consequently, we use a combination
of shared variables and synchronization to simulate the message passing that
would actually take place in a real system.

The master. The master process is modelled as the timed automaton de-
picted in Figure 8*. We consider a lossy communication medium and therefore
the master is equipped with a timer, see Figure 9, to guarantee that new en-
quiries will be sent in the precense of message loss.

The master starts by sending to the medium an enquire addressed to the
first slave. This is modelled by the initial transition from m0 to ml. The master
sets the shared variable data:=0 on this transition indicating that the message
is an enquiry. Having sent the enquiry and without further delay, the master
sets its timer and starts waiting until the message has been broadcasted to all

4This figure shows the actual input to UPPAAL.

3 Modelling and Verification in UPPAAL 11

slaves, indicated by an empty synchronization with the medium. This ensures
that the master will not receive its own message.

Now, the master will either receive data broadcasted by a slave or it will
timeout, if nothing is received within a certain time limit. In either case the mas-
ter sends an enquiry along to the next slave indicated by increasing the shared
variable next, setting data:=0 and performing the output action to_medium!.

next <=2

master

Figure 8: The Master with Timer

timeout!
10 @ set? . tl
ti:=0
timer reset?

Figure 9: The Timer

The Medium. As mentioned the basic means of interaction between timed
automata is by binary synchronization. No basic broadcasting primitive exists,
but the notion of committed locations, see section 3.1, can be used to model
the broadcasting in a simple way. Having received a message by synchronizing
on the input action to_medium?, the medium delays the message for one time
unit and then it starts broadcasting, see Figure 10. The broadcast consists
of synchronizing in turn with each of the not—sending processes connected to
the medium. Atomicity of the synchronization sequence is ensured by labelling
each node that participates in the synchronization sequence as committed. This
guarantees that no actions can interleave the broadcast.

3 Modelling and Verification in UPPAAL 12

The node labelled col will be entered upon collisions in the medium, and
it serves the same verification purpose as the accept _collision state in the
PROMELA model, see Figure 4.

enpty!
mel cme2 NM
) M))
me0 Oto_madi un® el ay==1 =~ from mediun “~ from nedi ur
ndel ay: =0 from medi um -
nmdel a

col

medium

Figure 10: The Medium

The Slaves. In the UPPAAL model we need to model each slave as a unique
timed automaton. In Figure 11 one of the almost identical slaves is depicted.
The slaves synchronize with the medium on input action from_medium? and
either they loose messages or they receive correctly, in which case they now
determine what type of data is sent and to whom. Depending on the outcome,
slaves either return to their initial state, sends data along to their users or asks
their users for data to be send. In the last two situations the slaves will delay
some amount of time and during this period they will not be able to detect
messages sent to them. This is modelled as the ’ignoring’ from_medium? input
actions at the nodes s1 2 and sl 4 of Figure 11.

0
dat a==3

cl<=2 —
from nedi un? ?rlgﬁzn-edi unp

slave_1

Figure 11: A Slave

3 Modelling and Verification in UPPAAL 13

The Users. As for the slaves we need to model each user process as a unique
timed automaton. In Figure 12 the user automaton of the slave in Figure 11
is depicted. Users are always ready to either responding to enquiries from
their slaves or receiving data sent from other users. Responding to enquiries
is done by sending data to another user. The committed locations in the user
automaton are for verification purposes and will be explained in section 3.3.

cul 2 send_1! ul Orecv_1! cul 1

Figure 12: A User

3.3 Verification in UPPAAL

The primary correctness criteria that we want to verify for the protocol design
explained in section 3.2 is that no collisions will ever occur. As the medium
delays messages for one time unit, two messages sent to the medium within one
time unit or less will eventually collide and this scenario will force the medium
automaton in Figure 10 in the node col. What we need to verify is that it
holds invariantly, that the protocol can not reach a state where the medium
automaton is in state col. Stated as a property in the logic of UPPAAL this
becomes:
vO(not medium.col)

The satisfaction of the above formula is dependent upon the actual timeout
limit in the timer. UPPAAL succesfully verifies the property if we consider a
perfect medium, i.e. not lossy. But when an erroneous medium is introduced
as in section 3.2 the timeout limit influences the possibility of collisions. If a
timeout occurs to soon, the master interprets this as a situation where data
is lost and all slaves are waiting for messages. But obviously this need not be
the case as a slave can actually be in the process of enquiring its user. If this
happens the slave will try to send data from its user and the master will try
to send a new enquiry. If these two messages arrive at the medium within the
one time unit delay of the medium, they will collide. We discover by repeated
verification attempts that timeout limits greater than or equal to 3 will ensure
that no collisions can occur. Also we verify that for a timeout limit of 2, a
collision actually can occur, and the diagnostic trace facility of UPPAAL gives
us a possible trace leading to collision.

Assuming a perfect medium (not lossy) and assuming that data is sent from
users in round-robin fashion (all user are interested) we want to verify that the

3 Modelling and Verification in UPPAAL 14

user—to—user communication delay is bounded by some constant. Also, we want
to verify an upper bound on the delay between users sending data. This actually
implies a bound on the delay between enquiries from the master, as all users are
interested in sending. The above properties are examples of bounded liveness
properties which can not be expressed directly in the logical property language
of UPPAAL. To express the properties we introduce a seperate test automaton
that probes the user processes in the protocol design. The test automaton
will be designed to enter a ’bad node’ if it tests an unwanted behaviour of the
protocol. This approach is quite analogous to the never—claims used in the
PROMELA language.

The test automaton for the properties described above is depicted in Fig-
ure 13. The automaton probes the sending and receiving of data in the user
processes by synchronizing on actions send_1 and recv_1 (for user 1), see Fig-
ure 12. When a message is sent the test clock S is started and if the data
sent is not received within a certain time limit, the test automaton is forced in
the state badl. Similarly, if a new sending is not performed within a certain
time from the last receiving, the bad state bad2 can be entered. The property
verified using UPPAAL is:

VO not (check_1.badl or check_1.bad2)

check_1

Figure 13: Bounded liveness test automaton

Using a similar approach as above we verify that there exists a round—trip
time bound for the protocol. We use the test automaton of Figure 14 to verify
that there exists a round—trip, modelled as user 1 having performed two sends,
within a certain time bound. We verify:

3O (check_2.ch2 and s < 18)

Also we verify that the following does not hold:

3O (check2.ch2 and s < 17)

3 Modelling and Verification in UPPAAL 15

@ cho

send_17?
s: =0

() chl
send_17?

y
O ch2

check_2

Figure 14: The round—trip time test automaton

That is, there exists no (initial) round-trip time of less than 18 time units.

As indicated on Figure 8 the master waits for two time units before sending
out a new enquiry. This time limit guarantees that all slaves have finished their
internal buissness and will be ready to receive data. I.e. messages will not be lost
because of slave not ready to receive. To increase the round—trip performance
of the protocol we could consider to let master send out new enquiries without
delaying at all. Obviously this would require redesigning the enquiring strategy
of the master s.t. it will not send enquiries to slaves having just received data
from other users. We believe that a new strategy for the master benefiting from
the parallelism in the slaves, will be possible, but we have not considered the
actual design. However, we have verified that changing the waiting time in the
master to zero, will allow for faster round—trip times. Obviously changing only
the waiting time of the master does not guarantee that messages will not be
lost, but it gives a clue as to how the enquiring strategy can be optimized.

3.4 Test Automata Generation

In the previous section we verified a number of bounded liveness properties
by establishing reachability properties in the context of a testing automata.
To allow the testing automata to ’observe’ the system via communication, the
system was in most cases extended with suitable probe actions.

Similar to SPIN’s ability to generate never—claims directly from Linear Tem-
poral Logic properties, it is possible to derive testing automata automatically
from logical properties of the Safety and Bounded Liveness Logic introduced
and studied in [LPY95a, LPY95b]. Here we indicate the automatic derivation
of testing automata for a somewhat simpler logic STL (Simple Timed Logic)
derived from the logic TML introduced in [HLY92].

The properties of STL is given by the following abstract syntax, where a
ranges over actions and N over natural numbers (extended with oco) :

o u= tt | ff | INVo | {a)<n | [a]l<np | ¥1 A2

4 Comparison of SPIN and UPPAAL 16

The properties of STL are interpreted with respect to the behaviours (i.e.
timed transition systems) of (networks of) timed automata.

The properties of STL are interpreted with respect to the behaviours (i.e.
timed transition systems) of (networks of) timed automata. The interpretation
of the propositional part is standard, and INVp requires as expected that any
reachable state of the timed automata must satisfy the property ¢. The time—
quantified action modality (a)<, describes informally that the system must be
able to perform an a—action no later than (the observer has experienced) a delay
of n 5. Similarly, [a] <, Tequires that any a—transition occurring before a delay
of n must lead to a new state satisfying ¢. We write A1 | ... | A, = ¢, when a
network of timed automata, A; | ... | A, satisfies an STL formula ¢.

Now, for any STL formula we may construct a testing timed automata T,
with a designated location [, such that

l, is unreachable in (T, | A1 | ... | Ap)
if and only if
(Ar] .. [An) o

Thus model-checking STL properties may be reduced to deciding reach-
ability questions. The testing automata T}, is defined by the structure of ¢ and
given in Figure 15.

In section 3.3 we essentially wanted to check that a sender can not send
messages too frequently: at least 18 time units between two consecutive send’s
must elapse. The following property:

INV([sendi]<so[sendi] <nff) (1)

expresses precisely that at least n time units must elapse between two con-
secutive send; actions. Using the constructions described above we obtain the
testing timed automata of Figure 16. That is we may check for the property (1)
by checking for reachability of location [when the testing automata is combined
with the system under consideration. The testing automata that was used in
the actual verification was a slight simplification of the one that is obtained by
the general construction.

4 Comparison of SPIN and UPPAAL

In this section we summarize our experiences with the two tools SPIN and
UPPAAL based on our experience from the case study concerning the Collision
Avoidance Protocol for an Ethernet.

Considering the design phase, the basic structure of the design was very
easily obtained in the UPPAAL model because this was the last design made
and the PROMELA /SPIN model was of great benefit as a structural basis for
our UPPAAL model.

5The observer experiencing a delay of n means that the system may perform a sequence of

delay steps intermixed with internal computations such that the delay steps accumulate to a
total of n.

4 Comparison of SPIN and UPPAAL 17

@ (b) (0

T1 T2

() (O
O
bad
(e
O

a, b, ... a,b,...
O O
bad

®

Figure 15: Generation of Testing Timed Automata: The respective test au-
tomata implements the following formulas: (&) tt, (b) ff, (€) (a)<n,
(d) [a]<ne, (€) @1 A 2 and (F) INVp. In the figure, T indicates
the testing automaton for . T1 and T2 indicates the automata for
1 and g respectively.

4 Comparison of SPIN and UPPAAL 18

sl
x: =0

X<=N
sl

bad

Figure 16: Test Automata for the property of (1)

In the PROMELA design phase we made extensive use of the simulation
facilities of SPIN, especially the Message Sequence Charts. Within short time
a 'running’ prototype was designed and at an early stage faults were detected
without having the full design at hand. In contrast UPPAAL does not yet
allow for simulations and consequently, the UPPAAL design has to be more
fully developed before the verification can be applied which delays the tool
support in the design phase.

Considering the design languages, the obvious distinction is the possibility
of modelling real-time systems in UPPAAL. In the case study it is shown that
interesting bounded liveness properties can be expressed and verified in UP-
PAAL. Another beneficial feature of UPPAAL is the possibility of committed
locations which makes possible a quite natural modelling of the broadcast be-
haviour needed in the case study. In contrast PROMELA can not apply the
atomicity construct on sequences of send- and receive statements as these might
be blocking.

Considering the verification phase, the kind of properties expressible in the
property language of UPPAAL are restricted to invariance and possibility prop-
erties. Other properties as e.g. the bounded liveness properties of our case
study needs to be expressed as separate test automata probing the design. In
section 3.4 we present ideas on how to extend the property language and au-
tomatically generate the test automata. This is already possible in SPIN for
transforming LTL properties to never automata.

The committed locations of UPPAAL make it possible to design non real-
izable systems. In particular systems that may enter completely blocked states
(in the sense that neither actions nor time delays are possible) can be described.
Obviously, we would like the possibility of checking whether the global design
suffers such unrealizable properties or not.

Both SPIN and UPPAAL offers diagnostic information upon negative veri-
fication results. SPIN offers the possibility of examine an error scenario using

References

19

the MSC’s and UPPAAL offers a textual sample error trace leading to the
unwanted state. By performing breadth first reachability analysis UPPAAL
makes available a shortest error trace, whereas this is not guaranteed in SPIN
as the reachability is performed depth first.

References

[Abr9s]

[AL93]

[BGK*96]

[BLL*95]

[BPV9]

[DY95]

[HHWT95]

[HLY 92

[Hol]

[Hol91]

J.-R. Abrial. Steam-boiler control specification problem. Interna-
tional Seminar on Methods for Semantics and Specification, June
1995.

Martin Abadi and Leslie Lamport. An Old-Fashioned Recipe for
Real Time. Lecture Notes in Computer Science, 600, 1993.

Johan Bengtsson, David Griffioen, Kare Kristoffersen, Kim G. Lar-
sen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Verification of
an Audio Protocol with Bus Collision Using Uppaal. Accepted for
presentation at the 8th Int. Conf. on Computer Aided Verification,
1996.

Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson,
and Wang Yi. Uppaal— a Tool Suite for Automatic Verification
of Real-Time Systems. In Proc. of the 4th DIMACS Workshop
on Verification and Control of Hybrid Systems, Lecture Notes in
Computer Science, October 1995.

D. Bosscher, 1. Polak, and F. Vaandrager. Verification of an Audio-
Control Protocol. In Proc. of FTRTFT 94, volume 863 of Lecture
Notes in Computer Science, 1994.

C. Daws and S. Yovine. Two examples of verification of multirate
timed automata with Kronos. In Proc. of the 16th IEEFE Real-
Time Systems Symposium, pages 66—75, December 1995.

Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. A
Users Guide to HyTech. Technical report, Department of Com-
puter Science, Cornell University, 1995.

U. Holmer, K.G. Larsen, and W. Yi. Decidability of bisimulation
equivalence between regular timed processes. In Proc. of CAV’91,
volume 575 of Lecture Notes in Computer Science, Springer Verlag,
Berlin, 1992.

Gerard J. Holzmann. Basic Spin Manual. AT&T Bell Laboratories,
Murray Hill, New Jersey.

Gerard J. Holzmann. Design and Validation of Computer Protocols.
Prentice Hall, 1991.

References

[JBW+96]

[KV96]

[LPY95a

[LPY95b)]

[0SY94]

[TC96]

[YPD94]

20

Mathai Joseph, Alan Burns, Andy Welling, Krithi Ramamritham,
Jozef Hooman, Steve Schneider, Zhiming Liu, and Henk Schepers.
Real-time Systems Specification, Verification and Analysis. Pren-
tice Hall, 1996.

K. Karsisto and A. Valmari. Verification-driven development of a
collision avoidance protocol for the ethernet. FTRTFT96, 1996.

Kim G. Larsen, Paul Pettersson, and Wang Yi. Compositional and
Symbolic Model-Checking of Real-Time Systems. In Proc. of the
16th IEEFE Real-Time Systems Symposium, pages 76—87, December
1995.

Kim G. Larsen, Paul Pettersson, and Wang Yi. Diagnostic Model-
Checking for Real-Time Systems. In Proc. of the jth DIMACS
Workshop on Verification and Control of Hybrid Systems, Lecture
Notes in Computer Science, October 1995.

A. Olivero, J. Sifakis, and S. Yovine. Using Abstractions for the
Verification of Linear Hybrids Systems. In Proc. of CAV’9/, volume
818 of Lecture Notes in Computer Science, 1994.

Stavros Tripakis and Costas Courcoubetis. Extending promela and
spin for real-time. In Tools and Algorithms for the Construction and
Analysis of Systems, Second International Workshop, TACAS ’96,
volume 1055 of Lecture Notes in Computer Science, pages 329-348,
1996.

Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Verifica-
tion of Real-Time Communicating Systems By Constraint-Solving.
In Proc. of the th International Conference on Formal Description
Techniques, 1994.

Recent Publications in the BRICS Report Series

RS-96-24 Henrik Ejersbo Jensen, Kim G. Larsen, and Arne Skou.
Modelling and Analysis of a Collision Avoidance Protocol
using SPIN and UPPAAL July 1996. 20 pp.

RS-96-23 Luca Aceto, Wan J. Fokkink, and Anna Inglfsdottir. A
Menagerie of Non-Finitely Based Process Semantics over
BPA*: From Ready Simulation Semantics to Completed
Tracs July 1996. 38 pp.

RS-96-22 Luca Aceto and Wan J. Fokkink.An Equational Axiom-
atization for Multi-Exit Iteration. June 1996. 30 pp.

RS-96-21 Dany Breslauer, Tao Jiang, and Zhigen JiangRotation
of Periodic Strings and Short Superstringslune 1996. 14

Pp.

RS-96-20 Olivier Danvy and Julia L. Lawall. Back to Direct Style
I First-Class Continuations June 1996. 36 pp. A prelim-
inary version of this paper appeared in the proceedings
of the 1992 ACM Conference on Lisp and Functional
Programming, William Clinger, editor, LISP Pointers,
Vol. V, No. 1, pages 299-310, San Francisco, California,
June 1992. ACM Press.

RS-96-19 John Hatcliff and Olivier Danvy. Thunks and the A-
Calculus June 1996. 22 pp. To appear inJournal of
Functional Programming

RS-96-18 Thomas Troels Hildebrandt and Vladimiro Sassone.
Comparing Transition Systems with Independence and
Asynchronous Transition SystemsJune 1996. 14 pp. To
appear in Montanari and Sassone, editorsConcurrency
Theory: 7th International ConferenceCONCUR '96 Pro-
ceedings, LNCS 1119, 1996.

RS-96-17 Olivier Danvy, Karoline Malmkjeer, and Jens Palsberg.
Eta-Expansion Does The Trick (Revised VersionMay
1996. 29 pp. To appear iNACM Transactions on Pro-
gramming Languages and Systems (TOPLAS)

RS-96-16 Lisbeth Fajstrup and Martin Raul3en. Detecting Dead-
locks in Concurrent Systemdviay 1996. 10 pp.

