
B
R

IC
S

R
S

-96-23
A

ceto
etal.:

A
M

enagerie
ofN

on-F
initely

B
ased

P
rocess

S
em

antics
overB

P
A

∗

BRICS
Basic Research in Computer Science

A Menagerie of Non-Finitely Based
Process Semantics over BPA∗:
From Ready Simulation Semantics to
Completed Tracs

Luca Aceto
Wan J. Fokkink
Anna Ingólfsdóttir

BRICS Report Series RS-96-23

ISSN 0909-0878 July 1996

Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

A Menagerie of Non-Finitely Based
Process Semantics over BPA∗

From Ready Simulation to Completed Traces

Luca Aceto∗ Wan Fokkink† Anna Ingólfsdóttir‡

Abstract

Fokkink and Zantema ((1994) Computer Journal 37:259–267) have shown that
bisimulation equivalence has a finite equational axiomatization over the language
of Basic Process Algebra with the binary Kleene star operation (BPA∗). In light
of this positive result on the mathematical tractability of bisimulation equivalence
over BPA∗, a natural question to ask is whether any other (pre)congruence relation
in van Glabbeek’s linear time/branching time spectrum is finitely (in)equationally
axiomatizable over it. In this paper, we prove that, unlike bisimulation equivalence,
none of the preorders and equivalences in van Glabbeek’s linear time/branching time
spectrum, whose discriminating power lies in between that of ready simulation and
that of completed traces, has a finite equational axiomatization. This we achieve by
exhibiting a family of (in)equivalences that holds in ready simulation semantics, the
finest semantics that we consider, whose instances cannot all be proven by means of
any finite set of (in)equations that is sound in completed trace semantics, which is
the coarsest semantics that is appropriate for the language BPA∗. To this end, for
every finite collection of (in)equations that are sound in completed trace semantics, we
build a model in which some of the (in)equivalences of the family under consideration
fail. The construction of the model mimics the one used by Conway ((1971) Regular
Algebra and Finite Machines, page 105) in his proof of a result, originally due to
Redko, to the effect that infinitely many equations are needed to axiomatize equality
of regular expressions.

Our non-finite axiomatizability results apply to the language BPA∗ over an arbi-
trary non-empty set of actions. In particular, we show that completed trace equiv-
alence is not finitely based over BPA∗ even when the set of actions is a singleton.
Our proof of this result may be easily adapted to the standard language of regular

∗BRICS (Basic Research in Computer Science), Centre of the Danish National Research Foundation,
Department of Computer Science, Aalborg University, Fr. Bajersvej 7E, 9220 Aalborg Ø, Denmark. On
leave from the School of Cognitive and Computing Sciences, University of Sussex, Brighton BN1 9QH, UK.
Partially supported by the Human Capital and Mobility project Express. Email: luca@iesd.auc.dk.
Fax: +45 9815 9889.
†Utrecht University, Department of Philosophy, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands.

Email: fokkink@phil.ruu.nl. Fax: +31 30 253 2816.
‡BRICS (Basic Research in Computer Science), Centre of the Danish National Research Foundation,

Department of Computer Science, Aalborg University, Fr. Bajersvej 7E, 9220 Aalborg Ø, Denmark. Email:
annai@iesd.auc.dk. Fax: +45 9815 9889.

1

expressions to yield a solution to an open problem posed by Salomaa ((1969) Theory
of Automata, page 143).

Another semantics that is usually considered in process theory is trace seman-
tics. Trace semantics is, in general, not preserved by sequential composition, and is
therefore inappropriate for the language BPA∗. We show that, if the set of actions
is a singleton, trace equivalence and preorder are preserved by all the operators in
the signature of BPA∗, and coincide with simulation equivalence and preorder, re-
spectively. In that case, unlike all the other semantics considered in this paper, trace
semantics have finite, complete equational axiomatizations over closed terms.

AMS Subject Classification (1991): 08A70, 03C05, 68Q10, 68Q40, 68Q45,
68Q55, 68Q68, 68Q70.
CR Subject Classification (1991): D.3.1, F.1.1, F.1.2, F.3.2, F.3.4, F.4.1.
Keywords and Phrases: Concurrency, process algebra, Basic Process Algebra
(BPA), Kleene star, bisimulation, ready simulation, simulation, completed trace se-
mantics, ready trace semantics, failure trace semantics, readiness semantics, failures
semantics, trace semantics, equational logic, complete axiomatizations.

1 Introduction

Process theory aims at providing a framework for the description and analysis of reactive
systems, i.e., systems that compute by reacting to stimuli from their environment. As such
systems tend to be non-terminating, all process algebraic specification formalisms (cf.,
e.g., [5, 41, 52, 8]) include facilities for the specification and analysis of infinite behaviours.
The description of such behaviours has been traditionally achieved in process theory by
means of systems of recursion equations or of variations on Milner’s µ-expressions [51, 53].
For example, the recursion equation

X
def= (send · receive · X) + fail(1)

describes a system that is willing to perform alternatively the acts of sending and receiving
ad infinitum, but may fail after iterating the sequence send · receive any finite number
of times. In order to extend axiomatic verification methods to reason about processes
specified by means of recursion equations, several inference rules for proving equalities
involving infinite processes have been studied in the literature. (Cf., e.g., rules like unique
fixed-point induction in its various flavours [52, 8], the approximation induction principle
[11] and ω-induction [39].)

An alternative, purely algebraic, way of introducing infinite behaviours in process
algebras is to augment them with variations on the Kleene star operation familiar from the
theory of regular algebra—cf., e.g., the papers [32, 9, 10, 29, 24, 22]. Some of these studies,
notably [10], have investigated the expressive power of variations on standard process
description languages in which infinite behaviours are defined by means of Kleene’s star
operation [44, 21] rather than by means of systems of recursion equations. For example,
using the original, binary version of the Kleene star operation from [44] studied in [10],
the system described by the recursion equation (1) can alternatively be denoted by the
term (send ·receive)∗fail, and, as shown in [10], any regular process can be specified in the
axiom system ACPτ [12] with Kleene star using handshake communication. (Interestingly,

2

as already noted by Milner in [51, Sect. 6], not every process defined using finite-state
systems of recursion equations can be described, up to bisimulation equivalence, using
only regular expressions.)

The possibility of describing infinite behaviours in a purely algebraic syntax has been
the motivation for intense research on the use of equational logic to (finitely) axioma-
tize behavioural equivalences over languages incorporating variations on the Kleene star
operation. (Examples of contributions along this line of research may be found in, e.g.,
[32, 64, 29, 3, 4, 30, 31, 33, 1].) A notable positive result in this direction was obtained
by Fokkink and Zantema, who showed in [32] that the finite equational axiom system
for the language BPA∗ proposed in [10] is indeed complete for bisimulation equivalence.
This result is in sharp contrast with a negative one later obtained by Sewell in [64].
Sewell shows that bisimulation equivalence has no finite equational axiomatization over
the language BPA∗

δ obtained by adding the stopped process δ to the signature of BPA∗.
(A discussion of the completeness result by Fokkink and Zantema vis-à-vis Sewell’s non-
finite axiomatizability result may be found in [2].)

In light of Fokkink and Zantema’s positive result on the mathematical tractability
of bisimulation equivalence over BPA∗, a natural question to ask is whether any other
(pre)congruence relation in van Glabbeek’s linear time/branching time spectrum (cf. [35],
where pointers to the original literature may also be found) has a finite (in)equational ax-
iomatization over it. In this paper, we begin to address this question by showing that, un-
like bisimulation equivalence, none of the process semantics in the linear time/branching
time spectrum lying in between ready simulation and completed traces is finitely based.
More precisely, we show that there is a family of (in)equivalences that holds in ready sim-
ulation semantics, and a fortiori with respect to any behavioural relation that is coarser
than it, whose instances cannot all be proven by means of any finite set of (in)equations
that is sound in completed trace semantics, which is the coarsest semantics in the linear
time/branching time spectrum that is appropriate for the language BPA∗. The family of
(in)equivalences that we use in our proof is an adaptation of an axiom schema familiar
from the theory of regular algebra (cf., e.g., the equation schema C14.n in [20, page 25]).
Consider the equation schema

E.n a∗(an) + (an)∗(a + · · · + an) = (an)∗(a + · · · + an)

and the inequation schema

I.n a∗(an) ≤ (an)∗(a + · · · + an)

where a is an action, n is a positive integer, and we write ai for a sequence of a actions
of length i. Each of the instances of I.n and E.n is valid in ready simulation semantics.

The crux of the proof of our main result is the construction, for every finite set of
(in)equations that is sound in completed trace semantics, of a model in which some of
the inequivalences I.n, and some of the equivalences E.n, fail. The model we use for this
purpose is based on an adaptation of a beautiful construction due to Conway (cf. [20,
Thm. 2, page 105]), who used it to obtain a new proof of a theorem, originally due to
Redko [58] (see also [62, Chapter 3 §6] and the references therein), to the effect that
equality of regular expressions cannot be axiomatized using a finite number of equations.

3

The construction of our model relies heavily on the use of prime numbers, as do
related arguments presented in, e.g., [20, 26, 47, 64]. Conway’s proof of the non-finite
axiomatizability of equality of regular expressions is based upon an argument showing
that no finite set of regular tautologies can prove all the instances of the aforementioned
equality C14.p, for p a prime number. (A generalization of Conway’s proof that applies
to regular expressions with multiplicities over an arbitrary positive semiring—cf. [25,
Chapter 6]—may be found in [47].) In [26], Ésik shows that iteration theories, that are
a general framework that aims at formalizing the equational logic of iterative processes
(cf. the encyclopedic [17] for details), have no finite equational axiomatization. His proof
of this result uses the following form of Conway’s equation C14.p, for every prime number
p:

(fp)† = f † (f : n → n + p)

where † denotes the iteration operation used in iteration theories. The above identities
bear striking resemblance to those employed by Sewell in his proof of the non-existence
of finite equational axiomatizations for bisimulation equivalence over regular CCS [52]
and over BPA∗

δ [64]. Again, his argument rests on the idea that no finite collection of
equations can prove all the equivalences of the form

(ap)∗δ = a∗δ

where p is a prime number. The similarity amongst these results appears to be more
than coincidental. Indeed, Ésik [27] has recently proven that regular languages do have
a finite equational axiomatization over iteration theories, i.e., relative to the general
set of identities for fixed-point operations. This result, together with the completeness
theorems presented in [16, 18], seems to indicate that the deep reason underlying all
the aforementioned non-finite axiomatizability results, as well as those presented in this
paper, is that the general equational theory of fixed-points is not finitely based. The
analysis provided in op. cit. also suggests that all the aforementioned negative results
have their roots in the original work by Conway and Redko for regular algebra. A
related result, whose proof is based on an explicit reduction to the non-existence of a
finite equational axiomatization for regular languages, is presented in [23]. In op. cit. the
authors show that the variety of inversion-free Kleene algebras is not finitely based, thus
settling a problem posed by Jónsson in [42].

Our non-finite axiomatizability results apply to the language BPA∗ over an arbitrary
non-empty set of actions. In particular, we prove that completed trace equivalence over
(closed) BPA∗ terms is not finitely based even when the set of actions is a singleton. In [62,
page 143] Salomaa asked whether the equational theory of (closed) regular expressions
over a singleton alphabet is finitely based. Our proof of the non-existence of a finite
equational axiomatization of completed traced trace equivalence over (closed) BPA∗ terms
may be easily adapted to the standard language of regular expressions to yield a solution
to this question posed by Salomaa. As communicated to us by Salomaa [63], this problem
has been open since 1969, the year of publication of [62].

Another semantics that is usually considered in process theory is trace semantics.
Trace semantics is, in general, not preserved by sequential composition, and is therefore

4

inappropriate for languages that, like BPA∗, include such an operator. However, if the
set of actions is a singleton, trace equivalence and preorder are preserved by all the op-
erators in the signature of BPA∗, and coincide with simulation equivalence and preorder,
respectively. In that rather peculiar case, we show that, unlike all the semantics lying in
between ready simulation and completed traces, trace equivalence and preorder do have
finite, complete equational axiomatizations over closed terms in the language BPA∗. The
reason underlying the existence of these finite axiomatizations is that trace semantics
considers all the sequences of actions that a process may perform—not only the com-
pleted ones. Therefore, if a is the only action, every term containing occurrences of the
binary Kleene star operation has the set of all finite sequences of a actions as its set of
traces. This means, in particular, that any two terms involving occurrences of the binary
Kleene star operation are equivalent in trace semantics. Such terms must have the same
denotation in every model for trace equivalence.

We conclude this introduction by providing a brief road-map to the contents of this
paper. We begin by introducing the basic notions from process theory that will be needed
in the remainder of this study (Sect. 2). The language of Basic Process Algebra with
binary Kleene star and its operational semantics are discussed in Sect. 3. We then present
the proof of our main result, which is articulated as follows. In Sect. 4 we introduce the
family of (in)equivalences on which our argument rests, and reduce the proof of our main
result to that of a theorem to the effect that no finite set of (in)equations, that are sound in
completed trace semantics, can suffice to prove all of their instances (Thm. 4.5). A proof
of Thm. 4.5 is then presented in Sect. 4.1. We begin by studying a normal form for the
terms in the language BPA∗ modulo completed trace equivalence (Sect. 4.1.1). Finally,
for every finite set of inequations sound in completed trace semantics, we show how to
build a model in which the inequation I.p fails for some prime number p (Sect. 4.1.2). This
is sufficient to ensure that the inequality I.p cannot be proven from the inequations under
consideration. We then go on to present an analysis of some axiomatic questions on trace
semantics over the language BPA∗, when the set of actions is a singleton (Sect. 5). More
precisely, we show that, unlike all the other process semantics considered in the paper,
trace equivalence and preorder do have finite, complete equational axiomatizations over
closed terms. We also present evidence that the finite axiom systems that completely
characterize trace semantics over closed terms are not powerful enough to prove all valid
equations between open terms (Propn. 5.5). The paper concludes with a discussion of
our results vis-à-vis the completeness theorem by Fokkink and Zantema for bisimulation
equivalence—cf. Sect. 6, where the reader will also find more pointers to related literature,
and suggestions for further research.

2 Preliminaries

In this section we present the basic notions from process theory that will be needed in
the remainder of this study.

5

2.1 Labelled Transitions Systems

We begin by reviewing the model of labelled transition systems [43, 57] that abstracts
from the operational semantics of many concurrent calculi.

Definition 2.1 (Labelled Transition Systems) A labelled transition system (lts) is
a triple (Proc, Act,

{
a→| a ∈ Act

}
), where:

• Proc is a set of states, ranged over by s, possibly subscripted or superscripted;

• Act is a set of actions, ranged over by a, possibly subscripted;

• a→⊆ Proc × Proc is a transition relation, for every a ∈ Act. As usual, we shall use
the more suggestive notation p

a→ q in lieu of (p, q) ∈ a→, and write s
a9 iff s

a→ s′

for no state s′.

For n ≥ 0 and ς = a1 . . . an ∈ Act∗, we write s
ς→ s′ iff there exist states s0, . . . , sn such

that s = s0
a1→ s1

a2→ · · · sn−1
an→ sn = s′. In that case, we say that ς is a trace (of length

n) of the state s. For a state s ∈ Proc we define:

initials(s) ∆=
{
a ∈ Act | ∃s′ : s

a→ s′
}

.

We say that s is deadlocked iff initials(s) is empty. An action a will be called a termination
action of a state s iff s

a→ s′ for some deadlocked state s′.

2.2 From Ready Simulation to Completed Traces

Labelled transition systems describe the operational behaviour of processes in great detail.
In order to abstract from irrelevant information on the way processes compute, a wealth
of notions of behavioural equivalence or approximation have been studied in the literature
on process theory. A systematic investigation of these notions is presented in [35, 37] (see
also [34, Chapter I]), where van Glabbeek presents the so-called linear time/branching
time spectrum, i.e., the lattice of all the known behavioural equivalences over labelled
transition systems ordered by inclusion. In this study, we shall investigate a fragment of
the notions of equivalence and preorder from [35]. These we now proceed to present for
the sake of completeness.

Definition 2.2 (Simulation, Ready Simulation and Bisimulation)

• A binary relation R on states is a simulation iff whenever s1 R s2 and a is an
action:

- if s1
a→ s′

1, then there is a transition s2
a→ s′

2 such that s′
1 R s′

2.

• A binary relation R on states is a ready simulation iff it is a simulation with the
property that, whenever s1 R s2 and a is an action:

- if s1
a9, then s2

a9.

6

• A bisimulation is a symmetric simulation.

Two states s and s′ are bisimilar, written s ↔ s′, iff there is a bisimulation that relates
them. Henceforth the relation ↔ will be referred to as bisimulation equivalence. We
write s @∼S s′ (resp. s @∼RS s′) iff there is a simulation (resp. a ready simulation) R with
s R s′.

Bisimulation equivalence [56, 50] relates two states in a labelled transition system precisely
when they have the same branching structure. Simulation (see, e.g., [56]) and ready
simulation [14, 48] relax this requirement to different degrees. The following notions,
which are all based on decorated versions of traces, are induced by yet further ways of
abstracting from the full branching structure of processes.

Definition 2.3 (Decorated Trace Semantics)

• We say that a sequence of actions ς is a completed trace of a state s iff s
ς→ s′ for

some deadlocked state s′. The set of completed traces of a state s will be denoted
by completed-traces(s). For states s, s′ we write s @∼CT s′ iff the set of completed
traces of s is included in that of s′.

• We say that a sequence X0a1X1 . . . anXn, where n ≥ 0, the Xi are subsets of Act
and the ai are actions, is a ready trace of a state s iff there exist states s0, . . . , sn

such that s = s0
a1→ s1

a2→ · · · sn−1
an→ sn = s′, and initials(si) = Xi for every i. The

set of ready traces of a state s will be denoted by ready-traces(s). For states s, s′

we write s @∼RT s′ iff the set of ready traces of s is included in that of s′.

- Let X be a subset of Act. For states s, s′, we write s
X→ s′ iff s = s′ and initials(s) ∩

X = ∅. The relations X→ will be called the refusal relations. The failure trace rela-
tions ς→, for ς ∈

(
Act ∪ 2Act

)∗
, are defined as the reflexive and transitive closures

of the refusal and transition relations. We say that a sequence ς ∈
(

Act ∪ 2Act
)∗

,

is a failure trace of a state s iff s
ς→ s′ for some state s′. The set of failure traces

of a state s will be denoted by failure-traces(s). For states s, s′ we write s @∼FT s′ iff
the set of failure traces of s is included in that of s′.

• For a state s we define:

readies(s) ∆=
{
(ς,X) | ς ∈ Act∗,X ⊆ Act and ∃s′ : s

ς→ s′ and initials(s′) = X
}

failures(s) ∆=
{
(ς,X) | ς ∈ Act∗,X ⊆ Act and ∃s′ : s

ς→ s′ and initials(s′) ∩ X = ∅
}

For states s, s′ we write s @∼F s′ iff failures(s) is included in failures(s′), and s @∼R s′

iff readies(s) is included in readies(s′).

For ℵ ∈ {S,RS,CT,RT,FT, F, R}, the relation @∼ℵ is a preorder over states of an arbitrary
labelled transition system; its kernel will be denoted by 'ℵ.

The following result is a standard one in process theory (cf., e.g., [35] where a very
informative discussion of the equivalences and preorders in the linear time/branching
time spectrum may be found).

7

Proposition 2.4 In any transition system,

@
∼S

@
∼FT

↗ ↗ ↘
↔ → @

∼RS → @
∼RT

@
∼F → @

∼CT

↘ ↗
@
∼R

where a directed edge from one relation to another means that the source of the edge is
included in the target. The same inclusions hold for the kernels of the preorders.

Remark: All the inclusions presented in the previous proposition are proper if the labelled tran-
sition system under consideration includes, modulo bisimulation equivalence, the synchronization
trees [49] used in the examples presented in [35].

3 BPA with Binary Kleene Star

We begin by presenting the language of Basic Process Algebra (BPA) [11] with binary
Kleene star [44] and its operational semantics.

3.1 The Syntax

We assume a non-empty alphabet Act of atomic actions, with typical elements a, b, c, and
a countably infinite set Var of process variables, disjoint from Act, with typical elements
x, y, z. We shall use α to range over Act ∪ Var.

The language (BPA∗(Act)) of Basic Process Algebra with binary Kleene star is given
by the following BNF grammar:

P ::= α | P + P | P · P | P ∗P .

The set of closed terms, i.e., terms that do not contain occurrences of process variables,
is denoted by T(BPA∗(Act)). We shall use P, Q,R, S, T to range over (BPA∗(Act)). In
writing terms over the above syntax, we shall always assume that the operator · binds
stronger than +, and occurrences of · will often be omitted. With these conventions, the
term PQ + R stands for (P · Q) + R. We shall use the symbol ≡ to stand for syntactic
equality of terms. The set of process variables occurring in a term P will be written
Var(P), and we shall use StarVar(P) to stand for the set of process variables occurring on
the left-hand side of a star in P .

Intuitively, closed terms stand for agents whose behaviour is completely specified,
whereas terms containing occurrences of process variables denote agents with partially
specified behaviour. For example, an atomic action a stands for a process that can only
perform itself in one computational step and terminate in doing so; on the other hand,
the term a +x denotes a partially specified process, whose behaviour depends in part on
that of the process term that is substituted for the variable x.

Apart from actions and variables, the signature of the language (BPA∗(Act)) includes
the binary operators of alternative composition + and sequential composition · familiar

8

from the theory of Basic Process Algebra [11, 8], and the original binary version of
the Kleene star operator introduced in [44]. The term P ∗Q stands for a process whose
behaviour is specified by the following defining equation:

P ∗Q = P (P ∗Q) + Q .

A (closed) substitution is a mapping from process variables to (closed) terms in the
language (BPA∗(Act)). For every term P and (closed) substitution σ, the (closed) term
obtained by replacing every occurrence of a variable x in P with the (closed) term σ(x)
will be written Pσ. We shall use the notation [P/x] to denote the substitution mapping
the variable x to P , and acting like the identity on all the other variables.

Notation 3.1 For I = {i1, . . . , in} a finite, non-empty index set, we write
∑

i∈I Pi for
Pi1 + · · · + Pin .

For a term P and a positive integer n, we write

Pn ∆= P · P · · ·P︸ ︷︷ ︸
n-times

and use P≤n as a short-hand for P + P 2 + · · · + Pn.

3.2 Operational Semantics

The operational semantics for the language of closed terms T(BPA∗(Act)) is given by the
labelled transition system(

T(BPA∗(Act)) ∪ {X}, Act,
{

a→| a ∈ Act
})

where the transition relations a→ are the least binary relations over T(BPA∗(Act)) ∪ {X}
satisfying the rules in Table 1. Intuitively, a transition P

a→ Q means that the system
represented by the term P can perform the action a, thereby evolving into Q. The
special symbol X represents (successful) termination; therefore the interpretation of the
statement P

a→X is that the process term P can terminate by performing the atomic
action a. Note that X is the only deadlocked state in the labelled transition system for
T(BPA∗(Act)).

With the above definitions, the language T(BPA∗(Act)) inherits all the notions of
equivalence and preorder over processes defined in Sect. 2.2. The following result is
standard.

Proposition 3.2 For ℵ ∈ {RS,CT,RT,FT, F, R}, the relations @∼ℵ and 'ℵ are pre-
served by the operators in the signature of (BPA∗(Act)). The same holds for bisimula-
tion equivalence.

Proof: The congruence result for bisimulation equivalence is well-known (cf., e.g., [32]).
The congruence property for the relations @∼RS and 'RS is easily established using the fact

that, as X is the only deadlocked state in the labelled transition system for T(BPA∗(Act)),

if P @∼RS Q and P
a→X, then Q

a→X.

9

a
a→X

P
a→X

P + Q
a→X

Q
a→X

P + Q
a→X

P
a→ P ′

P + Q
a→ P ′

Q
a→ Q′

P + Q
a→ Q′

P
a→X

P · Q
a→ Q

P
a→ P ′

P · Q
a→ P ′ · Q

P
a→X

P ∗Q
a→ P ∗Q

P
a→ P ′

P ∗Q
a→ P ′(P ∗Q)

Q
a→X

P ∗Q
a→X

Q
a→ Q′

P ∗Q
a→ Q′

Table 1: Transition Rules

For each of the relations introduced in Def. 2.3, the set of relevant traces of a composite process
can be defined uniformly from those of its components. For example, the set of ready traces of a
term P ∈ T(BPA∗(Act)) can be inductively defined thus:

• The set of ready traces of a ∈ Act is {{a}, {a}a∅}.
• The sequence X0a1X1 . . . anXn is contained in ready-traces(P + Q) iff X0 = initials(P) ∪

initials(Q) and

1. n = 0, or

2. n > 0, and initials(P)a1X1 . . . anXn is a ready trace of P or initials(Q)a1X1 . . . anXn

is a ready trace of Q.

• The sequence X0a1X1 . . . anXn is contained in ready-traces(PQ) iff one of the following
conditions hold:

1. X0a1X1 . . . anXn is contained in ready-traces(P) and Xn is non-empty, or

2. there exists 0 < i ≤ n such that

(a) X0a1X1 . . . ai∅ is a ready trace of P , and
(b) Xiai+1Xi+1 . . . anXn is a ready trace of Q.

• The sequence X0a1X1 . . . anXn is contained in ready-traces(P ∗Q) iff there exist

1. a non-negative integer k,

2. ready traces of P of the form

Xi,0ai,1Xi,1 . . . ai,ni∅ (0 < i ≤ k, ni ≥ 0)

and

3. a ready trace of P or Q

Xk+1,0ak+1,1Xk+1,1 . . . ak+1,nk+1Xk+1,nk+1 (nk+1 ≥ 0)

with the property that Xk+1,nk+1 is non-empty if the above is a ready trace of P ,

10

such that

X0a1X1 . . . anXn =
Xa1,1X1,1 . . . a1,n1X . . .Xak,1Xk,1 . . . ak,nkXak+1,1Xk+1,1 . . . ak+1,nk+1Xk+1,nk+1

where X = initials(P) ∪ initials(Q).

The result follows immediately from this observation. 2

Remark: In [36], van Glabbeek has presented a format of operational rules in Plotkin’s SOS
style [57] with the property that every operation specified using rules in that format is guaranteed
to preserve ready trace equivalence. One of the requirements that such rules have to satisfy is
related to the notion of connectedness. Connectedness is the smallest equivalence relation over
bound variables in a rule, in the sense of [38], such that x and y are connected iff the rule has an
antecedent of the form x

a→ y. One of the requirements for van Glabbeek’s ready trace format
is that no two occurrences of variables in the target of a rule are connected in that rule. This
requirement is not met by the rule

P
a→ P ′

P ∗Q
a→ P ′(P ∗Q)

because the variables P and P ′ are connected in the above rule, and both occur in the term
P ′(P ∗Q). On the other hand, as shown above, the binary Kleene star operation preserves @∼RT

and, a fortiori, ready trace equivalence.

Unlike all the semantics considered in Propn. 3.2, the simulation preorder @∼S and its
kernel are not preserved by the operators of sequential composition and binary Kleene
star, at least if the set of actions contains two distinct elements. For example, as X is the
least element with respect to the simulation preorder, it follows that a @∼S aa. However,
the reader will find it easy to check that neither ab @∼S (aa)b nor a∗b @∼S (aa)∗b holds.

Remark: As we shall see in Sect. 5 (cf. Propn. 5.3), if the set of actions is a singleton, then the
simulation preorder is preserved by the operators in the signature of the language T(BPA∗(Act)),
and coincides with the preorder induced by trace inclusion [41]. This semantics will have a rather
peculiar place in the technical developments of this paper. We refer the impatient reader to Sect. 5
for details.

Following Milner [49], we consider the largest precongruence over T(BPA∗(Act)) that is
included in the simulation preorder.

Definition 3.3 A context is a term R ∈ (BPA∗(Act)) containing at most the variable
x. The relation @∼c

S over T(BPA∗(Act)) is defined thus:

P @
∼

c
S Q

∆= R[P/x] @∼S R[Q/x], for every context R .

It is easy to see that the relation @∼c
S is indeed the largest precongruence over the language

T(BPA∗(Act)) which is included in @∼S. We now proceed to characterize this precongru-
ence explicitly, in the case that the set of actions Act is infinite.

Definition 3.4 The relation @∼SC is the largest one over T(BPA∗(Act)) such that P @
∼SC

Q iff for every action a,

11

- if P
a→ P ′, then there is a transition Q

a→ Q′ such that P ′ @
∼SC Q′;

- if P
a→X, then Q

a→X.

Proposition 3.5 The relation @∼SC is a precongruence over the language T(BPA∗(Act)).
Moreover, if the set of actions Act is infinite, @∼SC coincides with @∼c

S.

Proof: It is easy to check that @∼SC is a precongruence over the language T(BPA∗(Act)) which
is included in @∼S . It follows that @∼SC is included in @∼

c
S because the latter is the largest relation

with these properties. We now show that the converse inclusion also holds, under the assumption
that Act is infinite. To this end, assume that P @∼

c
S Q. Choose an action b not occurring in P and

Q. (Note that, as Act is infinite, such an action may always be found.) By the definition of @∼
c
S it

follows that Pb @∼S Qb. Note now that the relation

R ∆=
{
(R, S) | Rb @∼S Sb, b not occurring in R and S

}
satisfies the defining clauses of @∼SC . This is easily checked, using the fact that, as b does not occur
in R and S, if Rb @∼S Sb then the termination actions of R are included in those of S. Hence, R
is included in @∼SC . Since the pair (P, Q) is contained in R, it follows that P @∼SC Q. 2

Remark: If the set of actions is finite, then the preorder @∼SC is strictly included in @∼
c
S . To

see that this is indeed the case, let us assume that Act = {a1, . . . , an} for some positive integer
n. Consider the term P ≡ (a1 + . . . + an)∗(a1a1). As P

ai→ P for every i ∈ {1, . . . , n}, the
term P dominates every other term in the language T(BPA∗(Act)) with respect to the simulation
preorder, i.e., Q @

∼S P holds for every Q ∈ T(BPA∗(Act)). We shall now argue that the following
inequality holds:

a1
@
∼

c
S P .(2)

To this end, we begin by studying the effect of substituting the term P for the variable x in
a context R. Let ∼= denote the least congruence over (BPA∗(Act)) that satisfies the following
axioms:

x + y = y + x

(x + y) + z = x + (y + z)
(x + y)z = xz + yz

(xy)z = x(yz)
x(x∗y) + y = x∗y

We say that a context R is initially closed iff R ∼=
∑

i∈I R′
iR

′′
i , for some finite index set I, and

terms R′
i ∈ T(BPA∗(Act)) and R′′

i ∈ (BPA∗(Act)). Intuitively, if R is initially closed, then, for
every substitution [Q/x], the initial transitions of the term R[Q/x] do not depend upon those of
Q.

Lemma 3.6 Suppose that Act = {a1, . . . , an}. Let P ≡ (a1 + . . . + an)∗(a1a1). Then, for every
context R ∈ (BPA∗(Act)),

• either R[P/x] 'S P ,

• or R is initially closed.

Proof: First of all, note that, for every closed term Q ∈ T(BPA∗(Act)),

12

- Q + P 'S P + Q 'S P ,

- PQ 'S P and

- Q∗P 'S P ∗Q 'S P .

The claim now follows by a straightforward induction on the structure of the context R. 2

Using the above lemma, we are now in a position to prove that (2) holds.

Proposition 3.7 Suppose that Act = {a1, . . . , an}. Let P ≡ (a1 + . . . + an)∗(a1a1). Then
a1
@
∼

c
S P .

Proof: Consider the relation R defined thus:

R ∆=
(

↔ ◦ {(R[a1/x], R[P/x]) | R an initially closed context} ◦ ↔
)

∪
{
(Q, P ′) | Q, P ′ ∈ T(BPA∗(Act)), P @∼S P ′} .

Note, first of all, that the pair of terms (R[a1/x], R[P/x]) is contained in R for every context R
(Lem. 3.6). To prove the claim, it is therefore sufficient to show that R is a simulation. To this
end, assume that S R T and that S

a→ S′. We shall now prove that there exists a term T ′ such
that T

a→ T ′ and S′ R T ′.
As S R T , the definition of R yields that

1. either S ↔ R[a1/x] and T ↔ R[P/x] for some initially closed context R,

2. or P @∼S T .

We proceed with the proof by considering these cases in turn.

1. Assume that S ↔ R[a1/x] and T ↔ R[P/x] for some initially closed context R. As R is
initially closed, it follows that R ∼=

∑
i∈I R′

iR
′′
i , for some terms R′

i ∈ T(BPA∗(Act)) and
R′′

i ∈ (BPA∗(Act)). Moreover, since the defining axioms of ∼= are sound with respect to
bisimulation equivalence (cf. Thm. 4.1 below), the terms R[a1/x] and

∑
i∈I R′

i(R
′′
i [a1/x])

are bisimilar, and so are R[P/x] and
∑

i∈I R′
i(R

′′
i [P/x]).

As S
a→ S′ and S ↔ R[a1/x] ↔

∑
i∈I R′

i(R
′′
i [a1/x]), there exists a term R′ such that∑

i∈I

R′
i(R

′′
i [a1/x]) a→ R′ and S′ ↔ R′ .

Since each R′
i is closed, the term R′ can only have one of the following two forms:

- R′ ≡ R′′
i [a1/x] for some index i ∈ I such that R′

i
a→X, or

- R′ ≡ R̂′
i(R′′

i [a1/x]) for some index i ∈ I and closed term R̂′
i such that R′

i
a→ R̂′

i.

We continue with the proof by examining the forms R′ may take.

- Assume that R′ ≡ R′′
i [a1/x] for some index i ∈ I such that R′

i
a→X. As R′

i
a→X, it

follows that ∑
i∈I

R′
i(R

′′
i [P/x]) a→ R′′

i [P/x] .

Moreover, as T ↔ R[P/x] ↔
∑

i∈I R′
i(R

′′
i [P/x]), there exists a term T ′ such that

T
a→ T ′ and T ′ ↔ R′′

i [P/x]. Using Lem. 3.6, we infer that either R′′
i is initially closed,

or T ′ ↔ R′′
i [P/x] 'S P . In both cases, it follows that S′ R T ′.

13

- Assume that R′ ≡ R̂′
i(R

′′
i [a1/x]) for some index i ∈ I and closed term R̂′

i such that
R′

i
a→ R̂′

i. As R′
i

a→ R̂′
i, it follows that∑

i∈I

R′
i(R

′′
i [P/x]) a→ R̂′

i(R
′′
i [P/x]) .

Moreover, as T ↔ R[P/x] ↔
∑

i∈I R′
i(R

′′
i [P/x]), there exists a term T ′ such that

T
a→ T ′ and T ′ ↔ R̂′

i(R
′′
i [P/x]). The fact that S′ R T ′ now follows immediately

because the context R̂′
iR

′′
i is initially closed.

2. Assume that P @
∼S T . As S

a→ S′ and a ∈ {a1, . . . , an}, it follows that P
a→ P . Therefore

T
a→ T ′ for some term T ′ such that P @∼S T ′. By the definition of R, it follows immediately

that S′ R T ′.

We have therefore shown that R is indeed a simulation relation. We previously noted that the
pair of terms (R[a1/x], R[P/x]) is contained in R for every context R. Hence a1

@
∼

c
S P follows.

2

However, a1 6@∼SC P , because a1 can terminate in one step whereas P cannot.

The example discussed in the previous remark is, to our mind, rather peculiar, and rein-
forces our belief that @∼SC is the variation on the simulation preorder that is appropriate
for the language T(BPA∗(Act)). The reader familiar with [10, 32] will also realize that
standard bisimulation equivalence over T(BPA∗(Act)) is the largest symmetric relation
included in @∼SC. For these reasons, in the technical developments to follow we shall only
consider the preorder @∼SC . For later use, we now proceed to study its relationships with
the other semantics considered in this paper.

Proposition 3.8 Over the language T(BPA∗(Act)), the preorder @∼SC is included in @∼CT ,
and includes @∼RS. Moreover, @∼SC coincides with @∼RS iff Act is a singleton.

Proof: The fact that @∼SC is included in @∼CT , and includes @∼RS , follows immediately from the
definitions of these relations.

We now argue that @∼SC coincides with @∼RS iff Act is a singleton. To this end, note that the
constraint on the set of actions is certainly necessary. In fact, if a 6= b, then a @∼SC a + b, but
a 6@∼RS a + b. To see that it is also sufficient, note that, if the set of actions is a singleton, then
@
∼SC is a ready simulation. 2

In light of Propns. 3.2 and 3.5, for ℵ ∈ {RS,SC,CT,RT,FT, F, R}, we can construct
the algebra T(BPA∗(Act))/ 'ℵ of closed (BPA∗(Act))-terms modulo 'ℵ. That is, for
P, Q ∈ (BPA∗(Act)),

T(BPA∗(Act))/ 'ℵ |= P = Q ⇔ (for all closed substitutions σ : Pσ 'ℵ Qσ) .

Each of these algebras has, in fact, the structure of an ordered algebra, in the sense of
[15, 39], and, for P, Q ∈ (BPA∗(Act)),

T(BPA∗(Act))/ 'ℵ |= P ≤ Q ⇔ (for all closed substitutions σ : Pσ @∼ℵ Qσ) .

In both cases, we say that the relevant equation (resp. inequation) is valid, or sound,
with respect to 'ℵ (resp. @∼ℵ). We shall now proceed to show that none of these (ordered)
algebras has a finite (in)equational axiomatization.

14

Remark: A precongruence relation @∼ over the algebra (BPA∗(Act)) is fully invariant, or substi-
tutive, if P @∼ Q implies Pσ @∼ Qσ, for every substitution σ. For ℵ ∈ {RS, SC, CT, RT, FT, F, R},
we extend the preorder @∼ℵ to the whole of (BPA∗(Act)) thus:

P @∼ℵ Q
∆= T(BPA∗(Act))/ 'ℵ |= P ≤ Q .

It is easy to see that the precongruence @∼ℵ so defined is fully invariant. Similar remarks apply to
the congruence relation 'ℵ.

4 Non-Finitely Based Process Semantics

In the setting of bisimulation equivalence over the language (BPA∗(Act)), the following
result was first obtained by Fokkink and Zantema [32] for closed terms only, and has
later been extended to open terms in [31], where an alternative proof of the original
completeness theorem of Fokkink and Zantema is also given.

Theorem 4.1 (Fokkink and Zantema) The axiom system in Table 2 completely ax-
iomatizes bisimulation equivalence over (BPA∗(Act)).

Thus bisimulation equivalence has a finite equational axiomatization over the language
(BPA∗(Act)). In light of this positive result on the mathematical tractability of bisim-

ulation equivalence over the language of Basic Process Algebra with binary Kleene star,
a natural question to ask is whether any other (pre)congruence relation in the linear
time/branching time spectrum is finitely (in)equationally axiomatizable over it. We
shall now show that, unlike bisimulation equivalence, none of the other preorders and
equivalences presented in Sect. 2.2 are finitely based—the one peculiar exception being
simulation semantics over closed terms when the set of actions is a singleton (cf. Sect. 5).

A1 x + y = y + x
A2 (x + y) + z = x + (y + z)
A3 x + x = x
A4 (x + y)z = xz + yz
A5 (xy)z = x(yz)

BKS1 x(x∗y) + y = x∗y
BKS2 (x∗y)z = x∗(yz)
BKS3 x∗(y((x + y)∗z) + z) = (x + y)∗z

Table 2: The axiom system for bisimulation equivalence

Our main aim in the remainder of the paper will be to prove the following negative
result.

Theorem 4.2 None of the preorders @∼ℵ with ℵ ∈ {RS,SC,CT,RT,FT, F, R} has a
finite inequational axiomatization over (BPA∗(Act)). Similarly, none of the equivalence

15

relations they induce has a finite equational axiomatization over (BPA∗(Act)). These
results also hold if we restrict ourselves to axiomatizations of these relations over closed
terms only.

In order to prove this theorem, we shall show that there is a family of (in)equivalences
that holds in ready simulation semantics, and a fortiori with respect to any behavioural
relation that is coarser than it, whose instances cannot all be proven by means of any
finite set of (in)equations that are sound in completed trace semantics. The remainder
of this paper will be devoted to a formalization of this proof strategy.

Notation 4.3 For an axiom system T , we write T ` P = Q (resp. T ` P ≤ Q) iff the
equation P = Q (resp. the inequation P ≤ Q) is provable from the axiom system T
using the rules of equational (resp. inequational) logic.

In the sequel, an equation P = Q will sometimes be considered as a short-hand for
the pair of inequations P ≤ Q and Q ≤ P .

We write P =AC Q whenever P and Q are equal modulo commutativity and associa-
tivity of +, i.e., whenever A1,A2 ` P = Q. We say that a term Q is a summand of P
iff P ≡ Q or A1,A2 ` P = Q + R for some term R.

The family of (in)equivalences that we are going to use in our proof of Thm. 4.2 is an
adaptation of an axiom schema familiar from the theory of regular algebra (cf., e.g., the
equation schema C14.n in [20, page 25]). Consider the equation schema

E.n a∗(an) + (an)∗
a≤n = (an)∗

a≤n

and the inequation schema

I.n a∗(an) ≤ (an)∗
a≤n

where a is an action and n is a positive integer. Note, first of all, that, for n greater than
1, none of the equivalences E.n is sound with respect to bisimulation equivalence. In fact,
as n > 1, the term a∗(an) + (an)∗

a≤n has a sequence of two transitions

a∗(an) + (an)∗
a≤n a→ a∗(an) a→ an−1

leading to a term whose only behaviour is to reach a deadlocked state after having per-
formed n − 1 a-actions. As n > 1, this behaviour cannot be matched by (an)∗

a≤n. On
the other hand, we have that:

Fact 4.4 For ℵ ∈ {RS, SC,CT,RT,FT, F, R}, the inequations I.n are sound with respect
to @∼ℵ, and the equations E.n are sound with respect to 'ℵ.

Proof: In light of Propns. 2.4 and 3.8, it is sufficient to show that each instance of E.n and I.n
is sound with respect to 'RS . To this end, check that the relation

R ∆=
{(

a∗(an), ai(an)∗(a≤n
))

| n ≥ 1, 0 ≤ i < n
}

∪
{(

ai, aj(an)∗(a≤n
))

| 0 ≤ j < i < n
}

∪
{(

(an)∗
a≤n, a∗(an) + (an)∗

a≤n
)

| n ≥ 1
}

∪
{(

a∗(an) + (an)∗
a≤n, (an)∗

a≤n
)

| n ≥ 1
}
∪ IT(BPA∗(Act))∪{X}

16

where IT(BPA∗(Act))∪{X} denotes the identity relation over the set T(BPA∗(Act)) ∪ {X}, is a
ready simulation. 2

Thm. 4.2 will follow if we can show that no finite set of equations (resp. inequations) that
is sound with respect to 'CT (resp. @∼CT) can prove all the equalities E.n (resp. all the
inequalities I.n). This is the import of the following theorem.

Theorem 4.5

1. For every finite set of inequations that is sound with respect to @∼CT , there is a prime
number p such that the inequality I.p is not provable from the inequations in that
set. Moreover, this holds even if we add to the inequations in that set all the axioms
of the form I.n and E.n with n not divisible by p.

2. For every finite set of equations that is sound with respect to 'CT , there is a prime
number p such that the equality E.p is not provable from the equations in that set.
Moreover, this holds even if we add to the equations in that set all the axioms of
the form E.n with n not divisible by p.

Using the above result on the power of finite (in)equational axiom systems that are sound
in completed trace semantics, we can obtain the following corollary.

Corollary 4.6 No precongruence (resp. congruence) relation over T(BPA∗(Act)) that
is included in @

∼CT (resp. 'CT) and satisfies I.n (resp. E.n) for all n ≥ 1 has a finite
inequational (resp. equational) axiomatization.

Proof: Let @∼ be a precongruence relation over T(BPA∗(Act)) that is included in @∼CT , and
satisfies I.n for all n ≥ 1. Assume, for the sake of contradiction, that there is a finite set of
inequations E that completely axiomatizes @∼ over the language T(BPA∗(Act)). As @∼ is included
in @∼CT , E is sound with respect to @∼CT . Since @∼ satisfies the closed inequalities I.n for all n ≥ 1,
and E is complete for @∼ over T(BPA∗(Act)), it follows that E ` I.n for all n ≥ 1. This contradicts
Thm. 4.5(1).

A similar reasoning shows that no congruence relation over T(BPA∗(Act)), that satisfies the
proviso of the statement, has a finite equational axiomatization. 2

Using Corollary 4.6, it is now a simple matter to show Thm. 4.2. To this end, it is
sufficient to note that every preorder in the linear time/branching time spectrum which
includes @∼RS, and is included in @∼CT , is a precongruence over the language (BPA∗(Act))
(Propns. 3.2 and 3.5) satisfying all the inequalities I.n for n ≥ 1 (Fact. 4.4). Therefore ev-
ery such preorder cannot be finitely inequationally axiomatized (Corollary 4.6). A similar
reasoning shows that no congruence relation that lies in between 'RT and 'CT is finitely
equationally axiomatizable over T(BPA∗(Act)). As (in)equality of closed terms cannot be
finitely (in)equationally axiomatized, a fortiori neither can (in)equality over open terms
in the language (BPA∗(Act)), that is, none of the (ordered) algebras T(BPA∗(Act))/ 'ℵ
(ℵ ∈ {RS,SC,CT,RT,FT, F,R}) is finitely based.

In light of the above discussion, all that we are left to do to prove Thm. 4.2 is to show
Thm. 4.5, and the remainder of this section will be devoted to a presentation of a proof
of that result.

17

4.1 A proof of Thm. 4.5

The proof of Thm. 4.5 we now proceed to present is based on an adaptation of a beautiful
argument due to Conway (cf. [20, Thm. 2, page 105]). In op. cit., Conway offers two
proofs of a theorem, originally due to Redko [58], to the effect that equality of regular
expressions cannot be axiomatized using a finite number of equations. The argument we
present below is inspired by the second of those proofs (cf. [20, Pages 105–107]), and is
model-theoretic in nature. In order to show Thm. 4.5, for every finite set of (in)equations
that are valid in completed trace semantics we shall build a model that does not satisfy
all of the instances of I.n and E.n. The construction of the model relies heavily on the
use of prime numbers, as do related arguments presented in, e.g., [20, 26, 47, 64].

The proof of Thm. 4.5 will be delivered in two steps. We begin by studying a normal
form for the terms in the language (BPA∗(Act)) modulo completed trace equivalence
that will be useful in the proof of this result (Sect. 4.1.1). Finally, for every finite set of
inequations sound in completed trace semantics, we show how to build a model in which
the inequation I.p fails for some prime number p (Sect. 4.1.2). This is sufficient to ensure
that the inequality I.p cannot be proven from the inequations under consideration.

4.1.1 Normal Forms

In what follows, it will be convenient to consider a notion of normal form for terms in
completed trace semantics.

Definition 4.7 A term P ∈ (BPA∗(Act)) is +-free iff it does not contain occurrences
of the +-operation. A term P is in normal form iff P =AC

∑
i∈I Pi for some finite,

non-empty index set I and +-free terms Pi.

The length of a term P is inductively defined thus:

length(α) ∆= 1
length(P + Q) ∆= length(P) + length(Q)

length(PQ) ∆= length(P)length(Q)
length(P ∗Q) ∆= length(Q) .

We shall now show that each (BPA∗(Act)) term is completed trace equivalent to a
normal form with the same length. (Note that, as the length of every +-free term is
1, the length of a normal form is the number of summands occurring in it.) To obtain
this normalization result, it will be convenient to use the equations in Table 3, which are
easily seen to be sound with respect to completed trace equivalence.

(x + y)z = xz + yz
x(y + z) = xy + xz

x∗(y + z) = x∗y + x∗z
(x + y)∗z = (x∗y)∗(x∗z)

Table 3: Normalization Equations

18

Lemma 4.8 Every P ∈ (BPA∗(Act)) may be proven equal to a normal form, which has
the same length and the same variables as P , using the equations in Table 3 as rewrite
rules from left to right.

Proof: A simple induction on the sum of the lengths of Q and R shows that, for normal forms
Q and R,

- QR is provably equal to a normal form whose length is length(Q)length(R), and

- Q∗R is provably equal to a normal form whose length is length(R).

The fact that every term P is provably equal to a normal form, whose length is that of P , then
follows by a straightforward structural induction on terms. The normalization process preserves
the variables in terms because exactly the same variables occur on both sides of each equation in
Table 3. 2

Notation 4.9 For a term P , we use vars(P) to denote the total number of occurrences of
variables in P , and weight(P) (the weight of the term P) to stand for 2vars(P)length(P).

Example: For every positive integer n, the normal form associated with the term

(an)∗a≤n is
∑n

i=1(an)∗(ai) which has length, and weight, n. 2

The crux of our proof of Thm. 4.5 is the construction, for every prime number p, of an
ordered algebra Ap over the signature of the language (BPA∗(Act)) with the following
properties:

P1 For every positive integer n, the inequation I.n and the equation E.n fail in Ap iff
p divides n.

P2 Every inequation P ≤ Q, that is sound in the algebra T(BPA∗(Act))/ 'CT , where
Q is a term whose weight is smaller than p, is valid in Ap.

In fact, if we can construct the algebras Ap satisfying the above properties, then Thm. 4.5
follows thus:

Proof of Thm. 4.5: We prove the two statements separately.

1. Let E = {Pi ≤ Qi | i ∈ I} be a finite set of inequations that is valid in completed trace
semantics. Let m be the supremum of the weights of the terms Qi. Choose p as the least
prime number greater than m. Then the inequations in E and all the instances of I.n and
E.n for n not divisible by p are valid in the algebra Ap (properties P1 and P2). Moreover,
the inequation I.p and the equation E.p fail in Ap (property P1). As Ap is a model of the
axiom system E ∪ {I.n, E.n | n mod p 6= 0} in which I.p and E.p fail, it follows that I.p and
E.p are not provable from E ∪ {I.n, E.n | n mod p 6= 0}.

2. Let E = {Pi = Qi | i ∈ I} be a finite set of equations that is valid in completed trace
semantics. Note that any ordered algebra is a model of E iff it is a model of the finite
collection of inequations E≤ defined thus:

E≤
∆= {Pi ≤ Qi, Qi ≤ Pi | i ∈ I} .

The claim now follows immediately by mimicking the proof of statement 1.

19

The proof of the theorem is now complete. 2

In light of the previous discussion, in order to complete the proof of Thm. 4.5, we are left
to construct, for every prime number p, an ordered algebra Ap having the properties P1
and P2 stated above.

4.1.2 The Algebra Ap

We shall now proceed to build, for every prime number p, an ordered algebra Ap with the
aforementioned properties. The construction we present mimics the one used by Conway
in his proof of the non-finite axiomatizability of the theory of regular languages (cf. [20,
pp. 105–107]).

Let a be an arbitrary action. The cyclic group of rank p generated by a can be
depicted thus:

1 = a0 → a1 → a2 → · · · → ap−1 → ap = 1 .

The carrier Ap of the algebra Ap consists of non-empty formal sums of powers of a,
together with the formal symbol a∗, i.e.,

Ap
∆=

{∑
i∈I ai | ∅ ⊂ I ⊆ {0, . . . , p − 1}

}
∪ {a∗} .

In order to give the set Ap enough structure to serve as a suitable semantic domain for the
language (BPA∗(Act)), we need to define the semantic counterparts of the operations
in its signature over it. To this end, we map every action in Act to the symbol a,
and stipulate that the semantic counterparts of the binary operations are given by the
equations in Table 4, where we use the meta-variables e and e′ to range over the set
Ap. In order to avoid confusion between syntactic and semantic operations, we shall use
circled symbols to denote the operations in the algebra Ap. For example, ⊕ stands for
the semantic counterpart of the + operation of (BPA∗(Act)). Note that the operations
⊕ and � are commutative, but ~ is not. For example,

a~1 = a∗ 6= a = 1~a .

An Ap-environment is a mapping ρ from process variables to the set Ap. For a term
P and an Ap-environment ρ, we shall use Ap[[P]]ρ to denote the element of Ap that is
associated with the term P by the unique homomorphic extension of ρ to (BPA∗(Act)).
If P is a closed term, then Ap[[P]]ρ is independent of the environment ρ. In that case, we
shall simply write Ap[[P]] for the denotation of P in the algebra Ap.

We now define a partial ordering on the set Ap thus:

e vp e′ ∆= e ⊕ e′ = e′ .

It is not hard to see that e vp e′ holds iff

• e′ = a∗, or

• e =
∑

i∈I ai, e′ =
∑

j∈J aj and I is included in J.

20

SUM1
∑

i∈I ai ⊕ ∑
j∈J aj =

∑
h∈I∪J ah

SUM2 a∗ ⊕ e = a∗

SUM3 e ⊕ a∗ = a∗

COMP1
∑

i∈I ai � ∑
j∈J aj =

∑
h∈{(i+j)modp|(i,j)∈I×J} ah

COMP2 a∗ � e = a∗

COMP3 e � a∗ = a∗

STAR e~e′ =

{
e′ if e = 1
a∗ otherwise

Table 4: The operation of the algebra Ap

Note, moreover, that the operations in the algebra Ap are monotonic with respect to the
above defined partial ordering. Therefore we have given Ap the structure of an ordered
algebra over the signature of the language (BPA∗(Act)), in the sense of [15, 39]. It is
not hard to see that the equations in Table 3 are sound in the algebra Ap. Hence, if P is
a term, and Pnf is a normal form for it, then, for every Ap-environment ρ,

Ap[[P]]ρ = Ap[[Pnf]]ρ .

We now proceed to show that the algebra Ap meets the requirements P1 and P2 that we
set out to achieve. To this end, note, first of all, that the inequations I.n fail in Ap if n
is a multiple of p. In fact, in that case,

Ap[[a∗(an)]] = a∗ 6vp

p−1∑
i=0

ai = Ap

[[
(an)∗a≤n

]]
.

A fortiori, the equations E.n fail in Ap if n is a multiple of p. On the other hand, if p does
not divide n then the equation E.n is valid in Ap, and, a fortiori, so is the inequation I.n.
This follows because

Ap[[a∗(an)]] = a∗ = (anmodp)~Ap

[[
a≤n

]]
= Ap[[an]]~Ap

[[
a≤n

]]
= Ap

[[
(an)∗a≤n

]]
where the second equality from the left holds because of the assumption that n is not
divisible by p.

In light of the above discussion, it follows that the ordered algebra Ap satisfies the
requirement P1 set out on page 19. Note that the aforementioned examples entail that
Ap does not satisfy all the inequations that are valid in the algebra T(BPA∗(Act))/ 'CT .
In particular, the inequation I.p, which is valid in T(BPA∗(Act))/ 'CT , fails in it. As
remarked in the example on page 19, the weight of (the normal form for) the term (ap)∗a≤p

is p. We shall now proceed to show that requirement P2 is met by Ap, i.e., that every
inequation P ≤ Q, with Q a term of weight smaller than p, which is sound in the algebra
T(BPA∗(Act))/ 'CT , is valid in Ap.

21

As a stepping stone towards the proof of the fact that Ap meets requirement P2, we
shall now argue that the failure of the inequation I.p in the algebra Ap is paradigmatic.
In fact, if P ≤ Q is an inequation that is sound in completed trace semantics, and ρ is an
Ap-environment such that Ap[[P]]ρ 6vp Ap[[Q]]ρ, then it must be the case that Ap[[P]]ρ = a∗

and Ap[[Q]]ρ =
∑p−1

i=0 ai (cf. Lem. 4.15(2)). This implies that the algebra Ap is indeed
very close to being a model for completed trace semantics. All that we should need to do
to turn Ap into such a model is to identify the elements a∗ and

∑p−1
i=0 ai.

In the proof of a subsequent lemma (Lem. 4.14), we shall make use of some basic
notions from number theory. These we now proceed to recall, for the sake of clarity. The
interested reader is referred to, e.g., [54] for more details.

Definition 4.10 Let p and q be integers. If a positive integer m divides the difference
p − q, we say that p is congruent to q modulo m and write p ≡ q (mod m).

The following classic result pertaining to the solution of congruence equations (cf., e.g.,
[54, Corollary 2.9]) will find application in the proof of Lem. 4.14(1).

Theorem 4.11 Let p, q, r be integers with p and q relatively prime, i.e. with gcd(p, q) =
1, and with q 6= 0. Then the equation

px ≡ r (mod q)

has an integer solution x1. All solutions are given by x = x1+jq, where j = 0,±1, ±2,

Notation 4.12 Let P be a term and a an action. We shall use Pa to denote the term
obtained from P by replacing every occurrence of an action in P with a.

Notation 4.13 Let [0 7→ p] : {0, . . . , p − 1} → {1, . . . , p} be the function that maps 0 to
p and acts like the identify on every other integer in its domain. For an Ap-environment
ρ, let ρ̄ : Var → T(BPA∗(Act)) denote the closed substitution which is defined by

ρ̄(x) ∆=
∑

i∈I a[0 7→p](i) if ρ(x) =
∑

i∈I ai

ρ̄(x) ∆= a∗a if ρ(x) = a∗ .

Lemma 4.14

1. Let Q,R ∈ T(BPA∗(Act)) be terms containing only occurrences of the action a ∈
Act. Suppose that p is a prime number p and i ∈ {0, . . . , p − 1}. Then anp+i is a
completed trace of Q∗R for some n ≥ 0 iff there exists a non-negative integer m
such that

- either amp+i is a completed trace of R,

- or there exists j ∈ {1, . . . , p − 1} such that amp+j is a completed trace of Q.

2. Let P ∈ (BPA∗(Act)) and let ρ be an Ap-environment. Suppose that p is a prime
number. Then, for every i ∈ {0, ..., p − 1}, ai vp Ap[[P]]ρ iff anp+i is a completed
trace of Paρ̄ for some non-negative integer n.

22

Proof: We prove the two statements separately.

1. Let Q, R ∈ T(BPA∗(Act)) and a ∈ Act. Assume that p is a prime number, and that
i ∈ {0, . . . , p − 1}. We establish the two implications separately.

• ‘Only If Implication’. Suppose that anp+i is a completed trace of Q∗R for some
n ≥ 0. We shall prove that, for some m ≥ 0, amp+i is a completed trace of R or there
exists j ∈ {1, . . . , p − 1} such that amp+j is a completed trace of Q. To this end, note
that it is sufficient to show that if every completed trace of Q has length that is a
multiple of p, then amp+i is a completed trace of R for some m ≥ 0. The simple proof
of this fact is left to the reader.

• ‘If Implication’. Suppose that, for some m ≥ 0,

A amp+i is a completed trace of R, or
B there exists j ∈ {1, . . . , p − 1} such that amp+j is a completed trace of Q.

We shall prove that anp+i is a completed trace of Q∗R for some n ≥ 0.
The only non-trivial case to consider is when condition B above holds. In this case,
we proceed as follows. As the set of completed traces of R is non-empty, and R
contains only occurrences of action a, we can choose a completed trace ah of R, for
some positive integer h. Then, for every k ≥ 0, the term Q∗R has a completed trace
ak(mp+j)+h. We shall now argue that it is possible to choose k such that, for some
n ≥ 0,

k(mp + j) + h = np + i .

To this end, note that such a k can be found iff the congruence equation in the
unknown k

jk ≡ i − h (mod p)

has a non-negative solution. This is an immediate consequence of Thm. 4.11, because
j and p are relatively prime.

This completes the proof of statement 1.

2. Let P ∈ (BPA∗(Act)), and let p be a prime number. Assume that i ∈ {0, . . . , p − 1}. We
prove the statement by induction on the structure of P , and proceed by a case analysis on
the form P may take.

- Case: P ≡ b.
In this case, ai vp Ap[[P]]ρ holds only for i = 1, because Ap[[P]]ρ = a. Moreover,
Paρ̄ ≡ a, so a is the only completed trace of Paρ̄.

- Case: P ≡ x.
In this case, Ap[[P]]ρ = ρ(x) and Paρ̄ = ρ̄(x). It follows easily from the definition of ρ̄
that ai vp ρ(x) iff ρ̄(x) has a completed trace anp+i for some n ∈ {0, 1}.

- Case: P ≡ Q + R.
In this case, Ap[[P]]ρ = Ap[[Q]]ρ ⊕ Ap[[R]]ρ. So ai vp Ap[[P]]ρ iff either ai vp Ap[[Q]]ρ
or ai vp Ap[[R]]ρ. By induction, this is the case iff either Qaρ̄ or Raρ̄ has a completed
trace of the form anp+i for some non-negative integer n. Finally, this holds iff Paρ̄ ≡
Qaρ̄ + Raρ̄ has a completed trace of the form anp+i.

- Case: P ≡ QR.
As Ap[[P]]ρ = Ap[[Q]]ρ � Ap[[R]]ρ, using the definition of � it is not hard to see that
ai vp Ap[[P]]ρ iff aj vp Ap[[Q]]ρ and ak vp Ap[[R]]ρ, for some j, k ∈ {0, . . . , p − 1}
with (j + k) mod p = i. By induction, this holds iff Qaρ̄ and Raρ̄ have completed

23

traces alp+j and amp+k for non-negative integers l and m, respectively. Finally, as
(j + k) mod p = i, this is the case iff Paρ̄ ≡ (Qaρ̄)(Raρ̄) has a completed trace anp+i

for some non-negative integer n.

- Case: P ≡ Q∗R.
As Ap[[P]]ρ = Ap[[Q]]ρ~Ap[[R]]ρ, using the definition of ~ it is not hard to see that
ai vp Ap[[P]]ρ iff either aj vp Ap[[Q]]ρ for some j ∈ {1, ..., p − 1} or ai vp Ap[[R]]ρ.
By induction, this is the case iff either Qaρ̄ has a completed trace alp+j for some
non-negative integer l or Raρ̄ has a completed trace amp+i for non-negative integer
m. Finally, as Qaρ̄ and Raρ̄ are closed terms containing only occurrences of action a,
by statement 1 of the lemma this holds iff Paρ̄ ≡ (Qaρ̄)∗(Raρ̄) has a completed trace
anp+i for some non-negative integer n.

This completes the proof of statement 2.

2

The main use of the above technical result will be in the proof of the following lemma,
which will be used repeatedly in the proof of Thm. 4.18 to follow.

Lemma 4.15 Let P,Q ∈ (BPA∗(Act)) and let ρ be an Ap-environment. Suppose that
T(BPA∗(Act))/ 'CT |= P ≤ Q. Then:

1. If Ap[[P]]ρ = a∗, then either Ap[[Q]]ρ = a∗ or Ap[[Q]]ρ =
∑p−1

i=0 ai.

2. If Ap[[P]]ρ 6vp Ap[[Q]]ρ, then Ap[[P]]ρ = a∗ and Ap[[Q]]ρ =
∑p−1

i=0 ai.

Proof: Suppose that T(BPA∗(Act))/ 'CT |= P ≤ Q. First of all, note that as the inequation
P ≤ Q is sound in the algebra T(BPA∗(Act))/ 'CT , then so is Pa ≤ Qa. Using this observation,
we now prove the two statements of the lemma separately.

1. As Ap[[P]]ρ = a∗, it follows that Paρ̄ has completed traces of the form anip+i for each i ∈
{0, . . . , p − 1} (Lem. 4.14(2)). Since T(BPA∗(Act))/ 'CT |= Pa ≤ Qa, the set of completed
traces of Paρ̄ is included in that of Qaρ̄. Therefore Qaρ̄ has each of the completed traces
anip+i (i ∈ {0, . . . , p − 1}). Again using Lem. 4.14(2), we obtain that ai vp Ap[[Q]]ρ for
every i ∈ {0, ..., p− 1}. Hence, either Ap[[Q]]ρ = a∗ or Ap[[Q]]ρ =

∑p−1
i=0 ai.

2. Suppose that the Ap-environment ρ is such that Ap[[P]]ρ 6vp Ap[[Q]]ρ. We shall show that
Ap[[P]]ρ = a∗ and Ap[[Q]]ρ =

∑p−1
i=0 ai.

We begin by proving that Ap[[P]]ρ = a∗. To this end, assume, towards a contradiction,
that Ap[[P]]ρ =

∑
i∈I ai for some non-empty I ⊆ {0, ..., p − 1}. According to Lem. 4.14(2),

Paρ̄ has a completed trace of the form anip+i for each i ∈ I. Since T(BPA∗(Act))/ 'CT |=
Pa ≤ Qa, the term Qaρ̄ also has a completed trace of the form anip+i for each i ∈ I. By
Lem. 4.14(2) it follows that ai vp Ap[[Q]]ρ for each i ∈ I. Hence, Ap[[P]]ρ vp Ap[[Q]]ρ, which
contradicts one of the assumptions of the lemma.
Thus Ap[[P]]ρ = a∗ must hold. Since Ap[[P]]ρ 6vp Ap[[Q]]ρ, it follows that Ap[[Q]]ρ 6= a∗.
Hence, statement 1 of the lemma yields Ap[[Q]]ρ =

∑p−1
i=0 ai.

The proof of the lemma is now complete. 2

In the proof of the fact that the algebra Ap satisfies requirement P2 on page 19, we shall
make use of some properties of the semantic mapping Ap[[·]]. For ease of reference, these
are collected in the following lemma.

24

Lemma 4.16 For every P ∈ (BPA∗(Act)) and Ap-environment ρ, the following state-
ments hold:

1. If Ap[[P]]ρ 6= a∗, then ρ(x) 6= a∗ for every variable x contained in Var(P).

2. If Ap[[P]]ρ = ai for some 0 ≤ i ≤ p − 1, then ρ(x) is a power of a for every variable
x contained in Var(P).

3. Assume that P is +-free, Ap[[P]]ρ 6= a∗, and ρ maps every variable occurring in P
to a power of a. Then Ap[[P]]ρ is a power of a.

4. If Ap[[P]]ρ 6= a∗, then ρ(x) is a power of a for every variable x contained in
StarVar(P).

5. Assume that Ap[[P]]ρ = a∗, that ρ′ coincides with ρ over StarVar(P), and that if
ρ(x) = a∗ for an x ∈ Var(P), then ρ′(x) = a∗. Then Ap[[P]]ρ′ = a∗.

6. Assume that Ap[[P]]ρ 6= a∗, that ρ′ coincides with ρ over StarVar(P), and that
ρ′(x) 6= a∗ for x ∈ Var(P). Then Ap[[P]]ρ′ 6= a∗.

Proof: All the statements can be shown by induction on the structure of the term P . The details
are left to the reader. Here we only remark that the proof for statement 4 uses statement 2 to
deal with the case in which P has the form Q∗R for some terms Q and R. In fact, if P has that
form and Ap[[P]]ρ 6= a∗, then it must be the case that Ap[[Q]]ρ = 1. Statement 2 then yields that
ρ(x) maps each variable in Q to a power of a. 2

Lemma 4.17 Let N denote the number of occurrences of the process variable x in the
term Q. Let [(a + a2)/x] denote the substitution mapping x to a + a2, and acting like the
identity on all the other variables. Then the length of Q[(a + a2)/x] is at most 2N times
the length of Q.

Proof: Straightforward, by induction on the size of Q. 2

We are finally in a position to prove that the algebra Ap satisfies all the inequations
P ≤ Q, with Q a term of weight smaller than p, that are sound in completed trace
semantics. This implies that the algebra Ap does indeed meet requirement P2.

Theorem 4.18 If T(BPA∗(Act))/ 'CT |= P ≤ Q and weight(Q) is smaller than p, then
Ap |= P ≤ Q.

Proof: We shall show that if the inequation P ≤ Q is sound in the algebra T(BPA∗(Act))/ 'CT ,
but fails in Ap, then Q must have weight at least p.

Assume that P ≤ Q is sound in T(BPA∗(Act))/ 'CT , but not in Ap. Then there exists an
Ap-environment ρ such that

Ap[[P]]ρ 6vp Ap[[Q]]ρ .

By Lem. 4.15(2), it must be the case that

Ap[[P]]ρ = a∗ 6vp

p−1∑
i=0

ai = Ap[[Q]]ρ .

25

As Ap[[Q]]ρ 6= a∗, it follows that ρ maps no variable in Q to a∗ (Lem. 4.16(1)), and that ρ maps
every variable in StarVar(Q) to a power of a (Lem. 4.16(4)). We now proceed with the proof by
distinguishing two cases, depending on whether StarVar(P) is included in StarVar(Q) or not.

• Case: StarVar(P) ⊆ StarVar(Q).
Consider the Ap-environment ρ′ that is defined as follows:

ρ′(x) ∆= ρ(x) if x ∈ StarVar(Q)
ρ′(x) ∆= ρ(x) if ρ(x) = a∗

ρ′(x) ∆= 1 otherwise .

Since ρ maps no variable in Q to a∗, the same holds for ρ′. Hence, Lem. 4.16(6) gives that
Ap[[Q]]ρ′ 6= a∗. Furthermore, since StarVar(P) is included in StarVar(Q), ρ′ coincides with
ρ over StarVar(P). By construction, if ρ(x) = a∗ then ρ′(x) = a∗. So, by Lem. 4.16(5), we
may infer that Ap[[P]]ρ′ = a∗. As the inequation P ≤ Q fails in Ap for the Ap-environment
ρ′, Lem. 4.15(2) yields that

Ap[[P]]ρ′ = a∗ 6vp

p−1∑
i=0

ai = Ap[[Q]]ρ′ .

Let Q have normal form
∑m

k=1 Qk, where each Qk is +-free. Since Ap |= Q =
∑m

k=1 Qk,
we infer that:

p−1∑
i=0

ai = Ap[[Q]]ρ′ = Ap[[Q1]]ρ′ ⊕ · · · ⊕ Ap[[Qm]]ρ′ .

By Lem. 4.8, Q and
∑m

k=1 Qk have the same variables, and the length of Q is m. As ρ′

maps each variable in Q to a power of a, Lem. 4.16(3) now gives that, for every index k,
Ap[[Qk]]ρ′ = aj for some 0 ≤ j ≤ p − 1. It follows that m ≥ p. Thus, p ≤ length(Q) ≤
weight(Q), which was to be shown.

• Case: StarVar(P) 6⊆ StarVar(Q).
Fix a process variable x0 ∈ StarVar(P) \ StarVar(Q). Consider the Ap-environment ρ′ that
is defined as follows:

ρ′(x) ∆= ρ(x) if x ∈ StarVar(Q)
ρ′(x0)

∆= a + a2

ρ′(x) ∆= 1 otherwise .

Since ρ maps no variable in Q to a∗, the same holds for ρ′. Hence, an application of
Lem. 4.16(6) gives that Ap[[Q]]ρ′ 6= a∗. Furthermore, since ρ′(x0) is not a power of a,
Lem. 4.16(4) gives that Ap[[P]]ρ′ = a∗. As the inequation P ≤ Q fails in Ap for the
Ap-environment ρ′, Lem. 4.15(2) yields that

Ap[[P]]ρ′ = a∗ 6vp

p−1∑
i=0

ai = Ap[[Q]]ρ′ .

Let [(a + a2)/x0] stand for the substitution mapping x0 to the term a + a2, and acting like
the identity on all the other variables. Suppose that the term Q[(a + a2)/x0] has normal
form

∑m
k=1 Qk, where each Qk is +-free. By Lem. 4.17, it follows that the length m of

Q[(a + a2)/x0] is at most 2vars(Q)length(Q), that is the weight of Q. Consider now the
Ap-environment ρ′′ that is defined as follows:

ρ′′(x0)
∆= 1

ρ′′(x) ∆= ρ′(x) otherwise .

26

By the standard interplay between substitutions and the interpretation mapping Ap[[·]], and
using the fact that Ap |= Q[(a + a2)/x0] =

∑m
k=1 Qk, we infer that:

p−1∑
i=0

ai = Ap[[Q]]ρ′ = Ap

[[
Q[(a + a2)/x0]

]]
ρ′′ = Ap[[Q1]]ρ′′ ⊕ · · · ⊕ Ap[[Qm]]ρ′′ .

By construction, ρ′′ maps each variable in Q to a power of a. As the set of variables
occurring in the term

∑m
k=1 Qk is Var(Q)\{x0} (Lem. 4.8), an application of Lem. 4.16(3)

now gives that, for every index k, Ap[[Qk]]ρ′′ = aj for some 0 ≤ j ≤ p − 1. It follows that
m is greater than, or equal to, p. Thus, p ≤ 2vars(Q)length(Q), which was to be shown.

This completes the proof of the theorem. 2

As an immediate corollary of the above theorem, we obtain the following result.

Corollary 4.19 Let P, Q ∈ (BPA∗(Act)) be terms of weight smaller than p. Suppose
that T(BPA∗(Act))/ 'CT |= P = Q. Then Ap |= P = Q.

Proof: Let P = Q be an equation consisting of terms of weight smaller than p. Suppose that
T(BPA∗(Act))/ 'CT |= P = Q. Then T(BPA∗(Act))/ 'CT |= P ≤ Q ≤ P . By the previous
theorem, Ap |= P ≤ Q ≤ P . Therefore Ap |= P = Q. 2

In light of the above discussion, we have finally completed the proof of Thm. 4.5, and
therefore of Thm. 4.2.

Remark: As pointed out to us by Ésik [28], the proof that we have just completed does in fact
yield a stronger statement than that of Thm. 4.2. To see that this is indeed the case, let us define
the preorder @∼TL over T(BPA∗(Act)) as follows:

P @∼TL Q iff the set of the lengths of the completed traces of P is included in that of Q.

It is easy to see that, for every P, Q ∈ T(BPA∗(Act)) and action a,

P @∼TL Q iff Pa
@
∼CT Qa .

It follows that @∼TL (resp. 'TL) is a fully invariant precongruence (resp. congruence) for the
language (BPA∗(Act)).

Using the above observations, it is not hard to see that the proof of Thm. 4.2 that we have
presented above can in fact be used to show the following result:

Theorem 4.20 No precongruence (resp. congruence) relation over T(BPA∗(Act)) that is included
in @∼TL (resp. 'TL) and satisfies I.n (resp. E.n) for all n ≥ 1 has a finite inequational (resp. equa-
tional) axiomatization. This also holds if we restrict ourselves to axiomatizations of these relations
for closed terms only.

An example of a preorder over (BPA∗(Act)), which, under the assumption that Act contains at
least two elements, lies strictly in between @∼CT and @∼TL, is the one considered in commutative
regular algebra (cf., e.g., [59, 62, 20]). This we now proceed to define, for the sake of completeness.

Let L be a set of sequences over the alphabet Act. We write c(L) to denote the set consisting
of all those sequences that can be obtained by permuting the actions in some sequence contained
in L. We define

P @∼CCT Q
∆= c(completed-traces(P)) ⊆ c(completed-traces(Q)) .

27

If Act contains two distinct actions, then @∼CCT strictly includes @∼CT , and is strictly included in
@
∼TL. As @∼CCT is easily seen to be a precongruence, Thm. 4.20 yields the non-existence of a finite
inequational axiomatization for it over the language T(BPA∗(Act)).

The reader familiar with [40, 55] may have noticed the similarities between the notion of
commutative regular algebra and the counter model for CSP [41] defined ibidem. The main
difference between the two notions being that the counter model is based upon, not necessarily
completed, traces.

Remark: In [62, page 143] Salomaa pointed out that it was an open problem whether the equa-
tional theory of (closed) regular expressions over a singleton alphabet is finitely based. Our results
show that completed trace equivalence over T(BPA∗(Act)), and a fortiori over (BPA∗(Act)), is
not finitely based, even when the set of actions is a singleton. Indeed our proof can be easily
adapted, along the lines of the one given by Conway in [20, Thm. 2], to yield the non-existence
of a finite equational axiomatization of equality of (closed) regular expressions over a singleton
alphabet, thus answering the aforementioned question of Salomaa’s. As communicated to us by
Salomaa [63], this problem has been open since 1969, the year of publication of [62].

5 The Peculiar Case of Trace Semantics

The reader familiar with van Glabbeek’s linear time/branching time spectrum might
have noticed the absence of trace semantics [41] from the developments presented in
the previous section. We shall now proceed to fill this gap by studying some axiomatic
questions concerning trace semantics over (BPA∗(Act)). As we shall see, this leads to
some rather peculiar results, at least when compared with those that we obtained for the
other semantics considered in this paper.

Definition 5.1 For states s, s′ in any labelled transition system, we write s @∼T s′ iff the
set of traces of s is included in that of s′. The kernel of the preorder @∼T will be denoted
by 'T .

Note that the set of traces of a state s in any labelled transition system is prefix closed,
unlike that of its completed traces.

In general, completed trace semantics and trace semantics are incomparable. For
example, the T(BPA∗(Act)) terms a and aa have disjoint sets of completed traces, but
the set of traces of a is included in that of aa. On the other hand, the processes aω and
bω specified by the following recursion equations

aω def= a · aω

bω def= b · bω

have no completed trace, but disjoint sets of non-empty traces. However, if the labelled
transition system under consideration is normed, in the sense of [6], then the set of traces
of every state s is obtained as the prefix closure of its set of completed traces. This is
because every state in a normed transition system has at least one completed trace, and
therefore each of its traces is the prefix of a completed one. As the labelled transition

28

system giving the operational semantics to the language T(BPA∗(Act)) is normed (cf.,
e.g., [32]), by the above discussion we obtain that:

Fact 5.2 The relation @
∼CT (resp. 'CT) is strictly included in @

∼T (resp. 'T) over the
language T(BPA∗(Act)).

In general, trace semantics is not appropriate for languages that, like T(BPA∗(Act)),
include a sequential composition operator. In fact, if the set of actions Act contains at
least two distinct actions, then neither @∼T nor 'T are preserved by sequential composition.
As an example, consider the T(BPA∗(Act)) terms a and aa. We have already remarked
that a @∼T aa. However, if b is an action that is different from a, then ab 6@∼T aab. For this
reason, in the previous sections we confined our attention to semantics that are included
in completed trace semantics.

In contrast to the general situation depicted above, in the, admittedly rather unin-
teresting, case in which the set of actions Act is a singleton, we observe the following
fact.

Proposition 5.3 Assume that the set of actions Act is a singleton. Then:

1. The relations @∼T and 'T are preserved by all the operations in the signature of the
language (BPA∗(Act)).

2. The simulation preorder @∼S coincides with @∼T .

Proof: Assume that a is the only action contained in Act. We prove the two statements sepa-
rately.

1. As the set of traces of a term of the form P + Q is the union of those of P and Q, it
follows immediately that @∼T is preserved by summation. (Indeed, this holds regardless of
the cardinality of the set of actions.) We shall now prove that @∼T is preserved by sequential
composition and binary Kleene star.
Suppose that P, Q, R, S are terms such that P @

∼T Q and R @
∼T S. We shall show that

PR @∼T QS and that P ∗R 'T Q∗S.

• We prove, first of all, that PR @∼T QS.
Assume that an is a trace of the term PR, for some non-negative integer n. We now
proceed to argue that an is also a trace of the term QS.
If an is a trace of Q, then it is also a trace of QS, in which case we are done. Thus we
may assume that an is not a trace of Q. Note that, since P @

∼T Q, an is not a trace
of P either. As a consequence of these assumptions, we infer that:

(a) n = h + k for two positive integers h and k such that ah is a completed trace of
P , and ak is a trace of R; and

(b) every trace aj of Q has length smaller than n.

In this case, we argue as follows. As the length of the traces of Q is bounded from
above by n, we can choose the longest such trace aj. This trace is a completed trace
of Q. As ah is a trace of Q (P @∼T Q), and aj is the longest such trace, it follows that
h ≤ j. Since aj is a completed trace of Q, and ak is a trace of S (R @∼T S), aj+k is a
trace of QS. Finally, j + k ≥ h + k = n, so then an is a trace of QS.

29

• To prove that P ∗R 'T Q∗S, it is sufficient to note that every process containing
occurrences of the binary Kleene star operator has the set of all finite sequences of a
actions as its set of traces.

2. The fact that @∼S is included in @∼T is a simple consequence of the definitions of these
relations. To see that the converse also holds, under the assumption that the only action
is a, it is sufficient to check that the relation:

R ∆=
{
(P, Q) | P @∼T Q

}
∪ {(X, P) | P ∈ T(BPA∗(Act))}

is a simulation. This is an easy consequence of the fact that, for terms P, Q over action a,
P @∼T Q iff

- either Q has an infinite a-computation, i.e., for some terms Q1, Q2, . . .,

Q
a→ Q1

a→ Q2
a→ · · ·

- or the length of the longest completed trace of P is less than, or equal to, that of the
longest completed trace of Q.

The proof is now complete. 2

In light of the above congruence result, and of the non-finite axiomatizability results
presented in the main body of the paper, it is natural to wonder whether the trace
(pre)congruence has a finite (in)equational axiomatization over the language of closed
terms T(BPA∗(Act)) over a singleton set of actions. We recall that our previous negative
results pertaining to the non-finite axiomatizability of several process semantics over
T(BPA∗(Act)) apply for every non-empty set of actions. We shall now proceed to show
that, in contrast to the situation summarized in Thm. 4.2, trace (pre)congruence can be
finitely (in)equationally axiomatized over the set of closed terms over a singleton action
set.

TE1 x + (y∗z) = a∗a
TE2 x + xy = xy
TE3 xy = yx

Table 5: Characteristic equations for trace equivalence (Act = {a})

Consider the axiom system ET consisting of the equations A1–A5 in Table 2 together
with the axioms in Table 5. It is not hard to see that the equations in ET are sound with
respect to trace equivalence over T(BPA∗(Act)). The only non-standard equations in ET

are TE1 and TE3, whose soundness depends crucially upon the assumption that the only
action is a.

Theorem 5.4 Let Act = {a} and P, Q ∈ T(BPA∗(Act)). Then P 'T Q iff ET ` P = Q.
Moreover P @

∼T Q iff P ≤ Q can be proven from the equations in ET together with the
inequation

x ≤ x + y .(3)

30

Proof: (Sketch.) The soundness of the equations in ET and of inequation (3) is easy to check.
We shall now argue for the completeness, over closed terms, of the proposed axiomatizations.

A trace normal form is either a∗a or a term of the form
∑n

i=1 ai for some positive integer n.
A simple structural induction on terms gives that every term in the language T(BPA∗(Act)) can
be proven equal to a trace normal form. The proof of this fact makes use of all of the equations
in ET , together with the following derived laws:

x(y + z) = xy + xz
(a∗a)x = a∗a .

The completeness of the axiomatization for trace equivalence now follows immediately because
two trace normal forms are equal iff they are identical, modulo commutativity and associativity
of summation.

To establish the completeness of the axiomatization for the trace precongruence, note that
P @∼T Q iff P + Q 'T Q. As ET is complete for trace equivalence, it follows that, if P @∼T Q, then
ET ` P + Q = Q. Now, the inequality P ≤ Q can be proven using (3) and transitivity. 2

It is interesting to note that the above axiomatizations are not complete for open terms
in the language (BPA∗(Act)). For example, when the set of actions is a singleton, the
equations

a + x = x(4)
xx + yy = xx + yy + xy(5)

are sound with respect to trace semantics over (BPA∗(Act)). However, we shall now
show that (4) and (5) are not provable from the axiom system ET ∪ {(3)}.

Proposition 5.5 Equations (4) and (5) are not deducible from the axiom systems ET ∪
{(3)}.
Proof: We build a model for the axiom system ET ∪ {(3)} in which (4) and (5) fail. The carrier
of the model M is the poset depicted below:

2
↑
2

↗ ↖
1 1

The operators in the signature of the language T(BPA∗(Act)) are defined over M as follows
(e, e′ ∈ {1, 2, 1, 2}):

aM
∆= 1

e +M e′ ∆= sup(e, e′)

e∗Me′ ∆= 2

e ·M e′ ∆=

 1 if e = e′ = 1
1 if e = e′ = 1
2 otherwise

(Note that the operations so defined are monotonic.) The reader will have no difficulty in verifying
that the resulting ordered algebra is a model of ET ∪{(3)}. However (4) and (5) fail in M. Indeed
(4) fails in M because, letting ρ denote an environment mapping x to 1,

M[[x]]ρ = 1 6= 2 = M[[a + x]]ρ .

31

To see that (5) also fails, let ρ′ be an M-environment mapping x to 1, and y to 1. Then,

M[[xx + yy]]ρ′ = 2 6= 2 = M[[xx + yy + xy]]ρ′ .

The proof is now complete. 2

We leave it as an open question whether there exists a finite (in)equational axiomatization
of the (ordered) algebra T(BPA∗(Act))/ 'T . This problem is closely related to that of
finding a finite ω-complete axiomatization of the algebra of the positive integers with
operations of summation and maximum. To the best of our knowledge, this problem is,
surprisingly, still awaiting a solution.

6 Concluding Remarks

In this paper we have shown that none of the process semantics that lie in between ready
simulation and completed traces are finitely based over the language BPA∗. This result
is in sharp contrast with a theorem by Fokkink and Zantema [32] to the effect that bisim-
ulation equivalence has a finite equational axiomatization over BPA∗, and the reader
might wonder why bisimulation equivalence is finitely based whereas none of the process
semantics considered in this paper is. (The only peculiar exception being trace semantics
over closed terms when the set of actions is a singleton.) We shall now present our inter-
pretation of the dichotomy between bisimulation and the process semantics considered in
this paper.

For every process term P ∈ T(BPA∗(Act)), let Loops(P) denote the collection of
the completed traces of the sub-terms of P that occur on the left-hand side of a star.
Intuitively, Loops(P) is the set of the sequences of actions labelling the loops in the finite
automaton that is associated with P by the operational semantics for T(BPA∗(Act)). We
shall now prove a result to the effect that two BPA∗ terms can only be bisimilar if they
have loops of the same length.

Proposition 6.1 Let P,Q ∈ T(BPA∗(Act)). If P ↔ Q, then Loops(P) = Loops(Q).

Proof: As the equations in Table 2 are complete with respect to bisimulation equivalence,
it is sufficient to show that if the equation P = Q is deducible from those in Table 2, then
Loops(P) = Loops(Q). This is easily verified because the statement holds for the equations in
the aforementioned table, and is preserved by the rules of equational deduction. 2

As witnessed by the family of equivalences E.n, Propn. 6.1 does not hold for any of the
semantics considered in this paper, and its loss entails that any complete equational axiom
system for any of these semantics should be powerful enough to equate terms with loops
of different lengths. Indeed, the import of Thm. 4.5 is that no finite set of (in)equations
can prove all the equivalences between terms whose loops have prime length. This is
the same reason that leads to the non-existence of a finite equational axiom system for
bisimulation equivalence over BPA∗

δ [64], and that underlies the negative results in, e.g.,
[58, 62, 20, 26, 47].

The results of this paper have shown that all the semantics considered in [35] are
not finitely based over the language BPA∗, with the exception of 2-nested simulation

32

equivalence [38] and possible-futures equivalence [60]. Establishing whether these equiv-
alences are finitely based or not is a possible avenue for further research along the lines
of this paper. Let us just remark here that, at least to the best of our knowledge, no
complete axiomatization for 2-nested simulation equivalence is known even over the basic
syntax for synchronization trees. Moreover, possible-futures equivalence is not preserved
by sequential composition and binary Kleene star, and therefore this semantics cannot
be readily used for a language like BPA∗.

Having established that none of the process semantics considered in this paper has a
finite equational axiomatization over BPA∗, a natural topic for further study is the search
for effectively presented, infinite equational axiomatizations for them. This is most likely
to be a difficult problem, as witnessed by the corresponding developments in the theory of
regular expressions. These we now briefly recall for the sake of historical completeness. A
theorem of Redko’s, whose proof was simplified and corrected by Pilling [20, Chapter 11],
gives an infinite, complete system of identities for commutative regular expressions [59].
An infinite equational axiomatization of the theory of regular expressions over a singleton
alphabet was given by Redko in [58] (cf. also [20, Chapter 4]). (Variations on the afore-
mentioned results of Redko’s that apply to regular expressions over a singleton alphabet
with multiplicities over the tropical semiring may be found in [19].) The construction of
a complete equational axiomatization for regular expressions over an arbitrary alphabet
was addressed by Conway in his seminal monograph [20]. Ibidem Conway proposed three
conjectures, whose solution would yield the desired complete set of equations. It took
many years, and Krob’s landmark paper [46], to settle two of these conjectures of Con-
way’s, and to obtain the first complete equational axiom system for the theory of regular
expressions. An alternative equational axiomatization for regular expressions, developed
within the framework of iteration theories [17], may be found in [16]. Finite implicational
proof systems for regular expressions have been developed by, e.g., Salomaa [61, 62] and
Kozen [45]. (The interested reader is invited to consult [46, Sect. 15] for a thorough
discussion of implicational proof systems for regular languages.) Modifications of these
proof systems to yield complete axiom systems based on conditional equations for the
process semantics considered in this paper over BPA∗ are an interesting topic for future
research.

Acknowledgements: We should like to thank Zoltán Ésik for his encouragement to
pursue the research reported in this paper, and for many insightful comments and pointers
to related literature. We are also indebted to Gheorghe Ştefănescu for alerting us to the
relevance of Ésik’s work on axiomatizations of iteration theories, and to Daniel Krob for
providing us with information on his work on axiomatic questions for regular expressions.

References

[1] L. Aceto and W. J. Fokkink, An equational axiomatization for multi-exit it-
eration, Research Report RS-96-22, BRICS (Basic Research in Computer Science,
Centre of the Danish National Research Foundation), Department of Computer Sci-

33

ence, Aalborg University, June 1996. Available by anonymous ftp at the address
ftp.brics.aau.dk in the directory pub/BRICS/RS/96/22.

[2] L. Aceto and J. F. Groote, A complete equational axiomatization for MPA with
string iteration, Research Report RS–95–28, BRICS (Basic Research in Computer
Science, Centre of the Danish National Research Foundation), Department of Math-
ematics and Computer Science, Aalborg University, May 1995. Available by anony-
mous ftp at the address ftp.brics.aau.dk in the directory pub/BRICS/RS/95/28.

[3] L. Aceto and A. Ingólfsdóttir, An equational axiomatization of observation
congruence for prefix iteration, in Wirsing and Nivat [65], pp. 195–209. Full version
available as BRICS Report RS-95-5, January 1995.

[4] L. Aceto, R. van Glabbeek, W. J. Fokkink, and A. Ingólfsdóttir, Axiom-
atizing prefix iteration with silent steps, Information and Computation, 127 (1996),
pp. 26–40.

[5] D. Austry and G. Boudol, Algèbre de processus et synchronisations, Theoretical
Comput. Sci., 30 (1984), pp. 91–131.

[6] J. Baeten, J. Bergstra, and J. Klop, Decidability of bisimulation equivalence
for processes generating context-free languages, J. Assoc. Comput. Mach., 40 (1993),
pp. 653–682.

[7] J. Baeten and J. Klop, eds., Proceedings CONCUR 90, Amsterdam, vol. 458 of
Lecture Notes in Computer Science, Springer-Verlag, 1990.

[8] J. Baeten and W. Weijland, Process Algebra, Cambridge Tracts in Theoretical
Computer Science 18, Cambridge University Press, 1990.

[9] J. Bergstra, I. Bethke, and A. Ponse, Process algebra with itera-
tion, Report CS-R9314, Programming Research Group, University of Amster-
dam, 1993. Available by anonymous ftp at the address fwi.uva.nl as file
pub/programming-research/reports/1993/P9314.ps.Z.

[10] , Process algebra with iteration and nesting, Computer Journal, 37 (1994),
pp. 243–258.

[11] J. Bergstra and J. Klop, Fixed point semantics in process algebras, Report IW
206, Mathematisch Centrum, Amsterdam, 1982.

[12] , Algebra of communicating processes with abstraction, Theoretical Comput.
Sci., 37 (1985), pp. 77–121.

[13] E. Best, ed., Proceedings CONCUR 93, Hildesheim, Germany, vol. 715 of Lecture
Notes in Computer Science, Springer-Verlag, 1993.

[14] B. Bloom, S. Istrail, and A. R. Meyer, Bisimulation can’t be traced, J. Assoc.
Comput. Mach., 42 (1995), pp. 232–268.

34

[15] S. L. Bloom, Varieties of ordered algebras, J. Comput. System Sci., 13 (1976),
pp. 200–212.

[16] S. L. Bloom and Z. Ésik, Equational axioms for regular sets, Mathematical Struc-
tures in Computer Science, 3 (1993), pp. 1–24.

[17] , Iteration Theories: The Equational Logic of Iterative Processes, EATCS Mono-
graphs on Theoretical Computer Science (W. Brauer, G. Rozenberg and A. Salomaa
eds.), Springer-Verlag, 1993.

[18] , Iteration algebras of finite state process behaviours, Jan. 1994. Unpublished
manuscript. Available by anonymous ftp from menger.eecs.stevens-tech.edu in
the directory /pub/bloom/papers/processes.

[19] A. Bonnier-Rigny and D. Krob, A complete system of identities for one-letter
rational expressions with multiplicities in the tropical semiring, Theoretical Comput.
Sci., 134 (1994), pp. 27–50.

[20] J. H. Conway, Regular algebra and finite machines, Mathematics Series (R. Brown
and J. De Wet eds.), Chapman and Hall, London, United Kingdom, 1971.

[21] I. Copi, C. Elgot, and J. Wright, Realization of events by logical nets, J. Assoc.
Comput. Mach., 5 (1958), pp. 181–196.

[22] F. Corradini, R. De Nicola, and A. Labella, Fully abstract models for non-
deterministic Kleene algebras (extended abstract), in Proceedings CONCUR 94,
Philadelphia, PA, USA, I. Lee and S. Smolka, eds., vol. 962 of Lecture Notes in
Computer Science, Springer-Verlag, 1995, pp. 130–144.

[23] S. Crvenković and R. Madarász, On Kleene algebras, Theoretical Comput. Sci.,
108 (1993), pp. 17–24.

[24] R. De Nicola and A. Labella, A completeness theorem for nondeterministic
Kleene algebras, in Proceedings of MFCS ’94, vol. 841 of Lecture Notes in Computer
Science, Springer-Verlag, 1994, pp. 536–545.

[25] S. Eilenberg, Automata, Languages, and Machines, vol. 59–A of Pure and Applied
Mathematics, Academic Press, New York and London, 1974.

[26] Z. ´Esik, Independence of the equational axioms for iteration theories, J. Comput.
System Sci., 36 (1988), pp. 66–76.

[27] , Group axioms for iteration, 1995. Unpublished manuscript.

[28] , Personal communication, May 1996.

[29] W. J. Fokkink, A complete equational axiomatization for prefix iteration, Inf. Pro-
cess. Lett., 52 (1994), pp. 333–337.

35

[30] , A complete axiomatization for prefix iteration in branching bisimulation, Fun-
damenta Informaticae, 26 (1996), pp. 103–113.

[31] , On the completeness of the equations for the Kleene star in bisimulation, in
Wirsing and Nivat [65], pp. 180–194. A full version of the paper is available by
anonymous ftp from phil.ruu.nl as logic/PREPRINTS/preprint141.ps.

[32] W. J. Fokkink and H. Zantema, Basic process algebra with iteration: Complete-
ness of its equational axioms, Computer Journal, 37 (1994), pp. 259–267.

[33] , Prefix iteration in basic process algebra: applying termination techniques, in
Proceedings ACP 95, Eindhoven, A. Ponse, C. Verhoef, and B. v. Vlijmen, eds.,
vol. Report CS-95-14, Eindhoven University of Technology, 1995, pp. 139–156.

[34] R. J. v. Glabbeek, Comparative Concurrency Semantics and Refinement of Ac-
tions, PhD thesis, Free University, Amsterdam, 1990.

[35] , The linear time – branching time spectrum, in Baeten and Klop [7], pp. 278–
297.

[36] , Full abstraction in structural operational semantics (extended abstract), in
Proceedings of the Third International Conference on Algebraic Methodology and
Software Technology (AMAST ’93), Twente, The Netherlands, M. Nivat, C. Rattray,
T. Rus, and G. Scollo, eds., Workshops in Computing, Springer-Verlag, June 1993,
pp. 77–84.

[37] , The linear time – branching time spectrum II: the semantics of sequential
processes with silent moves, in Best [13], pp. 66–81.

[38] J. F. Groote and F. Vaandrager, Structured operational semantics and bisim-
ulation as a congruence, Information and Computation, 100 (1992), pp. 202–260.

[39] M. Hennessy, Algebraic Theory of Processes, MIT Press, Cambridge, Mas-
sachusetts, 1988.

[40] C. Hoare, Specifications, programs and implementations, Technical Monograph
PRG–29, Programming Research Group, Oxford University, 1982.

[41] , Communicating Sequential Processes, Prentice-Hall International, Englewood
Cliffs, 1985.

[42] B. Jónsson, The theory of binary relations, in Algebraic Logic, Colloquia Mathe-
matica Societatis János Bolyai, vol. 54, North-Holland, Amsterdam, 1988, pp. 245–
292.

[43] R. Keller, Formal verification of parallel programs, Comm. ACM, 19 (1976),
pp. 371–384.

36

[44] S. Kleene, Representation of events in nerve nets and finite automata, in Automata
Studies, C. Shannon and J. McCarthy, eds., Princeton University Press, 1956, pp. 3–
41.

[45] D. Kozen, A completeness theorem for Kleene algebras and the algebra of regular
events, Information and Computation, 110 (1994), pp. 366–390.

[46] D. Krob, Complete systems of B-rational identities, Theoretical Comput. Sci., 89
(1991), pp. 207–343.

[47] , Models of a K-rational identity system, J. Comput. System Sci., 45 (1992),
pp. 396–434.

[48] K. G. Larsen and A. Skou, Bisimulation through probabilistic testing, Information
and Computation, 94 (1991), pp. 1–28.

[49] R. Milner, A Calculus of Communicating Systems, vol. 92 of Lecture Notes in
Computer Science, Springer-Verlag, 1980.

[50] , Calculi for synchrony and asynchrony, Theoretical Comput. Sci., 25 (1983),
pp. 267–310.

[51] , A complete inference system for a class of regular behaviours, J. Comput.
System Sci., 28 (1984), pp. 439–466.

[52] , Communication and Concurrency, Prentice-Hall International, Englewood
Cliffs, 1989.

[53] , A complete axiomatisation for observational congruence of finite-state behav-
iors, Information and Computation, 81 (1989), pp. 227–247.

[54] I. Niven and H. Zuckerman, An introduction to the theory of numbers (2nd
edition), John Wiley & Sons, 1960.

[55] E.-R. Olderog and C. Hoare, Specification-oriented semantics for communicat-
ing processes, Acta Inf., 23 (1986), pp. 9–66.

[56] D. Park, Concurrency and automata on infinite sequences, in 5th GI Conference,
Karlsruhe, Germany, P. Deussen, ed., vol. 104 of Lecture Notes in Computer Science,
Springer-Verlag, 1981, pp. 167–183.

[57] G. Plotkin, A structural approach to operational semantics, Report DAIMI FN-19,
Computer Science Department, Aarhus University, 1981.

[58] V. Redko, On defining relations for the algebra of regular events, Ukrainskii Matem-
aticheskii Zhurnal, 16 (1964), pp. 120–126. In Russian.

[59] , On the algebra of commutative events, Ukrainskii Matematicheskii Zhurnal,
16 (1964), pp. 185–195. In Russian.

37

[60] W. Rounds and S. Brookes, Possible futures, acceptances, refusals and commu-
nicating processes, in 22th Annual Symposium on Foundations of Computer Science,
Nashville, Tennessee, New York, 1981, IEEE, pp. 140–149.

[61] A. Salomaa, Two complete axiom systems for the algebra of regular events, J. Assoc.
Comput. Mach., 13 (1966), pp. 158–169.

[62] , Theory of Automata, vol. 100 of International Series of Monographs in Pure
and Applied Mathematics (I.N. Sneddon and M. Stark eds.), Pergamon Press, Ox-
ford, 1969.

[63] , Personal communication, June 1996.

[64] P. Sewell, Bisimulation is not finitely (first order) equationally axiomatisable, in
Proceedings 9th Annual Symposium on Logic in Computer Science, Paris, France,
IEEE Computer Society Press, 1994, pp. 62–70.

[65] M. Wirsing and M. Nivat, eds., Algebraic Methodology and Software Technology:
5th International Conference, AMAST ’96, Munich, Germany, vol. 1101 of Lecture
Notes in Computer Science, Springer-Verlag, July 1996.

38

Recent Publications in the BRICS Report Series

RS-96-23 Luca Aceto, Wan J. Fokkink, and Anna Inǵolfsdóttir. A
Menagerie of Non-Finitely Based Process Semantics over
BPA∗: From Ready Simulation Semantics to Completed
Tracs. July 1996. 38 pp.

RS-96-22 Luca Aceto and Wan J. Fokkink.An Equational Axiom-
atization for Multi-Exit Iteration . June 1996. 30 pp.

RS-96-21 Dany Breslauer, Tao Jiang, and Zhigen Jiang.Rotation
of Periodic Strings and Short Superstrings. June 1996. 14
pp.

RS-96-20 Olivier Danvy and Julia L. Lawall. Back to Direct Style
II: First-Class Continuations. June 1996. 36 pp. A prelim-
inary version of this paper appeared in the proceedings
of the 1992 ACM Conference on Lisp and Functional
Programming, William Clinger, editor, LISP Pointers,
Vol. V, No. 1, pages 299–310, San Francisco, California,
June 1992. ACM Press.

RS-96-19 John Hatcliff and Olivier Danvy. Thunks and theλ-
Calculus. June 1996. 22 pp. To appear inJournal of
Functional Programming.

RS-96-18 Thomas Troels Hildebrandt and Vladimiro Sassone.
Comparing Transition Systems with Independence and
Asynchronous Transition Systems. June 1996. 14 pp. To
appear in Montanari and Sassone, editors,Concurrency
Theory: 7th International Conference, CONCUR '96 Pro-
ceedings, LNCS 1119, 1996.

RS-96-17 Olivier Danvy, Karoline Malmkjær, and Jens Palsberg.
Eta-Expansion Does The Trick (Revised Version). May
1996. 29 pp. To appear inACM Transactions on Pro-
gramming Languages and Systems (TOPLAS).

RS-96-16 Lisbeth Fajstrup and Martin Raußen. Detecting Dead-
locks in Concurrent Systems. May 1996. 10 pp.

RS-96-15 Olivier Danvy.Pragmatic Aspects of Type-DirectedPartial
Evaluation. May 1996. 27 pp.

