
B
R

IC
S

R
S

-96-19
H

atcliff&
D

anvy:
T

hunks
and

the
λ

-C
alculus

BRICS
Basic Research in Computer Science

Thunks and theλ-Calculus

John Hatcliff
Olivier Danvy

BRICS Report Series RS-96-19

ISSN 0909-0878 June 1996

Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

Thunks and the λ-calculus ∗

John Hatcliff †
DIKU

Copenhagen University ‡

(hatcliff@diku.dk)

Olivier Danvy
BRICS §

Aarhus University ¶
(danvy@brics.dk)

May 1996

Abstract
Thirty-five years ago, thunks were used to simulate call-by-name

under call-by-value in Algol 60. Twenty years ago, Plotkin presented
continuation-based simulations of call-by-name under call-by-value and
vice versa in the λ-calculus. We connect all three of these classical
simulations by factorizing the continuation-based call-by-name simu-
lation Cn with a thunk-based call-by-name simulation T followed by
the continuation-based call-by-value simulation Cv extended to thunks.

Λ Λthunks

ΛCPS

Cn

F
F
F
F
F
F
F
F
F
F
F
F
F ""

T //

Cv

��

We show that T actually satisfies all of Plotkin’s correctness cri-
teria for Cn (i.e., his Indifference, Simulation, and Translation
theorems). Furthermore, most of the correctness theorems for Cn can
now be seen as simple corollaries of the corresponding theorems for Cv
and T .

∗To appear in the Journal of Functional Programming.
†Supported by the Danish Research Academy and by the DART project (Design, Anal-

ysis and Reasoning about Tools) of the Danish Research Councils.
‡Computer Science Department, Universitetsparken 1, 2100 Copenhagen Ø, Denmark.
§Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
¶Computer Science Department, Ny Munkegade, B. 540, 8000 Aarhus C, Denmark.

1

1 Introduction

In his seminal paper, “Call-by-name, call-by-value and the λ-calculus” [27],
Plotkin presents simulations of call-by-name by call-by-value (and vice-
versa). Both of Plotkin’s simulations rely on continuations. Since Algol
60, however, programming wisdom has it that thunks can be used to obtain
a simpler simulation of call-by-name by call-by-value. We show that compos-
ing a thunk-based call-by-name simulation T with Plotkin’s continuation-
based call-by-value simulation Cv actually yields Plotkin’s continuation-
based call-by-name simulation Cn (Sections 2 and 3). Revisiting Plotkin’s
correctness theorems (Section 4), we provide a correction to his Transla-
tion property for Cn, and show that the thunk-based simulation T satisfies
all of Plotkin’s properties for Cn. The factorization of Cn by Cv and T makes
it possible to derive correctness properties for Cn from the corresponding
results for Cv and T . This factorization has also found several other appli-
cations already (Section 5). The extended version of this paper [15] gives a
more detailed development as well as all proofs.

2 Continuation-based and Thunk-based Simulations

We consider Λ, the untyped λ-calculus parameterized by a set of basic con-
stants b [27, p. 127].

e ∈ Λ
e ::= b | x | λx.e | e0 e1

The sets Valuesn[Λ] and Valuesv[Λ] below represent the set of values from
the language Λ under call-by-name and call-by-value evaluation respectively.

v ∈ Valuesn[Λ]

v ::= b | λx.e

v ∈ Valuesv[Λ]

v ::= b | x | λx.e
...where e ∈ Λ

Figure 1 displays Plotkin’s call-by-name CPS transformation Cn (which
simulates call-by-name under call-by-value). (Side note: the term “CPS”
stands for “Continuation-Passing Style”. It was coined in Steele’s MS the-
sis [35].) Figure 2 displays Plotkin’s call-by-value CPS transformation Cv
(which simulates call-by-value under call-by-name). Figure 3 displays the
standard thunk-based simulation of call-by-name using call-by-value evalu-
ation of the language Λτ . Λτ extends Λ as follows.

e ∈ Λτ

e ::= ... | delay e | force e

2

Cn〈[·]〉 : Λ→Λ
Cn〈[v]〉 = λk.k Cn〈v〉
Cn〈[x]〉 = λk.x k

Cn〈[e0 e1]〉 = λk.Cn〈[e0]〉 (λy0.y0 Cn〈[e1]〉 k)

Cn〈·〉 : Valuesn[Λ]→Λ
Cn〈b〉 = b

Cn〈λx.e〉 = λx.Cn〈[e]〉

Figure 1: Call-by-name CPS transformation

Cv〈[·]〉 : Λ→Λ
Cv〈[v]〉 = λk.k Cv〈v〉

Cv〈[e0 e1]〉 = λk.Cv〈[e0]〉 (λy0.Cv〈[e1]〉 (λy1.y0 y1 k))

Cv〈·〉 : Valuesv[Λ]→Λ
Cv〈b〉 = b

Cv〈x〉 = x

Cv〈λx.e〉 = λx.Cv〈[e]〉

Figure 2: Call-by-value CPS transformation

T : Λ→Λτ

T 〈[b]〉 = b

T 〈[x]〉 = force x

T 〈[λx.e]〉 = λx.T 〈[e]〉
T 〈[e0 e1]〉 = T 〈[e0]〉 (delay T 〈[e1]〉)

Figure 3: Call-by-name thunk transformation

3

The operator delay suspends the evaluation of an expression — thereby
coercing an expression to a value. Therefore, delay e is added to the value
sets in Λτ .

v ∈ Valuesn[Λτ]

v ::= ... | delay e

v ∈ Valuesv[Λτ]

v ::= ... | delay e
...where e ∈ Λτ

The operator force triggers the evaluation of such a suspended expression.
This is formalized by the following notion of reduction.
Definition 1 (τ-reduction)

force (delay e) −→τ e

We also consider the conventional notions of reduction β, βv, η, and ηv
[3, 27, 32].
Definition 2 (β,βv, η, ηv-reduction)

(λx.e1) e2 −→β e1[x := e2]
(λx.e)v −→βv e[x := v] v ∈ Valuesv[Λ]

λx.e x −→η e x 6∈ FV(e)
λx.v x −→ηv v v ∈ Valuesv[Λ] ∧ x 6∈ FV(v)

For a notion of reduction r, −→r also denotes construct compatible one-
step reduction, −→−→r denotes the reflexive, transitive closure of −→r, and
=r denotes the smallest equivalence relation generated by −→r [3]. We will
also write λr ` e1 = e2 when e1 =r e2 (similarly for the other relations).

Figure 4 extends Cv (see Figure 2) to obtain C+
v which CPS-transforms

thunks. C+
v faithfully implements τ -reduction in terms of βv (and thus β)

reduction. We write βi below to signify that the property holds indifferently
for βv and β.

Property 1 For all e ∈ Λτ , λβi ` C+
v 〈[force (delay e)]〉 = C+

v 〈[e]〉.

Proof:

C+
v 〈[force (delay e)]〉 = λk.(λk.k (C+

v 〈[e]〉)) (λy.y k)
−→βi λk.(λy.y k) C+

v 〈[e]〉
−→βi λk.C+

v 〈[e]〉 k
−→βi C+

v 〈[e]〉

The last step holds since a simple case analysis shows that C+
v 〈[e]〉 always

has the form λk.e′ for some e′ ∈ Λ.

4

3 Connecting the Continuation-based and Thunk-based
Simulations

Cn can be factored into two conceptually distinct steps: (1) the suspension
of argument evaluation (captured in T); and (2) the sequentialization of
function application to give the usual tail-calls of CPS terms (captured in
C+

v).

Theorem 1 For all e ∈ Λ, λβi ` (C+
v ◦ T)〈[e]〉 = Cn〈[e]〉.

Proof: by induction over the structure of e.

case e ≡ b:

(C+
v ◦ T)〈[b]〉 = C+

v 〈[b]〉
= λk.k b
= Cn〈[b]〉

case e ≡ x:

(C+
v ◦ T)〈[x]〉 = C+

v 〈[force x]〉
= λk.(λk.k x) (λy.y k)

−→βi λk.(λy.y k)x
−→βi λk.x k

= Cn〈[x]〉

case e ≡ λx.e′:

(C+
v ◦ T)〈[λx.e′]〉 = C+

v 〈[λx.T 〈[e′]〉]〉
= λk.k (λx.(C+

v ◦ T)〈[e′]〉)
=βi λk.k (λx.Cn〈[e′]〉) ...by the ind. hyp.
= Cn〈[λx.e′]〉

case e ≡ e0 e1:

(C+
v ◦ T)〈[e0 e1]〉 = C+

v 〈[T 〈[e0]〉 (delay T 〈[e1]〉)]〉
= λk.(C+

v ◦ T)〈[e0]〉 (λy0.(λk.k (C+
v ◦ T)〈[e1]〉) (λy1.y0 y1 k))

−→βi λk.(C+
v ◦ T)〈[e0]〉 (λy0.(λy1.y0 y1 k) (C+

v ◦ T)〈[e1]〉)
−→βi λk.(C+

v ◦ T)〈[e0]〉 (λy0.y0 (C+
v ◦ T)〈[e1]〉 k)

=βi λk.Cn〈[e0]〉 (λy0.y0 Cn〈[e1]〉 k) ...by the ind. hyp.
= Cn〈[e0 e1]〉

5

This theorem implies that the diagram in the abstract commutes up to βi-
equivalence, i.e., indifferently up to βv- and β-equivalence. Note that C+

v ◦ T
and Cn only differ by administrative reductions. In fact, if we consider
optimizing versions of Cn and Cv that remove administrative redexes, then
the diagram commutes up to identity (i.e., up to α-equivalence).

Figures 5 and 6 present two such optimizing transformations Cn.opt and
Cv.opt. The output of Cn.opt is βvηv equivalent to the output of Cn, and simi-
larly for Cv.opt and Cv, as shown by Danvy and Filinski [7, pp. 387 and 367].
Both are applied to the identity continuation. In Figures 5 and 6, they
are presented in a two-level language à la Nielson and Nielson [22]. Op-
erationally, the overlined λ’s and @’s correspond to functional abstractions
and applications in the program implementing the translation, while the
underlined λ’s and @’s represent abstract-syntax constructors. It is simple
to transcribe Cn.opt and Cv.opt into functional programs.

The optimizing transformation C+
v.opt is obtained from Cv.opt by adding

the following definitions.

C+
v.opt〈[force e]〉 = λk.C+

v.opt〈[e]〉@(λy0.y0@(λy1.k@y1))

C+
v.opt〈delay e〉 = λk.C+

v.opt〈[e]〉@(λy.k@y)

Taking an operational view of these two-level specifications, the following
theorem states that, for all e ∈ Λ, the result of applying C+

v.opt to T 〈[e]〉 (with
an initial continuation λa.a) is α-equivalent to the result of applying Cn.opt

to e (with an initial continuation λa.a).

Theorem 2 For all e ∈ Λ, (C+
v.opt ◦ T)〈[e]〉@(λa.a) ≡ Cn.opt〈[e]〉@(λa.a).

Proof: A simple structural induction similar to the one required in the
proof of Theorem 1. We show only the case for identifiers (the others are
similar). The overlined constructs are computed at translation time, and
thus simplifying overlined constructs using β-conversion yields equivalent
specifications.

case e ≡ x:
(C+

v.opt ◦ T)〈[x]〉 = λk.(λk.k@x)@(λy0.y0@(λy1.k@y1))
= λk.(λy0.y0@(λy1.k@y1))@x
= λk.x@(λy1.k@y1)
= Cn.opt〈[x]〉

6

C+
v 〈[·]〉 : Λτ →Λ

...

C+
v 〈[force e]〉 = λk.C+

v 〈[e]〉 (λy.y k)

C+
v 〈·〉 : Valuesv[Λτ]→Λ

...

C+
v 〈delay e〉 = C+

v 〈[e]〉

Figure 4: Call-by-value CPS transformation (extended to thunks)

Cn.opt〈[·]〉 : Λ→(Λ→Λ)→Λ
Cn.opt〈[v]〉 = λk.k@Cn.opt〈v〉
Cn.opt〈[x]〉 = λk.x@(λy.k@y)

Cn.opt〈[e0 e1]〉 = λk.Cn.opt〈[e0]〉@(λy0.y0@(λk.Cn.opt〈[e1]〉@(λy1.k@y1))
@(λy2.k@y2))

Cn.opt〈·〉 : Valuesn[Λ]→Λ
Cn.opt〈b〉 = b

Cn.opt〈λx.e〉 = λx.λk.Cn.opt〈[e]〉@(λy.k@y)

Figure 5: Optimizing call-by-name CPS transformation

Cv.opt〈[·]〉 : Λ→(Λ→Λ)→Λ
Cv.opt〈[v]〉 = λk.k@Cv.opt〈v〉

Cv.opt〈[e0 e1]〉 = λk.Cv.opt〈[e0]〉@(λy0.Cv.opt〈[e1]〉@(λy1.y0@y1@(λy2.k@y2)))

Cv.opt〈·〉 : Valuesv[Λ]→Λ
Cv.opt〈b〉 = b

Cv.opt〈x〉 = x

Cv.opt〈λx.e〉 = λx.λk.Cv.opt〈[e]〉@(λy.k@y)

Figure 6: Optimizing call-by-value CPS transformation

7

Call-by-name:
(λx.e0) e1 7−→n e0[x := e1]

e0 7−→n e′0
e0 e1 7−→n e′0 e1

Call-by-value:
(λx.e) v 7−→v e[x := v]

e0 7−→v e′0
e0 e1 7−→v e′0 e1

e1 7−→v e′1
(λx.e0) e1 7−→v (λx.e0) e′1

Figure 7: Single-step evaluation rules

4 Revisiting Plotkin’s Correctness Properties

Figure 7 presents single-step evaluation rules specifying the call-by-name
and call-by-value operational semantics of Λ programs (closed terms). The
(partial) evaluation functions evaln and evalv are defined in terms of the
reflexive, transitive closure (denoted 7−→∗) of the single-step evaluation rules.

evaln(e) = v iff e 7−→∗n v

evalv(e) = v iff e 7−→∗v v

The evaluation rules for Λτ are obtained by adding the following rules to
both the call-by-name and call-by-value evaluation rules of Figure 7.

e 7−→ e′

force e 7−→ force e′
force (delay e) 7−→ e

For a language l, Programs[l] denotes the closed terms in l. For meta-
language expressions E1, E2, we write E1 ' E2 when E1 and E2 are both
undefined, or else both are defined and denote α-equivalent terms. We
will also write E1 'r E2 when E1 and E2 are both undefined, or else are
both defined and denote r-convertible terms for the convertibility relation
generated by some notion of reduction r.

8

Plotkin expressed the correctness of his simulations Cn and Cv via three
properties: Indifference, Simulation, and Translation. Indifference
states that call-by-name and call-by-value evaluation coincide on terms in
the image of the CPS transformation. Simulation states that the desired
evaluation strategy is properly simulated. Translation states how the
transformation relates program calculi for each evaluation strategy (e.g.,
λβ, λβv). Let us restate these properties for Plotkin’s original presentation
of Cn (hereby noted Pn) [27, p. 153], that only differs from Figure 1 at the
line for identifiers.

Pn〈[x]〉 = x

Theorem 3 (Plotkin 1975) For all e ∈ Programs[Λ],

1. Indifference: evalv(Pn〈[e]〉 I) ' evaln(Pn〈[e]〉 I)

2. Simulation: Pn〈evaln(e)〉 ' evalv(Pn〈[e]〉 I)

where I denotes the identity function and is used as the initial continuation.

Plotkin also claimed the following Translation property.

Claim 1 (Plotkin 1975) For all e1, e2 ∈ Λ,

Translation: λβ ` e1 = e2 iff λβv ` Pn〈[e1]〉 = Pn〈[e2]〉
iff λβ ` Pn〈[e1]〉 = Pn〈[e2]〉
iff λβv ` Pn〈[e1]〉 I = Pn〈[e2]〉 I

iff λβ ` Pn〈[e1]〉 I = Pn〈[e2]〉 I

The Translation property purports to show that β-equivalence classes
are preserved and reflected by Pn. The property, however, does not hold
because

λβ ` e1 = e2 6⇒ λβi ` Pn〈[e1]〉 = Pn〈[e2]〉.

The proof breaks down at the statement “It is straightforward to show that
λβ ` e1 = e2 implies λβv ` Pn〈[e1]〉 = Pn〈[e2]〉 ...” [27, p. 158]. In some
cases, ηv is needed to establish the equivalence of the CPS-images of two
β-convertible terms. For example, λx.(λz.z)x −→β λx.x but

Pn〈[λx.(λz.z)x]〉 = λk.k (λx.λk.(λk.k(λz.z)) (λy.y xk)) (1)
−→βv λk.k (λx.λk.(λy.yx k) (λz.z)) (2)

9

−→βv λk.k (λx.λk.(λz.z)x k) (3)
−→βv λk.k (λx.λk.x k) (4)
−→ηv λk.k (λx.x) ...ηv is needed for this step(5)

= Pn〈[λx.x]〉. (6)

Since the two distinct terms at lines (4) and (5) are βi-normal, confluence
of βi implies λβi 6` Pn〈[e1]〉 = Pn〈[e2]〉.

In practice, though, ηv reductions such as those required in the exam-
ple above are unproblematic if they are embedded in proper CPS contexts
(e.g., contexts in the language of terms in the image of Pn closed under βi

reductions). When λk.k (λx.λk.x k) is embedded in a CPS context, x will
always bind to a term of the form λk.e during evaluation. In this case, the
ηv reduction can be expressed by a βv reduction. If the term, however, is not
embedded in a CPS context (e.g., [·] (λy.y b)), the ηv reduction is unsound,
i.e., it fails to preserve operational equivalence as defined by Plotkin [27,
pp. 144,147]. Such reductions are unsound due to “improper” uses of basic
constants. For example, λx.b x −→ηv b but λx.b x 6≈v b (take C = [·])
where ≈v is the call-by-value operational equivalence relation defined by
Plotkin [15, p. 9]. Note, finally, that a simple typing discipline eliminates
improper uses of basic constants, and consequently give soundness for ηv.

The simplest solution for recovering the Translation property is to
change the translation of identifiers from Pn〈[x]〉 = x to λk.x k — obtaining
the translation Cn given in Figure 1.1

For the example above, the modified translation gives

λβi ` Cn〈[λx.(λz.z)x]〉 = Cn〈[λx.x]〉.
The following theorem gives the correctness properties for Cn.

Theorem 4 For all e ∈ Programs[Λ] and e1, e2 ∈ Λ,

1. Indifference: evalv(Cn〈[e]〉 I) ' evaln(Cn〈[e]〉 I)

2. Simulation: Cn〈evaln(e)〉 'βi evalv(Cn〈[e]〉 I)

3. Translation: λβ ` e1 = e2 iff λβv ` Cn〈[e1]〉 = Cn〈[e2]〉
iff λβ ` Cn〈[e1]〉 = Cn〈[e2]〉
iff λβv ` Cn〈[e1]〉 I = Cn〈[e2]〉 I

iff λβ ` Cn〈[e1]〉 I = Cn〈[e2]〉 I
1In the context of Parigot’s λµ-calculus [25], de Groote independently noted the prob-

lem with Plotkin’s Translation theorem and proposed a similar correction [10].

10

The Indifference and Translation properties remain the same. The
Simulation property, however, holds up to βi-equivalence while Plotkin’s
Simulation for Pn holds up to α-equivalence. For example,

Cn〈evaln((λz.λy.z) b)〉 = λy.λk.k b

whereas
evalv(Cn〈[(λz.λy.z) b]〉 I) = λy.λk.(λk.k b) k.

In fact, proofs of Indifference, Simulation, and most of the Trans-
lation can be derived from the correctness properties of C+

v and T (see
Section 5). All that remains of Translation is to show that λβ `
Cn〈[e1]〉 I = Cn〈[e2]〉 I implies λβ ` e1 = e2 and this follows in a straightfor-
ward manner from Plotkin’s original proof for Pn [15, p. 31]. The following
theorem gives the Indifference, Simulation, and Translation properties
for Cv.

Theorem 5 (Plotkin 1975) For all e ∈ Programs[Λ] and e1, e2 ∈ Λ,

1. Indifference: evaln(Cv〈[e]〉 I) ' evalv(Cv〈[e]〉 I)

2. Simulation: Cv〈evalv(e)〉 ' evaln(Cv〈[e]〉 I)

3. Translation:
If λβv ` e1 = e2 then λβv ` Cv〈[e1]〉 = Cv〈[e2]〉
Also λβv ` Cv〈[e1]〉 = Cv〈[e2]〉 iff λβ ` Cv〈[e1]〉 = Cv〈[e2]〉

The Translation property states that βv-convertible terms are also con-
vertible in the image of Cv. In contrast to the theory λβ appearing in the
Translation property for Cn (Theorem 4), the theory λβv is incomplete in
the sense that it cannot prove the equivalence of some terms whose CPS
images are provably equivalent using λβ or λβv [32]. The properties of Cv
as stated in Theorem 5 can be extended to the transformation C+

v defined
on the language T — the set of terms in the image of T closed under βiτ re-
duction. It is straightforward to show that the following grammar generates
exactly the set of terms T [15, pp. 32,33].

t ::= b | force x | force (delay t) | λx.t | t0 (delay t1)

Theorem 6 For all t ∈ Programs[T] and t1, t2 ∈ T ,

11

1. Indifference: evaln(C+
v 〈[t]〉 I) ' evalv(C+

v 〈[t]〉 I)

2. Simulation: C+
v 〈evalv(t)〉 ' evaln(C+

v 〈[t]〉 I)

3. Translation:
If λβvτ ` t1 = t2 then λβv ` C+

v 〈[t1]〉 = C+
v 〈[t2]〉

Also λβv ` C+
v 〈[t1]〉 = C+

v 〈[t2]〉 iff λβ ` C+
v 〈[t1]〉 = C+

v 〈[t2]〉

Proof: For Indifference and Simulation it is only necessary to extend
Plotkin’s colon-translation proof technique and definition of stuck terms to
account for delay and force. The proofs then proceed along the same lines
as Plotkin’s original proofs for Cv [27, pp. 148–152]. Translation follows
from the Translation component of Theorem 5 and Property 1 [15, p. 39].

Thunks are sufficient for establishing a call-by-name simulation satisfying
all of the correctness properties of the continuation-passing simulation Cn.
Specifically, we prove the following theorem which recasts the correctness
theorem for Cn (Theorem 4) in terms of T . The last two assertions of the
Translation component of Theorem 4 do not appear here since the identity
function as the initial continuation only plays a rôle in CPS evaluation.

Theorem 7 For all e ∈ Programs[Λ] and e1, e2 ∈ Λ,

1. Indifference: evalv(T 〈[e]〉) ' evaln(T 〈[e]〉)

2. Simulation: T 〈[evaln(e)]〉 'τ evalv(T 〈[e]〉)

3. Translation: λβ ` e1 = e2 iff λβvτ ` T 〈[e1]〉 = T 〈[e2]〉
iff λβτ ` T 〈[e1]〉 = T 〈[e2]〉

Proof: The proof of Indifference is trivial: one can intuitively see from
the grammar for T (which includes the set of terms in the image of T closed
under evaluation steps) that call-by-name and call-by-value evaluation will
coincide since all function arguments are values.

The proof of Simulation is somewhat involved. It begins by inductively
defining a relation τ∼ ⊆ Λ × Λτ such that e

τ∼ t holds exactly when λτ `
T 〈[e]〉 = t. The crucial step is then to show that for all e ∈ Programs[Λ] and
t ∈ Programs[Λτ] such that e

τ∼ t, e 7−→n e′ implies that there exists a t′

such that t 7−→+
v t′ and e′

τ∼ t′ [15, Sect. 2.3.2].

12

TL : Λ→Λ
TL〈[b]〉 = b

TL〈[x]〉 = x b ...for some arbitrary basic constant b

TL〈[λx.e]〉 = λx.TL〈[e]〉
TL〈[e0 e1]〉 = TL〈[e0]〉 (λz.TL〈[e1]〉) ...where z 6∈ FV(e1)

Figure 8: Thunk introduction implemented in Λ

Translation is established by first defining a translation T −1 : Λτ →Λ that
simply removes delay and force constructs. One then shows that T and T −1

establish an equational correspondence [32] (or more precisely a reflection
[33]) between theories λβ and λβvτ (and λβ and λβτ). Translation follows
as a corollary of this stronger result [15, Sect. 2.3.3].

Representing thunks via abstract suspension operators delay and force
simplifies the technical presentation and enables the connection between Cn
and Cv presented in Section 3. Elsewhere [14], we show that the delay/force
representation of thunks and associated properties (i.e., reduction properties
and translation into CPS) are not arbitrary, but are determined by the
relationship between strictness and continuation monads [19].

Figure 8 presents the transformation TL that implements thunks directly
in Λ using what Plotkin described as the “protecting by a λ” technique [27,
p. 147]. An expression is delayed by wrapping it in an abstraction with a
dummy parameter. A thunk is forced by applying it to a dummy argument.

The following theorem recasts the correctness theorem for Cn (Theo-
rem 4) in terms of TL.

Theorem 8 For all e ∈ Programs[Λ] and e1, e2 ∈ Λ,

1. Indifference: evalv(TL〈[e]〉) ' evaln(TL〈[e]〉)

2. Simulation: TL〈[evaln(e)]〉 'βi evalv(TL〈[e]〉)

3. Translation: λβ ` e1 = e2 iff λβv ` TL〈[e1]〉 = TL〈[e2]〉
iff λβ ` TL〈[e1]〉 = TL〈[e2]〉

Proof: Follows the same pattern as the proof of Theorem 7 [15, Sect. 2.4].

13

5 Applications

5.1 Deriving correctness properties of Cn

When working with CPS, one often needs to establish technical properties for
both a call-by-name and a call-by-value CPS transformation. This requires
two sets of proofs that both involve CPS. By appealing to the factoring
property, however, often only one set of proofs over call-by-value CPS terms
is necessary. The second set of proofs deals with thunked terms which have a
simpler structure. For instance, Indifference and Simulation for Cn follow
from Indifference and Simulation for C+

v and T and Theorem 1. Here
we show only the results where evaluation is undefined or results in a basic
constant b. See [15, p. 31] for a derivation of Cn Simulation for arbitrary
results.

For Indifference, let e, b ∈ Λ where b is a basic constant. Then

evalv(Cn〈[e]〉 (λy.y)) = b
⇔ evalv((C+

v ◦ T)〈[e]〉 (λy.y)) = b ...Theorem 1 and the soundness of βv
⇔ evaln((C+

v ◦ T)〈[e]〉 (λy.y)) = b ...Theorem 6 (Indifference)
⇔ evaln(Cn〈[e]〉 (λy.y)) = b ...Theorem 1 and the soundness of β

For Simulation, let e, b ∈ Λ where b is a basic constant. Then

evaln(e) = b
⇔ evalv(T 〈[e]〉) = b ...Theorem 7 (Simulation)
⇔ evaln((C+

v ◦ T)〈[e]〉 (λy.y)) = b ...Theorem 6 (Simulation)
⇔ evalv((C+

v ◦ T)〈[e]〉 (λy.y)) = b ...Theorem 6 (Indifference)
⇔ evalv(Cn〈[e]〉 (λy.y)) = b ...Theorem 1 and the soundness of βv

For Translation, it is not possible to establish Theorem 4 (Translation
for Cn) in the manner above since Theorem 6 (Translation for C+

v) is weaker
in comparison. However, the following weaker version can be derived. Let
e1, e2 ∈ Λ. Then

λβ ` e1 = e2
⇔ λβvτ ` T 〈[e1]〉 = T 〈[e2]〉 ...Theorem 7 (Translation)
⇒ λβi ` (C+

v ◦ T)〈[e1]〉 = (C+
v ◦ T)〈[e2]〉 ...Theorem 6 (Translation)

⇔ λβi ` Cn〈[e1]〉 = Cn〈[e2]〉 ...Theorem 1
⇒ λβi ` Cn〈[e1]〉 I = Cn〈[e2]〉 I ...compatibility of =βi

14

5.2 Deriving a CPS transformation directed by strictness infor-
mation

Strictness information indicates arguments that may be safely evaluated
eagerly (i.e., without being delayed) — in effect, reducing the number of
thunks needed in a program and the overhead associated with creating and
evaluating suspensions [4, 21, 24]. In an earlier work [9], we gave a transfor-
mation Ts that optimizes thunk introduction based on strictness information.
We then used the factorization of Cn by C+

v and T to derive an optimized
CPS transformation Cs for strictness-analyzed call-by-name terms. This
staged approach can be contrasted with Burn and Le Métayer’s monolithic
strategy [5].

The resulting transformation Cs yields both call-by-name-like and call-
by-value-like continuation-passing terms. Due to the factorization, the proof
of correctness for the optimized transformation follows as a corollary of the
correctness of the strictness analysis and the correctness of T and C+

v .
Amtoft [1] and Steckler and Wand [34] have proven the correctness of

transformations which optimize the introduction of thunks based on strict-
ness information.

5.3 Deriving a call-by-need CPS transformation

Okasaki, Lee, and Tarditi [24] have also applied the factorization to obtain
a “call-by-need CPS transformation” Cneed . The lazy evaluation strategy
characterizing call-by-need is captured with memo-thunks [4]. Cneed is ob-
tained by extending C+

v to transform memo-thunks to CPS terms with store
operations (which are used to implement the memoization) and composing
it with the memo-thunk introduction.

Okasaki et al. optimize Cneed by using strictness information along the
lines discussed above. They also use sharing information to detect where
memo-thunks can be replaced by ordinary thunks. In both cases, optimiza-
tions are achieved by working with simpler thunked terms as opposed to
working directly with CPS terms.

5.4 Alternative CPS transformations

Thunks can be used to factor a variety of call-by-name CPS transformations.
In addition to those discussed here, one can factor a variant of Reynolds’s
CPS transformation directed by strictness information [14, 30], as well as a
call-by-name analogue of Fischer’s call-by-value CPS transformation [11, 32].

15

Obtaining the desired call-by-name CPS transformation via C+
v and T

depends on the representation of thunks. For example, if one works with TL
(see Figure 8) instead of T , Cv ◦ TL still gives a valid CPS simulation of call-
by-name by call-by-value. However, βi equivalence with Cn is not obtained
(i.e., λβi 6` Cn〈[e]〉 = (Cv ◦ TL)〈[e]〉), as shown by the following derivations.

(Cv ◦ TL)〈[x]〉 = Cv〈[x b]〉
= λk.(x b)k

(Cv ◦ TL)〈[e0 e1]〉 = Cv〈[TL〈[e0]〉 (λz.TL〈[e1]〉)]〉
= λk.(Cv ◦ TL)〈[e0]〉 (λy.(y (λz.(Cv ◦ TL)〈[e1]〉)) k)

The representation of thunks given by TL is too concrete in the sense that
the delaying and forcing of computation is achieved using specific instances
of the more general abstraction and application constructs. When composed
with TL, Cv treats the specific instances of thunks in their full generality,
and the resulting CPS terms contain a level of inessential encoding of delay
and force.

5.5 The factorization holds for types

Plotkin’s continuation-passing transformations were originally stated in
terms of untyped λ-calculi. These transformations have been shown to pre-
serve well-typedness of terms [12, 13, 18, 20]. The thunk transformation T
also preserves well-typedness of terms, and the relationship between C+

v ◦ T
and Cn is reflected in transformations on types [15, Sect. 4].

6 Related Work

Ingerman [16], in his work on the implementation of Algol 60, gave a general
technique for generating machine code implementing procedure parameter
passing. The term thunk was coined to refer to the compiled representation
of a delayed expression as it gets pushed on the control stack [29]. Since
then, the term thunk has been applied to other higher-level representations
of delayed expressions and we have followed this practice.

Bloss, Hudak, and Young [4] study thunks as the basis of an implementa-
tion of lazy evaluation. Optimizations associated with lazy evaluation (e.g.,
overwriting a forced expression with its resulting value) are encapsulated in

16

the thunk. They give several representations with differing effects on space
and time overhead.

Riecke [31] has used thunks to obtain fully abstract translations between
versions of PCF with differing evaluation strategies. In effect, he establishes
a fully abstract version of the Simulation property for thunks. The Indif-
ference property is also immediate for Riecke since all function arguments
are values in the image of his translation (and this property is maintained un-
der reductions). The thunk translation required for full abstraction is much
more complicated than our transformation T and consequently it cannot
be used to factor Cn. In addition, since Riecke’s translation is based on
typed-indexed retractions, it does not seem possible to use it (and the cor-
responding results) in an untyped setting as we require here.

Asperti and Curien formulate thunks in a categorical setting [2, 6]. Two
combinators freeze and unfreeze, which are analogous to delay and force
but have slightly different equational properties, are used to implement lazy
evaluation in the Categorical Abstract Machine. In addition, freeze and
unfreeze can be elegantly characterized using a co-monad.

In his original paper [27, p. 147], Plotkin acknowledges that thunks pro-
vide some simulation properties but states that “...these ‘protecting by a λ’
techniques do not seem to be extendable to a complete simulation and it
is fortunate that the technique of continuations is available.” [27, p. 147].
By “protecting by a λ”, Plotkin refers to a representation of thunks as
λ-abstractions with a dummy parameter, as in Figure 8. In a set of unpub-
lished notes, however, he later showed that the “protecting by a λ” technique
is sufficient for a complete simulation [28].

An earlier version of Section 3 appeared in the proceedings of WSA’92
[8]. Most of these proofs have been checked in Elf [26] by Niss and the first
author [23]. Elsewhere [14], we also consider an optimizing version of T that
does not introduce thunks for identifiers occurring as function arguments:

Topt〈[e x]〉 = Topt〈[e]〉x

Topt generates a language Topt which is more refined than T (referred to in
Theorem 6).

Finally, Lawall and Danvy investigate staging the call-by-value CPS
transformation into conceptually different passes elsewhere [17].

17

7 Conclusion

We have connected the traditional thunk-based simulationT of call-by-name
under call-by-value and Plotkin’s continuation-based simulations Cn and Cv
of call-by-name and call-by-value. Almost all of the technical properties
Plotkin established for Cn follow from the properties of T and C+

v (the ex-
tension of Cv to thunks). When reasoning about Cn and Cv, it is thus often
sufficient to reason about C+

v and the simpler simulation T . We have also
given several applications involving deriving optimized continuation-based
simulations for call-by-name and call-by-need languages and performing CPS
transformation after static program analysis.

Acknowledgements

Andrzej Filinski, Sergey Kotov, Julia Lawall, Henning Niss, and David
Schmidt gave helpful comments on earlier drafts of this paper. Thanks
are also due to Dave Sands for several useful discussions. Special thanks
to Gordon Plotkin for enlightening conversations at the LDPL’95 workshop
and for subsequently mailing us his unpublished course notes. Finally, we
are grateful to the reviewers for their lucid comments and their exhorta-
tion to be more concise, and to our editors, for their encouragement and
direction.

The commuting diagram was drawn with Kristoffer Rose’s XY-pic pack-
age.

References

[1] Torben Amtoft. Minimal thunkification. In Patrick Cousot, Moreno
Falaschi, Gilberto Filè, and Antoine Rauzy, editors, Proceedings of the
Third International Workshop on Static Analysis WSA’93, number 724
in Lecture Notes in Computer Science, pages 218–229, Padova, Italy,
September 1993.

[2] Andrea Asperti. A categorical understanding of environment machines.
Journal of Functional Programming, 2(1):23–59, January 1992.

[3] Henk Barendregt. The Lambda Calculus — Its Syntax and Semantics.
North-Holland, 1984.

18

[4] Adrienne Bloss, Paul Hudak, and Jonathan Young. Code optimization
for lazy evaluation. LISP and Symbolic Computation, 1:147–164, 1988.

[5] Geoffrey Burn and Daniel Le Métayer. Proving the correctness of com-
piler optimisations based on a global program analysis. Journal of
Functional Programming, 6(1), 1996.

[6] Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms
and Functional Programming, volume 1 of Research Notes in Theoreti-
cal Computer Science. Pitman, 1986.

[7] Olivier Danvy and Andrzej Filinski. Representing control, a study of
the CPS transformation. Mathematical Structures in Computer Science,
2(4):361–391, December 1992.

[8] Olivier Danvy and John Hatcliff. Thunks (continued). In Proceedings of
the Second International Workshop on Static Analysis WSA’92, volume
81-82 of Bigre Journal, pages 3–11, Bordeaux, France, September 1992.
IRISA, Rennes, France.

[9] Olivier Danvy and John Hatcliff. CPS transformation after strict-
ness analysis. ACM Letters on Programming Languages and Systems,
1(3):195–212, 1993.

[10] Philippe de Groote. A CPS-translation of the λµ-calculus. In Sophie
Tison, editor, 19th Colloquium on Trees in Algebra and Programming
(CAAP’94), number 787 in Lecture Notes in Computer Science, pages
47–58, Edinburgh, Scotland, April 1994.

[11] Michael J. Fischer. Lambda-calculus schemata. In Talcott [36], pages
259–288. An earlier version appeared in an ACM Conference on Proving
Assertions about Programs, SIGPLAN Notices, Vol. 7, No. 1, January
1972.

[12] Timothy G. Griffin. A formulae-as-types notion of control. In Paul
Hudak, editor, Proceedings of the Seventeenth Annual ACM Symposium
on Principles of Programming Languages, pages 47–58, San Francisco,
California, January 1990. ACM Press.

[13] Bob Harper and Mark Lillibridge. Polymorphic type assignment and
CPS conversion. In Talcott [36].

19

[14] John Hatcliff. The Structure of Continuation-Passing Styles. PhD the-
sis, Department of Computing and Information Sciences, Kansas State
University, Manhattan, Kansas, June 1994.

[15] John Hatcliff and Olivier Danvy. Thunks and the λ-calculus. Techni-
cal Report 95/3, DIKU, Computer Science Department, University of
Copenhagen, Copenhagen, Denmark, February 1995.

[16] Peter Z. Ingerman. Thunks, a way of compiling procedure statements
with some comments on procedure declarations. Communications of
the ACM, 4(1):55–58, 1961.

[17] Julia L. Lawall and Olivier Danvy. Separating stages in the
continuation-passing style transformation. In Susan L. Graham, editor,
Proceedings of the Twentieth Annual ACM Symposium on Principles of
Programming Languages, pages 124–136, Charleston, South Carolina,
January 1993. ACM Press.

[18] Albert R. Meyer and Mitchell Wand. Continuation semantics in typed
lambda-calculi (summary). In Rohit Parikh, editor, Logics of Programs
– Proceedings, number 193 in Lecture Notes in Computer Science, pages
219–224, Brooklyn, June 1985.

[19] Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93:55–92, 1991.

[20] Chetan R. Murthy. Extracting Constructive Content from Classical
Proofs. PhD thesis, Department of Computer Science, Cornell Univer-
sity, Ithaca, New York, 1990.

[21] Alan Mycroft. Abstract Interpretation and Optimising Transformations
for Applicative Programs. PhD thesis, University of Edinburgh, Edin-
burgh, Scotland, 1981.

[22] Flemming Nielson and Hanne Riis Nielson. Two-Level Functional Lan-
guages, volume 34 of Cambridge Tracts in Theoretical Computer Sci-
ence. Cambridge University Press, 1992.

[23] Henning Niss and John Hatcliff. Encoding operational semantics in
logical frameworks: A critical review of LF/Elf. In Bengt Nördstrom,
editor, Proceedings of the 1995 Workshop on Programming Language
Theory, Göteborg, Sweden, November 1995.

20

[24] Chris Okasaki, Peter Lee, and David Tarditi. Call-by-need and
continuation-passing style. In Carolyn L. Talcott, editor, Special issue
on continuations (Part II), LISP and Symbolic Computation, Vol. 7,
No. 1, pages 57–81. Kluwer Academic Publishers, January 1994.

[25] Michel Parigot. λµ-calculus: an algorithmic interpretation of classical
natural deduction. In Andrei Voronkov, editor, Proceedings of the Inter-
national Conference on Logic Programming and Automated Reasoning,
number 624 in Lecture Notes in Artificial Intelligence, pages 190–201,
St. Petersburg, Russia, July 1992.

[26] Frank Pfenning. Logic programming in the LF logical framework. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages
149–181. Cambridge University Press, 1991.

[27] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus.
Theoretical Computer Science, 1:125–159, 1975.

[28] Gordon D. Plotkin. Course notes on operational semantics. Unpub-
lished manuscript, 1978.

[29] Eric Raymond (editor). The New Hacker’s Dictionary. The MIT Press,
1992.

[30] John C. Reynolds. On the relation between direct and continuation
semantics. In Jacques Loeckx, editor, 2nd Colloquium on Automata,
Languages and Programming, number 14 in Lecture Notes in Computer
Science, pages 141–156, Saarbrücken, West Germany, July 1974.

[31] Jon G. Riecke. Fully abstract translations between functional lan-
guages. In Robert (Corky) Cartwright, editor, Proceedings of the Eigh-
teenth Annual ACM Symposium on Principles of Programming Lan-
guages, pages 245–254, Orlando, Florida, January 1991. ACM Press.

[32] Amr Sabry and Matthias Felleisen. Reasoning about programs in
continuation-passing style. In Talcott [36], pages 289–360.

[33] Amr Sabry and Philip Wadler. Compiling with reflections. In R. Kent
Dybvig, editor, Proceedings of the 1996 ACM SIGPLAN International
Conference on Functional Programming, Philadelphia, Pennsylvania,
May 1996. ACM Press.

21

[34] Paul Steckler and Mitchell Wand. Selective thunkification. In Bau-
douin Le Charlier, editor, Static Analysis, number 864 in Lecture Notes
in Computer Science, pages 162–178, Namur, Belgium, September 1994.

[35] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Technical Report
AI-TR-474, Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, Cambridge, Massachusetts, May 1978.

[36] Carolyn L. Talcott, editor. Special issue on continuations (Part I),
LISP and Symbolic Computation, Vol. 6, Nos. 3/4. Kluwer Academic
Publishers, December 1993.

22

Recent Publications in the BRICS Report Series

RS-96-19 John Hatcliff and Olivier Danvy. Thunks and theλ-
Calculus. June 1996. 22 pp. To appear inJournal of
Functional Programming.

RS-96-18 Thomas Troels Hildebrandt and Vladimiro Sassone.
Comparing Transition Systems with Independence and
Asynchronous Transition Systems. June 1996. 14 pp. To
appear in Montanari and Sassone, editors,Concurrency
Theory: 7th International Conference, CONCUR '96 Pro-
ceedings, LNCS 1119, 1996.

RS-96-17 Olivier Danvy, Karoline Malmkjær, and Jens Palsberg.
Eta-Expansion Does The Trick (Revised Version). May
1996. 29 pp. To appear inACM Transactions on Pro-
gramming Languages and Systems (TOPLAS).

RS-96-16 Lisbeth Fajstrup and Martin Raußen. Detecting Dead-
locks in Concurrent Systems. May 1996. 10 pp.

RS-96-15 Olivier Danvy.Pragmatic Aspects of Type-DirectedPartial
Evaluation. May 1996. 27 pp.

RS-96-14 Olivier Danvy and Karoline Malmkjær. On the Idempo-
tence of the CPS Transformation. May 1996. 15 pp.

RS-96-13 Olivier Danvy and Reńe Vestergaard. Semantics-Based
Compiling: A Case Study in Type-Directed Partial Eval-
uation. May 1996. 28 pp. To appear in8th Interna-
tional Symposium on Programming Languages, Imple-
mentations, Logics, and Programs, PLILP '96 Proceed-
ings, LNCS, 1996.

RS-96-12 Lars Arge, Darren E. Vengroff, and Jeffrey S. Vitter.
External-Memory Algorithms for Processing Line Seg-
ments in Geographic Information Systems. May 1996. 34
pp. A shorter version of this paper appears in Spirakis,
editor, Algorithms - ESA '95: Third Annual European
Symposium Proceedings, LNCS 979, 1995, pages 295–310.

