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Detecting Deadlocks in Concurrent Systems

Lisbeth Fajstrup and Martin Raußen

BRICS∗

Abstract

We use a geometric description for deadlocks occuring in scheduling
problems for concurrent systems to construct a partial order and hence a
directed graph, in which the local maxima correspond to deadlocks. Algo-
rithms finding deadlocks are described and assessed.
Keywords: deadlock, partial order, search algorithm, concurrency, dis-
tributed systems.

1 Introduction – from discrete to continuous

This paper deals with the detection of deadlocks motivated by applications in data
engineering, e.g., scheduling in concurrent systems. A description of deadlocks
in terms of the geometry of the progress graph had been given earlier by Carson
and Reynolds [1], and we stick to their terminology.

The main idea in [1] is to model a discrete concurrency problem in a continuous
geometric set-up: A system of n concurrent processes will be represented as
a subset of Euclidean space Rn. Each coordinate axis corresponds to one of
the processes. The state of the system corresponds to a point in Rn, whose
i’th coordinate describes the state of the i’th processor. An execution is then a
continuous increasing path within the subset from an initial state to a final state.

In recent years a number of people have used ideas from geometry and topol-
ogy to study concurrency: First of all, using geometric models allows one to use
spatial intuition; furthermore, the well-developped machinery from geometric and
algebraic topology can serve as tools to prove properties of concurrent systems.
A more detailed description of this point of view can be found in Gunawardena’s
paper [5] – including many more references – which contains a geometrical de-
scription of safety issues.
∗Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
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Example 1.1 Consider a centralized database, which is being acted upon by a
finite number of transitions. Following Dijkstra [2], we think of a transaction as
a sequence of P and V actions known in advance – locking and releasing various
records. We assume that each transaction starts at (local time) 0 and finishes at
(time) 1; the P and V actions correspond to sequences of real numbers between
0 and 1, which reflect the order of the P ’s and V ’s. The initial state is (0, . . . , 0)
and the final state is (1, . . . , 1). An example consisting of the two transactions
T1 = PaPbVbVa and T2 = PbPaVaVb gives rise to the following two dimensional
picture:

Unsafe

Un-
reachable

(0,0)

Pa Pb Vb Va

Pb

Pa

Va

Vb

T2

T1
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The shaded area represents states, which are not allowed in any execution
path, since they correspond to mutual exclusion. Such states constitute the
forbidden area. An execution path is a path from the initial state (0, 0) to a final
state (1, 1) avoiding the forbidden area and increasing in each coordinate - time
cannot run backwards.
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In Ex. 1.1, the dashed square marked ”Unsafe” represents an unsafe area:
There is no execution path from any state in that area to the final state (1, 1).
Actually it is also a deadlock. Likewise, there are no execution paths starting
at the initial state (0, 0) entering the unreachable area marked ”Unreachable”.
Concise definitions of these concepts will be given in §2.

Finding deadlocks and unsafe areas is hence the geometric problem of finding
n-dimensional “corners” as the one in Ex. 1.1. Carson and Reynolds indicated
in [1] an iterative procedure to achieve this. We give a much shorter treatment
by translating the underlying geometry to properties of a directed graph. In
particular, deadlocks correspond to local maxima in the associated partial order.

In general, the forbidden area may represent more complicated relationships
between the processes like for instance general k-semaphores, where a shared
object may be accessed by k, but not k + 1 processes. This is reflected in the ge-
ometry of the forbidden area F , that has to be a union of higher dimensional rect-
angles or “boxes”. The set-up allows us to describe, for instance, k-semaphores,
asynchronous message passing and other distributed systems as long as there are
no cycles.

Moreover, similar partially ordered sets can be defined and investigated in
more general situations than those given by Cartesian progress graphs. By the
same recipe, deadlocks can be found in concurrent systems with a variable number
of processes involved. In that case, one has to consider partial orders on sets
of “boxes” of variable dimensions. This allows the description and detection
of deadlocks in the Higher Dimensional Automata of [6] and [7] (cf. [4] for an
exhaustive treatment) as long as these have no cycles. Certainly, this latter
restriction can be overcome by considering toral geometries (instead of rectangles)
with a number of vector fields .

Furthermore, non determinism can be modelled by glueing partial orders to-
gether along the nodes where decisions have to be made.

The geometrical and combinatorial definitions and results from §2 and §3 are
applied in §4 to describe and assess two algorithms for the detection of deadlocks.

This paper was inspired by but is not depending on the insight provided by
tools from algebraic topology as used in [3].

Both authors participated in the workshop “New Connections between Math-
ematics and Computer Science” at the Newton Institute at Cambridge in Novem-
ber 1995. We thank the organisers for the opportunity to get new inspiration.

2 From continuous to discrete

Let I denote the unit interval, and In = I1×· · ·×In the unit cube in n-space. We
call a subset R = [a01, a11] × · · · × [a0n, a1n] an n-rectangle, and we consider a set
F =

⋃r
1 Ri that is a finite union of n-rectangles Ri = [ai01, a

i
11]×· · ·×[ai0n, a

i
1n]. We

think of F as the “forbidden region”. Furthermore, suppose that 0 = (0, . . . , 0) 6∈
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F , and 1 = (1, . . . , 1) 6∈ F.

Definition 2.1 1. A continuous path α : I → In is called increasing, if all
compositions pri ◦ α : I → I, 1 ≤ i ≤ n, are increasing.

2. A point x ∈ In \ F is called admissible, if there exists an increasing path
α : I → In \ F with α(0) = x and α(1) = 1; and unsafe else.

3. Let A ⊂ In denote the admissible region containing all admissible points,
and U ⊂ In the unsafe region containing all unsafe points.

In semaphore programs, the n-rectangles Ri characterize states where two
transactions have accessed the same record, a situation which is not allowed in
such programs. Such “mutual exclusion”-rectangles have the property that only
two of the defining intervals are proper subintervals of the Ij. Furthermore, serial
execution should always be possible, and hence F should not intersect the 1-
skeleton of In consisting of all edges in the unit cube. These special features will
not be used in the present section.

For 1 ≤ j ≤ n, the set {ai0j, a
i
1j|1 ≤ i ≤ r} ⊂ Ij gives rise to a partition of Ij

into at most (2r +1) subintervals: Ij =
⋃

Ijk, with an obvious ordering ≤ on the
subintervals Ijk. The partition of intervals gives rise to a partition R of In into
n-rectangles I1k1 × · · · × Inkn with a partial ordering given by

I1k1 × · · · × Inkn ≤ I1k′1 × · · · × Ink′n ⇔ Ijkj ≤ Ijk′j , 1 ≤ j ≤ n.

Remark 2.2 1. Admissibility with respect to the forbidden region F can be
defined in terms of these n-rectangles: Two points in the same n-rectangle
of the partition above are either both admissible or both unsafe points.

2. The rectangle R1 containing 1 is the global maximum for R, the rectangle
R0 containing 0 is the global minimum.

The partially ordered set (R, ≤) can be interpreted as a directed, acyclic graph,
denoted (R, →): Two n-rectangles R, R′ ∈ R are connected by an edge from R
to R′ – denoted R → R′ – if R ≤ R′ and if R and R′ share a face. R′ is then
called an upper neighbour of R, and R a lower neighbour of R′.

For any subset R′ ⊂ R we consider the full directed subgraph (R′, →). Par-
ticularly important is the subgraph RF̄ consisting of all rectangles R ⊂ In \ F .

Definition 2.3 1. Let R′ ⊂ R be a subgraph. An element R ∈ R′ is a local
maximum if it has no upper neighbours in R′. Local minima have no lower
neighbours.

2. A rectangle R ∈ RF̄ is called a deadlock if R 6= R1, and if R is a local
maximum with respect to RF̄ .

4



3. An unsafe n-rectangle R ∈ RF̄ is characterized by the fact, that any in-
creasing path α starting at R hits a deadlock sooner or later [1].

Remark 2.4 1. An element R ∈ RF̄ is a deadlock if R 6= R1, and if all
its upper neighbours in R are contained in F . Deadlocks in RF̄ are the
maximal corners of the unsafe regions.

2. Unreachable rectangles can be defined similarly. Local minima (6= R0) are
their minimal corners.

In order to find the set U of all unsafe points – which is the union of all unsafe
n-rectangles – apply the following

Algorithm 2.5 1. Remove F from In giving rise to the directed graph (RF̄ , →).

2. Find the set S1 of all deadlock n-rectangles (local maxima) with respect to
RF̄ . Let F1 = F ∪ S1.

3. Let RF1
denote the full directed subgraph on the set of rectangles in In \F1,

i.e., after removing S1.

4. Find the set S2 of all deadlock n-rectangles with respect to RF1 . Let F2 =
F1 ∪ S2.

5. etc.

Notice that it is enough to search among the lower neighbours of elements in
F in step 2, and that the only candidates for deadlocks in step 4 are the lower
neighbours of elements of S1. Since there are only finitely many rectangles, this
process stops after a finite number of steps, ending with Sr and yielding the
following result:

Theorem 2.6 1. The unsafe region is determined by U =
⋃r

1 Si.

2. The set of admissible points is A = In \ (F ∪ U). Moreover, any increasing
path starting in A will eventually reach 1.

Proof: Only the last assertion has still to be shown. The set A is non-empty since
it contains the global maximum R1. Now fix any increasing path starting from
an arbitrary n-rectangle in A. It will run through (finitely many) n-rectangles
in A until it reaches a local maximum. This local maximum must be the global
maximum R1, since A does not contain any deadlock.

2
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Remark 2.7 We suggest that a better geometric understanding of the situation
can lead to much quicker algorithms finding the unsafe regions: Instead of search-
ing among lower neighbours one at a time, one would like to find their extreme
points: It is not difficult to see that every unsafe region is again a union of n-
rectangles with extent (i.e., maximal corner) the deadlock. We conjecture that
the vertices (i.e, minimal corners) of those unsafe n-rectangles can be found by
looking at certain critical points on the hyperplanes {xi = ai0j} defining the dead-
lock; see also [3]. Details – using Morse theory – will be worked out elsewhere.

3 Deadlocks in semaphore programs

In this section, we give an alternative description of the deadlocks discussed in
§2 in the case of a semaphore program. Remember that deadlocks occur at some
point of an execution, when every transaction demands access to a record, which
is already locked by another transaction. Hence one should keep track of the set
of records that are already accessed by some transaction at a given time. As in
Ex. 1.1, we follow Dijkstra [2] in our definition of records and transactions:

Definition 3.1 Let S be a finite set, and let {T1, T2, · · · , Tn} be a set of words Ti
on the alphabet {Pu, Vu|u ∈ S}. For an initial partial word Ti,j, j > 0, consisting
of the first j symbols of Ti, and every u ∈ S, let a(u, i, j) = #{Pu ∈ Ti,j|u ∈
S} − #{Vu ∈ Ti,j|u ∈ S}. We require that

1. a(u, i, j) ∈ {0, 1} for any choice of u, i and j.

2. When j equals the length of the word Ti, i.e., j is maximal, then a(u, i, j) =
0 for any u ∈ S.

Furthermore we define A(Ti,j) = {u ∈ S|a(u, i, j) = 1}, 1 ≤ i ≤ n.

In the language of records and transactions, S is the set of records, {T1, T2, · · · , Tn}
is the set of transactions and A(Ti,j) is the set of records accessed by Ti after j
steps.

Deadlocks can be characterized as follows:

Proposition 3.2 Let T1,j1 ≤ T1, T2,j2 ≤ T2, · · · , Tn,jn ≤ Tn be a collection of
initial partial strings such that not all Ti,ji = Ti. The system of transactions is
in a deadlock at time (j1, j2, ..., jn) if and only if

1. ∀i 6= k : A(Ti,ji) ∩ A(Tk,jk) = ∅;

2. For each i, either Ti,ji = Ti, or there is a k 6= i such that A(Ti,ji+1) ∩
A(Tk,jk) 6= ∅.

6



Proof: The characterization above is an immediate translation of the conditions
for a deadlock found in §2: The condition that not all Ti,ji = Ti means, that the
system is not in the final position R1. Furthermore condition 1) expresses that
the state (n-rectangle) considered is not already in the forbidden region F , while
condition 2) states that any of its upper neighbours is contained in F . This is
exactly what characterizes a total deadlock.

2

4 Algorithms and complexity considerations

This final section describes two algorithms for finding deadlocks in general sit-
uations and gives estimates concerning their complexity. Certainly, one can do
much better under special well-described circumstances.

The first algorithm

is based on the description of deadlocks in §2 and involves the following data
structures: We represent the partial order R by the associated directed graph.
We assume that a node (respresenting an n-rectangle) is equipped with pointers
to its lower neighbours, i.e., its parents, and to its upper neighbours, i.e., its sons.
Furthermore, every node is equipped with an integer record counting the number
of sons, two booleans indicating whether the node is in F , and whether it is a
leaf, and a pointer to a list of leaves. Then a rough sketch of the algorithm is as
follows:

1. Mark all the n-rectangles which are in F and nil all pointers to and from
these, i.e., discard their parents and sons.

2. The deadlocks are then all the leaves of the resulting graph except R1.

More specifically: Let F =
⋃r

1 Ri. Then, for step 1 in the algorithm, go
through all the Ri ⊂ F ; if a node representing an n-rectangle R ⊂ Ri is not yet
marked in F , mark it, nil the pointers to its sons and nil all pointers to it. If
one of the parents becomes a leaf by this operation, add it to a list representing
“potential deadlocks”, and set a pointer to its place in the list. If R itself was
marked a leaf previously, then remove it from the list of potential deadlocks.

If the node has already been marked in F , do nothing. When this is done
for all nodes in R =

⋃r
1 Ri, the list of potential deadlocks contains only actual

deadlocks.

We let the volume V ol(S) of a set S of nodes (n-rectangles) in R be the
number of its elements. For every element R ∈ Ri, one has to check, whether
R had been marked earlier. Only if the answer is no, the 2n nil operations and

7



possibly, a single addition to, resp. removal from, the list, has to be performed.
This implies:

Proposition 4.1 In a concurrent system of n transactions with a forbidden
region F =

⋃r
1 Ri, the deadlocks can be found by an algorithm of complexity

nV ol(F ) + Σr
1V ol(Ri).

Remark 4.2 This estimate is worst, when the term Σr
1V ol(Ri) dominates the

term nV ol(F ), i.e., when F consists of many large n-rectangles with large over-
lap. The absolute worst case occurs in the following situation of a two-phase
locked semaphore program, where n transactions access k records: Suppose that
each transaction wants access to each record, and that each transaction frees the
records in the same order as it locks them. Then there are N = (2k + 1)n states,

and moreover k

(
n
2

)
n-rectangles Ri, which all have volume k2(2k+1)n−2 . The

volume of F is at most (2k)n. Hence the complexity is n2kN .
Examples of this kind have a high amount of global synchronization, which

should be avoided in the programs involved. Hence one would expect a much
better behaviour in the average situation. In fact, if nV ol(F ) is the dominating
part, the complexity is at most nN .

The second algorithm

below yields more favourable complexity estimates if the number r of n-rectangles
Rj ⊂ F modelling mutual exclusions is somehow restricted.Let again F =

⋃r
1 Ri.

Let RF , RRi, denote the partial orders on the set of rectangles in F , resp. Ri.

Definition 4.3 1. Let R denote the directed graph on n-rectangles in In from
above, and let R′ be a full subgraph. Then the lower boundary ∂−R′ of R′
is the set {R ∈ R′|R has a lower neighbour outside R′}.

2. An n-rectangle R is called a deadlock candidate if it is contained in RF̄ and
if all of its upper neighbours are contained in at least one of the sets ∂−RRi.

Obviously, any deadlock is a deadlock candidate. The algorithm below con-
sists of two steps:

1. Find (and mark) all deadlock candidates;

2. Find out, which of those are actually deadlocks.

For F =
⋃r

1 Ri, let rj ≤ r denote the number of n-rectangles Rj whose
projection to the interval Ij is a proper subinterval, 1 ≤ j ≤ n. An n-rectangle
is a deadlock candidate, if its “extent”, i.e., its maximal vertex, is contained in
an intersection

⋂n
1{xj = aij} of hyperplanes with aij = ai0j or aij = 1. Hence, the

8



number of deadlock candidates is given by
∏n

1(rj + 1). Since every n-rectangle
in R can be labelled by its extent, every deadlock candidate is found in a single
step. In order to find out whether a deadlock candidate actually is a deadlock,
one has to check whether

1. R ∈ RF̄ ;

2. Each of the n upper neighbours of R is contained in RF .

Each of these n +1 steps involves 4r operations, i.e., 4 inequality checks for each
of the r n-rectangles constituting F . Multiplying these estimates, and comparing
with the number of states N =

∏n
1(2rj + 1) of the system, we get the following

complexity estimate:

Proposition 4.4 In a concurrent system with a forbidden region F =
⋃r

1 Ri, the
deadlocks can be found by an algorithm of order nr

2n−2 N .

More concrete estimates can be given in the case of a semaphore program:

Proposition 4.5 For a semaphore program with n transactions and at most r
mutual exclusions, the deadlocks can be found by an algorithm of order 2n+2( r

n
)nrn.

In particular, if there is a constant C such that r ≤ Cn, then the number of steps
can be estimated by 2n+2Cn+1n2. The algorithm is of order n2 for C ≤ 1

2.

Proof: It was noted in the beginning of §2 for the model of a semaphore
program, that the projections of one n-rectangle Ri to the coordinate intervals Is
will yield the whole interval Is in n − 2 cases, and a proper subinterval [as0i, a

s
1i]

in 2 cases. Hence, one has to find the maximal value of
∏n

1 (rj + 1) under the
constraint 2r =

∑n
1 rj . This maximum occurs for rj = 2r

n
for all 1 ≤ j ≤ n. As

in the general case, the estimate 2n( r
n
)n has to be multiplied by 4nr.

2

Remark 4.6 1. It would be interesting to know, whether it is reasonable to
assume that r grows linearly as a function of n.

2. For several applications, a relative situation should be studied: Given a
deadlockfree transaction system, to which a single transaction is added.
How difficult is it to decide, whether the new system is deadlockfree, resp.,
where the new deadlocks can be found?
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