
B
R

IC
S

R
S

-96-6
M

.G
oldberg:

A
n

A
dequate

Left-A
ssociated

B
inary

N
um

eralS
ystem

in
theλ

-C
alculus

BRICS
Basic Research in Computer Science

An Adequate Left-Associated Binary
Numeral System in theλ-Calculus
(Revised Version)

Mayer Goldberg

BRICS Report Series RS-96-6

ISSN 0909-0878 March 1996



Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)



An Adequate
Left-Associated Binary Numeral System

in the λ-Calculus
(revised version∗)

Mayer Goldberg
Computer Science Department

Indiana University†

(mayer@cs.indiana.edu)

March 14, 1996

Abstract

This paper introduces a sequence of λ-expressions modelling the bi-
nary expansion of integers. We derive expressions computing the test
for zero, the successor function, and the predecessor function, thereby
showing the sequence to be an adequate numeral system. These func-
tions can be computed efficiently. Their complexity is independent of
the order of evaluation.

Keywords: Programming calculi, λ-calculus, functional program-
ming.

∗This work was carried out while visiting BRICS (Basic Research in Computer Science,
Centre of the Danish National Research Foundation). This report is a revision of the
BRICS Technical Report RS-95-42 [6].
†Bloomington, IN 47405, USA.

1



1 Introduction

1.1 Numeral Systems in the λ-Calculus

Numbers are traditionally represented on computers with a size proportional
to their logarithm. Traditional numeral systems in the λ-calculus, such as
Church numerals [1, 4] and Barendregt numerals [1], however, typically in-
volve linear representations of numbers. In such systems, the size of the
representation of a number n is proportional to this number.

In this paper, we present an adequate binary numeral system for the λ-
calculus, where the successor function, the predecessor function, and the test
for zero are implemented efficiently. This implementation does not depend
on the order of evaluation.

The particular representation used in this paper is due to H. den Hoed [3].
The problem of showing that efficient number-theoretic functions are defin-
able for this system was given as a challenge to the author by H.P. Barendregt
during a visit to Indiana University in 1990 [2].

1.2 Prerequisites and Notation

We assume some familiarity with the λ-calculus [1, 4]. The identity combi-
nator is given by I = λx.x. The boolean values true and false are denoted by
T = λxy.x and F = λxy.y respectively. Conjunction is denoted by and =
(λxy.(x (y T F) F)). Selectors are given by Un

k = λx0 · · ·xn.xk where k ≤ n.
The ordered n-tuple 〈x1, . . . , xn〉 is denoted by [x1, · · · , xn] = λs.(s x1 · · ·xn).
The k-th projection of an ordered n-tuple is denoted by πnk = λx.(x Un−1

k−1).
The length of a λ-term M is the number of symbols it occupies, and is noted
as ||M ||. Finally, the reflexive, transitive closure of the one-step reduction
−→ is given by −→→. A numeral system is adequate if all recursive functions
are λ-definable for it.

2 Binary Numerals

2.1 Representation

Since various data structures can be implemented in the λ-calculus, we could
select any one of several different binary representations for our numerals.

2



We choose to use, however, a representation that is unique to the λ-calculus:
2.1.1 Definition: (den Hoed) The Sequence bin = {binn}n∈ω. We
define binn as follows: Let the variable z (pronounced “zero”) represent a
0-bit, and let the variable w (pronounced: “wan”) represent a 1-bit. Let
b1b2 · · · bk, bj ∈ {z, w}, be a sequence of bits corresponding to the binary
expansion of n, such that b1 and bk are the low and the high bits respectively.
Then

binn = λzw.(b1 · · · bk)
The sequence of bits is thus represented by a left-associated application of
z’s and w’s.
2.1.2 Examples:

bin0 = λzw.z
bin1 = λzw.w
bin2 = λzw.(z w)
bin3 = λzw.(w w)

bin4 = λzw.(z z w)
bin5 = λzw.(w z w)
bin6 = λzw.(z w w)
bin7 = λzw.(w w w)

Our goal in this paper is to show that the sequence bin is an adequate nu-
meral system, and that the successor function, the predecessor function, and
the test for zero can all be computed on the bits directly, without expanding
their argument into some linear representation. In our Ph.D. thesis [8], we
show similarly that addition, subtraction, multiplication, quotient, remain-
der, and the test for equality can also be computed on the bits directly.

2.2 Uniqueness of Representation

One problem that affects all n-ary numeral systems is uniqueness: For exam-
ple, in our system, λzw.w, λzw.(w z z), and λzw.(w z z z z z) all represent
the number 1. In the λ-calculus, however, it is more elegant for two numerals
representing the same number to have the same normal form.

We thus propose the following two-fold compromise:

• We define a test for zero (and ultimately, the test for equality) that
ignores trailing zero bits.

• We define the predecessor function (and ultimately, addition, subtrac-
tion, multiplication, quotient, remainder, etc.) not to leave trailing
zero bits.

3



Thus, the functions we provide do not introduce trailing zeros in their results,
and ignore them in their arguments. Another solution, which is simpler to
derive and to verify, would be to define a “normalisation” combinator, taking
a binary numeral and removing its trailing zero bits. This solution, however,
is less efficient.

2.3 Size of Our Representation

The size of binn, our representation of n, is proportional to the number of bits
in the binary expansion of n, i.e., to log n. It is also clear that bin numerals
are as concise (in the sense of having the least number of symbols) as possible
for a binary numeral system in the λ-calculus.

What is not as obvious, but just as important if bin is to be practical for
implementation on a computer, is whether the various arithmetic operations
that we might want to carry out on this representation can be computed
directly on the bits, without expanding our binary representation to a less
compact one. We do not have the convenience, for example, of switching to
and from one of the well-known, linear numeral systems in order to define
arithmetic functions in one system in terms of the other system, as Baren-
dregt does in Lemma 6.4.5 and Corollary 6.4.6 of his reference book on the
λ-calculus [1, Page 140]. We want to avoid both explicit expansion, as well
as expansion that is implicit in a particular reduction sequence.

The following definitions let us express formally just how much can a
given expression “expand”:
2.3.1 Definition:

i. Finitely Wide Terms. A λ-term M is finitely wide if there exists a
number N > 0, such that if for all λ-terms x, if M �

R
x then ||x|| ≤ N .

ii. The Width of a Term, Width.1 The width of a finitely wide term M ,
denoted by Width(M) is given by

Width = sup{||x|| : M−→→x}

The following two points should be noted:

1 Width is wd in Gothic letters.

4



• Some λ-terms do not have a finite width, but have a normal form. For
example, let M be defined as follows:

M = ((λf.((λx.(f (x x))) (λx.(f (x x))))) (λxy.y) I)

It is simple to verify that M−→→I. The underlined sub-expression,
however, does not have a normal form, and expands arbitrarily. We
can thus have reduction sequences that result in expressions of arbitrary
width. Therefore M does not have a finite width.

• Some λ-terms do not have a normal form, but have a finite width. For
example, let M be defined as follows:

M = ((λx.(x x)) (λx.(x x)))

It is simple to verify that M −→ M , and so M has a finite width, but
no normal form.

The width of a λ-term is used in the proof that a test for zero, the
successor function, and the predecessor function can all be computed without
expanding the representation of their arguments beyond log n.

3 Decision Logic Tables

A Decision Logic Table (DLT) [9, 10] is a tabular form for describing a
program segment driven by an n-variable boolean function. The format of a
DLT is as follows:

list of variable names [or
boolean conditions]

list of all possible combina-
tions of values of variables [or
values of boolean conditions]

list of actions to be taken at
a given combination of values

selections of combinations of
actions as a function of com-
binations of variables

In some situations, not all relevant boolean conditions can be considered
in parallel. For example, given two variables a and b, the test of whether b
is equal to zero should precede the division of a by b, and therefore any test

5



on the quotient of a and b. Such situations have traditionally been handled
by nesting or dispatching to other DLT’s as one of the actions.

The following example is used to illustrate the use of a DLT.
Consider a simplified process of evaluating a paper for publication. A

paper can be either accepted or rejected, and the author can be requested to
make revisions to the paper before it can appear in print. Deciding what to
do with the paper depends on the answers to the following three questions:
(a) Is the material in the paper correct? (b) Is the main result of the paper
of interest? (c) Is the paper written clearly? The following DLT associates
combinations of answers to these questions with combinations of actions to
be taken:

The [Highly] Simplified Process of
Evaluating a Paper for Publication

Is the paper correct? Yes Yes Yes Yes No No No No
Is the result interesting? Yes Yes No No Yes Yes No No
Is the paper clear? Yes No Yes No Yes No Yes No
Reject the paper

√ √ √ √ √ √

Accept the paper
√ √

Ask the author to revise
√

Note that when the results in the paper are both correct and interesting, but
not clearly written, a combination of two actions takes place: The paper is
accepted for publication, and the author is asked to revise the paper.

DLT’s can be formally manipulated and simplified, as well as automati-
cally compiled into computer programs. Since they are not in common use
today, we shall avoid the traditional DLT abbreviations, in order to preserve
clarity.

In this paper we use DLT’s in deriving expressions for the successor and
predecessor functions on bin.

4 Arithmetic Functions

4.1 Testing for Zero

4.1.1 Proposition: There exists a combinator Zero?
bin

such that for
all n ∈ N we have

6



i. (Zero?
bin

bin0) −→→ T
(Zero?

bin
binn+1) −→→ F

ii. Width(Zero?
bin

binn) = O(log n).

Proof:

i. To compute the zero predicate, we apply a given numeral to two λ-
expressions, substituting those λ-expressions respectively for z and w,
in the body of the numeral. The problem of testing for zero thus
reduces to the problem of identifying whether w occurs in the body of
the numeral.

We make use of the following property of the application of two ordered
pairs (compare with Barendregt’s hint in his Problem 6.8.15 (ii) [1,
Page 149]):

([a1, b1] [a2, b2]) −→ ((λx.(x a1 b1)) (λx.(x a2 b2)))
−→ ((λx.(x a2 b2)) a1 b1)
−→ (a1 a2 b2 b1)

In particular, we have:

([M, b1] [M, b2]) = (M M b2 b1)

We define M as follows:

M = λmb2b1.[m, (and b1 b2)]

By pairing M with F and T we obtain DF and DT respectively:

DF = [M,F]
DT = [M,T]

We now have

(DF DF) −→→ DF (DT DF) −→→ DF

(DF DT) −→→ DF (DT DT) −→→ DT

7



For any n > 0, the binary expansion of n contains the 1-bit, and so w
occurs free in the body of binn. Thus when we substitute DF for w in
the body of binn, the result will be DF . This can be verified formally
by a straightforward induction argument on the number of bits in the
binary expansion of n. To obtain the result of the test for zero, we only
need to take the second projection. We thus define the test for zero as
follows:

Zero?
bin

= λn.(π2
2 (n DT DF))

Note that as a byproduct of our construction, this definition of
Zero?

bin
ignores trailing zeros, for example:

(Zero?
bin

(λzw.(z w z z z))) −→→ F

(Zero?
bin

(λzw.(z z z z z))) −→→ T

ii. Let

C = Width(Zero?
bin

) + max{Width(π2
2([M, b])) : b ∈ {F,T}}

r = max{Width([M, b1] [M, b2]) : b1, b2 ∈ {F,T}}

For any n ∈ N, binn = λzw.b1 · · · bk, we have:

Width(Zero?
bin

binn) ≤ C + Width(binn) + k · r

= O(k)
= O(log n)

�

8



4.2 The Successor Function

4.2.1 Proposition:

i. There exists a combinator Succ
bin

, such that for all n ∈ N we have

(Succ
bin

binn) −→→ binn+1.

ii. Width(Succ
bin

binn) = O(log n).

Proof:

i. To compute the successor function on binn, we need to implement a
finite state automaton consisting of three states: The first state, S0,
propagates the carry; The second state, S1, goes through the remaining
bits after the carry operation has been performed; The third state, S2,
is the final state.

The automaton is depicted in the following diagram:

//start
S0
W V U TP Q R S E DB C 1@ AOO //

0
S1
W V U TP Q R S E DB C 1@ AOO B CE D 0G F��

//
ε S2

W V U TP Q R SO N M LH I J K
In computing a successor of binn, we apply binn to three expressions:
The first two substitute for the bits in the body of binn, and the third
expression is used to mark the end of the stream of bits. The ex-
pressions are defined so that when they are substituted into the body
of binn, the resulting sequence of applications drives the automaton,
constructing the body of binn+1. In moving from state to state, the re-
construction of the partial body of binn+1 will need to be carried along
and maintained together with some additional information. Therefore,
each expression needs to have access to

(i) An encoding σ of the current state (i.e. of either S0 or S1).

(ii) An encoding of whether the given expression is substituted for a
0-bit or a 1-bit, or is a mark for the end of the stream of bits
(noted by ε in the diagram). This is denoted by b.

9



(iii) A partial reconstruction of the body of the successive numeral,
denoted by r.

The values of σ and b determine the value of the given expression.
Any finite set of λ-expressions, for which we have a test of equality
could therefore be used for encoding (i) and (ii). Furthermore, since
the encodings in (i) and (ii) serve only as tags upon which to dispatch,
we can eliminate the test altogether by using selectors, i.e. expressions
of the form

Un
k = λx0 · · ·xn.xk

to encode the various choices. We store this information, and a proce-
dure m in an ordered 4-tuple. Again, observe that:

([m, b1, r1, σ1][m, b2, r2, σ2])
−→ ((λx.(x m b1 r1 σ1)) (λx.(x m b2 r2 σ2)))
−→ ((λx.(x m b2 r2 σ2)) m b1 r1 σ1)
−→ (m m b2 r2 σ2 b1 r1 σ1)

As one can see, m is passed a copy of itself, as well as all the information
stored in both ordered 4-tuples (both 4-tuples have m is common). On
the basis of the information it is passed, m can return the body of the
successive numeral or it can construct a new ordered 4-tuple, in which
case the computation continues.

Since the particular behaviour of m depends upon many variables, we
use Decision-Logic Tables to describe this behaviour in a concise man-
ner.

The main DLT in our proof distinguishes between the different states
in the automaton. A separate DLT is provided for each state, with the
exception of the final state (which does nothing). The three DLT’s are
given below:

Main DLT: Determining State
Value of σ1 U1

0 U1
1

Dispatch to the DTL of S0
√

Dispatch to the DTL of S1
√

10



The DLT at S0

Value of b1 U2
0 U2

0 U2
0 U2

1 U2
1 U2

1 U2
2 U2

2 U2
2

Value of b2 U2
0 U2

1 U2
2 U2

0 U2
1 U2

2 U2
0 U2

1 U2
2

[m, b2, (r1 w), U1
1]

√ √

return with (r1 w)
√

[m, b2, (r1 z), U1
0]

√ √

return with (r1 z w)
√

irrelevant
√ √ √

The DLT at S1

Value of b1 U2
0 U2

0 U2
0 U2

1 U2
1 U2

1 U2
2 U2

2 U2
2

Value of b2 U2
0 U2

1 U2
2 U2

0 U2
1 U2

2 U2
0 U2

1 U2
2

[m, b2, (r1 z), U1
1]

√ √

return with (r1 z)
√

[m, b2, (r1 w), U1
1]

√ √

return with (r1 w)
√

irrelevant
√ √ √

The actions to be taken at each state are a function of b1 and b2. In
both states, the computation of the body of binn+1 terminates when
b2 = U2

2. Also, the situation where b1 = U2
2 cannot occur (since for all

n, binn abstracts over at least one bit), and so the return value in such
a situation is irrelevant; We could return any value whatsoever, so we
arbitrarily pick the I combinator.

The DLT’s for the states S1 and S2 specify different actions to be taken
upon different possible values of b1 and b2. In general, we would require
a selection mechanism of the form:

Case bi
Tag1 =⇒ Action1

Tag2 =⇒ Action2

Tag3 =⇒ Action3

Esac

11



But since we are using selectors for tags, i.e. expressions of the form
Uk
r , for 0 ≤ r ≤ k ≤ 2, we can use the following for our selection

mechanism:

(bi Action1 Action2 Action3)

All three DLT’s are combined in M :

M = λmb2r2σ2b1r1σ1.(σ1 (b1 (b2 [m, b2, (r1 w), U1
1]

[m, b2, (r1 w), U1
1]

(r1 w))
(b2 [m, b2, (r1 z), U1

0]
[m, b2, (r1 z), U1

0]
(r1 z w))

I)
(b1 (b2 [m, b2, (r1 z), U1

1]
[m, b2, (r1 z), U1

1]
(r1 z))

(b2 [m, b2, (r1 w), U1
1]

[m, b2, (r1 w), U1
1]

(r1 w))
I))

We now define the successor function in terms of M as follows:

Succ
bin

= λnzw.(n [M, U2
0, I, U

1
0]

[M, U2
1, I, U

1
0]

[M, U2
2, I, U

1
0])

ii. The proof is similar to the proof of Proposition 4.1.1, albeit more te-
dious. It can be found in our Ph.D. thesis [8]. �

12



4.3 The Predecessor Function

4.3.1 Proposition:

i. There exists a combinator Pred
bin

such that for all n ∈ N we have

(Pred
bin

binn+1) −→→ binn.

ii. Width(Pred
bin

binn) = O(log n).

Proof:

i. To compute the predecessor function on binn, we need to implement a
finite state automaton consisting of three states: The first state, S0,
propagates the carry; The second state, S1, goes through the remaining
bits after the carry operation has been performed; The third state, S2,
is the final state.

The automaton is depicted in the following diagram:

//start
S0
W V U TP Q R S B CE D 0G F��

//
1@ A B C

ε

OO
S1
W V U TP Q R S E DB C 1@ AOO B CE D 0G F��

//
ε S2

W V U TP Q R SO N M LH I J K
In computing the predecessor of binn, just as in computing its succes-
sor, we apply binn to three expressions: The first two substitute for the
bits in the body of binn, and the third expression is used to mark the
end of the stream of bits. Just as was the case in defining the successor
function, the expressions are defined so that when they are substituted
into the body of binn+1, the resulting sequence of applications drives
the automaton, constructing the body of binn. In moving from state to
state, the reconstruction of the partial body of binn will need to be car-
ried along and maintained together with some additional information.
Therefore each expression needs to have access to

(i) An encoding σ of the current state (i.e. of either S0 or S1).

13



(ii) An encoding of whether the given expression is substituted for a
0-bit, a 1-bit, or is a mark for the end of the stream of bits. This
is denoted by b.

(iii) A partial reconstruction of the body of the preceding numeral, un-
der the assumption that additional z’s in the number are trailing,
and should be ignored. This reconstruction is denoted by r1.

(iv) A partial reconstruction of the body of the preceeding numeral,
under the assumption that additional z’s in the number are not
trailing, and should not be dropped. This reconstruction is de-
noted by r2.

The values of (i) and (ii) are the same as the corresponding ones in the
construction of the successor. Since the predecessor of a bin numeral
may have one less bit, we generate two reconstructions of the numeral,
in parallel, and commit to one of the two when either a 1-bit or the
terminal mark are encountered. Together, (iii) and (iv) correspond to
(iii) in the construction of the successor. We store this information, as
well as a procedure m, in an ordered 5-tuple. As usual by now, observe
that:

([m, b1, r11, r12, σ1] [m, b2, r21, r22, σ2])
−→ ((λx.(x m b1 r11 r12 σ1))

(λx.(x m b2 r21 r22 σ2)))
−→ ((λx.(x m b2 r21 r22 σ2))

m b1 r11 r12 σ1)
−→ (m m b2 r21 r22 σ2 b1 r11 r12σ1)

As one can see, m is passed a copy of itself, and all the information
stored in both ordered 5-tuples (again, both ordered 5-tuples have m
in common). We use three DLT’s to represent the behaviour of m:

Main DLT: Determining State
Value of σ1 U1

0 U1
1

Dispatch to the DTL of σ0
√

Dispatch to the DTL of σ1
√

14



The DLT at σ0

Value of b1 U2
0 U2

0 U2
0 U2

1 U2
1 U2

1 U2
2 U2

2 U2
2

Value of b2 U2
0 U2

1 U2
2 U2

0 U2
1 U2

2 U2
0 U2

1 U2
2

[m, b2, (r12 w), (r12 w), U1
0]

√ √

return with (r12 w)
√

[m, b2, r11, (r12 z), U1
1]

√ √

return with r11
√

irrelevant
√ √ √

The DLT at σ1

Value of b1 U2
0 U2

0 U2
0 U2

1 U2
1 U2

1 U2
2 U2

2 U2
2

Value of b2 U2
0 U2

1 U2
2 U2

0 U2
1 U2

2 U2
0 U2

1 U2
2

[m, b2, r11, (r12 z), U1
1]

√ √

return with r11
√

[m, b2, (r12 w), (r12 w), U1
1]

√ √

return with (r12 w)
√

irrelevant
√ √ √

As was the case with the derivation of the successor function, the ac-
tions to be taken at each state are a function of b1 and b2. In both
cases, the computation of the body of binn terminates when b2 = U2

2.
Also, just as with the successor function, the situation where b1 = U2

2
cannot occur, and so the return value in this case is irrelevant, and
once again, we arbitrarily pick the I combinator.

The DLT’s for the states S1 and S2 specify different actions to be taken
upon different possible values of b1 and b2. Just as with the successor
function, we rely on the fact that b1 and b2 are selectors in order to

15



simplify the selection mechanism. All three DLT’s are combined in M :

M = λmb2r21r22σ2b1r11r12σ1.(σ1 (b1 (b2 [m, b2, (r12 w), (r12 w), U1
0]

[m, b2, (r12 w), (r12 w), U1
0]

(r12 w))
(b2 [m, b2, r11, (r12 z), U1

1]
[m, b2, r11, (r12 z), U1

1]
r11)

I)
(b1 (b2 [m, b2, r11, (r11 z), U1

1]
[m, b2, r11, (r11 z), U1

1]
r11)

(b2 [m, b2, (r12 w), (r12 w), U1
1]

[m, b2, (r12 w), (r12 w), U1
1]

(r12 w))
I))

We now define the predecessor function in terms of M as follows:

Pred
bin

= λnzw.(n [M, U2
0, z, I, U1

0]
[M, U2

1, z, I, U1
0]

[M, U2
2, z, I, U1

0])

Recall that r1 contains the partial reconstruction of the preceeding
numeral under the assumption that any additional zero bits are trailing,
and can therefore be ignored. The initial value of r1 must therefore be
z, rather than I.

ii. The proof is similar to the proof of Proposition 4.1.1, albeit more te-
dious. It can be found in our Ph.D. thesis [8].

�

4.4 Adequacy

4.4.1 Proposition: The numeral system bin is adequate.
Proof: Having defined Zero?

bin
, Succ

bin
, and Pred

bin
, it follows from

Proposition 6.4.3 in Barendregt’s book [1] that bin is an adequate numeral

16



system. �

5 Conclusion and Assessment

This paper introduces the sequence bin, and shows that it is an adequate
numeral system. This section analyses several aspects of bin.

5.1 Extensibility

The definition of bin is easily extensible to other bases. Similarly, bin can
be extended to have a sign, a decimal point and an exponent, facilitating
fixed-size floating point arithmetic.

There is some interest in possible representations of real numbers on com-
puters, as streams of decimals or integer coefficients of continued fractions. It
is possible that the laziness inherent in the normal order of evaluation could
facilitate a lazy numeral system for real numbers as an extension of bin. Such
a numeral system would require that certain operations, such as the test for
equality and an encoding mechanism (see Section 5.3) be restricted, in or-
der to avoid non-termination. Lazy numbers offer a potential for efficiency,
while maintaining the flexibility of carrying on a computation to arbitrary
precision.

5.2 Efficiency

Numerals in bin are represented as concisely as possible. The number-
theoretic functions can be computed on bin with the same complexity as
they are computed on the standard binary representation used on modern
computers. This complexity is independent of the order of evaluation. The
use of selectors rather than arbitrary tags in the dispatching mechanism re-
sults in considerable gains in efficiency, and the resulting λ-expressions are
both more concise and simpler to verify.

5.3 Implementation

The numeral system bin is extremely suitable for implementation in func-
tional programming languages that model the pure, untyped λ-calculus.

17



We have implemented both the numeral system bin, and the basic number-
theoretic functions defined on it in the Scheme programming language [5].
Our implementation can be combined with the Gödeliser developed as a part
of our Ph.D. thesis [7, 8], so that such numerals, as well as possible extensions
to the bin numeral system, can be displayed.

5.4 Decision-Logic Tables

Although DLT’s are elaborate and verbose, they are relatively straightfor-
ward to construct, and help insure correctness. DLT’s have traditionally been
compiled into various programming languages, and so it seems reasonable to
expect that λ-expressions for computing more elaborate functions could be
generated automatically from a given set of DLT’s.

Acknowledgements

This work was supported by the Danish Research Academy. I am grateful to
BRICS2 for hosting me and for providing a stimulating environment. Thanks
are also due to Olivier Danvy, Daniel P. Friedman, Julia Lawall, and Larry
Moss for their comments and encouragement.

The diagrams were drawn with Kristoffer Rose’s XY-pic package.

References

[1] Hendrik P. Barendregt. The Lambda Calculus, Its Syntax and Semantics.
North-Holland, 1984.

[2] Hendrik P. Barendregt. Personal Communication, Bloomington, Indi-
ana, 1990.

[3] W. L. van der Poel, C. E. Schaap, and G. van der Mey. New arithmetical
operators in the theory of combinators. Indagationes Mathematicae,
42:271–325, 1980. Parts I-III.

2Basic Research in Computer Science, Centre of the Danish National Research Foundation.

18



[4] Alonzo Church. The Calculi of Lambda-Conversion. Princeton Univer-
sity Press, 1941.

[5] William Clinger and Jonathan Rees (editors). Revised4 report on the al-
gorithmic language Scheme. LISP Pointers, IV(3):1–55, July-September
1991.

[6] Mayer Goldberg. An adequate left-associate binary numeral system in
the λ-calculus. BRICS Research Series RS-95-42, Computer Science
Department, Aarhus University, Denmark, August 1995.

[7] Mayer Goldberg. Gödelisation in the λ-calculus (extended version).
BRICS Research Series RS-96-5, Computer Science Department, Aarhus
University, Denmark, March 1996. A revision of BRICS report RS-95-38.

[8] Mayer Goldberg. Recursive Application Survival in the λ-Calculus. PhD
thesis, Department of Computer Science, Indiana University, May 1996.
Forthcoming.

[9] T.F. Kavanagh. Tabsol – a fundamental concept for system-oriented
language. In Proceedings of the Eastern Joint Computer Conference,
pages 117–127, New York, December 1960.

[10] Herman McDaniel. An Introduction to Decision Logic Tables. John
Wiley & Sons, 1968.

19



Recent Publications in the BRICS Report Series

RS-96-6 Mayer Goldberg. An Adequate Left-Associated Binary
Numeral System in theλ-Calculus (Revised Version).
March 1996. 19 pp. Accepted forInformation Processing
Letters. This report is a revision of the BRICS Report RS-
95-38.

RS-96-5 Mayer Goldberg. Gödelisation in theλ-Calculus (Ex-
tended Version). March 1996. 10 pp.

RS-96-4 Jørgen H. Andersen, Ed Harcourt, and K. V. S. Prasad.A
Machine Verified Distributed Sorting Algorithm. February
1996. 21 pp. Abstract appeared in7th Nordic Workshop
on Programming Theory, NWPT '7 Proceedings, 1995.

RS-96-3 Jaap van Oosten.The Modified Realizability Topos. Febru-
ary 1996. 17 pp.

RS-96-2 Allan Cheng and Mogens Nielsen. Open Maps, Be-
havioural Equivalences, and Congruences. January 1996.
25 pp. A short version of this paper is to appear in the
proceedings ofCAAP '96.

RS-96-1 Gerth Stølting Brodal and Thore Husfeldt. A Commu-
nication Complexity Proof that Symmetric Functions have
Logarithmic Depth. January 1996. 3 pp.

RS-95-60 Jørgen H. Andersen, Carsten H. Kristensen, and Arne
Skou. Specification and Automated Verification of Real-
Time Behaviour — A Case Study. December 1995. 24 pp.
Appears in3rd IFAC/IFIP workshop on Algoritms and Ar-
chitectures for Real-Time Control, AARTC '95 Proceed-
ings, 1995, pages 613–628.

RS-95-59 Luca Aceto and Anna Inǵolfsdóttir. On the Finitary
Bisimulation. November 1995. 29 pp.

RS-95-58 Nils Klarlund, Madhavan Mukund, and Milind Sohoni.
Determinizing Asynchronous Automata on Infinite Inputs.
November 1995. 32 pp. Appears in Thiagarajan, edi-
tor, Foundations of Software Technology and Theoretical
Computer Science: 15th Conference, FCT&TCS '95 Pro-
ceedings, LNCS 1026, 1995, pages 456–471.


