
B
R

IC
S

R
S

-96-5
M

.G
oldberg:

G
ödelisation

in
the
λ

-C
alculus

BRICS
Basic Research in Computer Science

Gödelisation in theλ-Calculus
(Extended Version)

Mayer Goldberg

BRICS Report Series RS-96-5

ISSN 0909-0878 March 1996



Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)



Gödelisation in the λ-Calculus
∗

Mayer Goldberg
Computer Science Department

Indiana University †

(mayer@cs.indiana.edu)

March 20, 1996

Abstract

Gödelisation is a meta-linguistic encoding of terms in a language.
While it is impossible to define an operator in the λ-calculus which
encodes all closed λ-expressions, it is possible to construct restricted
versions of such an encoding operator modulo normalisation. In this
paper, we propose such an encoding operator for proper combinators.

Keywords: Programming Calculi; λ-Calculus; Gödelisation.

1 Prerequisites and Notation

We assume some familiarity with the untyped and simply typed λ-calculi
[1, 3]. The set of all terms generated by {M1, . . . , Mn} is {M1, . . . , Mn}+ [1,
Item 8.1.1 (i), Page 165]. The set of all λ-terms is denoted by Λ, the set
of all closed λ-terms (combinators) is denoted by Λ0. When n ranges over
the integers, pnq denotes the n-th Church numeral, and when M ranges over
all λ-expressions, pMq denotes an encoding of M . The Church successor

∗This work was completed while visiting BRICS (Basic Research in Computer Science,
Centre of the Danish National Research Foundation).
†Bloomington, IN 47405, USA.

1



function is denoted by Succ
Church

. The identity combinator is denoted by
I. The ordered n-tuple is denoted by [x1, . . . , xn], and the k-th projection
function on an n-tuple is denoted by πnk . Since the definition of an ordered
n-tuple and the respective projection functions play a rôle in the proof of
Theorem 3.2, we give their definitions below:

[x1, . . . , xn] = λx.(x x1 · · · xn) The ordered n-tuple.
πnk = λt.(t (λx1 · · · xn.xk)) The k-th projection.

2 Introduction

Gödelisation1 is an effective injection that is used to encode terms in a
language[1, Item 6.5.6, Page 143] . It is possible to write a combinator
Gödel in the λ-calculus, such that

(Gödel pMq) =
ppMq

q
. (1)

Gödel is the same as Barendregt’s Num combinator [1, Item 6.5.9, Page 143].
Gödel does not map λ-expressions to their encodings, but rather encodings
of λ-expressions to the encodings of their encodings. Indeed, it is impossible
to define a combinator that maps λ-expressions to their encodings:
2.1 Proposition: Gödelisation is necessarily a meta-linguistic notion
in the λ-calculus, i.e. there exists no combinator G such that for any closed
λ-term M we have

(G M) = pMq (2)

Proof: Let M = (I I). We should have p(I I)q different from pIq, but by
the Church-Rosser Theorem we have (G (I I)) = (G I). �

In light of Proposition 2.1, we are only interested in encoding λ-terms
that have a normal form, and we consider this encoding to be modulo the
normal form.

But even modulo normalisation, defining a Gödelisation combinator is

1Gödelisation takes its name from a proof technique used by Kurt Gödel in his paper
“On formally undecidable propositions of Principia Mathematica and related systems” [6].

2



still a difficult problem, quite different in nature from the combinator we
considered in (1). As a milestone on the road to deciding the existence of
an encoding combinator such as (2) for all terms modulo normalisation, we
consider a weaker notion, that of a partial Gödeliser:
2.2 Definition: A Partial Gödeliser. Given a set S of combinators,
we associate with each M ∈ S a λ-expression I

M
(which is taken to be

“information about M”). A λ-expression GS is said to be a partial Gödeliser
for S if for each M ∈ S we have:

(GS M I
M

) = pMq (3)

A trivial partial Gödeliser might have S Λ0, and

I
M

=
{ pMnf

q if M has a nf Mnf
p⊥q if M has no nf

(4)

The best possible Gödeliser we could hope for has S = Λ0, and I
M

= p⊥q
(i.e. I

M
provides the partial Gödeliser with no information), and

(GS M I
M

) =
{ pMnf

q if M has nf Mnf
p⊥q if M has no nf

(5)

The challenge is to find partial Gödelisers for large and interesting classes
of combinators, while keeping the information that needs to be passed on to
the partial Gödelisers as simple as possible, so as not to trivialise the task of
encoding.

To the best of our knowledge, the only partial Gödeliser in the λ-
calculus is due to Berger and Schwichtenberg [2], and encodes simply-typed
λ-expressions, given an encoding of their type. Given a simply typed λ-
expression M of type pτq, we have:

(Gst M pτq) = pMq (6)

In the next section we derive a partial Gödeliser for the set of all proper
combinators. This result is a part of our Ph.D. thesis [8].

3



3 Gödelisation of Proper Combinators

3.1 Definition: Proper Combinators [1, Page 184, Problem 8.5.15],
PC(n). A proper combinator of arity n is a λ-expression λx1 · · ·xn.B where
B ∈ {x1, . . . , xn}+. The set of all proper combinators of arity n is PC(n).

Note that some proper combinators are not simply typed. For example
(λx.xx) has no simple type.
3.2 Theorem: There exists GPC such that for any n ≥ 1 and proper
combinator P ∈ PC(n) we have:

(GPC P pnq) = pP q

Proof: We assume the existence of combinators Var, Abs, and App
for encoding variables, abstractions and applications. Specifically:

(Var pnq) = pxnq (7)

(Abs pxnq pMq) = p(λxn.M)q

(App pMq pNq) = p(M N)q

By defining Var, Abs, and App appropriately, we can obtain encodings of
λ-expressions in terms of integers, lists, strings, or any other data structure
we might want to work with. For example, in a language such as Scheme we
use S-expressions to encode variables, abstractions and applications.

We make use of the following property of the application of two ordered
pairs (compare with Barendregt’s hint in his text on the λ-calculus, Prob-
lem 6.8.15 (ii) [1, Page 149]):

([a1, b1] [a2, b2]) −→ ((λx.(x a1 b1)) (λx.(x a2 b2))) (8)
−→ ((λx.(x a2 b2)) a1 b1)
−→ (a1 a2 b2 b1)

In particular, we have:

([R, a] [R, b]) = (R R b a) (9)

4



By choosing R = λrba.[r, (App a b)], we have

([R, pMq] [R, pNq]) = [R, p(M N)q]. (10)

Now pick a proper combinator in PC(n), P = λx1 · · ·xn.B, where B ∈
{x1, . . . , xn}+. We obtain pBq as follows:

(P [R, (Var p1q)] · · · [R, (Var pnq)]) = [R, pBq] (11)

This solves the main problem in defining GPC , i.e., the construction of the
body of a proper combinator of arity n. What remains is to wrap encodings
of abstractions of the n variables around the encoding of the body. The
technique we use is similar to that by Church to derive a definition for the
predecessor function[3, Chapter III, §9, Page 31]:

Let

Ak = λx.(Abs (Var p1q)
. . .

(Abs (Var pkq) x) · · ·)

(12)

Pk = (P [R, (Var p1q)]
...
[R, (Var pkq)])

(13)

The function f maps [pk + 1q, Pk, Ak] to [pk + 2q, Pk+1, Ak+1]. We define f
as follows:

f = λt.[(SuccChurch (π3
1 t)),

(π3
2 t [R, (Var (π3

1 t))]),
(λx.(π3

3 t (Abs (Var (π3
1 t)))))]

(14)

The n-th composition of f applied to the triple [p1q, P0 = P, A0 = I] reduces
to the triple [pn + 1q, Pn, An]. We get pP q by applying An to the second
projection of Pn. A definition for GPC is obtained by abstracting over the
proper combinator P and the Church numeral n:

GPC = λpn.((λt.(π3
3 t (π2

2 (π3
2 t))))

(n f [p1q, p, I]))
(15)

5



We now have for all n ≥ 1 and for any proper combinator P = λx1 · · · xn.B ∈
PC(n). This completes our derivation. �

4 Conclusion

Proposition 2.1 shows that no Gödeliser for Λ0 exists, that takes no additional
information about the expression it is encoding. Consequently, we consider
partial Gödelisers, operating on specific subsets of Λ0 and taking some in-
formation about the expressions they are encoding. Berger and Schwicht-
enberg [2] have constructed a partial Gödeliser which encodes simply-typed
λ-expressions, given an encoding of their type. In this paper, we have shown
that a partial Gödeliser GPC exists for proper combinators, given their arity.

The fact that Gödelisation is taken modulo the normal form results in a
normalisation effect which has been exploited in proof theory [2, Section 7],
and in partial evaluation [5].

We have coded the definition for G
PC

into the programming language
Scheme [4], and have used it to visualise the source code (modulo normali-
sation and α-equivalence) of compiled code. The source code is presented in
Appendix A, and a sample run is presented in Appendix B.

Acknowledgements

I am grateful to BRICS2 for hosting me and for providing a stimulating en-
vironment. I would like to thank Prof. Hendrik P. Barendregt for suggesting
an improvement to the argument in Proposition 2.1. Thanks are also due to
Olivier Danvy, Daniel P. Friedman, Julia L. Lawall, and Larry Moss for their
comments and encouragement.

References

[1] Hendrik P. Barendregt. The Lambda Calculus, Its Syntax and Semantics.
North-Holland, 1984.

2Basic Research in Computer Science, Centre of the Danish National Research
Foundation.

6



[2] Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation
functional for typed λ-calculus. In Proceedings of the Sixth Annual IEEE
Symposium on Logic in Computer Science, pages 203–211, Amsterdam,
The Netherlands, July 1991. IEEE Computer Society Press.

[3] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University
Press, 1941.

[4] William Clinger and Jonathan Rees (editors). Revised4 report on the al-
gorithmic language Scheme. LISP Pointers, IV(3):1–55, July-September
1991.

[5] Olivier Danvy. Type-directed partial evaluation. In Guy L. Steele Jr., ed-
itor, Proceedings of the Twenty-Third Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 242 – 257, St. Petersburg Beach,
Florida, January 1996. ACM Press.

[6] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathemat-
ica und verwandter Systeme. Monatshefte für Mathematik und Physik,
38:173–198, 1931.

[7] Mayer Goldberg. Gödelisation in the λ-calculus. BRICS Research Series
RS-95-38, Computer Science Department, Aarhus University, Denmark,
July 1995.

[8] Mayer Goldberg. Recursive Application Survival in the λ-Calculus. PhD
thesis, Department of Computer Science, Indiana University, May 1996.
Forthcoming.

7



A Scheme Code
;;; The Identity combinator:

(define I (lambda (x) x))

;;; Routines to facilitate Church-numeral arithmetic:

(define Church-zero (lambda (x) (lambda (y) y)))
(define Church-S+

(lambda (cn)
(lambda (x)

(lambda (y)
(x ((cn x) y))))))

(define Church-one (Church-S+ Church-zero))
(define integer->Church

(lambda (n)
(if (zero? n)

Church-zero
(Church-S+ (integer->Church (sub1 n))))))

(define Church->integer (lambda (cn) ((cn add1) 0)))

;;; The definition of Var, Abs, and App using S-expressions for
;;; encoding proper combinators:

(define Var
(lambda (n)
(string->symbol (format "x~a" (Church->integer n)))))

(define Abs (lambda (v e) (list ’lambda (list v) e)))
(define App (lambda (f x) (list f x)))

;;; Support for ordered pairs:

(define make-pair (lambda (a b) (lambda (s) ((s a) b))))
(define pair->1 (lambda (p) (p (lambda (a) (lambda (b) a)))))
(define pair->2 (lambda (p) (p (lambda (a) (lambda (b) b)))))

8



;;; Support for ordered triples:

(define make-triple (lambda (a b c) (lambda (s) (((s a) b) c))))
(define triple->1

(lambda (t) (t (lambda (a) (lambda (b) (lambda (c) a))))))
(define triple->2

(lambda (t) (t (lambda (a) (lambda (b) (lambda (c) b))))))
(define triple->3

(lambda (t) (t (lambda (a) (lambda (b) (lambda (c) c))))))

;;; The Gödeliser for proper combinators, from Theorem 3.2

(define Gpc
(lambda (p n)
((lambda (t) ((triple->3 t) (pair->2 (triple->2 t))))
((n (lambda (t)

(make-triple
(Church-S+ (triple->1 t))
((triple->2 t) (make-pair

(lambda (v)
(lambda (n)
(lambda (m)

(make-pair v (App m n)))))
(Var (triple->1 t))))

(lambda (x)
((triple->3 t) (Abs (Var (triple->1 t)) x))))))

(make-triple Church-one p I)))))

9



B Scheme Session

> (load "pc.scm")

;;; Defining the proper combinator λxyz.(x x (y y)(y y (z z))),
;;; which is not simply typed:

> (define foo
(lambda (x)

(lambda (y)
(lambda (z)

(((x x) (y y)) ((y y) (z z)))))))

;;; foo denotes a procedure:

> foo
#<procedure foo>

;;; Encoding foo into a list:

> (Gpc foo (integer->Church 3))
(lambda (x1)

(lambda (x2)
(lambda (x3)

(((x1 x1) (x2 x2)) ((x2 x2) (x3 x3))))))

;;; Encoding is modulo the normal form:

> (Gpc ((lambda (x) (x x)) (lambda (x) x)) (integer->Church 1))
(lambda (x1) x1)

10



Recent Publications in the BRICS Report Series

RS-96-5 Mayer Goldberg. Gödelisation in theλ-Calculus (Ex-
tended Version). March 1996. 10 pp.

RS-96-4 Jørgen H. Andersen, Ed Harcourt, and K. V. S. Prasad.A
Machine Verified Distributed Sorting Algorithm. February
1996. 21 pp. Abstract appeared in7th Nordic Workshop
on Programming Theory, NWPT '7 Proceedings, 1995.

RS-96-3 Jaap van Oosten.The Modified Realizability Topos. Febru-
ary 1996. 17 pp.

RS-96-2 Allan Cheng and Mogens Nielsen. Open Maps, Be-
havioural Equivalences, and Congruences. January 1996.
25 pp. A short version of this paper is to appear in the
proceedings ofCAAP '96.

RS-96-1 Gerth Stølting Brodal and Thore Husfeldt. A Commu-
nication Complexity Proof that Symmetric Functions have
Logarithmic Depth. January 1996. 3 pp.

RS-95-60 Jørgen H. Andersen, Carsten H. Kristensen, and Arne
Skou. Specification and Automated Verification of Real-
Time Behaviour — A Case Study. December 1995. 24 pp.
Appears in3rd IFAC/IFIP workshop on Algoritms and Ar-
chitectures for Real-Time Control, AARTC '95 Proceed-
ings, 1995, pages 613–628.

RS-95-59 Luca Aceto and Anna Inǵolfsdóttir. On the Finitary
Bisimulation. November 1995. 29 pp.

RS-95-58 Nils Klarlund, Madhavan Mukund, and Milind Sohoni.
Determinizing Asynchronous Automata on Infinite Inputs.
November 1995. 32 pp. Appears in Thiagarajan, edi-
tor, Foundations of Software Technology and Theoretical
Computer Science: 15th Conference, FCT&TCS '95 Pro-
ceedings, LNCS 1026, 1995, pages 456–471.

RS-95-57 Jaap van Oosten.Topological Aspects of Traces. Novem-
ber 1995. 16 pp. To appear inApplication and Theory of
Petri Nets: 17th International Conference, ICATPN '96
Proceedings, LNCS, 1996.


