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The Modified Realizability Topos

Jaap van Oosten

BRICS∗
Department of Computer Science, University of Aarhus

Denmark

February 2, 1996

Abstract

The modified realizability topos is the semantic (and higher order)
counterpart of a variant of Kreisel’s modified realizability (1957). These
years, this realizability has been in the limelight again because of its pos-
sibilities for modelling type theory (Streicher, Hyland-Ong-Ritter) and
strong normalization.

In this paper this topos is investigated from a general logical and topos-
theoretic point of view. It is shown that Mod (as we call the topos) is
the closed complement of the effective topos inside another one; this turns
out to have some logical consequences. Some important subcategories of
Mod are described, and a general logical principle is derived, which holds
in the larger topos and implies the well-known Independence of Premiss
principle.

Introduction. The notion of “modified realizability” originates with Kreisel’s
[Kre57] (see also [Kre62]). While Kreisel intended to give a consistency proof
for the system HAω and, accordingly, defined a straightforward extension of
Kleene’s realizability to this typed system, today’s meaning of the term ‘modi-
fied realizability’ derives from Troelstra’s collapse of this realizability ([Tro73]).
Let me briefly indicate what this is.

In Kreisel’s notion, one defines for each formula ϕ of HAω a type τ(ϕ);
realizers of ϕ have to be found in this type. For example, τ(∃xσ.ϕ) = σ × τ(ϕ)
and τ(ϕ → ψ) = τ(ϕ) → τ(ψ).

Now it is possible to interpret the whole of HAω in first order arithmetic
HA, using the model of hereditarily recursive operations. Then one expresses
∗Basic Research in Computer Science, center of the Danish National Research Foundation.

Part of the research was carried out at the Department of Mathematics of Utrecht University,
The Netherlands
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Kreisel’s realizability in HA, and since HA is a subsystem of HAω, one obtains
another realizability interpretation for HA, very different from Kleene’s one.

The resulting interpretation is formulated with ‘potential’ and ‘actual’ real-
izers; the set of potential realizers of a formula ϕ is the collapse of the type τ(ϕ),
and the actual realizers are a subset of these. In the following formal definition,
Ua(ϕ) and Up(ϕ) are the sets of, respectively, the actual and potential realizers
of ϕ, and for subsets A, B of IN we use the abbreviations:

A × B = {〈a, b〉| a ∈ A, b ∈ B}
A → B = {e| ∀a ∈ A∃n.T (e, a, n)&U(n) ∈ B}

Then by induction, the first clause for prime formulas:

Ua(P ) = {n ∈ IN|P} Up(P ) = IN
Ua(ϕ ∧ ψ) = Ua(ϕ) × Ua(ψ) Up(ϕ ∧ ψ) = Up(ϕ) × Up(ψ)

Ua(ϕ → ψ) = Ua(ϕ) → Ua(ψ)∩
Up(ϕ) → Up(ψ) Up(ϕ → ψ) = Up(ϕ) → Up(ψ)

Ua(∃xϕ) =
⋃

n∈IN[{n} × Ua(ϕ(n))] Up(∃xϕ) =
⋃

n∈IN[{n} × Up(ϕ(n))]
Ua(∀xϕ) =

⋂
n∈IN[{n} → Ua(ϕ(n))] Up(∀xϕ) =

⋂
n∈IN[{n} → Up(ϕ(n))]

In this definition, the intersection in the clause defining Ua(ϕ → ψ) reflects
Kreisel’s definition that τ(ϕ → ψ) = τ(ϕ) → τ(ψ) i.e. realizers of an implication
must be global elements of this function type. Of course, the clause is also
reminiscent of the definition of intuitionistic implication in a Kripke structure:
ϕ → ψ is only true in a node p if for all q ≥ p, if ϕ is true in q then ψ is true in
q.

The following observation is basically due to Troelstra.

Proposition 0.1 Suppose our Gödel numbering of partial recursive functions
and our primitive recursive, bijective pairing is such that:

ϕ0(x) = 0 for all x
〈0, 0〉 = 0

Then 0 ∈ Up(ϕ) for all ϕ.

From this observation, Grayson, in an unpublished manuscript ([Gra81]), gave
a sketch how to build a modified realizability tripos and consequently a topos,
in de style of Hyland’s ([Hy82]) effective topos.

In my thesis ([vO91]) I filled in some details left blank by Grayson, and I
observed that the Grayson topos is a sheaf subtopos of “the effective topos built
over Set→”.

In the nineties, interest in modified realizability was revived. Streicher
([Str93]) links the idea of actual and potential realizers to an interpretation
of fully intensional type theory, via his category of modified assemblies.
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Hyland and Ong ([HyO93], see also Ong & Ritter, [OR94]) give an account
of modified realizability toposes based on conditional partial combinatory alge-
bras. They develop some theory, analogous to [Hy82], and record the, at first
sight surprising fact that there are two embeddings of Set into the modified
realizability topos: one is the “logical” one, defined from the logic of the tripos;
and the other is the direct image of the embedding of Set as ¬¬-sheaves in the
topos.

Among others, this fact is accounted for in this paper. After setting up the
topos, I relate it to the topos Eff·→· which is the “effective topos constructed on
sheaves over Sierpinski space”, Set·→·, and show that the modified realizability
topos, called Mod, is the closed complement of the effective topos in Eff·→·.
The two embeddings of Set into Mod come from the two points of Sierpinski
space.

Some important subcategories of Mod are described, and Streicher’s Mod-
ified Assemblies turn out to live (as a full subcategory) in Eff·→· rather than
Mod. The projectives in Mod are described. Mod is, like many realizability
toposes, an exact completion.

A generalization of Troelstra’s “Independence of Premiss” principle (see
[Tro73]), formulated in the context of Eff·→·, is derived.

1 Definition of Mod and basic properties

This section contains some tripos-theoretic terminology. In sofar as this remains
unexplained, the reader is referred to [HJP80].

Convention. From now on we assume the conditions of proposition 0.1 to
hold, i.e. 0·x = 0 (that’s how we’ll write partial recursive application) and
〈0, 0〉 = 0. We also use the abbreviations A → B and A × B for subsets A, B
of IN, as defined in the introduction, and (·)0, (·)1 for inverses of the pairing:
z = 〈(z)0, (z)1〉.
Let R be the set {U = (Ua, Up) ∈ P(IN)2| Ua ⊆ Up &0 ∈ Up}. For U, V ∈ R we
put

U ⇒ V = (Ua → Va ∩ Up → Vp, Up → Vp)

For every set X we define a preorder on RX by:

ϕ ` ψ iff
⋂

x∈X

(ϕ(x) ⇒ ψ(x))a 6= ∅

Apart from ⇒ we have the following operations on RX :

ϕ ∧ ψ = λx.(ϕ(x)a × ψ(x)a, ϕ(x)p × ψ(x)p)
ϕ ∨ ψ = λx.(ϕ(x)a + ψ(x)a, ϕ(x)p + ψ(x)p)

where, for A, B ⊆ IN, A + B = ({0} × A) ∪ ({1} × B).
Moreover, we have the elements >X = λx.(IN, IN) and ⊥X = λx.(∅, IN).
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Proposition 1.1 With the structure (⇒, ∧, ∨, >X, ⊥X), RX is a Heyting pre-
algebra.

Given f : X → Y there is a order-preserving map RY Rf→ RX . This map has
both adjoints. Define for ϕ ∈ RX :

∀f(ϕ) = λy.(
⋂

f(x)=y IN → ϕ(x)a,
⋂

f(x)=y IN → ϕ(x)p)

∃f(ϕ) = λy.

{
({i}, {i, 0}) ∧ (

⋃
f(x)=y ϕ(x)a,

⋃
f(x)=y ϕ(x)p) f−1(y) 6= ∅

(∅, {0}) f−1(y) = ∅

where i is some fixed, standard code for the identity function. We have that
∃f a Rf a ∀f ; by way of example I show the first adjunction.

Suppose ∃f(ϕ) `Y ψ, say n ∈
⋂

y∈Y (∃f(ϕ)(y) ⇒ ψ(y))a . Then

λm.n·〈i, m〉 ∈
⋂

x∈X

(ϕ(x) ⇒ ψ(f(x)))a

for let m ∈ ϕ(x)a, then 〈i, m〉 ∈ ∃f(ϕ(f(x))a so n·〈i, m〉 ∈ ψ(f(x))a; same
calculation for m ∈ ϕ(x)p; therefore ϕ ` Rf(ψ).

Conversely suppose ϕ ` Rf(ψ), say n ∈
⋂

x∈X(ϕ(x) ⇒ ψ(f(x)))a . Then

w = λz.(z)0·(n·(z)1) ∈
⋂

y∈Y

(∃f(ϕ)(y) ⇒ ψ(y))a

for let y ∈ Y , z ∈ ∃f(ϕ)(y)a . Then f−1(y) 6= ∅ and z is of form 〈i, (z)1〉 with
(z)1 ∈

⋃
f(x)=y ϕ(x)a whence

n·(z)1 ∈
⋃

f(x)=y

ψ(f(x))a = ψ(y)a

so w·z = (z)0·(n·(z)1) = n·(z)1 ∈ ψ(y)a . Moreover, if z ∈ ∃f(ϕ)(y)p then either
f−1(y) = ∅ in which case z = 0 = 〈0, 0〉, n·0 is defined since we may assume
X 6= ∅ (if X = ∅ there is nothing to prove) and n ∈

⋂
x∈X ϕ(x)p → ψ(f(x))p ,

whence w·z = 0·(n·0) = 0 ∈ ψ(y)p ; or f−1(y) 6= ∅ in which case (z)0 ∈ {i, 0}
and (z)1 ∈ ϕ(x)p for some x with f(x) = y. Then n·(z)1 is defined and n·(z)1 ∈
ψ(y)p so (z)0·(n·(z)1) is either 0 or n·(z)1, in both cases in ψ(y)p . So ∃f(ϕ `Y ψ.

However, if f is surjective, as most projections are, ∃f(ϕ) and ∀f(ϕ) are isomor-
phic to λy.(

⋃
f(x)=y ϕ(x)a,

⋃
f(x)=y ϕ(x)p) and λy.(

⋂
f(x)=y ϕ(x)a,

⋂
f(x)=y ϕ(x)p).

Proposition 1.2 The assignment X 7→ RX , (X f→ Y ) 7→ Rf , defines a tripos
on Set.
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We call the topos represented by this tripos, Mod.
We shall have use for the following general construction. For this, it is

necessary to know that the notion of a tripos is valid over any category C with
finite limits (finite products suffice, in fact), not just Set; if P is a tripos on C,
the topos represented by P is called P−C.

The “constant objects” functor is the functor ∆ or ∆P : C → P−C de-
fined on objects by ∆(x) = (x, ∃δ(>x)) where δ : x → x × x is the diagonal,

and on maps by: ∆(x f→ y) is the map represented by the functional relation
∃〈idx,f〉(>x) ∈ P(x × y). The following theorem is due to Andy Pitts ([Pit81]):

Theorem 1.3 Suppose P is a tripos on C and R a tripos on P−C such that
∆R : P−C → R−(P−C) preserves epimorphisms. Then the composite R◦∆op

P
(as a pseudofunctor: Cop → Cat) is a tripos on C, and the toposes R−(P−C)
and (R◦∆op

P )−C are equivalent by an equivalence which commutes with the ∆’s
involved.

We only use this theorem to obtain the following easy consequence:

Corollary 1.4 Let S be the set {(A, B) ∈ P(IN)2| A ⊆ B} and define ⇒ on S
just as for R, as well as the preorder on SX .

The assignment X 7→ SX yields a Set-tripos, and the topos represented by
this tripos is the effective topos built on Set·→·, which we denote by Eff·→·

Proposition 1.5 There is a geometric inclusion of triposes RX // SXoo ;
hence, Mod is a sheaf subtopos of Eff·→·

Proof. Since R ⊂ S we have RX ⊂ SX . Left adjoint to this is the map induced
by the function Φ : S → R:

Φ(A, B) = (A+, B+ ∪ {0})

where A+ = {a + 1| a ∈ A}. The adjunction is immediate, and ΦX preserves
finite meets.

There is, in complete analogy to the inclusion Set → Eff , an inclusion of toposes
Set·→· → Eff·→·. Let (∇2)∗ : Set·→· → Eff·→· be defined as follows: (∇2)∗(X

α→
Y ) = (X t Y, =) where X t Y is the disjoint union of X and Y , and

[[ z = z′ ]] =


(IN, IN) if z, z′ ∈ X and z = z′ (1)

(∅, IN) if not (1), but
[

α
id

]
(z) =

[
α
id

]
(z′) ∈ Y

(∅, ∅) otherwise

For a morphism γ =

X //γ0

��
α

X′

��
α′

Y //
γ1

Y ′

its image (∇2)∗(γ) is represented by the
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functional relation F ∈ S(XtY )×(X′tY ′) where

F (z, z′) =


(IN, IN) if z ∈ X, z′ ∈ X′ and γ0(z) = z′ (1)

(∅, IN) if not (1), but γ1 ◦
[

α
id

]
(z) =

[
α′

id

]
(z′) ∈ Y ′

(∅, ∅) otherwise

For (X, =) an object of Eff·→·, write =0, =1 for the two components of =, i.e.
[[ x = x′ ]] = ([[ x =0 x′ ]], [[ x =1 x′ ]]). Then (∇2)∗(X, =) is X0

d→ X1 where
Xi = {x ∈ X| [[ x =i x ]] 6= ∅}/ ∼i, x ∼i x′ iff [[ x =i x′ ]] 6= ∅, and d the obvious
map.

There are two embeddings from Set into Mod. The constant objects functor ∆
sends the set X to (X, =∆) where

[[ x =∆ x′ ]] =
{

({i}, {i, 0}) if x = x′

(∅, {0}) if x 6= x′

There is another functor, ∇ : Set → Mod, defined by ∇(X) = (X, =∇) where

[[ x =∇ x′ ]] =
{

(IN, IN) if x = x′

(∅, IN) if x 6= x′

As noted by Hyland and Ong, since the topos R(−) is ∃-standard (see [HJP80]),
by 4.5 of that paper ∇ is direct image of a geometric morphism Set → Mod, the
inverse image of which is the global sections functor. This geometric morphism
is an inclusion, and presents Set as ¬¬-sheaves in Mod.

The topos Set·→·, being sheaves over Sierpinski space, has two points 0, 1 :
Set → Set·→·. We have 0∗(X) = (X id→ X), 1∗(X) = (X !→ 1), 0∗(X

f→ Y ) = Y

and 1∗(X f→ Y ) = X. Moreover, there is a 2-cell α : 1 ⇒ 0 (Recall that in
the 2-category Top of toposes and geometric morphisms, a 2-cell α : f ⇒ g is
a natural transformation α∗ : f∗ ⇒ g∗, equivalently, a natural transformation
α∗ : g∗ ⇒ f∗). Let us denote the inclusion Mod → Eff·→· by i.

Proposition 1.6 The functors ∇ and ∆ are isomorphic to i∗(∇2)∗1∗ and i∗(∇2)∗0∗
respectively.

Proof. Easy verification.

We can extend the picture. We have also a geometric morphism Eff δ→ Eff·→·,
induced by the diagonal embedding of P(IN) into S and the map back, which
sends (U, V ) to V .

Moreover there is a geometric morphism v : Mod → Eff induced by the
maps (U, V ) 7→ U : R → P(IN) and A 7→ (A+, A+ ∪ {0}) : P(IN) → R. The
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triangle of geometric morphisms:

Mod //i

""
v EEE
EE
EE
E Eff·→·

Eff

;;

δ

wwwwwwww

does not commute, but there is a 2-cell β : i ⇒ δv. The component β∗ : i∗ ⇒
v∗δ∗ is induced by the entailment (U+, V + ∪ {0}) ` (V +, V + ∪ {0}) in R1; i.e.,
β∗ is the composition

i∗
i∗η⇒ i∗δ∗δ∗ β∗δ∗δ

∗

⇒ w∗δ∗δ∗δ
∗ ∼= w∗δ∗

where the last two arrows are isomorphisms. Therefore, β∗ is an isomorphism
on objects in the image of δ∗, i.e.

β∗ ? δ∗ : i∗δ∗ ⇒ v∗δ∗δ∗ ∼= v∗

is an isomorphism.

Let us denote the inclusions of Set into Mod and Eff by ∇E, ∇M respectively.

Proposition 1.7 The diagrams

Mod //i Eff·→·

Set

OO

∇M

//
1 Set·→·

OO

∇2

Eff //δ Eff·→·

Set

OO

∇E

//
0 Set·→·

OO
∇2

Mod //v Eff

Set

bb

∇M

E E E E E E E E

==

∇E

zzzzzzzz

commute up to natural isomorphism. Moreover, the 2-cells ∇2α and β ? ∇M

coincide modulo these natural isomorphisms, i.e. the composites

∇2 ◦ 1 ∇2α⇒ ∇2 ◦ 0

and
∇2 ◦ 1 ∼= i ◦ ∇M

β?∇M⇒ δ ◦ v ◦ ∇M
∼= δ ◦ ∇E

∼= ∇2 ◦ 0

are equal.

It follows, that the functor ∆ : Set → Mod is isomorphic to v∗(∇E)∗, for we
have

∆ ∼= i∗(∇2)∗0∗ ∼= i∗δ∗(∇E)∗
β∗?δ∗(∇E)∗⇒ v∗δ∗δ∗(∇E)∗ ∼= v∗(∇E)∗

and we know that β∗ ? δ∗ is a natural isomorphism.
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2 Eff and Mod as subtoposes of Eff·→·

Let U = ({∗}, =) be the subobject of 1 in Eff·→· defined by [[ ∗ = ∗ ]] = (∅, IN).

Proposition 2.1 1. Eff is the open subtopos of Eff·→· determined by the
object U , and Mod is its closed complement;

2. The two commuting squares in proposition 1.7 are pullback squares in Top.

Proof. We have 5 internal topologies in Eff·→· which I denote by k0, k1, k2, kE, kM ;
they correspond respectively to the inclusions Set ∇20→ Eff·→·, Set ∇21→ Eff·→·,
Set·→· ∇2→ Eff·→·, Eff δ→ Eff·→· and Mod i→ Eff·→·.

For each j ∈ {0, 1, 2, E, M}, kj is induced by a map Kj : S → S. These
maps are given by:

K0(A, B) = ({n ∈ IN| B 6= ∅}, {n ∈ IN| B 6= ∅})
K1(A, B) = ({n ∈ IN| A 6= ∅}, IN)
K2(A, B) = ({n ∈ IN| A 6= ∅}, {n ∈ IN| B 6= ∅})
KE(A, B) = (B, B)
KM (A, B) = (A+, B+ ∪ {0})

Now clearly, in SS , the maps KE and (A, B) 7→ ((∅, IN) ⇒ (A, B)) are iso-
morphic, whence kE is internally given as λw : Ω.u ⇒ w, u being the point of
Ω which classifies the inclusion U → 1. By the definition of open subtoposes
([Joh76]), Eff is the open subtopos determined by U . Likewise, the map KM is
isomorphic (in SS) to (A, B) 7→ ((∅, IN)∨ (A, B)), so kM is internally the topol-
ogy λw : Ω.u∨w, which is the complement (in the lattice of internal topologies)
of kE. This proves statement 1.

For the second statement, since both diagrams are diagrams of inclusions, it
is enough to prove that k1 is the join of k2 and kM , and k0 is the join of k2 and
kE. This is immediate from the equalities K1 = K2 ◦ KM and K0 = K2 ◦ KE .

Corollary 2.2 Every kM-closed subobject is kE-dense, and every map from a
kM-separated object to a kE-separated object is constant.

In fact there are two other topologies which belong in the picture, viz. the meets
k2 ∧ kE and k2 ∧ kM . Abusing notation,

k2 ∧ kE (A, B) =
{

(B, B) if A 6= ∅
(∅, B) else

and

k2 ∧ kM (A, B) =
{

(A+, B+ ∪ {0}) if B 6= ∅
(∅, ∅) else

8



and we have

> = λw : Ω.>

k0

ooooooooooooo
k1

O O O O O O O O O O O O O

kE

wwwwwwwww
k2

O O O O O O O O O O O O O O

oooooooooooooo
kM

H H H H H H H H H H

k2 ∧ kE

ooooooooooooo

H H H H H H H H H
k2 ∧ kM

vvvvvvvvv

O O O O O O O O O O O O O

⊥ = idΩ

ooooooooooo

O O O O O O O O O O O

as a sublattice of the lattice of internal topologies in Eff·→·

3 Subobjects of ∇’s, ∆’s and projectives in Mod
In this section I characterize the full subcategories of Mod on respectively: the
objects which are subobject of a ∇(X), those which are subobject of a ∆(X)
and the projective objects.

The characterization of the sub-∇’s was already given, without proof, by
Hyland and Ong. For completeness’ sake and for understanding, I give a proof.
The global sections functor Γ : Mod → Set can be rendered as: Γ(X, =) =
X0/∼ where X0 = {x ∈ X| [[ x = x ]]a 6= ∅} and x∼x′ iff [[ x = x′ ]]a 6= ∅; if
F : X × Y → R represents a morphism f : (X, =) → (Y, =) then Γ(f) sends
the class [x] to the unique class [y] for which F (x, y)a 6= ∅. Given a function
f : Γ(X, =) → Y in Set, its transpose: (X, =) → ∇(Y ) is represented by

F (x, y) =
{

[[ x = x ]] if x ∈ X0 & f([x]) = y
(∅, [[ x = x ]]p) o.w.

Therefore the unit η : (X, =) → ∇Γ(X, =) is represented by H : X×X0/∼ → R
where H(x, [x′]) = [[ x = x ]] if x ∈ [x′], and (∅, [[ x = x ]]p) otherwise.

Proposition 3.1 For an object (X, =) of Mod, the following are equivalent:

1. η(X,=) is a monomorphism;

2. (X, =) is ¬¬-separated;

3. (X, =) is isomorphic to an object (Y, =) of the form:

[[ y = y′ ]] =
{

(Ay, B) if y = y′

(∅, B) o.w.

9



with Ay 6= ∅ for all y ∈ Y , and B constant (of course, 0 ∈ B and all
Ay ⊆ B)

Proof. 1 ⇒ 2: suppose η mono, so

H(x, [z])∧ H(x′, [z]) ⇒ x = x′

holds. Suppose a is an actual realizer of this. Furthermore suppose b0 ∈ [[ x =
x ]]0, b1 ∈ [[ x′ = x′ ]]0 and b2 ∈ ¬¬[[ x = x′ ]]0. Then [x] = [x′], b0 ∈ H(x, [x]),
b1 ∈ H(x′, [x′]) so a·〈b0, b1〉 ∈ [[ x = x′ ]]0; similar for potential realizers. So

x = x ∧ x′ = x′ ∧ ¬¬(x = x′) ⇒ x = x′

holds and (X, =) is ¬¬-separated.
2 ⇒ 3: suppose a is an actual realizer of x = x∧x′ = x′ ∧¬¬(x = x′) ⇒ x =

x′. Let Y = Γ(X, =) and put Ay =
⋃

x,x′∈y[[ x = x′ ]]a and B =
⋃

x,x′∈X [[ x =
x′ ]]p. Then (X, =) and (Y, =) are easily seen to be isomorphic, via F : X ×Y →
R where

F (x, y) =
{

([[ x = x ]]a × Ay, [[ x = x ]]p × B) if x ∈ y
(∅, [[ x = x ]]p × B) o.w.

The implication 3 ⇒ 1 is left to the reader.

The full subcategory of Mod on the ¬¬-separated objects can be described as
follows: objects are triples (X, {Ax| x ∈ X}, B) where X is a set, ∅ 6= Ax ⊆
B ⊆ IN and 0 ∈ B; maps from (X, {Ax| x ∈ X}, B) to (Y, {Cy| y ∈ Y }, D) are
functions f : X → Y such that (

⋂
x∈X Ax → Cf(x)) ∩ (B → D) is nonempty.

As to the sub-∆’s, the description of the objects is almost as simple, but the
morphisms are different. Thomas Streicher defined the following category, which
he calls the category of modified assemblies ModAss:

Definition 3.2 (Streicher) A modified assembly is a pair (X, φ) with X a set
and φ : X → R such that φ(x)a 6= ∅ for all x ∈ X. A morphism of modified
assemblies (X, φ) → (Y, ψ) is a function f : X → Y which is tracked in the
sense that ⋂

x∈X

(φ(x) ⇒ ψ(f(x)))a

is nonempty. Modified assemblies and morphisms form a category ModAss.

There is, as will be seen explicitly below, an embedding ModAss → Mod which
lands in the sub-∆’s; as (X, φ) is sent to a subobject of ∆(X). The question
therefore arises whether ModAss is equivalent to the full subcategory of Mod
on the sub-∆’s. There are two obstacles here.
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The first one is the requirement that φ(x)a 6= ∅ for all x ∈ X. Consider the
object (IN, =) where

[[ n = m ]] =

 ({n + 1}, {0, n + 1}) if n = m&n ∈ K
(∅, {0, n + 1}) if n = m&n 6∈ K

(∅, {0}) else

(K is the halting set)
Clearly, (IN, =) is a subobject of ∆(IN) but it is not isomorphic to any object
in the image of ModAss, since that would imply the decidability of K.

The other obstacle is that the embedding ModAss → Mod is not full.
Consider the two objects (X, φ) and (Y, ψ) of ModAss with X = {x1, x2},
Y = {y1, y2}, φ(x1) = ψ(y1) = ({1}, {0, 1}), φ(x2) = ({2}, {0, 1, 2}) and ψ(y2) =
({2}, {0, 2}). There is a morphism in Mod between them, represented by the
function F : X × Y → R defined by

F (x1, y1) = ({1}, {0, 1})
F (x1, y2) = (∅, {0})
F (x2, y1) = (∅, {0, 1})
F (x2, y2) = ({2}, {0, 2})

Strictness and totality of F are realized by (a code of) the identity function.
Relationality is easy, and single-valuedness is realized by sending the pair 〈n, m〉
to n if n = m, and to 0 otherwise. Now this morphism cannot come from a
ModAss-morphism which is a function f : X → Y ; suppose e ∈

⋂
x∈X(φ(x) ⇒

ψ(f(x)))a. Since 1 ∈ φ(x1)a ∩φ(x2)p, we must have e·1 ∈ ψ(f(x1))a ∩ψ(f(x2))p

which, by inspection of (Y, ψ), implies that f(x1) = f(x2); but then F can not
represent the image of f .

Convention. From now on, in talking about ModAss, we drop the require-
ment on objects (X, ϕ) that ϕ(x)a 6= ∅ for all x ∈ X.

Every ϕ ∈ RX is automatically a relation for the equality =∆ and determines
therefore a subobject of ∆(X), viz. the object (X, =) where [[ x = x′ ]] = ϕ(x) ∧
[[ x =∆ x′ ]], and every subobject of ∆(X) arises in this way.

The predicate ϕ(x) ∧ [[ x =∆ x′ ]] is, in RX×X , isomorphic to the function
which sends x, x′ to (ϕ(x)+

a , ϕ(x)+
p ∪{0}) if x = x′, and to (∅, {0}) else; therefore,

every sub-∆ is isomorphic to an object (X, =) where

[[ x = x′ ]] =
{

ϕ(x) if x = x′

(∅, {0}) else

for some ϕ ∈ RX such that 0 6∈ ϕ(x)a for all x. I call objects of this form
canonical sub-∆’s.

So every sub-∆ is the i∗-image of an object (X, =ϕ) of Eff·→· where now

[[ x =ϕ x′ ]] =
{

ϕ(x) if x = x′

(∅, ∅) else

11



for some ϕ ∈ RX arbitrary. The objects (X, =) of Eff·→· such that [[ x = x′ ]] =
(∅, ∅) whenever x 6= x′ are precisely the subobjects of some (∇20)∗(X); the
fact that ϕ ∈ RX rather than SX means that the (X, =ϕ) are the kM -closed
subobjects of objects in the image of (∇20)∗.

Now any morphism in Eff·→· between such objects is uniquely determined
by a function on the underlying sets which is tracked in the sense of ModAss.
Therefore we have, noting that (∇20)∗ is the inclusion of the ¬¬-sheaves in
Eff·→·:

Proposition 3.3 ModAss is equivalent to the full subcategory of Eff·→· on
those objects which are a kM-closed subobject of a ¬¬-sheaf.

The full subcategory of Mod on the sub-∆’s is a localization of this by a calculus
of fractions. Freely invert those arrows in ModAss which are, from the point
of view of Eff·→·, kM -almost iso (i.e. their i∗-image is iso). This is because of
the isomorphism of ∆ and i∗(∇20)∗: a sub-∆ is the same thing as a kM -closed
subobject of some (∇20)∗(X). Now the sub-∆’s are closed under products in

Mod, so if A
f→ B is a map between sub-∆’s in Mod, the graph of f , as subobject

of A × B, is also a sub-∆ and corresponds therefore to a kM -closed subobject
of some (∇20)∗(X), with projections to the objects corresponding to A and B
respectively, the first being kM -almost iso.

I want to give a concrete description of the sub-∆’s in terms of ModAss. We
need some structure of ModAss (familiar from ordinary assemblies) and a rep-
resentation of ModAss-morphisms which are, in Eff·→·, kM -dense inclusions.

ModAss is regular: the pullback of

(Y, ψ)

��
g

(Xϕ) //
f

(Z, χ)

is (X ×Z Y, ω) with

ω(x, y) = 〈ϕ(x), ψ(y)〉 and X ×Z Y is the pullback in Set.

A morphism (X, ϕ)
f→ (Y, ψ) is regular epi iff⋂

y∈Y

(ψ(y) ⇒ (
⋃

f(x)=y

ϕ(x)a,
⋃

f(x)=y

ϕ(x)p))a 6= ∅

To describe the kM -dense inclusions we recall that kM = λω : Ω.u ∨ ω and
define:

Definition 3.4 Given an object (X, ϕ) of ModAss, a relatively recursive sub-
set of ϕ is a set P such that

⋃
x∈X ϕ(x)a ⊆ P ⊆

⋃
x∈X ϕ(x)p and there is a par-

tial recursive function f, defined on
⋃

x∈X ϕ(x)p, such that P = (
⋃

x∈X ϕ(x)p)∩
f−1(0).

Given such P , we define the object (XP , ϕP ) where XP = {x ∈ X | ϕ(x)p ∩
P 6= ∅} and ϕP (x) = (ϕ(x)a, (ϕ(x)p ∩ P ) ∪ {0})

12



(XP , ϕP ) is an object of ModAss, the inclusion (XP , ϕP ) → (X, ϕ) is kM -dense
and every kM -dense mono in ModAss is isomorphic to one of this form.

Proposition 3.5 Let Σ be the class of ModAss-morphisms (X, ϕ) f→ (Y, ψ)
such that:

1. There is a relatively recursive subset P of ψ such that f factors as (X, ϕ)
f ′→

(YP , ψP ) → (Y, ψ) and f ′ is a regular epi in ModAss;

2. if (Z, χ) //// (X, ϕ) is the kernel pair of f, there is a relatively recursive
subset Q of χ such that the composite (ZQ, χQ) → (Z, χ) → (Y, ψ) is
monic.

Then the full subcategory of Mod on the sub-∆’s is equivalent to ModAss[Σ−1].

Projectives in Mod. The study of projectives in Mod is facilitated by the fact
that the functors i∗ : Mod → Eff·→· and (∇2)∗ : Set·→· → Eff·→· both preserve
epi’s; their left adjoints therefore preserve projectives.

As the projectives in Set·→· are exactly the monic arrows in Set, a projective
object (X, =) in Eff·→· will have [[ x = x′ ]]p = ∅ whenever [[ x = x′ ]]a = ∅, for
x 6= x′. In complete analogy to the situation for Eff (see [RR90]) we arrive
at the characterization of projective objects in Eff·→· as, up to isomorphism,
objects (X, =) such that [[ x = x′ ]] = (∅, ∅) if x 6= x′, and [[ x = x ]] is (∅, {n}) or
({n}, {n}) for some n.

Every object of Eff·→· is covered by a projective object so every object of
Mod is covered by a projective object. This easily implies that the projectives
in Mod are of form (X, =) where [[ x = x′ ]] = (∅, {0}) if x 6= x′, and [[ x = x ]] is
either (∅, {0, n+ 1}) or ({n + 1}, {0, n+ 1}) for some n: that is, the i∗-image of
a projective in Eff·→·.

Suppose F : X × Y → R represents a morphism in Mod between two such
objects (X, =) and (Y, =). There are partial recursive functions tot and sv such
that

tot ∈
⋂

x∈X([[ x = x ]] ⇒ (
⋃

y∈Y F (x, y)a,
⋃

y∈Y F (x, y)p))a

sv ∈
⋂

x∈X,y,y′∈Y (F (x, y) ∧ F (x, y′) ⇒ [[ y = y′ ]])a

Let P ⊆
⋃

x∈X [[ x = x ]]p be defined by

P = {n ∈
⋃

x∈X

[[ x = x ]]p | sv(〈tot(n), tot(n)〉) 6= 0}

Then P is a relatively recursive subset for [[ · = · ]] since
⋃

x∈X [[ x = x ]]a ⊆ P .
For XP = {x ∈ X | [[ x = x ]]p∩P 6= ∅}, the predicate F determines a function

f : XP → Y . If Y is a one-element set, this is the unique function; if Y has
more than one element, since sv(〈tot(0), tot(0)〉) = 0, for x ∈ XP and n unique
with n + 1 ∈ [[ x = x ]]p ∩ P , there is a unique y with tot(n) ∈ F (x, y).
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Then the predicate [[ x = x ]] ∧ [[ f(x) = y ]] is a functional relation which is
isomorphic to (the restriction to XP × Y of) F .

Thus we arrive at the following characterization of the projectives in Mod,
in the style of [RR90]:

Proposition 3.6 Let C be the category given by:

• Objects are diagrams X // Y // I such that X → Y is an injective
function of sets and Y → I is a surjection of Y onto a subset of IN;

• morphisms are commuting diagrams

X //

��

Y //

��

I

��
ϕ

X′ // Y ′ // I′

with ϕ partial recursive.

Let Σ be the class of morphisms

X //

��
=

Y ′ //

��

J

��
X // Y // I

for which J → I is an inclusion of a subset which contains the image of X and
is moreover such that for some partial recursive f, defned on I, J = I ∩ f−1(0);
and the right hand square is a pullback square in Set.

Then the category C[Σ−1] is equivalent to the full subcategory of Mod on the
projective objects.

4 A general “Independence of Premiss” prin-
ciple for Eff·→·

Definition 4.1 Let us call an object (Y, =) of Eff·→· diagonal if⋂
y∈Y

([[ y = y ]]p → [[ y = y ]]a) 6= ∅

Every diagonal object is isomorphic to an object (Y, =) such that [[ y = y ]] is of
the form (A, A). Every kE-sheaf (i.e., object of Eff) is diagonal, but also objects
in the image of (∇21)∗ are. All diagonal objects are quotients of kE-sheaves.

Proposition 4.2 An object of Eff·→· is diagonal if and only if its kE-separated
reflection is already a kE-sheaf; equivalently, if its canonical map to its kE-
sheafification is an epimorphism.
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Proposition 4.3 Let (X, =) and (Y, =) be objects of Eff·→· with (Y, =) diago-
nal; let A(x) a k1-closed subobject of (X, =) and B(x, y) an arbitrary subobject
of (X, =) × (Y, =). Then the principle

∀x ∈ (X, =).[(A(x) → ∃y ∈ (Y, =).B(x, y)) → ∃y ∈ (Y, =).(A(x) → B(x, y))]

holds.

Proof. Let’s write E(x), E(y) for [[ x = x ]], [[ y = y ]].
Since A(x) is k1-closed there is a partial recursive function f such that for

all x ∈ X and n ∈ E(x)p, f(n) ∈ [[ A(x) ]]p and moreover, if n ∈ E(x)a and
[[ A(x) ]]a is nonempty, then f(n) ∈ [[ A(x) ]]a.

Let g ∈
⋂

y∈Y E(y)p → E(y)a and ϕ be the partial recursive function

Λn.Λw.〈g·(w·f(n))0, Λv.(w·f(n))1〉

I claim that ϕ is an actual realizer of the principle in the proposition, which I
abbreviate as ∀x ∈ (X, =).[Φ(x) → Ξ(x)]. We have to show:

1) n ∈ E(x)p ⇒ ϕ(n) ∈ Φ(x)p → Ξ(x)p

2) n ∈ E(x)a ⇒ ϕ(n) ∈ Φ(x)a → Ξ(x)a

As to 1), let n ∈ E(x)p, w ∈ Φ(x)p. Since f(n) ∈ [[ A(x) ]]p, w·f(n) is defined and
in [[ ∃y ∈ (Y, =).B(x, y) ]]p so for some y ∈ Y , (w·f(n))0 ∈ E(y)p and (w·f(n))1 ∈
[[ B(x, y) ]]p. Then g·(w·f(n))0 ∈ E(y)a ⊆ E(y)p , and Λv.(w·f(n))1 ∈ [[ A(x) ]]p →
[[ B(x, y) ]]p, so ϕ(n) ∈ Φ(x)p → Ξ(x)p.

As to 2), let n ∈ E(x)a. We have f(n) ∈ [[ A(x) ]]p and if [[ A(x) ]]a is nonempty,
then f(n) ∈ [[ A(x) ]]a. Let w ∈ Φ(x)a.

Again, w·f(n) is defined, and there is y ∈ Y with g·(w·f(n))0 ∈ E(y)a and
(w·f(n))1 ∈ [[ B(x, y) ]]p.

But if v ∈ [[ A(x) ]]a then f(n) ∈ [[ A(x) ]]a so w·f(n) ∈ [[ ∃y ∈ (Y, =).B(x, y) ]]a,
i.e. for some y ∈ Y , g·(w·f(n))0 ∈ E(y)a and (w·f(n))1 ∈ [[ B(x, y) ]]a.

So Λv.(w·f(n))1 ∈ [[ A(x) ]]a → [[ B(x, y) ]]a. The rest is left to the reader.

Troelstra ([Tro73]) calls the following principle in arithmetic:

(¬A(x) → ∃y.B(x, y)) → ∃y.(¬A(x) → B(x, y))

the Independence of Premiss principle (IP). He shows that IP is valid under
modified realizability (a fact which is also quoted in [HyO93]). This is a conse-
quence of proposition 4.3, since (for u ∈ Ω as in proposition 2.1) u is k1-closed
and so is therefore A(x) → u, which is the meaning in Eff·→· of the negation in
Mod; and the natural numbers object in Eff·→· is a kE-sheaf, so diagonal.

Further directions

In this section I mention some further issues and topics for research.
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4.1 Mod over Eff
Since every object of Mod is a subquotient of some ∆(X) and ∆ ∼ v∗∇E , every
object of Mod is a subquotient of some v∗(X); this is to say that v : Mod → Eff
is localic and that Mod is sheaves (in Eff) on the internal locale v∗(Ω) in Eff . Yet
another way of saying this is that Mod is the classifying topos for a propositional
theory in Eff .

It would be nice to have a description of this theory. A natural way to start
is to look at the object of points of v∗(Ω), but this did not bring me much
enlightenment.

4.2 Internal complete categories in Mod

There should be several of these, and it is probably easier to consider them from
the point of view of Eff·→·. Hyland and Ong introduce the category of “PER-
extension pairs”: these are objects (X, {Ax | x ∈ X}, B) as in the description of
the ¬¬-separated objects in Mod (proposition 3.1), satisfying Ax ∩ Ay = ∅ for
x 6= y. In Eff·→· these are the k1-separated subquotients of the object (IN, =)
with [[ n = m ]] = ({n}, IN) if n = m, and (∅, IN) else; that is the k1-separated
reflection of the natural numbers object in Eff·→·. A proof that this gives an
internal complete category (at least with respect to the ¬¬-separated objects in
Mod) should be possible via the orthogonality approach, basically due to Peter
Freyd, and given in [HRR90].

4.3 Mod over a c-pca

As Hyland and Ong show, one can build a modified realizability topos over a
structure weaker than a partial combinatory algebra, namely a partial applica-
tive structure with elements k and s where the applications sf and sfg need
not be defined. They point out that the construction of an effective topos over
such a c-pca fails, and for the same reason the construction of Eff·→· fails.

It seems to me legitimate to ask, whether maybe every c-pca U can be
embedded in a partial combinatory algebra A such that they yield equivalent
modified realizability toposes.

4.4 Axiomatization of modified realizability

A straightforward axiomatization for modified realizability can be given, in a
system of first order arithmetic extended by a propositional constant u (for the
object U of proposition 2.1). This will be done in a subsequent paper.
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Anna Ingólfsdóttir. Axiomatizing Prefix Iteration with
Silent Steps. November 1995. 25 pp.

RS-95-55 Mogens Nielsen and Kim Sunesen.Trace Equivalence -
Partially Decidable! November 1995.

RS-95-54 Nils Klarlund, Mogens Nielsen, and Kim Sunesen.Us-
ing Monadic Second-Order Logic with Finite Domains for
Specification and Verification. November 1995.

RS-95-53 Nils Klarlund, Mogens Nielsen, and Kim Sunesen.Au-
tomated Logical Verification based on Trace Abstractions.
November 1995. 19 pp.


