
B
R

IC
S

R
S

-96-2
C

heng
&

N
ielsen:

O
pen

M
aps,B

ehaviouralE
quivalences,and

C
ongruences

BRICS
Basic Research in Computer Science

Open Maps,
Behavioural Equivalences,
and Congruences

Allan Cheng
Mogens Nielsen

BRICS Report Series RS-96-2

ISSN 0909-0878 January 1996

Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

Open Maps, Behavioural Equivalences, and
Congruences?

Allan Cheng and Mogens Nielsen

BRICS??, Department of Computer Science, Building 540, Ny Munkegade
University of Aarhus, Aarhus 8000 C, Denmark

e-mail: {acheng,mn}@daimi.aau.dk

Abstract. Spans of open maps have been proposed by Joyal, Nielsen,
and Winskel as a way of adjoining an abstract equivalence, P-bisimilarity,
to a category of models of computationM, where P is an arbitrary sub-
category of observations. Part of the motivation was to recast and gener-
alise Milner’s well-known strong bisimulation in this categorical setting.
An issue left open was the congruence properties of P-bisimilarity. We
address the following fundamental question: given a category of mod-
els of computation M and a category of observations P, are there any
conditions under which algebraic constructs viewed as functors preserve
P-bisimilarity? We define the notion of functors being P-factorisable,
show how this ensures that P-bisimilarity is a congruence with respect
to such functors. Guided by the definition of P-factorisability we show
how it is possible to parametrise proofs of functors being P-factorisable
with respect to the category of observations P, i.e., with respect to a
behavioural equivalence.

Keywords: Open maps, P-bisimilarity, P-factorisability, congruences,
process algebra, category theory.

1 Introduction

Category theory has proven itself very useful in many fields of theoretical com-
puter science. We mention just one example which is directly related to the work
presented in the following sections. In [JNW93], Joyal, Nielsen, and Winskel
have used category theory to propose an abstract way of capturing the notion
of bisimulation, the so-called spans of open maps: first, a category of models
of computations M is chosen, then a subcategory of observations P is chosen
relative to which open maps are defined. Two models are P-bisimilar if there
exists a span of open maps between them. In [CN95, NC95] the present authors
give examples of application of the theory.
? This work has been supported by The Danish Research Foundation, The Danish

Research Academy, and BRICS. A short version of this paper will appear in the
proceedings of CAAP ’96.

?? Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

Winskel and Nielsen have presented operators of CCS-like process algebras
using category-theoretic concepts such as products and co-products [WN95]. A
natural question to ask is whether or not it is also possible to capture the fol-
lowing important aspect of process algebraic operators and bisimulation equiva-
lences: when is P-bisimilarity a congruence with respect to some of these oper-
ators?

Based on the view that endofunctors on M may be seen as abstract operators
we define a natural and general notion of a functor being P-factorisable. We then
show that a P-factorisable functor must preserve P-bisimilarity. We observe an
apparent similarity with the idea behind Milner’s proofs that CCS operators
preserve strong bisimulation.

Common to much work on behavioural equivalences being congruences is that
one chooses a specific (a) process term language, (b) class of models, and (c) be-
havioural equivalence. One then shows that specific operators—such as “parallel
composition” and “nondeterministic choice”—preserve the proposed behavioural
equivalence. Well-known examples are [Hen88, Mil89]. The behaviour of their
process algebras is given by a structural operational semantics (SOS) [Plo81], in
which the behaviour of a composite process term is given by the behaviour of
its components.

In general, the term languages resemble each other, usually CCS-like, and
hence the results differ from each other primarily with respect to the proposed
equivalences. Based on this observation, one might look for general results.

One approach could be not to look at specific operators, but try to reason
about a general set of operators. In [BIM88], Bloom, Istrail, and Meyer study a
meta-theory for process algebras which are defined by SOS rule systems. They
identify a rule format which ensures that any process language in so-called GSOS
format has strong bisimulation as a congruence. It is worth noticing that they fix
the notion of behavioural equivalence, strong bisimulation, and obtain general
results by allowing the operators in the language to vary.

Based on the notion of P-factorisability, we choose an approach “orthogonal”
to that of [BIM88]. The presentation of P-factorisability focusses, especially, on
certain closure properties of the category P. Based on this observation, we show
how one can parametrise the proofs of functors being P-factorisable with respect
to the choice of the observation category P, i.e., the choice of a behavioural
equivalence. Intuitively, we fix the operators, but allow the behavioural equiva-
lence to vary. Then we identify conditions on P which ensure that the varying
equivalences are congruences with respect to the operators. Hence, our results
can be seen as “orthogonal” to that of Bloom, Istrail, and Meyer, in that we
can parametrise with respect to the behavioural equivalences, as opposed to
operators, [BIM88].

In the next section we recall Joyal, Nielsen, and Winskel’s theory of open
maps. In Sec. 3 we present our notion of P-factorisability. Then, in Sec. 4 we
apply our theory to a variant of Winskel and Nielsen’s labelled transition sys-
tems [WN95]. We consider the universal constructions from [WN95] and provide
general “congruence” results parametrised by the category of observations P.

2

We then continue by examining the trickier recursion operator in Sec. 5. Finally
we conclude and give suggestions for further research in Sec. 6.

2 Open Maps

In this section we briefly recall the basic definitions from [JNW93]. We present
a slightly more general definition since it turns out more beneficial, more specif-
ically for Theorem 30 and the discussion in Sect. 4.8.

Let U denote a category, the universe. A morphism m : X −→ Y in U should
intuitively be thought of as a simulation of X in Y . Then, a subcategory of U
which represents a model of computation has to be identified. We denote this
category M. Also, within U , we choose a subcategory of “observation objects”
and “observation extension” morphisms between these objects. We denote this
category of observations by P. If nothing else is mentioned, we assume that
U = M, corresponding to the definitions in [JNW93].

Given an observation (object) O in P and a model X in M, then O is said
to be an observable behaviour of X if there exists a morphism p : O −→ X in
M. We think of p as representing a “run” of O in X. We shall use O, O′, . . . to
denote observations and T, T ′, X, Y, . . . to denote objects from M. A morphism
O

q−→ O′ is implicitly assumed to belong to P.
Next, we identify morphisms m : X −→ Y in M which have the property

that whenever an observable behaviour of X can be extended via f in Y then
that extension can be matched by an extension of the observable behaviour in
X.

Definition1. Open Maps
A morphism m : X −→ Y in M is said to be P-open (or just an open map)
if whenever f : O1 −→ O2 in P, p : O1 −→ X, q : O2 −→ Y in M, and the
diagram

O1

��

f

//p
X

��

m

O2 //
q Y

(1)

commutes, i.e., m ◦ p = q ◦ f , there exists a morphism h : O2 −→ X in M (a
mediating morphism) such that the two triangles in the diagram

O1

��

f

//p
X

��

m

O2

>>

h

~~~~~~~~~~~
//

q Y

(2)

3



commute, i.e., p = h ◦ f and q = m ◦ h. When no confusion is possible, we refer
to P-open morphisms as open maps. 2

The abstract definition of bisimilarity is as follows.

Definition2. P-bisimilarity
Two models X and Y in M are said to be P-bisimilar (in M), written X ∼P Y ,
if there exists a span of open maps from a common object Z:

Z

~~

m

~ ~ ~
~ ~

~ ~
~

��

m′

@@
@@

@@@
@

X Y

(3)

2

Remark. Notice that if M has pullbacks, it can be shown that ∼P is an equiv-
alence relation. The important observation is that pullbacks of open maps are
themselves open maps. For more details, the reader is referred to [JNW93].

As a preliminary example of a category of models of computation M we
present labelled transition systems.

Definition3. A labelled transition system over Act is a tuple

(S, i, Act, −→) , (4)

where S is a set of states with initial state i, Act is a set of actions ranged
over by α, β, . . . , and −→⊆ S × Act × S is the transition relation. For the
sake of readability we introduce the following notation. Whenever (s0, α1, s1),
(s1, α2, s2), . . ., (sn−1, αn, sn) ∈−→ we denote this as s0

α1−→ s1
α2−→ · · · αn−→ sn

or s0
v−→ sn, where v = α1α2 · · ·αn ∈ Act∗. Also, we assume that all states

s ∈ S are reachable from i, i.e., there exists a v ∈ Act∗ such that i
v−→ s. 2

Let us briefly remind the reader of Park and Milner’s definition of strong
bisimulation [Mil89].

Definition4. Let T1 = (S1, i1, Act, −→1) and T2 = (S2, i2, Act, −→2). A strong
bisimulation between T1 and T2 is a relation R ⊆ S1 × S2 such that

(i1, i2) ∈ R , (5)

((r, s) ∈ R ∧ r
α−→1 r′) ⇒ for some s′, (s α−→2 s′ ∧ (r′, s′) ∈ R) , (6)

((r, s) ∈ R ∧ s
α−→2 s′) ⇒ for some r′, (r α−→1 r′ ∧ (r′, s′) ∈ R) . (7)

T1 and T2 are said to be strongly bisimilar if there exists a strong bisimulation
between them. 2

4



Henceforth, whenever no confusion is possible we drop the indexing subscripts
on the transition relations and write −→, instead.

By defining morphisms between labelled transition systems we can obtain a
category of models of computation, TSAct, labelled transition systems.

Definition5. Let T1 = (S1, i1, Act, −→1) and T2 = (S2, i2, Act, −→2). A mor-
phism m : T1 −→ T2 is a function m : S1 −→ S2 such that

m(i1) = i2 , (8)

s
α−→1 s′ ⇒ m(s) α−→2 m(s′) . (9)

2

The intuition behind this specific choice of morphism is that an α-labelled tran-
sition in T1 must be simulated by an α-labelled transition in T2. Composition of
morphisms is defined as the usual composition of functions.

By varying the choice of P we can obtain different behavioural equivalences,
corresponding to P-bisimilarity. E.g., if, as done in [JNW93], we choose PM as
the full subcategory of TSAct whose objects are finite synchronisation trees with
at most one maximal branch, i.e., labelled transition systems of the form

i
α1−→ s1

α2−→ · · · αn−→ sn , (10)

where all states are distinct, we get:

Theorem6. [JNW93] PM -bisimilarity coincides with Park and Milner’s strong
bisimulation.

By slightly restricting our choice of observation extension so that PH is the
subcategory of TSAct whose objects (observations) are of the form (10), and
whose morphisms are the identity morphisms and morphisms whose domains
are observations having only one state (the empty word), we get:

Theorem7. [NC95] PH-bisimilarity coincides with Hoare trace equivalence.

In [NC95] other behavioural equivalences were considered, e.g., weak bisim-
ulation and probabilistic bisimulation.

3 P-Factorisability

In this section we propose the notion of P-factorisability. We start by a motivat-
ing example and continue with some category theoretical preliminaries, which
notationally eases the presentation of P-factorisability.

5



3.1 An Example

Consider M = TSAct and P = PM from Sec. 2 and the transition systems below,
which we denote—left to right—T1, . . . , T5. The initial states are depicted as �.

�

��
α

�

��
α

�

��
γ

�

��
α

//γ ·

��
α

//β̄ ·

��
α

�

��
α

//γ ·

��
α

//β̄ ·

��
α

·

��

β

~ ~ ~
~ ~ ~

~

��
β

·

��
β

·

��
β̄

·

��
β
~ ~ ~

~ ~ ~

//γ

��
β//

//
//

//
//

/ ·

��
β
~ ~ ~

~ ~ ~

//β̄

��
β..

..
..

..
..

.

��
τ

��

τ
==

==
==

=

==
==

==
=

·

��
β
� � �

� � �

��
β..

..
..

..
..

. ·

��
β

//γ ·

��
β

//β̄

��
τ

===

===
·

��
β

· · · · · //
γ

· //
β̄

· · //
γ

· //
β̄

·

· //
γ

· //
β̄

·

T1 is strongly bisimilar (P-bisimilar) to T2. In fact, there is an obvious open
map k from T1 to T2. Considering T3 to be fixed, we can define a functor ‖T3 :
M −→ M, where ‖ acts as a CCS-like parallel composition. T4 = T1‖T3 and
T5 = T2‖T3 serve as an informal illustration of ‖T3, when applied to T1 and T2,
respectively. In much the same way as Milner [Mil89] shows that P ∼ P ′ implies
P ‖ Q ∼ P ′ ‖ Q, we would like to conclude that if k : T1 −→ T2 is open, then so

is T1‖T3
k‖T3−→ T2‖T3. 3

Recall that P-bisimilarity is based on open maps, which again are based on
observations from P. E.g., we can observe O, the behaviour � α−→ · γ−→ ·, in T4
and—via k‖T3 : T4 −→ T5—in T5. Some of these transitions in T4, here only the
α transition, are due to transitions “from” T1. Using k, we conclude that the
α transition in O must also be observable in T2. In fact, we have a commuting
diagram as in (1) with X = T4, Y = T5, O1 = O2 = O, m = k‖T3, and f = 1O,
and by the above we have extracted a second commuting diagram of the form
(1) with X = T1, Y = T2, O1 = O2 = O′ = � α−→ ·, and m = k.

The way we have “factored” O into O′ is consistent with ‖T3 in the following
sense: there exists a commuting diagram of the form

3 In fact, just as Milner uses a bisimulation P ∼ P ′ to exhibit a bisimulation P ‖Q ∼
P ′ ‖Q, we will “factor” the observation � α−→ · γ−→ · into transitions from T3 and
from T1 and T2, respectively. This will guide us to the mediating morphism required
in (2).

6



O

��

""EE
EEE

E // O′‖T3

zzt t t
t t t

��

T1‖T3

��

O

""EE
EEE

E // O′‖T3

zzt t t
t t t

T2‖T3

In the next section, we formalise this by defining the notion of P-factorisability,
and, as a consequence, we will be able to conclude that k‖T3 is an open map.

3.2 Categorical Preliminaries

Given a category C with objects C0 and morphisms (arrows) C1, let Ĉ be the cate-
gory whose objects are C1 and whose morphisms represent commuting diagrams,
i.e., there is a morphism (h1, h2) from f to g if

·

��
f

//h1 ·

��
g

· //
h2

·
(11)

is a commuting diagram in C. Composition of morphisms is defined component-

wise. For notational convenience we may “hat” objects and morphisms from Ĉ,
e.g., X̂ and m̂. When convenient, we will denote objects from Ĉ as morphisms
from C, e.g., X̂ might be denoted f .

Notice that a functor F : C −→ D induces a functor F̂ : Ĉ −→ D̂, which
sends an object X̂ to F (X̂) and a morphism m̂ = (m1, m2) to (F (m1), F (m2)).

3.3 Factorising Observations

Definition8. P-factorisability
A functor F : M −→ M is said to be P-factorisable if whenever we have an

object Ô in P̂, an object X̂ in M̂, and a morphism Ô
q̂−→ F̂ (X̂) in M̂, then

there exist an object Ô1 in P̂ and morphisms Ô
q̂?−→ F̂ (Ô1) and Ô1

q̂#

−→ X̂ in M̂
such that the diagram

Ô

  
q̂

BB
BB

BB
BB

BB
BB

BB
//q̂?

F̂ (Ô1)

��

F̂(q̂#)

F̂ (X̂)

(12)

7



commutes in M̂. 2

Definition9. A functor F : M −→ M is a P-operator if it is P-bisimilarity
preserving, i.e., if A is P-bisimilar to B, then F (A) is P-bisimilar to F (B). 2

Theorem10. Any P-factorisable functor F : M −→ M is a P-operator.

Proof. It is sufficient to show that F preserves open maps. Assume m : X −→ X′

is an open map and we are given a commuting diagram

O

��

f

//q
F (X)

��

F(m)

O′ //
q′

F (X′)

with q and q′ in M. This diagram is a morphism Ô
q̂−→ F̂ (X̂) in M̂. By P-

factorisability there exist Ô1 in P̂ and morphisms Ô
q̂?−→ F̂ (Ô1) and Ô1

q̂#

−→ X̂

in M̂ such that (12) commutes. Denote Ô as f : O −→ O′, q̂ as (q, q′), Ô1

as m1 : O1 −→ O′1, q̂? as (q?, q′?), X̂ as m : X −→ X′, and q̂# as (q#, q′#).

Since Ô1
q̂#

−→ X̂ represents a commuting diagram and m was open, there exists
a morphism p : O′1 −→ X such that the diagram

O

��

f

//q?

F (O1)

��

F(m1)

//F(q#)
F (X)

��

F(m)

O′ //
q′?

F (O′1) //
F(q′#)

;;
F(p)

wwwwwwwwwwww
F (X′)

must commute (by (12)). But then

q = F (q#) ◦ q? , by (12)
= F (p) ◦ F (m1) ◦ q?

= (F (p) ◦ q′?) ◦ f ,

and

q′ = F (q′#) ◦ q′? , by (12)
= F (m) ◦ (F (p) ◦ q′?) .

We conclude that F (m) is open. Hence if X
m←− Z

n−→ Y is a span of open

maps, F (X)
F(m)←− F (Z)

F(n)−→ F (Y ) is a span of open maps.

8



4 Application, an Example

As an example of the application of the theory we consider the category TS of
labelled transition systems 4 from [WN95]. As it is shown there, process-language
constructs can be interpreted as universal constructions in TS. In the following
subsections, we show how our theory can be applied to the functors associated
to these universal constructions.

4.1 The Category of Labelled Transition Systems

In this section we define the category TS inspired by [WN95].

Definition11. The category TS has as objects (S, i, L, −→), labelled transition
systems (lts) with labelling set L. We require that all states in S be reachable
(from the initial state i). 2

We shall use the abbreviation Tj for (Sj , ij, Lj , −→j). If clear from the con-
text we will omit the subscript j. Also, all the following constructions do produce
ltss in TS, i.e., all states are reachable.

For technical reasons we assume the existence of a special element ∗ which is
not member of any labelling set. A partial function λ between two labelling sets
L and L′ can then be represented as a total function from L∪{∗} to L′∪{∗} such
that ∗ is mapped to ∗. If a ∈ L is mapped to ∗, we interpret this as meaning that
λ is undefined on a. Overloading the symbol λ, we shall write this as λ : L ↪→ L′.
Given T = (S, i, L, −→), we define −→∗ to be the set −→ ∪{(s, ∗, s) | s ∈ S}.
The transitions (s, ∗, s) are called idle transitions.

Definition12. A morphism m : T0 −→ T1 is a pair f = (σm, λm), where
σm : S0 −→ S1 and λm : L0 ↪→ L1 are total functions such that

σm(i0) = i1 (13)

s
a−→0 s′ ⇒ σm(s)

λ(a)−→1∗ σm(s′) (14)

2

The intuition is that initial states are preserved and transitions in T0 are simu-
lated in T1, except when λm(a) = ∗, in which case they represent inaction in T1.
Composition of morphisms is defined component-wise. This defines the category
TS. We suppress the subscript m when no confusion is possible.

Let Set∗ denote the category whose objects are labelling sets L and whose
morphisms are partial functions λ : L ↪→ L′ between labelling sets.

4 This category is different from the one presented in Sec. 2; we use this category
because it has universal constructions such as, e.g., products and co-products which
correspond in an almost direct way to the well-known process algebraic constructions.

9



4.2 More Categorical Preliminaries, Fibred Category Theory

Let p : TS −→ Set∗ be the function which sends an lts to its labelling set and
a morphism (σ, λ) : T0 −→ T1 to λ : L0 −→ L1. A fibre over L, p−1(L), is the
subcategory of TS whose objects have labelling set L and whose morphisms f
map to 1L, the identity function on L, under p.

We will use the following notions from fibred category theory.

Definition13. A morphism f : T −→ T ′ in TS is said to be Cartesian with
respect to p : TS −→ Set∗ if for any morphism g : T ′′ −→ T ′ in TS such that
p(g) = p(f) there is a unique morphism h : T ′′ −→ T such that p(h) = 1p(T )
and f ◦ h = g.

T ′′

!!

g

CC
CC

CC
CC

CC
CC

C

h

���
�
�
�
�

TS

��

p T //
f

T ′

Set∗ p(T ) //
p(f)

p(T ′)

A Cartesian morphism f : T −→ T ′ in TS is said to be a Cartesian lifting of

the morphism p(f) in Set∗ with respect to T ′. 2

It can be shown now that p is a fibration, i.e.,

– any morphism λ : L −→ L′ in Set∗ has a Cartesian lifting with respect to
any T ′ in TS such that p(T ′) = L′.

– any composition of Cartesian morphisms is itself Cartesian.

Dually, we define a morphism to be co-Cartesian.

Definition14. A morphism f : T −→ T ′ in TS is said to be co-Cartesian with
respect to p : TS −→ Set∗ if for any morphism g : T −→ T ′′ in TS such that
p(g) = p(f) there is a unique morphism h : T ′ −→ T ′′ such that p(h) = 1p(T ′)
and h ◦ f = g.

T ′′

TS

��

p T

==

g

{{{{{{{{{{{{{
//

f
T ′

h

OO�
�
�
�
�

Set∗ p(T ) //
p(f)

p(T ′)

A co-Cartesian morphism f : T −→ T ′ in TS is said to be a co-Cartesian lifting

of the morphism p(f) in Set∗ with respect to T ′. 2

10



Similarly, it can be shown that p is a co-fibration, i.e., pop : TSop −→ Setop
∗ is a

fibration.
In the following, let U be TS, let F be the union of all fibres over all la-

belling sets, and let M be the subcategory of F induced by all non-restarting
ltss, i.e., there are no transitions into the initial state. The reason for staying
within fibres is that one commonly insists on having labelled actions simulated
by identically labelled actions. Notice that TSAct from Sect. 2 can be viewed
as the fibre p−1(Act). Morphisms in M will always be of the form (σ, 1L), for
some labelling set L. In particular, all commuting diagrams of the form (1) in
M will always belong to some fibre p−1(L). It can also be shown that M has
pullbacks, hence ∼P is an equivalence relation [JNW93]. The reason we consider
non-restarting ltss is technical. We will address this issue below.

We shall assume that the category P of observation is closed under renaming
of states and closed under variation of labelling sets, i.e., if (S, i, L, −→) is an
observation and L′ is any labelling set such that (S, i, L′, −→) is an lts, then it
is also an observation.

To emphasise the use of the theory in Sect. 3, we will use the notation M
and P.

4.3 Product

In this section, we consider the product construction, which has strong rela-
tions to, e.g., CCS’s parallel composition operator, see [WN95] and Sect. 4.8. In
[WN95], it is shown how CCS’s parallel composition operator can be expressed
using the product, renaming, and relabelling operators we present below.

Definition15. Let T0 × T1 denote (S, i, L, −→), where

– S = S0 × S1, with i = (i0, i1) and projections ρ0 : S −→ S0, ρ1 : S −→ S1 ,
– L = L0 ×∗ L1 = (L0 × {∗}) ∪ ({∗} × L1) ∪ (L0 × L1), with projections

π0 : L0 ×∗ L1 ↪→ L0 and π1 : L0 ×∗ L1 ↪→ L1, and

– s
a−→∗ s′ ⇔ ρ0(s)

π0(a)−→ 0∗ ρ0(s′) ∧ ρ1(s)
π1(a)−→ 1∗ ρ1(s′) .

2

Let Π0 = (ρ0, π0) : T0 × T1 −→ T0 and Π1 = (ρ1, π1) : T0 × T1 −→ T1. It can be
shown that this construction is a product of T0 and T1 in the category TS.

The product construction allows the two components T0 and T1 to proceed
independently of each as well as synchronising on any of their actions. This
behaviour is far too generous compared to CCS’s parallel composition. However,
by restricting away all action pairs from T0 × T1 that are not of the form (a, ∗),
(∗, a), or (a, ā), corresponding to a move in the left component, right component,
and a synchronisation on complementary actions, and relabelling (a, ∗), (∗, a),
and (a, ā) to a,a, and τ , respectively, we obtain CCS’s parallel composition. Both
restriction and relabelling can be handled in our setting.

For a fixed lts T0 the above construction induces an obvious functor T0 × :
M −→ M. We continue by applying our theory to prove a general result for this

11



functor. First we need a definition, which will help formalising the “factoring”
of observations in a product object.

Definition16. Let T = (S, i, L, −→) and let λ : L ↪→ L′ represent a partial
function between labelling sets. Let ≡ be the least equivalence relation on S
such that if s

a−→ s′ and λ(a) = ∗, then s ≡ s′. Let [s] denote the equivalence
class of s under ≡. Define [T ]λ = (S′, i′, L′, −→ ′), where

– S′ = {[s] | s ∈ S} and i′ = [i],
– [s] b−→ ′[s′] ⇔ ∃v ∈ [s], v′ ∈ [s′], a ∈ L. v

a−→ v′ ∧ λ(a) = b 6= ∗ .

Let η(T,λ) : T −→ [T ]λ be the pair (σ, λ), where σ(s) = [s]. 2

A simple argument shows that σ is well-defined. If s ≡ s′, then there exists
a “back and forth” path

·

��

l1

� �
� �
� �
� �
� �

��

l2

..
..

..
..

..
·

��

l3

� �
� �
� �
� �
�

·

��

ln−2

..
..

..
..

..
·

��

ln−1

� �
� �
� �
� �
�

��

ln

//
//

//
//

/

· · ·

s · · s′

where li = ∗ or λ(li) = ∗, for 1 ≤ i ≤ n. We conclude that σ(s) = σ(s′).

Proposition17. The morphism η(T,λ) : T −→ [T ]λ is co-Cartesian with respect
to p.

Proof. Assume f : T −→ T1 and p(f) = p(η(T,λ)). Define (σ′, 1L′) : [T ]λ −→ T1
by σ′([s]) = σf(s). By an argument similar to the above one can show that σ′ is
well-defined. To see that (σ′, 1L′) is a morphism first notice that σ′([i]) = σf(i) =

i1. Next, assume [s] b−→ ′[s′], i.e., ∃v ∈ [s], v′ ∈ [s′], a ∈ L. v
a−→ v′ ∧ λ(a) =

b 6= ∗. Then σf (v)
λ(a)−→1∗ σf(v′), i.e., σ′([s]) b−→1∗ σ′([s′]). It is easy to see that

(σ′, 1L′) is the uniquely determined morphism such that p((σ′, 1L′)) = 1p([T ]λ)
and f = (σ′, 1L′) ◦ η(T,λ).

Lemma18. For a partial function λ : L ↪→ L′ between labelling sets, there is
a functor Fλ : p−1(L) −→ p−1(L′) which sends f = (σ, 1L) : T0 −→ T1 to
Fλ(f) = (γ, 1L′) : [T0]λ −→ [T1]λ defined by γ([s]) = [σ(s)].

Proof. The proof is routine, hence omitted.

We can now show the following theorem.

Theorem19. Let T0 belong to M and L0 = p(T0). Let P be any subcategory of

U such that whenever we have O
f−→ O′ in P, where p(f) = 1L0×∗L for some

L, then Fπ1(O)
Fπ1(f)
−→ Fπ1(O′) also belongs to P. Then T0 × : M −→ M is a

P-operator.

12



Proof. By Theorem 10 it is sufficient to show that T0 × is P-factorisable. So

assume T
m−→ T ′ belongs to M, p(T ) = L, and we are given Ô

q̂−→ T̂0×(T̂ ), i.e.,
a commuting diagram in M

O

��

f

//q
T0 × T

��

T0×m

O′ //
q′

T0 × T ′

Since M is the union of fibres we have p(f) = p(q) = p(q′) = p(T0 × m) =

1L0×∗L for some set L. Let π1 : L0 ×∗ L ↪→ L be the projection on the second

component. By our assumptions Fπ1(O)
Fπ1 (f)
−→ Fπ1(O′) is in P. Let O1 = Fπ1(O),

O′1 = Fπ1(O′), q = (σq, 1L0×∗L), and q′ = (σq′ , 1L0×∗L). Define

q# = (σ, 1L) : O1 −→ T , where σ([s]) = ρ1(σq(s)), and

q′# = (σ′, 1L) : O′1 −→ T ′ , where σ′([s′]) = ρ′1(σq′(s′))

ρ1 and ρ′1 are the projections mentioned in Definition 15. Notice, e.g., that for
any s1, s2 ∈ [s] in O1 we have ρ1(σq(s1)) = ρ1(σq(s2)). Next, define

q? = (γ, 1L0×∗L) : O −→ T0 × O1 , where γ(s) = (ρ0(σq(s)), [s]), and

q′? = (γ′, 1L0×∗L) : O′ −→ T0 × O′1 , where γ′(s′) = (ρ′0(σq′(s′)), [s′])

It can now be shown that both diagrams

O

��

f

//q?

T0 × O1

��

1T0×Fπ1 (f)

O1

��

Fπ1 (f)

//q#

T

��

m

O′ //
q′?

T0 × O′1 O′1 //
q′#

T ′

exist in M and commute, i.e., we have morphisms Ô
q̂?−→ T̂0×(Ô1) and Ô1

q̂#

−→ T̂

in M̂. It can also be shown that q = q# ◦ q? and q′ = q′# ◦ q′?. Hence we have a
commuting diagram of the form (12). Hence T0 × is P-factorisable.

4.4 Co-Product

In this section, we consider the co-product construction, which has strong rela-
tions to, e.g., CCS’s nondeterministic choice operator, see [WN95] and Sect. 4.8.

Definition20. Let T0 + T1 denote (S, i, L, −→), where

13



– S = (S0 × {i1})∪ ({i0} × S1), with i = (i0, i1) and injections in0 : S0 −→ S,
in1 : S1 −→ S ,

– L = L0 ∪∗ L1 = (L0 × {∗}) ∪ ({∗} × L1), with injections j0 : L0 −→ L and
j1 : L1 −→ L, and

– s
a−→ s′ ⇔ ∃v

b−→0 v′. (in0(v), j0(b), in0(v′)) = (s, a, s′) or

∃v
b−→1 v′. (in1(v), j1(b), in1(v′)) = (s, a, s′)

2

Let I0 = (in0, j0) : T0 −→ T0 + T1 and I1 = (in1, j1) : T1 −→ T0 + T1. It can be
shown that this construction is a coproduct of T0 and T1 in the category TS.

As opposed to the product construction, the co-product construction resem-
bles more a process algebraic choice, “+”, operator. If we consider non-restarting
ltss, co-product can be shown to correspond to “+” in a formal sense [WN95].

Definition21. Given T ′ = (S′, i′, L′, −→ ′) and a partial function λ : L ↪→ L′.
Let T ′↓λ = (S, i, L, −→), where

– S = {s ∈ S′ | ∃a1, . . . , an ∈ L, s1, . . . , sn ∈ S′.

i′
λ(a1)−→ ′s1

λ(a2)−→ ′ · · · λ(an)−→ ′sn ∧ sn = s}
– i = i′

– s
b−→ s′ ⇔ s

λ(b)−→ ′
∗s
′

2

Let η(T ′,λ) : T ′↓λ −→ T ′ be the pair (in, λ), where in is the injection function.

Proposition22. The morphism η(T ′,λ) : T ′↓λ −→ T ′ is Cartesian with respect
to p.

Lemma23. For a partial function λ : L ↪→ L′ between labelling sets, there is
a functor F↓λ : p−1(L′) −→ p−1(L) which sends f = (σ, 1L′) : T0 −→ T1 to
F↓λ = (γ, 1L) : T0↓λ −→ T1↓λ defined by γ(s) = σ(s).

Theorem24. Let T0 belong to M and L0 = p(T0). Assume P is a subcategory

of M such that whenever we have O
f−→ O′ in P with p(f) = 1L0∪∗L for some

L, F↓λ(O)
F↓λ(f)−→ F↓λ(O′) also belongs to P, where λ : L −→ L0 ∪∗ L is the

injection function. Then T0 + : M −→ M is a P-operator.

Proof. It is sufficient to show that T0 + is P-factorisable. So assume T
m−→ T ′

belongs to M, p(T ) = L, and we are given Ô
q̂−→ T̂0+(T̂ ), i.e., a commuting

diagram in M
O

��

f

//q
T0 + T

��

1T0+m

O′ //
q′

T0 + T ′

14



Let p(f) = 1L0∪∗L. Let λ : L −→ L0 ∪∗ L be the injection function sending

a ∈ L to (∗, a) ∈ L0 ∪∗L. By our assumptions F↓λ(O)
F↓λ(f)−→ F↓λ(O′) is in P. Let

O1 = F↓λ(O), O′1 = F↓λ(O′), q = (σq, 1L0∪∗L), and q′ = (σq′ , 1L0∪∗L). Define

q# = (σ, 1L) : O1 −→ T , where σ(s) = t, where σq(s) = (r, t), and

q′# = (σ′, 1L) : O′1 −→ T ′ , where σ′(s′) = t′, where σq′(s′) = (r′, t′)

Next, define

q? = (γ, 1L0∪∗L) : O −→ T0 + O1 , where γ(s) = (r, i1) if σq(s) = (r, i),
γ(s) = (i0, t) if σq(s) = (i0, t), and

q′? = (γ′, 1L0∪∗L) : O′ −→ T0+O′1 , where γ′(s′) = (r′, i′1) if σq′(s′) = (r′, i′),
γ′(s′) = (i′0, s′) if σq′(t′) = (i′0, t′)

It can now be shown that both diagrams

O

��

f

//q?

T0 + O1

��

1T0+F↓λ(f)

O1

��

F↓λ(f)

//q#

T

��

m

O′ //
q′?

T0 + O′1 O′1
//

q′#
T ′

exist in M and commute, i.e., we have morphisms Ô
q̂?−→ T̂0+(Ô1) and Ô1

q̂#

−→ T̂

in M̂. It can also be shown that q = q# ◦ q? and q′ = q′# ◦ q′?. Hence we have a
commuting diagram of the form (12). Hence T0 + is P-factorisable.

4.5 Restriction

In this section, we consider relabelling.

Definition25. Given T ′ = (S′, i′, L′, −→′) and a labelling set L. Let F ↓:
M −→ M denote the functor which sends T ′ to T = (S, i, L, −→), where

– S = {s ∈ S′ | ∃a1, . . . , an ∈ L ∩ L′, s1, . . . , sn ∈ S′.

i′
a1−→ ′s1

a2−→ ′ · · · an−→ ′sn ∧ sn = s}
– i = i′

– s
a−→ s′ ⇔ s

a−→ ′s′, a ∈ L

and which maps a morphism m = (σ′m, 1L′) : T ′1 −→ T ′2 to F ↓ (m) = (σm, 1L) :
F ↓ (T ′1) −→ F ↓ (T ′2), where σm(s) = σ′m(s). 2

We have the following perhaps surprising result.

Theorem26. For any choice of P the functor F ↓L is a P-operator.

15



Proof. We show that F ↓L is a P-operator. Assume T
m−→ T ′ and we have

O

��

f

//q
F ↓L(T )

��

F↓L(m)

O′ //
q′

F ↓L(T ′)

that commutes in M. Let p(T ) = L′. By our assumptions we must have a

commuting diagram

O1

��

m1

//q#

T

��

m

O′1
//

q′#
T ′

where O = (S, i, L, −→), O′ = (S′, i′, L, −→), f = (σf , 1L), O1 = (S, i, L′, −→),

O′1 = (S′, i′, L′, −→ ′), m1 = (σf , 1L′), q = (σq, 1L), q′ = (σq′ , 1L), q# =
(σq, 1L′), and q′# = (σq′ , 1L′). Notice F ↓ L(O1) = O, F ↓ L(O′1) = O′, and
F ↓L(m1) = f . It can easily be shown that we have a diagram in M̂ as required
in (12) and that it commutes.

4.6 Relabelling

Relabelling, as presented in [WN95], is a bit tricky. We will need some auxiliary
definitions and we will have to consider (relabelling) functors between fibres.

Definition27. Let T = (S, i, L, −→) be an lts and λ : L −→ L′ be a total
function between labelling sets. Define T{λ} to be the lts (S, i, L′, −→ ′), where

s
a−→ ′s′ ⇔ ∃ b. s

b−→ s′ ∧ λ(b) = a .

2

Proposition28. If λ : L −→ L′ is a total function in Set∗, then T
f−→ T{λ},

where f = (1S , λ) is co-Cartesian with respect to p.

Proof. The proof is routine, hence omitted.

Any total function λ : L −→ L′ induces a functor F{λ} : p−1(L) −→ p−1(L′).
Notice that F{λ} is not an endofunctor on M. Instead, given λ : L −→ L′ we
consider λ′ : L ∪ L′ −→ L ∪ L′ defined by λ′(a) = λ(a) if a ∈ L and λ′(a) = a
otherwise. Now p−1(L) and p−1(L′) embed fully and faithfully in p−1(L∪L′). We
will therefore only consider total relabelling functions of the form λ : L −→ L.

Let p0 : TS −→ Set be the functor which sends T to S and (σ, λ) : T −→ T ′

to σ.

16



Definition29. Let F−1{λ}(T ) denote the subcategory of p−1(L) whose objects
are ltss T ′ such that F{λ}(T ′) = T and whose morphisms f map to 1p0(T ) under
p0; objects in F−1{λ}(T ) have the same set of states as T .

An object T ′ in F−1{λ}(T ) is minimal if the only morphisms in F−1{λ}(T )
with codomain T ′ is the identity morphism on T ′. 2

Remark. Notice that if T ′ is minimal in F−1{λ}(T ), then for any two transitions
s

a−→ s′ and s
b−→ s′ in T ′ we have a 6= b implies λ(a) 6= λ(b).

Theorem30. Given a total relabelling function λ : L −→ L. Choose M =
p−1(L). Let P be a subcategory of U . Assume that for all O

f−→ O′ in P, where
f = (σf , 1L) and F−1{λ}(O) and F−1{λ}(O′) are nonempty, (σf , 1L) : O1 −→
O′1 belongs to P, whenever O1 and O′1 are minimal elements in F−1{λ}(O) and
F−1{λ}(O′), respectively, and (σf , 1L) : O1 −→ O′1 defines a morphism. Then
F{λ} : M −→ M is a P-operator.

Proof. Choose M = p−1(L). We show that F{λ} : M −→ M is a P-operator,
where λ : L −→ L is a total relabelling function. Assume T

m−→ T ′ belongs to
M and we have

O

��

f

//q
F{λ}(T )

��

F{λ}(m)

O′ //
q′

F{λ}(T ′)

that commutes in M. Since O is simulated in F{λ}(T ) we know that F−1{λ}(O)

is nonempty. Similarly,F−1{λ}(O′) is nonempty. Since O is simulated in F{λ}(T )
and p(m) = 1L, there must exist a minimal O1 in F−1{λ}(O) and a minimal O′1
in F−1{λ}(O′) such that g = (σf , 1L) : O1 −→ O′1 is a well-defined morphism
in P and such that

q# = (σq , 1L) : O1 −→ T , where q = (σq , 1L) : O −→ F{λ}(T ), and

q′# = (σq′ , 1L) : O′1 −→ T ′ , where q′ = (σq′ , 1L) : O′ −→ F{λ}(T ′)
are well-defined morphisms in M.

Next, define

q? = (γ, 1L) : O −→ F{λ}(O1) , where γ(s) = s, and

q′? = (γ′, 1L) : O′ −→ F{λ}(O′1) , where γ′(s′) = s′

It can now be shown that both diagrams

O

��

f

//q?

F{λ}(O1)

��

F{λ}(g)

O1

��

g

//q#

T

��

m

O′ //
q′?

F{λ}(O′1) O′1
//

q′#
T ′

17



exist in M and commute, i.e., we have morphisms Ô
q̂?−→ F̂{λ}(Ô1) and Ô1

q̂#

−→

T̂ in M̂. It can also be shown that q = q# ◦ q? and q′ = q′# ◦ q′?. Hence we have
a commuting diagram of the form (12). Hence F{λ} is P-factorisable.

Notice that M = p−1(L) is no restriction in our case, since M “consists” of
full subcategories of fibres: it is easy to see that a P-open morphism in p−1(L)
is also P-open in M.

4.7 Prefix

Definition31. Given T = (S, i, L, −→) and a label α. Let α.T = (S′, i′, L ∪
{α}, −→ ′), where

– S′ = {{s} | s ∈ S} ∪ {∅}, i′ = ∅, and
– v

b−→ ′v′ ⇔ (v = ∅ ∧ b = α ∧ v′ = {i}) or (v = {s} ∧ v′ = {s′} ∧ s
b−→ s′) .

2

Any label α induces a functor α. : M −→ M which sends f = (σ, 1L) : T −→ T ′

to (σ′, 1L∪{α}) : α.T −→ α.T ′, where σ′(∅) = ∅ and σ′({s}) = {σ(s)}.

Definition32. Given T and a label α. Let α−1(T ) = (S′, i′, L, →′), where

– S′′ = {s ∈ S | ∃v ∈ L∗. i
α−→ v−→ s}\{s | i α−→ s} ,

– S′ = {{s} | s ∈ S′′} ∪ {{s | i α−→ s}} ,

– i = {s | i α−→ s} , and
– r

a−→ ′r′ ⇔ ∃s ∈ r, s′ ∈ r′. s
a−→ s′ .

2

Any label α induces a functor α−1 : U −→ U which sends f = (σ, 1L) : T −→ T ′

to α−1(f) = (σ′, 1L) : T1 −→ T2, where T1 = α−1(T ), T2 = α−1(T ′), σ′(i1) = i2,
and σ′({s}) is the unique v ∈ S2 such that σ(s) ∈ v. Notice that α−1(T ) may
not be non-restarting even though T is.

Theorem33. Let P be a subcategory of U . Assume that whenever we have

O
f−→ O′ in P, then α−1(O)

α−1(f)−→ α−1(O′) also belongs to P. Then α. is
a P-operator.

Proof. We show that α. is a P-operator. Assume T
m−→ T ′ and we have

O

��

f

//q
α.T

��

α.m

O′ //
q′

α.T ′

18



that commutes in M. Notice that since T and T ′ are assumed to be non-

restarting, α−1(O) and α−1(O′) must also be non-restarting. Assume α ∈ L =

p(T ). By our assumptions α−1(O)
α−1(f)−→ α−1(O′) is in P. Let O1 = α−1(O) and

O′1 = α−1(O′). Define

q# = (σ, 1L) : O1 −→ T , given by σ(i1) = i and σ({s}) = r,
where σq(s) = {r} and q = (σq, 1L) : O −→ α.T , and

q′# = (σ′, 1L) : O′1 −→ T ′ , given by σ′(i′1) = i′ and σ′({s′}) = r′,
where σq′(s′) = {r′} and q′ = (σq′ , 1L) : O′ −→ α.T ′

Next, define

q? = (γ, 1L) : O −→ α.O1 , where γ(i) = ∅,
γ(s) = {i1} for s ∈ {s |, i α−→ s} in O, γ(s) = {{s}}, else, and

q′? = (γ′, 1L) : O′ −→ α.O′1 , where γ′(i′) = ∅,
γ′(s′) = {i′1} for s′ ∈ {s′ |, i′ α−→ s′} in O′, γ′(s′) = {{s′}}, else.

It can now be shown that both diagrams

O

��

f

//q?

α.O1

��

α.g

O1

��

g

//q#

T

��

m

O′ //
q′?

α.O′1 O′1 //
q′#

T ′

exist in M and commute, i.e., we have morphisms Ô
q̂?−→ α̂.(Ô1) and Ô1

q̂#

−→ T̂

in M̂. It can also be shown that q = q# ◦ q? and q′ = q′# ◦ q′?. Hence we have a
commuting diagram of the form (12).

For the case where α 6∈ p(T ) the same reasoning can be used. First extend T
and T ′’s labelling sets to include α. The induced mα : T −→ T ′ in p−1(L∪ {α})
will be P-open if and only if m : T −→ T ′ is due to our assumptions about
P. Now notice that mα and m are identical under α. . We conclude that α. is
P-factorisable.

4.8 Putting it together

Let us consider Milner’s CCS-operators except recursion, which is handled in
next section. Under the common assumption that only guarded sum is consid-
ered, it is shown in [WN95] how these CCS-operators can be expressed by the
above constructions (functors). For each operator we have obtained a theorem
for the corresponding functor which identifies conditions which guarantee that
the functor is a P-operator. Or put differently, for each functor we have meta-
theorems providing conditions on P guaranteeing that ∼P remains a congruence
with respect to the functor (operator).

19



However, we would like to consider more than one functor at the time. Does
there exist choices of P, such that P satisfies the conditions of all our theorems
(including relabelling and prefixing) ?

Choosing P in M as the full subcategory induced by words (i.e., fibre-wise
as done for PM in Sec. 4.2), we can show that ∼P also corresponds to Milner’s
strong bisimulation. Moreover, it is easy to see that P satisfies all conditions of
our theorems, i.e., ∼P must be a congruence with respect to all the operators
(functors). For example, let us just consider the conditions from Theorem 19.
They state that when viewing the objects of P as finite strings, P in general has
to be closed under the operation of taking a subsequence, and possibly renaming
the labels. Furthermore, as an immediate consequence we conclude that ∼P is a
congruence with respect to the aforementioned CCS operators.

What about other choices of P? If—similarly to the choice of PH in PM in
Sect. 2—we choose P as the subcategory of the previous choice of P obtained by
only keeping identity morphisms and morphisms whose domains are observations
having only one state (the empty word), then ∼P corresponds to Hoare trace
equivalence. This choice of P also trivially satisfies all conditions required by the
theorems. Hence, Hoare trace equivalence is a congruence with respect to the
presented constructions (and, again, the aforementioned CCS operators).

Choosing P as, e.g., the subcategory induced by trees will also satisfy all
conditions required by the theorems. Hence ∼P , which is a strictly finer equiv-
alence than Milner’s strong bisimulation as hinted in [CN95], must also be a
congruence with respect to the presented constructions.

5 Recursion

For recursion there is no simple way of defining a functor on M representing
Milner’s recursion operator. The reason is that one needs some notion of pro-
cess variables which are to be bound by the recursion operator. Some kind of
process term language is necessary, as can be seen both in Milner’s work [Mil89]
and Winskel and Nielsen’s [WN95]. However, without introducing a process al-
gebraic term language it is possible to capture a recursion-like operator in a
“faithful” way. The restriction is intuitively that free process variable cannot
occur under the scope of a parallel composition operator. Such restrictions have
been considered by Taubner [Tau89].

First, identify a set of variables Var and extend the objects (S, i, L, −→)
of M with a partial function l from S to Var. Also, we now allow restarting
ltss. 5 Furthermore, whenever l is defined on a state s, there can be no out-
going transitions from s and morphisms are now required to respect the labelling
function l.

5 The only implication of this assumption is, that co-product will have to be handled
in a way similar to recursion. We could also have considered a recursion operator
which “unfolded” the transition systems, and hence stayed within the non-restarting
ltss.

20



We define FX : M −→ M, which intuitively “binds X”, on objects as follows.
Given T = (S, i, L, −→, l), then FX(T ) = (S′, i′, −→ ′, L, l′), where

S′ = {i}, i′ = i, −→ ′ = ∅, and l′ is totally undefined, when l(i) = X, (15)

S′ = {s ∈ S | l(s) 6= X}, i′ = i, l′ equals l on S′, when l(i) 6= X, where (16)

s
a−→ ′s′ if s

a−→ s′ ∧ l(s′) 6= X (17)
or
∃ s′′. s

a−→ s′′ ∧ l(s′′) = X ∧ s′ = i

Given a morphism f : T1 −→ T2. FX(f) : FX(T1) −→ FX(T2) is defined to map
s ∈ S′1 to f(s) if l2(f(s)) 6= X, and i′2 otherwise.

Intuitively, FX simply redirects all transitions going into X-labelled states
to the initial state. For example:

i

��
α

σ−→ i′

��
α

� � �
� � �
@ A B C

α

E Doo 7−→ i@ A B C
α

E Doo FX(σ)−→ i′@ A B C
α

E Doo
X X FX binding X

FX has the following desirable property:

Lemma34. For any X ∈ Var, FX is a functor.

Proof. The proof is routine, hence omitted.

As a special case, let us consider P as the subcategory of M corresponding to
(10) except that final states may now be labelled with variables from Var.

Theorem35. For any X ∈ Var, FX is a P-operator.

Proof. The first observation is that (12) is not going to hold. This is due to
the fact that an observation of FX(T ) can correspond to many observations
of T . However, we can apply the theory from Definition 12 on each of these
observations individually. So assume T

m−→ T ′ belongs to M and that

O

��

f

//q
FX(T )

��

FX(m)

O′ //
q′

FX(T ′)

21



is a commuting diagram in M. Let us denote f = (σf , 1L) and use a similar

notation for q, q′, and m. Let O be denoted as

s0
a1−→ s1

a2−→ · · · an−→ sn

and O′ as
s′0

a1−→ s′1
a2−→ · · · an−→ s′n

an+1−→ · · · an+m−→ s′n+m .

Let 1 ≤ j1 < · · · < jr ≤ n be all indexes such that the is no ajk transition from
σq(sjk−1) to σq(sjk ) in T , where r ≥ 0. This means that for 1 ≤ k ≤ r there

exists a transition σq(sjk−1)
ajk−→ rk in T such that rk is labelled X.

Let j0 = 0 and let U1, . . . , Ur be observations in P, where for 1 ≤ k ≤ r, Uk

is given by

(jk−1, σq(sjk−1))
ajk−1−→ · · ·

ajk−1−→ (jk − 1, σq(sjk−1))
ajk−→ (jk, rk)

with final state labelled by X (labelling set L, and initial state (jk−1, σq(sjk−1 ))).
We refer to this procedure as splitting.

For 1 ≤ k ≤ r, let U ′k be the observation

(jk−1, σf(σq(sjk−1)))
ajk−1−→ · · ·

ajk−1−→ (jk − 1, σf(σq(sjk−1))
ajk−→ (jk, σf(rk))

with labelling set L. Again, the final state is labelled by X. Notice that if r > 0,
then σq′(s′jr ) = i′ in T ′.

If there exists no n < k ≤ n + m such that there is no ak transition from
σ′q(s′k−1) to σ′q(s′k) in T ′, then choose r′ = 0 and Ur+r′+1 as

(jr, σq(sjr ))
ajr+1−→ · · · an−→ (n, σq(sn))

where all states are unlabelled, and U ′r+r′+1 as

(jr , σq′(s′jr ))
ajr+1−→ · · · an+m−→ (n + m, σq′(s′n+m))

Else, split

s′jr
ajr+1−→ · · · an+m−→ s′n+m

obtaining indexes n ≤ jr+1 < · · · < jr+r′ ≤ n+m, where r′ > 0, and observations
U ′jr+1

, . . . , U ′jr+r′ with final states labelled with X. Let jr+r′+1 = n+m. Let Ur+1

be the observation

(jr, σq(sjr ))
ajr+1−→ · · · an−→ (n, σq(sn))

with all states unlabelled. For r + 1 < k ≤ r + r′ + 1 let Uk be the observation
consisting of a single unlabelled state (jk, i). Let U ′r+r′+1 be the observation

(jr+r′ , σq′(s′jr+r′ ))
aj
r+r′+1

−→ · · · an+m−→ (n + m, σq′(s′n+m))

with all states unlabelled.
For 1 ≤ k ≤ r + r′ + 1 let Vk and V ′k denote the unlabelled versions of Uk

and U ′k, respectively.
Note that for 1 ≤ k ≤ r + r′ + 1 there exist

22



– a uniquely determined morphism fk : Vk −→ V ′k,
– an obvious morphism qk : Vk −→ FX(T ), sending a state (p, s) to s,
– an obvious morphism q′k : V ′k −→ FX(T ′),
– a uniquely determined morphism mk : Uk −→ U ′k,
– an obvious morphism q(k,#) : Uk −→ T , sending a state (p, s) to s,
– an obvious morphism q′(k,#) : U ′k −→ T ′,
– an obvious morphism q(k,?) : Vk −→ FX(Uk), sending a state (p, s) to s, and
– an obvious morphism q′(k,?) : V ′k −→ FX(U ′k) .

Now for 1 ≤ k ≤ r + r′ + 1

Vk

��

fk

//qk
FX(T )

��

FX(m)

V ′k
//

q′k
FX(T ′)

commutes. Also, it can be shown that the two diagrams

Vk

��

fk

//q(k,?)
FX(Uk)

��

FX(mk)

Uk

��

mk

//q(k,#)
T

��

m

V ′k
//

q′(k,?)
FX(U ′k) U ′k

//
q′(k,#)

T ′

commute. Denoting these diagrams as morphisms in M̂ we can show that the

diagram

V̂k

!!
q̂k

CC
CC

CC
CC

CC
CC

CC
//q̂?

F̂X(Ûk)

��

F̂X( ̂q(k,#))

F̂X(T̂ )

commutes. From the proof of Theorem 10 it follows that there exists morphisms
hk : V ′k −→ FX(T ), 1 ≤ k ≤ r+r′+1, such that qk = hk◦fk and q′k = FX(m)◦hk .
From these morphisms one can then obtain a morphism h = (σh, 1L) : O′ −→
FX(T ) such that q = h◦f and q′ = FX(m)◦h. To see this, let σh be the function
that maps s′j to σhk((j, s′j)), when jk−1 < j ≤ jk, and to i, when j = 0. It can
now be shown that h indeed satisfies the claimed equalities.

23



6 Conclusion

We have examined Joyal, Nielsen, and Winskel’s notion of behavioural equiva-
lence, P-bisimilarity [JNW93], with respect to congruence properties. Inspired
by [WN95], we observed that endofunctors on M can be viewed as abstract op-
erators. Staying within the categorical setting, we then identified simple 6 and
natural conditions, which ensure that such endofunctors preserve open maps,
i.e., that P-bisimilarity is a congruence with respect to the functors. We for-
malised this as P-factorisability. The main varying parameters were M, P, and
the functors.

We then continued by giving a concrete application by fixing M. For a set of
endofunctors, we obtained meta-theorems stating conditions on P, which guar-
anteed that P-bisimilarity would be a congruence with respect the functors.

As for future research, there are many possibilities. Returning to the discus-
sion in the introduction, one could try to merge the two “orthogonal” approaches
we mentioned, e.g., try to identify a way of presenting functors by SOS-like rule
systems such that one could state conditions about both the rule systems and P,
which would guarantee congruence of P-bisimilarity with respect to all functors,
whose defining rule systems obeyed a special format.

Another possibility is to continue to work as in Sect. 4—other functors may
be considered. However, as shown in [NC95], other choices of M make it possible
to capture other interesting behavioural equivalences: weak bisimulation or “true
concurrency” equivalences. One could look for similar meta-theorems for such
choices of M.

Winskel and Cattani are developing presheaves over categories of observa-
tions as models for concurrency [CW96]. For presheaves there are general re-
sults on open maps, including the axioms for open maps of Joyal and Moerdijk
[JM94], which make light work of showing the bisimulation of presheaves is a
congruence for CCS-like languages. Their work exploits universal properties to
show preservation of open maps. A condition superficially like P-factorisability
is important in transferring such congruence properties from presheaves to other
models like transition systems and event structures.

References

[BIM88] Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation Can’t be
Traced. In Conference Record of the Fifteenth Annual ACM Symposium on
Principles of Programming Languages, pages 229–239, 1988.

[CN95] Allan Cheng and Mogens Nielsen. Open maps (at) work. Research Series
RS-95-23, BRICS, Department of Computer Science, University of Aarhus,
April 1995. 33 pp.

[CW96] G-L. Cattani and G. Winskel. Presheaf models for concurrency. Technical
report, BRICS, 1996. To appear.

6 We find it a virtue, that the definition of P-factorisability—just as the definition of
open maps—doesn’t require more than a modest knowledge of category theory.

24



[Hen88] Matthew Hennessy. Algebraic Theory of Processes. MIT Press series in the
foundations of computing, 1988.

[JM94] A. Joyal and I. Moerdijk. A completeness theorem for open maps. Annals of
Pure and Applied Logic, 70:51–86, 1994.

[JNW93] André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation and open
maps. In Proc. LICS’93, Eighth Annual Symposium on Logic in Computer
Science, pages 418–427, 1993.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall International
Series In Computer Science, C. A. R. Hoare series editor, 1989.

[NC95] Mogens Nielsen and Allan Cheng. Observe behaviour categorically. In Proc.
FST&TCS 15, Fifteenth Conference on the Foundations of Software Technol-
ogy & Theoretical Computer Science, pages 263–278. Springer-Verlag (LNCS
1026), Bangalore, India, December 1995.

[Plo81] Gordon D. Plotkin. A structural approach to operational semantics. Techni-
cal Report DAIMI FN–19, Computer Science Department, Aarhus University,
September 1981.

[Tau89] D. Taubner. Finite Representations of CCS and TCSP Programs by Au-
tomata and Petri Nets. Springer-Verlag (LNCS 369), 1989.

[WN95] Glynn Winskel and Mogens Nielsen. Models for Concurrency, volume 4, chap-
ter 1, pages 1–148. Oxford University Press, 1995. eds. S. Abramsky, D. M.
Gabbay, and T. S. E. Gabbay.

This article was processed using the LATEX macro package with LLNCS style

25



Recent Publications in the BRICS Report Series

RS-96-2 Allan Cheng and Mogens Nielsen. Open Maps, Be-
havioural Equivalences, and Congruences. January 1996.
25 pp. A short version of this paper is to appear in the
proceedings ofCAAP '96.

RS-96-1 Gerth Stølting Brodal and Thore Husfeldt. A Commu-
nication Complexity Proof that Symmetric Functions have
Logarithmic Depth. January 1996. 3 pp.

RS-95-60 Jørgen H. Andersen, Carsten H. Kristensen, and Arne
Skou. Specification and Automated Verification of Real-
Time Behaviour — A Case Study. December 1995. 24 pp.
Appears in3rd IFAC/IFIP workshop on Algoritms and Ar-
chitectures for Real-Time Control, AARTC '95 Proceed-
ings, 1995, pages 613–628.

RS-95-59 Luca Aceto and Anna Inǵolfsdóttir. On the Finitary
Bisimulation. November 1995. 29 pp.

RS-95-58 Nils Klarlund, Madhavan Mukund, and Milind Sohoni.
Determinizing Asynchronous Automata on Infinite Inputs.
November 1995. 32 pp. Appears in Thiagarajan, edi-
tor, Foundations of Software Technology and Theoretical
Computer Science: 15th Conference, FCT&TCS '95 Pro-
ceedings, LNCS 1026, 1995, pages 456–471.

RS-95-57 Jaap van Oosten.Topological Aspects of Traces. Novem-
ber 1995. 16 pp. To appear inApplication and Theory of
Petri Nets: 17th International Conference, ICATPN '96
Proceedings, LNCS, 1996.

RS-95-56 Luca Aceto, Wan J. Fokkink, Rob J. van Glabbeek, and
Anna Ingólfsdóttir. Axiomatizing Prefix Iteration with
Silent Steps. November 1995. 25 pp. Appears in Bjerner,
Larsson and Nordström, editors, 7th Nordic Workshop
on Programming Theory, NWPT '7 Proceedings, 1995. To
appear in Information and Computation.

RS-95-55 Mogens Nielsen and Kim Sunesen.Behavioural Equiva-
lence for Infinite Systems - Partially Decidable!November
1995. Full version of paper to appear in Proceedings of
the 17th International Conference on Application and
Theory of Petri Nets, 1996.


