65-G6-Sd SOldd

uone|nwisig Areyul4 8yl uQ :mopsyidu| » 0180y

BRICS

Basic Research in Computer Science

On the Finitary Bisimulation

Luca Aceto
Anna Ingolfsdottir

BRICS Report Series RS-95-59

ISSN 0909-0878 November 1995

Copyright (© 1995, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work

Is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recenpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540

DK - 8000 Aarhus C

Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/

ftp ftp.brics.dk (cd pub/BRICS)

On the Finitary Bisimulation

Luca Aceto* Anna Ingélfsdéttirt

BRICS?
Department of Mathematics and Computer Science
Aalborg University
Fredrik Bajersvej 7E
9220 Aalborg), Denmark

Abstract

The finitely observable, or finitary, part of bisimulation is a key tool in establishing
full abstraction results for denotational semantics for process algebras with respect to
bisimulation-based preorders. A bisimulation-like characterization of this relation for
arbitrary transition systems is given, relying on Abramsky’s characterization in terms
of the finitary domain logic. More informative behavioural, observation-independent
characterizations of the finitary bisimulation are also offered for several interesting
classes of transition systems. These include transition systems with countable action
sets, those that have bounded convergent sort and the sort-finite ones. The result
for sort-finite transition systems sharpens a previous behavioural characterization of
the finitary bisimulation for this class of structures given by Abramsky.

AMS Subject Classification (1991): 68Q10 (Modes of computation), 68Q55
(Semantics), 03B70 (Logic of Programming), 68Q90 (Transition nets).

Keywords and Phrases: Concurrency, labelled transition systems with diver-
gence, bisimulation preorder, finitary relations, domain logic for transition systems.

1 Introduction

Following a paradigm put forward by Milner and Plotkin in their seminal papers [20, 21,
26], a primary criterion to judge the appropriateness of denotational models for program-
ming and specification languages is that they be in agreement with operational intuition
about program behaviour. Of the “good fit” criteria for such models that have been
discussed in the literature (cf., e.g., the reference [19] for a discussion), the most desirable
one is that of full abstraction. Intuitively, a denotational model for a programming or
specification language is fully abstract with respect to a notion of operationally based
(or behavioural) equivalence or preorder iff it is in complete agreement with it. In other

*On leave from School of Cognitive and Computing Sciences, University of Sussex, Brighton BN1 9QH,
UK. Partially supported by HCM project express. Email: luca@iesd.auc.dk.

TEmail: annai@iesd.auc.dk.

#Basic Research in Computer Science, Centre of the Danish National Research Foundation.

words, a fully abstract denotational model is guaranteed to relate exactly all those pro-
grams that are operationally indistinguishable with respect to some chosen notion of
observation.

Because of its prominent role in process theory, bisimulation [25, 24] has been a natural
operational yardstick to assess the appropriateness of denotational models for several
process description languages. In particular, when proving full abstraction results for
denotational semantics based on the Scott-Strachey approach [29] for CCS-like languages,
several preorders based on bisimulation have been considered. (The interested reader is
invited to consult, e.g., [13, 10, 4, 6, 17] for examples of full abstraction results with respect
to bisimulation-based preorders for variations on CCS.) In this paper, we shall study one
such bisimulation-based preorder whose connections with domain-theoretic models are by
now well understood, viz. the prebisimulation preorder investigated in, e.g., [10, 4]. This
preorder will henceforth be denoted by <. Intuitively, p < ¢ holds of processes p and ¢
iff p and ¢ can simulate each other’s behaviour, but at times the behaviour of p may be
less specified than that of q.

A common problem in relating denotational semantics for process description lan-
guages, based on Scott’s theory of domains [27] or on the theory of algebraic semantics
[9], with behavioural semantics based on bisimulation is that the chosen behavioural the-
ory is, in general, too concrete. The reason for this phenomenon is that two programs are
related by a standard denotational interpretation if, in some precise sense, they afford the
same finite observations. On the other hand, bisimulation can make distinctions between
the behaviours of two processes based on infinite observations. (Cf. the seminal study
[4] for a detailed analysis of this phenomenon.) As an example, consider the infinite
synchronization trees

AN
p = [Xisiai a0 +Q
1-times
¢ £ p+a”

where) stands for the synchronization tree whose behaviour is completely unspecified,
and O stands for the one-node synchronization tree. Then, in a precise sense, no finite
amount of observation can distinguish the behaviour of p from that of ¢. On the other
hand, g < p does not hold because p cannot simulate the infinite a-computation possessed
by gq.

To overcome this mismatch between the denotational and the behavioural theory, all
the aforementioned full abstraction results are couched in terms of the so-called finitely
observable, or finitary, part of bisimulation. (This relation will be henceforth referred
to as the finitary bisimulation.) The finitary bisimulation preorder, denoted by <F| is
defined on any labelled transition system thus:

p <F q iff for every finite synchronization tree ¢, ¢ < p implies ¢t <q .

The above definition of the finitary bisimulation, albeit very natural and intuitive, is
rather indirect; it simply says that two processes are related iff they afford the same

finite observations, which are taken to be finite, possibly partially specified, synchro-
nization trees. Such an indirect definition often makes it quite hard to establish results
about this relation, and a lot of research effort has been devoted to finding alterna-
tive, observation-independent versions of the finitary bisimulation for different process
description languages. (Cf., e.g., [10, 4, 6, 16] for examples of these results.)

A general, observation-independent characterization of the finitary bisimulation for
arbitrary transition systems has been given by Abramsky in [4]. This characterization is
couched in logical terms, and is an impressive byproduct of Abramsky’s “theory of do-
mains in logical form” programme [5]. More precisely, Abramsky shows that the domain
logic for transition systems synthesized in [2] characterizes the finitary bisimulation for
all transition systems, i.e., that two processes in any transition system are related by
the finitary bisimulation iff they satisfy the same formulae in the finitary version of the
domain logic for transition systems. In many ways, Abramsky’s logical characterization
of the finitary bisimulation can be seen as the counterpart of the modal characterizations
for bisimulation-like relations presented in, e.g., [22, 12, 30].

The existence of this logical view of the finitary bisimulation gives us a handle to work
with this relation. However, an alternative, behavioural view of the finitary bisimulation
might be more useful when establishing results which are more readily shown on the
behavioural, rather than on the logical, side. Examples of such results are complete
axiomatizations for the finitary bisimulation and full abstraction results. The existence of
observation-independent, behavioural characterizations of the finitary bisimulation would
also provide an easier way to establish when two processes in a transition system are
related by it or not, thus giving more insight on the kind of identifications made by this
relation.

In particular, as transition systems abstract from the operational semantics of many
process description languages, we believe that it would be worthwhile to establish general
bisimulation-like characterizations of the finitary bisimulation for interesting classes of
such structures. The availability of this type of results would imply, for instance, that,
when establishing full abstraction results for a particular process description language,
it would be sufficient to identify the kind of transition system giving an operational
semantics to the chosen language, and check what form the finitary bisimulation for that
type of transition system takes. Omne could then proceed to compare the appropriate
explicit characterization of this behavioural preorder with the denotational ordering on
processes.

1.1 Results

This study presents a collection of observation independent, bisimulation-like charac-
terizations of the finitary bisimulation for several classes of labelled transition systems,
including those that commonly arise in giving operational semantics to process description
languages. First of all, we present a behavioural characterization of the finitary bisim-
ulation for arbitrary transition systems (cf. Thm. 3.2). This result may be seen as the
behavioural counterpart of Abramsky’s logical characterization theorem [4, Thm. 5.5.8].
We offer two independent proofs of this characterization theorem. The first relies on
Abramsky’s logical characterization result in terms of the domain logic for transition

systems; the second is purely operational, and is based on a generalization of a beautiful
argument due to Hennessy [10]. This first behavioural characterization applies, e.g., to
transition systems with an uncountable action set like those that arise in timed process
calculi which postulate the positive real numbers as their time domain. (Cf., e.g., Wang’s
TCCS [33].)

We then concentrate our attention on transition systems over a countable action set.
For several classes of such transition systems (viz. the class of all such transition systems,
the class of those which have bounded convergent sort, the sort-finite transition systems
and those that are image finite [12] and weakly finite branching), we provide customized,
and more informative, versions of the general behavioural characterization offered by
Thm. 3.2. In particular, for the important class of sort-finite transition systems we are
able to present a sharpened version of a behavioural characterization result first proven
by Abramsky in [4, Propn. 6.13].

We hope that this taxonomy of characterizations of the finitary bisimulation will be
useful for researchers interested in full abstraction results for process description lan-
guages.

1.2 Outline of the Paper

We conclude this introduction with a brief road-map to the contents of this study. We
begin by presenting the basic notions from process theory and Abramsky’s domain logic
for transition systems in Sect. 2. Section 3 is the core of the paper, and is entirely devoted
to a taxonomy of behavioural characterizations of the finitary bisimulation for various
classes of transition systems. The characterization of <P for arbitrary transition systems
is the subject of Sect. 3.1. Section 3.2 is devoted to behavioural characterizations of
the finitary bisimulation for transition systems over a countable action set. Apart from
the class of all such transition systems, we also deal with transition systems that have
bounded convergent sort, sort-finite transition systems and the image finite ones that are
also weakly finite branching.

2 Preliminaries

In this section we present the basic notions from process theory and Abramsky’s domain
logic for transition systems that will be needed in the remainder of this study.

2.1 Labelled Transition Systems and Prebisimulation

We begin by reviewing a variation on the model of labelled transition systems [18, 28] that
takes divergence information into account, and abstracts from the operational semantics
of many concurrent calculi. We refer the interested readers to, e.g., [13, 10, 22, 32] for
motivation and more information on (variations on) this semantic model for reactive
systems.

Definition 2.1 (Labelled Transition Systems with Divergence) A labelled tran-
sition system with divergence (lts) is a quadruple (Proc,Act, —, 1), where:

e Proc is a set of processes, ranged over by p,q,r,s, possibly subscripted or super-
scripted;

e Act is a set of actions, ranged over by a,b, possibly subscripted;

e —C Proc x Act x Proc is a transition relation. As usual, we shall use the more
suggestive notation p — q in lieu of (p,a,q) €—;

e TC Proc is a divergence predicate, notation p T.

We write p |, read “p definitely converges”, iff it is not the case that p T. Intuitively,
the fact that a process p definitely converges means that the initial behaviour of p is
completely specified. On the contrary, the divergence of a process signifies that the
information on its initial behaviour is incomplete.

Forn>0and 0 = a ...a, € Act”, we write p = ¢ iff there exist processes py, ..., Pn
such that

P=Do P13 Dot BP=q .

For a process p € Proc and action a € Act we define:

initials(p) = {a €Act|3g: p> Q}

sort(p) = {a € Act | do € Act",r,s € Proc: p 51 = 5}
derivatives(p,a) = {q |p = q})
Following [4], we say that an lts is

image finite iff derivatives(p, a) is finite for every p € Proc and a € Act
sort-finite iff sort(p) is finite for every p € Proc

finite branching iff {(a, qQ|p> q} is finite for every p € Proc

weakly finite branching iff for every p € Proc, if p | then {(a, qQ|p> q} is finite
weakly initials finite iff for every p € Proc, if p | then initials(p) is finite.

A useful source of examples for labelled transition systems with divergence is the set of
countably branching synchronization trees over a set of labels Act, denoted by ST, (Act).
This is the set of infinitary terms generated by the inductive definition:

{a; € Act,t; € ST (Act)},;
> ier @ 4 [+Q] € ST (Act)

where I is a countable index set, and the notation [+£2] means optional inclusion of {2 as
a summand. We shall write

e Ofor), ,a;:t;, and

e Qfor> . __a;:t;+ Q.

1€Q

Intuitively, O stands for the one-node synchronization tree, a representation of an inac-
tive process, and §2 stands for the synchronization tree whose behaviour is completely
unspecified.

The set of terms built using only finite summations, i.e. the finite synchronization
trees, will be denoted by ST(Act). The set of synchronization trees ST (Act) can be
turned into a labelled transition system with divergence by stipulating that, for ¢ €
ST (Act):

e ¢ 1 iff Q is a summand of ¢, and
o t 5 ¢, iff a; : t; is a summand of .

The behavioural relation over processes that we shall study in this paper is that of
prebisimulation [13, 22, 10, 32| (also known as partial bisimulation [4]).

Definition 2.2 (Prebisimulation) Let (Proc, Act, —, 1) be an lts. Let Rel(Proc) denote
the set of binary relations over Proc. Define the functional F' : Rel(Proc) — Rel(Proc) by:

F(R) = {(p.q)|Va € Act
ep Ly =37: ¢>q¢ andp Rq
epl=ql and[q>q =T : pSp andp R]}

A relation R is a prebisimulation iff RC F(R). We write p < q iff there exists a
prebisimulation R such that p R q.

The relation < is a preorder over Proc based on a variation on bisimulation equivalence
[25, 24]. Intuitively, p < ¢ if ¢’s behaviour is at least as specified as that of p, and p
and ¢ can simulate each other when restricted to the part of their behaviour that is fully
specified. A divergent process p that, like the synchronization tree {2, has no outgoing
transition is a minimal element with respect to <, and intuitively corresponds to a process
whose behaviour is totally unspecified — essentially an operational version of the bottom
element L in Scott’s theory of domains (cf., e.g., the references [29, 27, 31] for information
on domain theory).

An alternative method for using the functional F' to obtain a behavioural preorder is
to apply it inductively as follows:

<o = Rel(Proc)
SnJrl = F(Sn)

and finally <,2 Nuso Sn- Intuitively, the preorder <, is obtained by restricting the

prebisimulation relation to observations of finite depth. As a standard example of the
relevance of this restriction, consider the processes

[>

p = [Xisiai a0 +Q

i-times

(1>

p+a”

where a“ denotes an infinite sequence of a actions. Then ¢ £ p because the transition
q = a“ cannot be matched by any a-transition emanating from p. On the other hand, it
is easy to see that, for every i > 0,

~Jt

a <;a::a:0 .
—_—

i-times
Therefore ¢ <, p does instead hold.

Remark: Although the relations < and <, have been defined over a given lts, we often want to
use them to compare processes from different lts’s; for example, we shall often compare processes
in an lts with finite synchronization trees. This can be done in standard fashion by forming the
disjoint union of the two transition systems, and then using < or <, on the resulting 1ts. In the
sequel, this will be done without further comment.

In this paper, we shall be interested in studying the “finitely observable”, or finitary, part
of the bisimulation in the sense of, e.g., [9, 10]. The following definition is from [4]. (The
interested reader is invited to consult the aforementioned references for discussion and
motivations.)

Definition 2.3 Let (Proc,Act,—, 1) be an lts. The finitary bisimulation preorder <F
over Proc is defined thus:

p <F q iff for every t € ST(Act), t < p impliest < q .
The preorders <, <, and <% are related thus:

Scs.csh.
Moreover the inclusions are, in general, strict. The interested reader is referred to [4]
for a wealth of examples distinguishing these preorders, and a very deep analysis of their
general relationships and properties. Here we just discuss an instructive example from
[4, Page 191] showing that the preorder <, (and a fortiori <) makes distinctions based
on infinite observations.

Example: Consider the synchronization trees p and ¢ given by:

p = a(ZnEwbn@+Q)+Q (1)
2 30 (Sneo i bn:0+9) +9Q (2)

It is easy to see that p £, q. We shall now argue that p < ¢ does instead hold. To this
end, let ¢t be a finite synchronization tree such that ¢t < p. Because of the definition of
the bisimulation preorder, this implies that the following conditions are met:

1.t 7T;

2. initials(t) = {a};

3. for every t' such that t S ¢/, ¢ <3 b, : O+ Q.

It is not too difficult to see that for every finite synchronization tree wu,

U§an:©+§limplies us Z by : O+, for somen € w.

new mew—{n}

This follows because any finite synchronization tree w such that v <>, ., b, : O + Q is
divergent, and its set of initial actions must be a finite subset of {b, | n € w}.
Collecting the above observations it is immediate to see that ¢ < ¢ also holds. O

To our mind, the above example demonstrates in an explicit and instructive way the
mismatch between the finitary part of the bisimulation preorder and the preorder <.
Intuitively, the preorder <, is based on observations of finite depth. However, in the
presence of (weakly) infinite branching processes like p and ¢ above, this preorder can
make distinctions based on observations of infinite width. As outlined in the above
example, no observation of finite depth and width can differentiate the processes defined
in (1) and (2). (The interested reader may wish to consult the reference [1] for illuminating
discussions on the issue of finite, and infinite, depth and width in experiments in the

setting of applicative, non-deterministic programs.)

Abramsky’s Domain Logic for Transition Systems

We now review the basic definitions and results on Abramsky’s domain logic for transition
systems that will be useful in this study. We shall follow the presentation of the logic
given in [2]; the interested reader is referred to that reference for a detailed explanation
of the logic, its origins, semantics and proof theory.

Abramsky’s (finitary) domain logic for transition systems L, (over a set of actions
Act) is a two-sorted language with sorts 7w (process) and s (capability). We write L.,
(respectively, L) for the class of formulae of sort 7 (respectively, x), which are defined
inductively as follows:

{0i € Luo},er a € Act, p € Lr 0 € Ly,
/\ie[i, \/ie[©; S ‘Cwa a(ﬁﬂ) S 'Cwn DCP; <>90 S 'Cwﬂ'

where I is a finite index set, and ¢ € {7, x}. As usual, we write true = Nics i and

false = Vies ©i-
The modal depth of a formula ¢, notation md(y), is the non-negative integer giving

the maximum nesting of occurrences of the modal operators (J and ¢ in it. Its sort,
notation sort(), is the finite set of actions mentioned in ¢.
For each A C Act and non-negative integer n:
LA 2 Lo e L,]| md(p) < n and sort(p) C A} .
Given an lts (Proc, Act, —, 1), we define:

(
Cap £ {Ll}U(Act x Proc) (the set of capabilities)
Clp) & {L|p1}u {(a, Q| p> q} (the set of capabilities of process p) .

8

The satisfaction relations

Proc x L., and

Fr
=

are now defined thus (¢ € {7, k}, w € ProcU Cap):

C
C Cap x L.

w’:[,/\cpi = v’le_[’ll)):UgOl
iel
w|:0\/cpi £ Jiel:wkE, ¢
iel
pE,Op = Veel(p).ck, ¢
pE,Op = 3ceCp)U{l}. ck, ¢

(1>

¢, aly)

For F C L, and process p, we write F(p) for the set of (process) formulae in the set
F satisfied by p. In what follows, we shall always omit sort information from (sets of)
formulae, and satisfaction relations.

As shown by Abramsky in his thesis [2], the logic £,, is a powerful tool in the study
of the finitary bisimulation preorder <. In particular, Abramsky shows the following
key characterization theorem (see [2, Thm. 5.5.8]):

c=(a,q)and g =,_¢ .

Theorem 2.4 (Characterization Theorem for £,) Forp,q € Proc in any transition
system,
psha & Lolp) € Lu(a) -

The above seminal result will be a major tool in this study. In what follows, we shall
also have some use for the following observation, which is due to Abramsky (cf., e.g., the
proof of Propn. 5.5.12 in [2]).

Fact 2.5 Let A C Act be a finite set of actions. Then, for every non-negative integer n,
LA s finite up to logical equivalence.

3 Behavioural Characterizations of the Finitary Bisimula-
tion

The definition of the finitely observable part of the bisimulation preorder given in Def. 2.3
is rather indirect. Rather like the original definition of De Nicola and Hennessy’s testing
equivalence [11], it just says that, in order for p < ¢ to hold, every observation that is
possible of p should also be possible of g, where we identify the set of observations with
that of finite synchronization trees. Definitions of behavioural preorders like the one in
Def. 2.3 are, albeit very natural and intuitively appealing, quite difficult to work with.
For this reason, it is useful to have alternative, observation-independent characterizations
for them. Again using the analogy with the testing equivalences, the alternative charac-
terizations of these relations provided in [11] have proven to be indispensable tools in the
development of their theory and practice.

Abramsky’s logical characterization of the finitary bisimulation (cf. Thm. 2.4) provides
one general, observation-independent alternative view of <. It can be viewed as the
counterpart of the modal characterization theorems for bisimulation-based equivalences
and preorders which have been so popular and fruitful since the seminal [22, 12]. However,
in order to gain more insight into the exact nature of the relationships between processes
supported by <F, and as a further tool for the study of this preorder (for example to
establish results on full abstraction of denotational models and complete axiomatizations),
it is useful to have purely behavioural, observation-independent characterizations of it.
One such characterization was provided by Abramsky in, e.g., [4, Propn. 6.13]. There
Abramsky shows that in any sort-finite lts that satisfies his axiom scheme of bounded
nondeterminacy (BN) (cf. [2, Page 114]), the finitary bisimulation coincides with <.
In this study, building on Abramsky’s work, we shall present several bisimulation-like
characterizations of the finitary bisimulation for various classes of transition systems. As
a byproduct of our analysis of the finitary bisimulation, we shall be able to improve upon
Abramsky’s behavioural characterization of <F for sort-finite lts’s. (Cf. Propn. 3.11.)

3.1 A General Behavioural Characterization

Consider an arbitrary lts (Proc, Act,—,T). For every A C Act, we define the sequence of
relations {Ef\ n > 0} thus:

pES‘ q & true
pEfﬂ ¢ & (1) YVacAp eProc.p>p =3¢: ¢>¢ and p' E2 ¢
(2) If initials(p) € A and p | then
(2.1) initials(q) € A and ¢ |

(2.2) Yac A, ¢ €Proc. ¢ % ¢ =3 : pSp andp 5o ¢ .

The following proposition collects some basic properties of the relations Ef which will be
useful in the remainder of this study.

Proposition 3.1 For every n > 0 and A C Act, the following statements hold:

1. The relation =

~n

1§ a preorder.

2. For p,q € Proc in any transition system, p Efﬂ q implies p Ef q.

3. Assume that A C B C Act. Then, for p,q € Proc in any transition system, p Ef q
implies p Ef q

Proof: The proofs of all the statements are routine by mathematical induction on n. Here
we only remark that, in the proof of the inductive step for statement 3, the following simple
observation is used:

if p Efﬂ q, p |, ¢ | and initials(p) C A C B, then initials(q) C A.

10

We now define:

pSiqg £ Yn>0.p5h g
pElq & VA Cp, Act.ptlq

where the notation A Cy;,, Act means that A is a finite subset of Act. Note that, in light of
Propn. 3.1(1), both the relations defined above are preorders. As initials(p) is contained

in Act for every process p € Proc, the preorder EQA,Ct coincides with the preorder <,,
defined on page 6.

Intuitively, p Eﬁ q holds for two processes p and ¢ iff there is no observation, in the
sense of [3], of finite depth, and with actions drawn from the set A, that can distinguish
between p and ¢. For example, p Ef q holds unless p is a convergent inactive process and
q is either divergent or capable of performing some action. A similar intuition applies to
the relation Eff", but there observations can only be drawn from finite sets of actions and
are therefore required to have finite width as well as finite depth. That this is significant
is shown by the example on page 7. A possibly even more striking example of the role
played by finite width in observations, and of the weakness of <" over infinite branching
processes, is the following:

Example: Assume that Act = {a; | i > 0}, and that ¢ # j implies a; # a;. Consider the
synchronization trees p and g given by:

p = Zaii@ 3)

i>0

p+Q. (4)

A
q _=
Then p £, q because p | but ¢ . However, p Eff" q. In fact, every transition from p can
be matched identically by ¢, and, for A Cy;, Act, clause (2) in the definition of Ef 41 18
always vacuously satisfied because initials(p) = Act, which is countably infinite.

Indeed, it is also the case that p < ¢. In fact, let ¢ € ST(Act) be such that t < p.
We shall now argue that ¢ < ¢ must also hold. First of all, note that ¢ < p implies that
t 7. (This is easy to see because otherwise the finite synchronization tree ¢ would have
to have Act as its set of initial actions.) Next we remark that if t - ¢’ for some action a,
then ¢ < O. From these two observations, it follows immediately that ¢ < g.

The moral of the above example is that, for 1ts’s that are not weakly initials finite,
observations based on finite synchronization trees cannot, in general, be used to test the
convergence of a process that, like p above, can perform infinitely many distinct initial
actions. As shown by the technical results to follow, this is the reason for the presence
of the non-standard test on the set of initial actions of a process in clause (2) of the
definition of the preorder Ef 1 (]

Remark: The reader familiar with Apt and Plotkin’s arguments for the failure of continuous
semantics for random assignment presented in [7, pp. 741-747] might have noticed that the ex-
ample we have just discussed is closely related to the one used ibid. to demonstrate the mismatch
between operational and continuous denotational semantics for countable nondeterminism.

11

Apt and Plotkin show that in any ‘reasonable’ continuous semantics the programs
P £ x:=7while x> 0 do x:=x—1 od
and

P or (while true do skip od)

where x:=?7 denotes the random assignment of a non-negative integer to the variable x, and or
stands for nondeterministic choice, are necessarily identified, even though the former is guaranteed
to terminate in a state where x has value 0, whereas the latter does not. The point is that, due to
the countable nondeterminism in the computation tree for program P, no finite observation can
detect the possible infinite loop in the second program.

Our aim is to prove:

Theorem 3.2 For p,q € Proc in any transition system,

cfin
~w

p<Sfg & p q .

Our proof of this general behavioural characterization theorem for the finitary bisimula-
tion relies on the logical formulation of this relation given by Thm. 2.4. The key step in
the proof is presented in the following result, that gives a logical characterization of the
preorders =2 when the set of actions A is finite.

n

Proposition 3.3 Let (Proc, Act, —,T) be an lts. For every A Cyg;,, Act, n >0,
A n n
pELa & LE(p) S LE(q)

Proof: We prove the two implications separately.

e ‘If Implication’. We prove the contrapositive statement; namely, we show that, for all
p,q € Proc, A Cpip Act, n > 0,

pZaa = JpeLPME)\ LI ()

The proof is by mathematical induction on n, and the basis of the inductive argument is

vacuously true.

For the inductive step, assume that p Qﬁ 11 q- By the definition of Eﬁ 1, one of the following

cases must arise:
1. there exist a € A and p’ € Proc such that p % p/, and, for every ¢’ € derivatives(q, a),
A
p %, d5or
2. initials(p) C A, p | and

(a) g1 or
(b) initials(q) € A; or

3. initials(p) C A, initials(q) € A, p |, ¢ | and there exist a € A and ¢’ € Proc such that
q % ¢, and, for every p’ € derivatives(p, a), p’ Qﬁ q.

In each case, we shall show how to construct a formula ¢ € £§,A’"+1)(p) \ £§,A’"+1)(q).

12

1. Assume that there exist @ € A and p' € Proc such that p = p’, and, for every
q' € derivatives(q,a), p’ ';Z‘f ¢'. The inductive hypothesis now gives that, for every
¢’ € derivatives(g, a), there exists a formula ¢, € ££,A’")(p') \ E&A’")(q'). Consider the

set of formulae {¢y | ¢’ € derivatives(q,a)} C £S5 As A is a finite set of actions,
Fact 2.5 gives that, up to logical equivalence, there are only finitely many distinct

formulae in {¢, | ¢’ € derivatives(q,a)}, say ¢1, ..., pr. We now define
k
PAN
v 2 Oa(/\¢)

By construction, ¢ is a formula in ££,A’n+1). It is now a simple matter to show that
p satisfies ¢, while ¢ does not.

2. Assume that initials(p) C A, p | and either ¢ T or initials(¢) Z A. As A is a finite set,
so is initials(p). We now define:

¢ £ DO\/{altrue) | a € initials(p)} .

By construction, ¢ is a formula in ££,A’n+1). It is a simple matter to show that, as

p |, p satisfies ¢. On the other contrary, ¢ does not satisfy . In fact, if ¢ T, then
1 € C(q) and L }~= \/{a(true) | a € initials(p)}. Otherwise, there exists an action b €
initials(¢)\ A. Thus, for some ¢’, (b, ¢’} is a capability of g. As initials(p) is a subset of A,
the capability (b, ¢’} does not satisfy the capability formula \/ {a(true) | a € initials(p)}.
3. Assume that initials(p) C A, initials(q) € A, p |, ¢ | and there exist a € A and
¢’ € Proc such that ¢ % ¢/, and, for every p’ € derivatives(p, a), p’ ';Z‘f q.
By the inductive hypothesis, for every p’ € derivatives(p, a), there exists a formula
Yp € ﬁ&A’n)(p')\ ££,A’")(q'). Consider the collection of formulae

{¢p | ' € derivatives(p, a)} C LA™

As A is a finite set of actions, Fact 2.5 gives that, up to logical equivalence, there are
only finitely many distinct formulae in {¢, | p’ € derivatives(p,a)}, say ¢1,..., k.
We now define

o 2 D(a(\/leapi)\/\/{b(true)|b€initia|s(p)—{a}}>.

Note that, as initials(p) € A Cyn Act, ¢ is a formula in ££,A’n+1). It is now a simple
matter to show that p satisfies ¢, while ¢ does not.

This completes the inductive argument and the proof of the ‘if” implication.

‘Only IT Implication’. We prove that, for all n > 0, p, ¢ € Proc,

pEna = Yoe LS. (p = implies g) .

This we proceed to show by mathematical induction on n. The base case is trivially seen

to hold because every formula in ££,A’O) is logically equivalent to either true or false.

For the inductive step, assume that p Efﬂ g and that p = ¢ € ££,A’"+1). We show that
q E ¢ by a further structural induction on ¢. Indeed, in light of [2, Lem. 5.5.2], it is
sufficient to prove the claim for a specific class of formulae, viz. the normal forms defined
in [2, Def. 5.5.1]. These are the formulae given by the following inductive definition:

13

1. If I is a finite index set and, for every i € I, y; is a normal form, then /\iel ©; and
\/ie ; i are normal forms;

2. if a € Act and ¢ is a normal form, then Qa(y) is a normal form; and

3. If I is a finite index set, {a; | i € I} C Act and, for every i € I, ¢; is a normal
form, then I/, ; a;(¢;) is a normal form. (Abramsky’s definition of normal forms
requires that the actions a; be pairwise distinct. In the following, we shall not need
this restriction, and we have decided to omit it for the sake of simplicity.)

We only consider the two interesting cases.

— Assume that p = Qa(p) € £, By the definition of the satisfaction relation and
the fact that L [~ a(p), this is because there exists ¢ € C(p) such that ¢ = a(p). This
capability must be of the form (a, p’) for some p’ |= ¢, i.e., p % p’ |= ¢ for some p’. As
a € Aandp E;?Jrl g, it follows that ¢ = ¢’ and p’ E,’? ¢ for some ¢’. As p € ££,A’"), we
may now apply the inductive hypothesis to infer that ¢’ |= ¢, from which ¢ = Qa(p)
follows immediately.

— Assume that p =0\, ai(pi) € £, Then, for every ¢ € C(p),

cl=\ ai(e) -
i€l
Note, first of all, that this implies that p |, because otherwise L € C(p) and L [~
\/ie I ai(@l‘)
Assume now that p % p/, for some action a € Act and process p'. As (a,p’) € C(p),
it follows that, for some index i, € I, a = ai, , and P E %i, - In particular,
this implies that initials(p) C {a; |i € I} C A. Therefore, as p Efﬂ q, p | and
initials(p) C A, we have that:
*ql,
* initials(q) C A, and
x for every a € A, ¢’ € Proc, whenever ¢ = ¢/, then p % p’ for some p’ such that
;A
p ~n q M
As q |, it follows that L ¢ C(q). Let now (a,q') € C(q). Then a € A, ¢ = ¢’ and
p5p Ef q for some p'. Asa=a;, , andp’ = ;, ,, an application of the inductive
hypothesis gives that (a,¢’) = a;, ,(¢s,). From this observation, ¢ =0V, ; ai(i)
follows immediately.

This completes the proof of the ‘only if” implication.

The proof of the theorem is now complete. O

Remark: As witnessed by the proof of the ‘if implication’ in the statement of the above result,
for each finite set of actions A we can construct a formula ¢4 with the property that, for every
p € Proc:

pEpa < p| andinitials(p) C A .

Such a formula is simply defined thus:

04 = D\/{a(true)|a€A}.

14

Note, however, that, if Act is countably infinite, there is no formula ¢, in £,, which is satisfied ex-
actly by all the convergent processes. In fact, using such a formula we should be able to distinguish
the behaviour of the synchronization trees p and ¢ on page 11, which are related by the finitary
bisimulation preorder. (The obvious candidate for such a formula ¢| is OV {a(true) | a € Act},
which uses infinite disjunction if Act is countably infinite.) In other words, using the finitary do-
main logic we can only test convergence for processes that have a finite set of initial actions. This
is in agreement with the operational considerations prompted by our discussion of the example
on page 11.

By contrast with the above considerations, such a formula ¢| can be constructed in the version
of the domain logic for transition systems presented by Abramsky in [4]. The satisfaction relation
for the 0 and ¢ modalities is ibid. given thus:

pE,Op 2 pl and VeeC(p). ¢k, ¢

pE.Op £ 3ecCp): cl,. ¢
With this interpretation, the formula [true is satisfied exactly by all the convergent processes.
In light of the example on page 11, the presence of such a formula invalidates Thm. 5.8 on page

191 of [4], that states the logical characterization theorem for the finitary bisimulation in terms
of the version of the domain logic offered ibidem.

Using Propn. 3.3, we can now easily prove the promised general behavioural characteri-
zation theorem for <F.

Proof of Theorem 3.2: Let (Proc, Act,—, 7) be any lts. Let p,q € Proc. Then:

p<Fq & Lulp) € Lu(g) (Thm. 2.4)
& VA Cpin Act,n > 0. L5 (p) € £5 ()
& VA Crin Act,n > 0. p Ef q (Propn. 3.3) ‘
< P Efjm q (Definition of Efjm)

3.1.1 An Operational Proof of the Characterization Theorem

The use of Abramsky’s domain logic in establishing the general characterization of the
finitary bisimulation offered in Thm. 3.2 has, we believe, led to an elegant proof of that
result based on a logical view of the preorders Ef, for every finite set of actions A and
non-negative integer n. In addition, it has allowed us to discuss the inequivalence of the
two formulations of the domain logic £, given by Abramsky in the references [2, 4]. We
trust that this remark will be of independent interest to researchers who want to apply
the domain logic for transition systems in their studies.

An alternative proof of Thm. 3.2 can, however, be given by using purely operational
considerations. As the type of argument used in this alternative proof recurs, sometimes
incorrectly (cf. [10] and the remarks in [4, page 212]), in several papers on process theory
for specific classes of transition systems (cf., e.g., [15, 16]), we find it interesting to present
its general version below.

Let (Proc, Act,—, 1) be an arbitrary lts. We note, first of all, that the finitary bisim-
ulation over such an Its has the property that, for all p,q € Proc,

p <Fq iff forevery t € ST(Act), t <F pimpliest <F q . (5)

15

This is an immediate consequence of the fact that, for every finite synchronization tree ¢
and process p,
t<sp & t<p.

A binary relation over processes that enjoys property (5) is usually called finitary or
finitely approximable [10, 6]. It is immediate to see that two finitary relations that
coincide over ST(Act) x Proc do, in fact, coincide over the whole of Proc. To prove
Thm. 3.2, it is therefore sufficient to show the following two statements:

(S1) For every t € ST(Act),p € Proc, t < piff ¢ =/ p.
(S2) The preorder &/ is finitary, i.c.,

p&l™q iff VteST(Act). t&[™p implies <" ¢ .

~w

We now proceed to prove these two statements in turn. In what follows, we shall make
use of the notion of height of a synchronization tree. This is the ordinal defined thus:

ht(Yierai i t:[+9Q]) = 1+sup{ht(t;) |ie I} .
Proof of Statement S1: We show that, for every t € ST(Act), p € Proc,
tgpiﬁtgﬁinp.

The ‘only if” implication is an immediate consequence of the following fact, which may be easily
shown by mathematical induction on n,

vt € ST(Act),p € Proc,n > 0,ACAct. t<Sp = tEfp .

To establish the ‘if” implication, it is sufficient to prove the following statement:

sort(t)

Vt € ST(Act),p € Proc. t Eht(t) p=tSp.
The straightforward proof is by complete induction on ht(¢) and uses Propn. 3.1(2)-(3). (]

We now proceed to prove statement S2. To this end, we shall need a few intermediate
definitions and results.

For every process p € Proc, finite action set A and non-negative integer n, we define
a synchronization tree p(4™ as follows:

(4,0)

(1>

D Q
pAnth £ Z {a : ¢ | a € A, q € derivatives(p, a)}[+Q |p1 orinitials(p) € A] .

Intuitively, the synchronization tree p*™ stands for the approximation of the behaviour
of p of width A and height n+ 1. For example, if we apply the above definition to derive
the approximations of the infinitely branching synchronization trees p and ¢ given in (3)
and (4), respectively, we obtain that, for every A Cy;, Act and n > 0,

p(A,n+1) — Z a;: @(A,n) + 0= q(A,n+1)
{ila;€A}

16

where Q4™ is Q if n = 0, and O otherwise. Thus, albeit p is a convergent synchronization
tree, all of its approximations are divergent, and coincide with the approximations of the
behaviour of q.

By a simple induction, we may show that, for every finite set of actions A and non-

negative integer n, the set of synchronization trees {p(A’") |pe Proc} is finite. Therefore

pAm+) is a finite synchronization tree even when derivatives(p,a) is infinite for some
a€ A

The fact that the synchronization trees p(*™ do behave as approximations of the
behaviour of p of width A and depth n is the import of the following result, which may
be easily shown by mathematical induction:

Lemma 3.4 For every A Cy;,, Act, n >0,
1. p Ef pAm) and
2. p“m < p.

We are now in a position to prove statement S2 above, i.e., that the preorder Efjm is
finitary.

Proof of Statement S2: We prove that

pEl" g iff VteST(Act). tE["p = tE["q.

~w

The ‘only if” implication follows immediately from the fact that Ef)m is a preorder. To establish
the ‘if” implication, let us assume that p and ¢ are two processes such that, for every ¢t € ST(Act),

+ Efin

iy o= el (6)

We show that p Ef q holds for every finite set of actions A and non-negative integer n. To this
end, let A Cpy, Act and n > 0. We know that p Eﬁ pAm) < p (Lem. 3.4). As pt™) is a finite
synchronization tree, it follows that p Ef plAm) Ef)m p (Statement S1). Using (6), we now obtain
that p Eﬁ pAm) Ef,m g holds. By the definition of Ef,m and the transitivity of Eﬁ (Propn. 3.1(1)),
we finally infer that p Ef q holds, which was to be shown. O

The operational proof of Thm. 3.2 is now complete.

3.2 Transition Systems over a Countable Action Set

The behavioural characterization of the finitary bisimulation presented in Thm. 3.2, like
the logical one given by Abramsky, applies to arbitrary Its’s. For example, it can be
used as an observation-independent version of <! over lts’s with an uncountable action
set. This means, in particular, that such a characterization applies to the bisimulation
preorder for, e.g., timed calculi which postulate an uncountable time domain like, e.g.,
Wang’s TCCS [33].

However, the lts’s giving operational semantics to most standard process calculi, e.g.
those for ACP [8], CCS [24] and CSP [14], have countable action sets. For such transition
systems, it is possible to give an alternative characterization of the preorder <* which

17

is, in many ways, easier to work with than the one provided by Thm. 3.2. This we now
proceed to present.
In the remainder of this study, we shall assume that the set of actions Act is countable.
Let (Proc,Act,—,7) be an lts with Act = {a;,a.,...} a countable action set. For
every n > 0, we write Act,, for the set of actions {a4,...,a,}. We now define:

pEogq & true

PEny1q & (1) Va € Act,,1,p €Proc.p 5 p =3¢ : ¢q->¢ and p'C,, ¢
(2) If initials(p) C Act,,4; and p | then
(2.1) initials(q) € Act, 4 and ¢q |
(2.2) Va € Act,y1,¢ €Proc. ¢ -5 ¢ =3 : p>p andp' S, ¢ .

Finally, for all p,q € Proc,
PE.qg = Vn>0. pC.q.
Proposition 3.5 Let (Proc,Act,—,T) be an lts with Act a countable action set. Then:

1. The relations &,, (n > 0) and &, are preorders.
2. For allp,q € Proc,n >0, if pS,41q, thenp S, q.

The reader familiar with the literature on value-passing versions of Milner’s CCS (cf.,
e.g., [13, 15, 16]) might have noticed that the above definitions are inspired by the char-
acterizations of the finitary bisimulation presented in the aforementioned references. The
main difference in the definition we present is the presence of the condition on the set of
initial actions of process p in clause (2) of the definition of 5, ;. The significance of this
change is witnessed by the example on page 11.

Definition 3.6 Let Act = {a1,as,...} be a countable action set. For every A Cy;, Act,
we define
1(A) £ min{n|AC Act,} .

Theorem 3.7 For p,q € Proc in any transition system over a countable action set Act,

p<Ta & plog.
Proof: In view of Thm. 3.2, it is sufficient to prove that, for all p, g € Proc,

P& g & ptuq.

This we now proceed to show by establishing the two implications separately.
e ‘Only If Implication’. We prove that, for all p, ¢ € Proc and n > 0,

Act,,
S, "¢ = pEaq

from which the claim follows immediately.

The above statement is proven by mathematical induction on n. The basis of the inductive

argument is trivial as 5g is the universal relation over Proc. For the inductive step, assume

that p Eéﬂ"” q. It is now a simple matter to show that p 5,11 ¢, using the inductive

hypothesis and Propn. 3.1(2)-(3).

18

e ‘If Implication’. It is sufficient to prove that, for every finite set of actions A, n > 0,
p,q € Proc,
C cA
P=uA)4nd = P=n 9 -

The easy proof by mathematical induction on n is left to the reader.
The proof of the theorem is now complete. O

Remark: The characterization of the finitary bisimulation presented in the above theorem
applies, for instance, to the versions of Milner’s SCCS [23] considered in [10, 4]. To the best of
our knowledge, this is the first explicit behavioural characterization of the finitary bisimulation
for the class of 1ts’s denotable by SCCS processes presented in the literature. Indeed, as remarked
in [4, page 212], the characterization of < for SCCS in [10] was obtained under the implicit, and
incorrect, assumption that SCCS processes are sort-finite.

The characterizations of the finitary bisimulation that we have so far presented apply to
any lts with arbitrary or countable action sets. However, it is often the case that the
Its’s specified by standard process description languages satisfy some sort of finiteness
conditions, e.g., that they are weakly finite branching or sort-finite. We shall now provide
more specific characterizations of <F for several interesting classes of 1ts’s.

3.2.1 Transition Systems with Bounded Convergent Sort

We begin by studying a, to the best of our knowledge novel, class of 1ts’s, viz. those with
bounded convergent sort (see Def. 3.8). Apart from its intrinsic interest, the character-
ization of the finitary bisimulation that we shall offer for this kind of Its’s will pave the
way to a sharpened version of Propn. 6.13 in [4].

Definition 3.8 Let (Proc, Act,—, 1) be an lts. For every p € Proc, n > 0, we define:
Csort(p,n) = U {initials(q) | ¢ | and there exists o € Act” of length at most n: p % q}

We say that an Ilts has bounded convergent sort iff Csort(p,n) is finite for all p € Proc
andn > 0.

Intuitively, in an lts with bounded convergent sort, if we unfold the behaviour of a process
p and cut the resulting synchronization tree at depth n, we obtain a synchronization tree
whose convergent processes have capabilities drawn from a finite set of actions. Of course,
every lts that is finite branching has a fortiori bounded convergent sort. However, there
are lts that have bounded convergent sort, but are not finite branching. For example, the
synchronization tree

t = Za:"':a:@ (7)
21 j-times

is sort-finite, and therefore has bounded convergent sort, but it is infinite branching. An
example of an 1ts which has bounded convergent sort and has an infinite sort is

Pogplgng“' (8)

19

where each process p; (¢ > 0) is convergent. This Its is, up to isomorphism, the one
associated with the CCS process:

def

All-Actions = a,.(All-Actions|next))

where next is the relabelling mapping each action a; to its successor a;q (i > 1).

In general, the condition of weak finite branching is incomparable with that of having
bounded convergent sort. The synchronization tree given in (7) has bounded conver-
gent sort, but is not weakly finite branching. An example of a weakly finite branching
synchronization tree which does not have bounded convergent sort is the following:

u = (Zizoa3bi3@>+9

where we assume that the actions b; are pairwise distinct. This synchronization tree is,
up to isomorphism, the one associated with the CCS process:

X = X[f]+ a.b.Nil

where f is the relabelling mapping each action b; to its successor b;; (i > 0), and leaving
a fixed.

Both the codings in CCS (with finite summation) of sort-infinite synchronization trees
that we have presented make use of infinite relabellings, i.e., relabellings that change
the nature of infinitely many actions. This is unavoidable because, as first observed
by Abramsky [3, 4], CCS with finite relabellings can only describe sort-finite, and thus
convergent sort bounded, Its’s. CCS with infinite relabellings, but only guarded recursion,
can only specify finite branching, and thus convergent sort bounded, processes. As (8)
shows, these processes need not be sort-finite.

After having discussed the bounded convergent sort condition, we now proceed to
present a characterization of the finitary bisimulation for this class of 1ts’s.

Let (Proc, Act,—, 1) be an lts with Act = {ay, as, ...} a countable action set. We now
define:

p5oq & true

PEniiq & (1) Va € Act, ,p €EProc.p5p =3¢ : ¢->¢ andp' &, ¢

)
(2)
(2.1
(2.2) Va € Act,i1,¢ €Proc.q % ¢ =3 : p>p and p' &, ¢
Finally, for all p,q € Proc,

pPSwq £ Vn>0. pS.q .
Proposition 3.9 Let (Proc,Act,—, 1) be an lts with Act a countable action set. Then:

1. The relations &, (n > 0) and &, are preorders.

2. For all p,q € Proc, n >0, if pSny1 q, then p &, q.

20

The definition of the preorder &, is very similar to that of the preorder <, given on
page 6. The only difference consists in the set of actions an observer, in the sense of
[3], is allowed to use in experiments of depth n. The requirement that the actions be
drawn from the set Act,,, which is finite, guarantees that the resulting experiments be of
finite width as well as depth. Note that, unlike in the definition of the preorder £,,,1, in
clause (2) above we need not require that initials(p) is contained in Act, ;. As the proof
of the following result shows, this requirement is redundant for convergent sort bounded
processes. Indeed, the requirement that initials(p) C Act,, 1 for some n, was needed to
ensure the testability of the convergence of a process. If the lts under consideration
has bounded convergent sort, then every convergent process can only initially perform
finitely many distinct actions. As argued in the remark on page 14, convergence of these
processes can always be detected using finite observations.

Theorem 3.10 For p,q € Proc in any transition system over a countable action set Act
which has bounded convergent sort,

p<Tq & plag.
Proof: Consider a transition system over a countable action set Act which has bounded conver-
gent sort. In view of Thm. 3.7, it is sufficient to prove that, for all p, ¢ € Proc,

pEwa & pRuq.
We show the two implications in the above statement separately.

e ‘Only If Implication’. To prove that, for all p, ¢ € Proc,
pEuqg = pkoq.

it is sufficient to show that, for all p, ¢ € Proc, n > 0:

pEz(Csort(p,n))Jrn ¢ = P5Enq . (9)

Note that 2(Csort(p, n)) is a well-defined non-negative integer because, as the lts has bounded
convergent sort, Csort(p,n) is a finite set of actions. To ease readability, throughout the
proof of (9) we use (p,n) as a shorthand for «(Csort(p, n)).

We prove statement (9) by mathematical induction on n. The basis of the induction is
immediate because S is the universal relation. For the inductive step, we assume that
P Si(pnt1)4+n+1 ¢, and prove that p E,.+1 ¢ holds. To this end, it is sufficient to show that
the defining clauses of £, 1 hold for p and q.

— Clause (1). Assume that p % p’ and a € Act,y;. Note that this means that
a € Acty(p nt1)4n+1- Therefore, as p S,y ni1)4nt1 ¢, there exists ¢’ € derivatives(q, a)
such that

pl Ez(p,rH»l)Jrn ql . (10)
Note now that, as p = p/, Csort(p’, n) is included in Csort(p,n + 1). From this obser-

vation, it follows that
p'sn) +n <up,n+1)+n .

21

As the sequence of preorders {Ek| k> O} is decreasing with respect to set inclusion
(Propn. 3.5(2)), (10) implies that

P Sprmyen d - (11)
An application of the inductive hypothesis for statement (9) to (11) now yields

/ /

Qrl

P =ng
as desired.
— Clause (2.1). Assume that p |. We shall prove that ¢ |. First of all, note that, as
pls

initials(p) C Csort(p, n + 1) C Act,(p,n+1)+n+1 -

Now, as p Sy(p,n41)4n+1 ¢, ¢ | follows immediately. Moreover, for use in the remainder
of the proof, we also observe that initials(q) C Act,(p,n+1)4n+1 follows.

— Clause (2.2). Assume that p |, ¢ | and ¢ % ¢ for some a € Act, ;1. We shall
show that p = p’ for some p’ £,, ¢’. To this end, note, first of all, that we know that
initials(p) € Acty(pn+1)4n+1 and initials(q) € Act,(p nt1)4+n+1 hold from our analysis
of clause (2.1). Therefore, as p 5,(p,n+1)4n+1 ¢ and a € Act, 11 € Act,(pn41)4n+1, it
follows that there exists p’ € derivatives(p, a) such that:

/ /
p Ez(p,rH»l)Jrnq .

Reasoning as in our argument for clause (1), we infer that

P St @ (12)
also holds. An application of the inductive hypothesis for statement (9) to (12) now
yields

P End
as desired.

The proof of the inductive step is now complete.

‘If Implication’. To prove that, for all p, ¢ € Proc,

pSeqg = pluq.

it is sufficient to show that, for all p, ¢ € Proc, n > 0:

arl

C

p o(Csort(g, n))+n 7 = P=nq - (13)
Again, note that (Csort(¢q,n)) is a well-defined non-negative integer because, as the lts
has bounded convergent sort, Csort(q,n) is a finite set of actions. To ease readability,
throughout the proof we use ¢(q,n) as a shorthand for 2(Csort(gq, n)).

We prove statement (13) by mathematical induction on n. The basis of the induction is
immediate because 5g is the universal relation. For the inductive step, we assume that
P Ez(q,n+1)+n+1 q, and prove that p 5,41 ¢ holds. To this end, it is sufficient to show that
the defining clauses of 5,41 hold for p and gq.

22

— Clause (1). Assume that p % p’ and a € Act,y;. Note that this means that
a € Acty(g,nt1)+n+1- Therefore, as p Sy(g n41)4n+1 ¢, there exists ¢’ € derivatives(q, a)
such that

pl Ez(q,nJrl)Jrn ql . (14)

Note now that, as ¢ % ¢’, Csort(¢’,n) C Csort(q,n + 1). From this observation, it
follows that
od'ym) +n <olgn+1)+n .

As the sequence of preorders {Ek| k> O} is decreasing with respect to set inclusion
(Propn. 3.9(2)), (14) implies that

pl 5z(q/,n)Jrn ql . (15)
An application of the inductive hypothesis for statement (13) to (15) now yields

/

J=

as desired.

— Clause (2.1). Assume that initials(p) C Act,41 and p |. We shall prove that
initials(¢) € Act,41 and ¢ |. First of all, note that, as p 5,(g.nt+1)4n+1 ¢ and p |, it
follows immediately that ¢ |. We shall now argue that initials(q¢) C Act,,+1 also holds.
To this end, assume that ¢ — ¢’ for some ¢’. As ¢ |, the action a is contained in
Csort(q,n 4 1). Therefore a is also contained in Act,(q.n+1)4n+1- AS P So(gnt1)+n+1 &5

pl,qland ¢ > ¢ witha € Act,(q,n+1)+n+1, We infer that
p = p, for some p’ .

As initials(p) C Act,,4+1 by assumption, it follows that a is contained in Act,+1, which
was to be shown.

— Clause (2.2). Assume that p |, g |, initials(p) C Act,,+1, initials(q) € Act,4+1 and
q % ¢ for some a € Act, ;1. We shall show that p % p’ for some p’ C,, ¢/. To this
end, note that, as p Ez(q,n+1)+n+1 q and a € Act, 11 C Act,(g,nt1)4n+1, it follows that
there exists p’ € derivatives(p, a) such that:

pl 5z(q,nJrl)Jrn ql .

Reasoning as in our argument for clause (1), we infer that

P Sugmn @ (16)
also holds. An application of the inductive hypothesis for statement (13) to (16) now
yields

P End
as desired.

The proof of the inductive step is now complete.
This completes the proof of the theorem. O

It is interesting to note that above theorem would not hold for 1ts’s that do not have
bounded convergent sort, as shown by the following example.

23

Example: Let Act = {a,as,as,...} be a countably infinite set of actions. Define the

synchronization trees:

t
to

a;: 0O+ Q
(an1a13an3@> +Q

Note that t,, does not have bounded convergent sort. We claim that t; £, t,,, but t; £ t,.
First of all, note that, as ¢, is a finite synchronization tree, the fact that t; £ t, follows
immediately from the observation that ¢; £ t,. To see that t; &, ¢, does instead hold,
note that, for every n > 1,

(1>

@ En Ap41 - @ .
This fact guarantees that t, &, t, for every n > 0. O

3.2.2 Sort-finite Transition Systems

In [4, Propn. 6.13], Abramsky showed that for any sort-finite lts satisfying his axiom
scheme of bounded nondeterminacy (BN) (cf. op. cit. on page 193), the finitary bisim-
ulation coincides with the w-iterate of the bisimulation preorder <, defined on page 6.
Using our previous characterization theorem, we can now present a sharpened version of
this result, which does not require the lts’s to satisfy the axiom (BN).

Proposition 3.11 For p,q € Proc in any sort-finite transition system over a countable
action set Act,
psia & ploq.

Proof: First of all, note that, in any Its, not necessarily sort-finite, p <, ¢ implies p <¥' ¢. In

fact, for all p, q,

Act
PIwqg & pE, ¢
= pCtl™q¢ (Propn. 3.1(2))

& p<Ffq¢ (Thm.3.2) .

We are therefore left to show that, for p,q € Proc in any sort-finite transition system over a
countable action set Act,

psfe = pSea.
To this end, note, first of all, that any sort-finite lts has a fortiori bounded convergent sort. In
view of Thm. 3.10, it is therefore sufficient to show that, for all p, ¢ € Proc,

Pcwq = pSwq .

This will follow if we show that, for all p,q € Proc, n > 0,

p Ez(p,q)Jrn q = p Sn q (17)

where we use 1(p, q¢) as a shorthand for #(sort(p) U sort(q)), which is a well-defined non-negative
integer as the lts is sort-finite.

We prove statement (17) by mathematical induction on n. The basis of the induction is trivial
because <g is the universal relation. For the inductive step, let us assume that p El(p’q)JrnH q.
We show that p <,11 ¢ holds. To this end, we proceed to check that the defining clauses of <11
are met by p and gq.

24

1. Assume that p % p’. We shall prove that ¢ = ¢ for some ¢’ such that p’ <,, ¢'.
As a € sort(p) C Act,(p,g)4n+1 and p Sy(p.g)+n+1 ¢ it follows that ¢ % ¢ for some ¢’ such

that

P Rpan - (18)
Note now that, as sort(p’) C sort(p) and sort(q’) C sort(q), it follows that (p’,q¢") <
1(p, q). As the sequence of preorders { Sx| k > 03 is decreasing with respect to set inclusion
(Propn. 3.9(2)), (18) implies

P Suw)0 q . (19)
We may now apply the inductive hypothesis for statement (17) to (19) to infer that

/

P Snd
as desired.
2. Assume that p |. Then ¢ | is immediate from the fact that p 5,(5.q)4n41 ¢-

3. Assume that p |, ¢ | and ¢ = ¢/. We shall prove that p % p’ for some p’ such that p’ <,, ¢

As a € sort(q) C Acty(p,g)+nt1 and P 5y(p.q)4nt1 ¢, it follows that p 4 p’ for some p’ such
that

P El(p,q)Jrn q -
Now reasoning as in point 1 above, we may infer that
i El(p’,q’)Jrn q
also holds. Again, an application of the inductive hypothesis gives that p’ <,, ¢’ as desired.

This completes the inductive proof of statement (17). O

Remark: An alternative proof of the above result can be given by mimicking the proof of
statement S2 presented in Sect. 3.1.1. In fact, it is not too hard to show that, for every process p
in a sort-finite 1ts, n > 0 and finite set of actions A including sort(p),

pSap™ <p

In particular, we obtain that
p < pEOt@I) <y

If p <F q and sort(p) is finite, it follows that

»<n p(SOI’t(P),n) <gq.

Using the fact that < is included in <,,, we may now infer that p <,, ¢ holds for every n > 0. We
have therefore shown that, if p < ¢ and sort(p) is finite, then p <, ¢.

Note that the above argument applies regardless of the cardinality of the action set Act and
of sort(q).

25

3.2.3 A Class of Image Finite Transition Systems

To conclude our taxonomy of characterizations of the finitary bisimulation, we present a
class of 1ts’s with countable action set which do not necessarily have bounded convergent
sort, but for which the finitary bisimulation coincides with &,,. We believe that this result
is mainly of theoretical interest, but we find it worthwhile to include it for the sake of
completeness.

Proposition 3.12 Let p,q € Proc in any transition system over a countable action set
Act. Assume furthermore that the transition system is image finite, and weakly initials
finite. Then

psTa & plog.

Proof: Consider a transition system over a countable action set Act which is image finite and
weakly initials finite. In view of Thm. 3.7, it is sufficient to prove that, for all p, ¢ € Proc,

pEwa & pRuq.
We show the two implications in the above statement separately.

e ‘Only If Implication’. We show that, for all p,q € Proc, n >0
pSug = phaq.

The proof is by mathematical induction on n. The basis of the inductive argument is trivial
as 5g is the universal relation over Proc. To establish the inductive step, let us assume that
p E, ¢ holds. We prove that p £,, 11 ¢ also holds. To this end, it is sufficient to show that
the defining clauses of £,, 1 are met by p and q.

— Clause (1). Assume that a is an action in Act,4; and p % p/. Asp &, ¢ and a is
contained in Act,, for every m > n + 1, for every such positive integer m there exists
a process ¢, such that

g~ qm and p' S g -
As the 1ts is image-finite, the set of processes {q,, | m > n + 1} is finite. This implies
that, for some ¢’ contained in {¢,, | m > n+ 1}, p’ §,,, ¢ for infinitely many positive
integers m. As the sequence of preorders {<i| k >} is decreasing (Propn. 3.1(2)), it
follows that p’ €, ¢’ for all m > 0, i.e., that p’ £, ¢’. By induction, we now obtain
p' §, ¢ as desired.

— Clause (2.1). Assume that p |. We shall prove that ¢ |. As the lts under con-
sideration is weakly initials finite, the set of initial actions from p is finite. Let
M £ o(initials(p))+1. As p T, g, it follows that p Sar ¢. As p | and initials(p) C Actay,
we infer that ¢ |, which was to be shown. Moreover, for use in the remainder of the
proof, we also obtain that initials(q) C Actay.

— Clause (2.2). Assume that p |, ¢ |, a € Act,y; and ¢ % ¢/. By a previous
observation, it follows that a € Actys, where M is the positive integer defined in the
proof for clause (2.1). Asp 5y, ¢, p |, ¢ |, initials(p) C Actyy, initials(q¢) C Actps and
Actyy is included in Act,, for every m > M, we infer that, for every such positive
integer m, there exists a process p,, such that

P pm and pm Smq .

Reasoning as in the proof for clause (1) above, we may conclude that there is a
process p’ € derivatives(p, a) such that p’ £, ¢’. By induction, we now obtain p’ &,, ¢’
as desired.

26

This completes the proof for the inductive step.

e ‘If Implication’. We show that, for all p, ¢ € Proc in an image finite lts, n > 0,

pSeq = pBng.

The proof is by mathematical induction on n, and is very similar to the one presented
above. For this reason, we limit ourselves to presenting the argument for clause (2.1) of the
definition of £, 1. To this end, assume that p 5., ¢, p | and initials(p) C Act,,+1. We prove
that ¢ | and that initials(q) is also included in Act,y1. The fact that ¢ definitely converges
is an immediate consequence of the assumption that p | and p 51 ¢. To see that every
action a contained in initials(q) is also in Act,, 1, we reason as follows. Assume that g % ¢'.
Pick a positive integer N such that a is contained in Acty. Asp&n ¢, p |, ¢ |, a € Acty
and ¢ % ¢, it follows that p % p’ for some p’ Sy_1 ¢/. That is a € initials(p) C Act, 11,
which was to be shown.

The proof of the theorem is now complete. O
The examples on pages 11 and 24 show that neither of the constraints in the proviso of

the above result can be omitted.

Acknowledgements: We have benefited from illuminating discussions with Samson
Abramsky on the two different versions of the domain logic for transition systems pre-
sented in [2, 4]. Our overall debt to his seminal work will be evident to the readers of
this paper.

References

[1] S. Abramsky, Ezperiments, powerdomains and fully abstract models for applica-
tive multiprogramming, in Foundations of Computation Theory, M. Karpinski, ed.,
vol. 154 of Lecture Notes in Computer Science, Springer-Verlag, 1983, pp. 1-13.

[2] ——, Domain Theory and the Logic of Observable Properties, PhD thesis, University
of London, 1987.

[3] ——, Observation equivalence as a testing equivalence, Theoretical Comput. Sci., 53
(1987), pp. 225-241.

[4] ——, A domain equation for bisimulation, Information and Computation, 92 (1991),
pp. 161-218.

[6] ——, Domain theory in logical form, Annals of Pure and Applied Logic, 51 (1991),
pp. 1-77.

[6] L. Aceto and M. Hennessy, Termination, deadlock and divergence, J. Assoc.
Comput. Mach., 39 (1992), pp. 147-187.

[7] K. Apt and G. Plotkin, Countable nondeterminism and random assignment,
J. Assoc. Comput. Mach., 33 (1986), pp. 724-767.

27

[8] J. Baeten and W. Weijland, Process Algebra, Cambridge Tracts in Theoretical
Computer Science 18, Cambridge University Press, 1990.

[9] I. Guessarian, Algebraic Semantics, vol. 99 of Lecture Notes in Computer Science,
Springer-Verlag, 1981.

[10] M. Hennessy, A term model for synchronous processes, Information and Control,
51 (1981), pp. 58-75.

[11] ——, Algebraic Theory of Processes, MIT Press, Cambridge, Massachusetts, 1988.

[12] M. Hennessy and R. Milner, Algebraic laws for nondeterminism and concur-
rency, J. Assoc. Comput. Mach., 32 (1985), pp. 137-161.

[13] M. Hennessy and G. Plotkin, A term model for CCS, in 9" Symposium on
Mathematical Foundations of Computer Science, P. Dembinski, ed., vol. 88 of Lecture
Notes in Computer Science, Springer-Verlag, 1980, pp. 261-274.

[14] C. Hoare, Communicating Sequential Processes, Prentice-Hall International, En-
glewood Cliffs, 1985.

[15] A. Ingolfsdottir, Semantic Models for Communicating Process with Value-
Passing, PhD thesis, School of Cognitive and Computing Sciences, University of
Sussex, June 1994. Computer Science Report 8/94. Also available as Report R-94—
2044, Department of Mathematics and Computer Science, Aalborg University.

[16] ——, A semantic theory for value-passing processes late approach — Part II: A be-
havioural semantics and full abstractness, Report RS-95-22, BRICS (Basic Research
in Computer Science, Centre of the Danish National Research Foundation), Institute
for Electronic Systems, Department of Mathematics and Computer Science, Aalborg
University Centre, April 1995.

[17] A. Ingolfsdottir and A. Schalk, A fully abstract denotational model for obser-
vational congruence, Report RS-95-40, BRICS (Basic Research in Computer Sci-
ence, Centre of the Danish National Research Foundation), Institute for Electronic
Systems, Department of Mathematics and Computer Science, Aalborg University
Centre, August 1995. To appear in Proceedings CSL ’95.

[18] R. Keller, Formal verification of parallel programs, Comm. ACM, 19 (1976),
pp. 371-384.

[19] A. Meyer, Semantical paradigms: Notes for an invited lecture, in Proceedings 3"
Annual Symposium on Logic in Computer Science, Edinburgh, ITEEE Computer
Society Press, 1988, pp. 236—242.

[20] R. Milner, Processes: A mathematical model of computing agents, in Proceedings
Logic Colloquium 1973, H. Rose and J. Shepherdson, eds., North-Holland, 1973,
pp. 158-173.

28

[21] ——, Fully abstract models of typed \-calculi, Theoretical Comput. Sci., 4 (1977),
pp. 1-22.

[22] ——, A modal characterisation of observable machine behaviour, in Proceedings
CAAP 81, G. Astesiano and C. Bohm, eds., vol. 112 of Lecture Notes in Computer
Science, Springer-Verlag, 1981, pp. 25-34.

[23] ——, Calculi for synchrony and asynchrony, Theoretical Comput. Sci., 25 (1983),
pp. 267-310.

[24] ——, Communication and Concurrency, Prentice-Hall International, Englewood
Cliffs, 1989.

[25] D. Park, Concurrency and automata on infinite sequences, in 5" GI Conference,
Karlsruhe, Germany, P. Deussen, ed., vol. 104 of Lecture Notes in Computer Science,
Springer-Verlag, 1981, pp. 167-183.

[26] G. Plotkin, LCF considered as a programming language, Theoretical Comput. Sci.,
5 (1977), pp. 223-256.

[27] ——, Lecture notes in domain theory, 1981. University of Edinburgh.

[28] ——, A structural approach to operational semantics, Report DAIMI FN-19, Com-
puter Science Department, Aarhus University, 1981.

[29] D. Scott and C. Strachey, Towards a mathematical semantics for computer
languages, in Proceedings of the Symposium on Computers and Automata, vol. 21
of Microwave Research Institute Symposia Series, 1971.

[30] C. Stirling, Modal logics for communicating systems, Theoretical Comput. Sci., 49
(1987), pp. 311-347.

[31] V. Stoltenberg-Hansen, I. Lindstrom, and E. Griffor, Mathematical The-
ory of Domains, Cambridge Tracts in Theoretical Computer Science 22, Cambridge
University Press, 1994.

[32] D. Walker, Bisimulation and divergence, Information and Computation, 85 (1990),
pp. 202-241.

[33] Y. Wang, Real-time behaviour of asynchronous agents, in Proceedings CONCUR
90, Amsterdam, J. Baeten and J. Klop, eds., vol. 458 of Lecture Notes in Computer
Science, Springer-Verlag, 1990, pp. 502-520.

29

Recent Publications in the BRICS Report Series

RS-95-59 Luca Aceto and Anna In@lfsdotti. On the Finitary
Bisimulation. November 1995. 29 pp.

RS-95-58 Nils Klarlund, Madhavan Mukund, and Milind Sohoni.
Determinizing Asynchronous Automata on Infinite Inputs
November 1995. 32 pp.

RS-95-57 Jaap van OostenTopological Aspects of TracesNovem-
ber 1995. 16 pp.

RS-95-56 Luca Aceto, Wan J. Fokkink, Rob J. van Glabbeek, and
Anna Ingolfsdotti. Axiomatizing Prefix Iteration with
Silent Steps November 1995. 25 pp.

RS-95-55 Mogens Nielsen and Kim Suneserlrace Equivalence -
Partially Decidable! November 1995.

RS-95-54 Nils Klarlund, Mogens Nielsen, and Kim SunesenUs-
ing Monadic Second-Order Logic with Finite Domains for
Specification and Verification November 1995.

RS-95-53 Nils Klarlund, Mogens Nielsen, and Kim SunesenAu-
tomated Logical Verification based on Trace Abstractions
November 1995,

RS-95-52 Antorin Kucera. Deciding Regularity in Process Algebras
October 1995. 42 pp.

RS-95-51 Rowan DaviesA Temporal-Logic Approach to Binding-
Time Analysis October 1995. 11 pp.

RS-95-50 Dany Breslauer. On Competitive On-Line Paging with
Lookahead September 1995. 12 pp.

RS-95-49 Mayer Goldberg. Solving Equations in theX-Calculus
using Syntactic EncapsulationSeptember 1995. 13 pp.

RS-95-48 Devdatt P. Dubhashi.Simple Proofs of Occupancy Tail
Bounds September 1995. 7 pp. To appear ifrrRandom
Structures and Algorithms

RS-95-47 Dany BreslauerThe Suffix Tree of a Tree and Minimizing
Sequential TransducersSeptember 1995. 15 pp.

