8G-G6-Sd SOldd

'[e 19 punpey

sinduj a)ulu| uo eleWOoINY SNOUOIYIUASY Buiziulwialag

BRICS

Basic Research in Computer Science

Determinizing Asynchronous
Automata on Infinite Inputs

Nils Klarlund

Madhavan Mukund

Milind Sohoni

BRICS Report Series RS-95-58
ISSN 0909-0878 November 1995

Copyright (© 1995, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work

Is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recenpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540

DK - 8000 Aarhus C

Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/

ftp ftp.brics.dk (cd pub/BRICS)

Determinizing Asynchronous Automata
on Infinite Inputs

Nils Klarlund! Madhavan Mukund? Milind Sohoni®

Abstract

Asynchronous automata are a natural distributed machine model
for recognizing trace languages—languages defined over an alphabet
equipped with an independence relation.

To handle infinite traces, Gastin and Petit introduced Biichi asyn-
chronous automata, which accept precisely the class of w-regular trace
languages. Like their sequential counterparts, these automata need to
be non-deterministic in order to capture all w-regular languages. Thus
complementation of these automata is non-trivial. Complementation
is an important operation because it is fundamental for treating the
logical connective “not” in decision procedures for monadic second-
order logics.

Subsequently, Diekert and Muscholl solved the complementation
problem by showing that with a Muller acceptance condition, deter-
ministic automata suffice for recognizing w-regular trace languages.
However, a direct determinization procedure, extending the classical
subset construction, has proved elusive.

In this paper, we present a direct determinization procedure for
Biichi asynchronous automata, which generalizes Safra’s construction
for sequential Biichi automata. As in the sequential case, the blow-up
in the state space is essentially that of the underlying subset construc-
tion.

IBRICS Centre, Aarhus University, Ny Munkegade, DK 8000 Aarhus C, Denmark.
E-mail: klarlund@daimi.aau.dk. The author is supported by a fellowship from the Danish
Research Council.

2School of Mathematics, SPIC Science Foundation, 92 G N Chetty Rd, Madras 600
017, India. E-mail: madhavan@ssf.ernet.in.

3Department of Computer Science and Engineering, Indian Institute of Technology,
Bombay 400 076, India. E-mail: sohoni@cse.iitb.ernet.in.

Introduction

Finite-state automata are, by definition, sequential. To describe finite-state
concurrent computations, Zielonka introduced asynchronous automata [Ziel].
An asynchronous automaton consists of a set of independent processes which
cooperate to read their input. Each letter a in the alphabet is associated with
a subset 6(a) of processes which jointly decide on a move when a is read.!
The distribution function # introduces an independence relation I between
letters: (a,b) € I iff a and b are read by disjoint sets of processes.

Earlier, Mazurkiewicz had proposed a framework for studying concurrent
systems where the alphabet > comes equipped with a pre-specified indepen-
dence relation I, describing the concurrency in the system [Maz]. In this
setting, two words w and w’ describe the same computation iff w’ can be
obtained from w by a finite sequence of permutations of adjacent indepen-
dent letters. This gives rise to an equivalence relation on words over X. The
equivalence class [w] containing w is called a trace. A set of words L is said
to be a trace language if it obeys the equivalence relation generated by [—
for each word w in L, all of [w] is contained in L.

Zielonka proved that any regular trace language over a concurrent alpha-
bet (X, I') can be recognized by a deterministic asynchronous automaton over
a distributed alphabet (X, 6), such that the independence relation generated
by @ is exactly I.

Gastin and Petit have extended the connection between asynchronous
automata and trace languages to the setting of infinite inputs. In [GP], they
introduce the class of Biichi asynchronous automata which accept precisely
the class of w-regular trace languages.

Like automata over infinite strings, Biichi asynchronous automata have
close connections to logic [EM, Thi|. In order to exploit these connections—
for instance, to automate verification of formulae defined using these logics—
we need to develop techniques for manipulating these automata. Basic oper-
ations include complementation, which in logic is the equivalent of replacing
a second-order existential quantifier with a second-order universal quantifier,
and determinization, which is equivalent to replacing a second-order quanti-
fier by first-order quantifiers.

L Calling these automata asynchronous is, in a sense, misleading. The processes com-
municate synchronously. The asynchrony refers to the fact that different components of
the network can proceed independently while reading the input.

Asin the sequential case, complementing Biichi asynchronous automata is
non-trivial, since they are necessarily non-deterministic: deterministic Biichi
asynchronous automata cannot recognize all w-regular trace languages [GP].
With a Muller acceptance condition, deterministic automata suffice [DM],
but a direct determinization procedure has so far been elusive.

Contributions of this paper

We extend the subset construction for asynchronous automata [KMS] to a
direct determinization construction for Biichi asynchronous automata, based
on Safra’s technique for determinizing Biichi automata on infinite strings
[Saf]. The determinized automaton we construct has an acceptance condi-
tion described in terms of “Rabin pairs”. As in the sequential case, we can
easily complement the determinized automaton by viewing the Rabin condi-
tion as a Streett condition. This Streett automaton can then be converted
efficiently into a non-deterministic Biichi asynchronous automaton. So, we
also have a direct complementation construction for Biichi asynchronous au-
tomata. In both the determinized Rabin automaton and the complementary
Biichi automaton, the number of local states of each process is exponential
in the number of global states of the original automaton. As in Safra’s orig-
inal construction, this blow-up is essentially that of the underlying subset
construction for these automata.

In related work, Muscholl [Mus| has described a complementation con-
struction for Biichi asynchronous cellular automata, which are an alternative
distributed model for recognizing trace languages [Zie2]. Her construction
does not involve determinization—she makes use of progress measures [Kla]
and directly constructs a non-deterministic complement automaton.

An asynchronous cellular automaton allocates a separate process for each
letter in the input alphabet—even when the underlying system is completely
sequential, a cellular automaton will have a number of components. Processes
communicate using a non-standard variant of a shared memory. As a result,
though both the approaches are formally equivalent, asynchronous automata
seem to be more natural models for describing distributed systems.

Converting between asynchronous automata and asynchronous cellular
automata involves a blow-up in the state space of each process which is
exponential in |X|, the size of the input alphabet. However, since || could
itself be exponential in the size of the global state space of the automaton,

there is effectively a double exponential blow-up in this translation. So,
complementing asynchronous automata directly using our construction can
be significantly more efficient than complementing them indirectly via the
construction described in [Mus].

In general, it appears to be advantageous to work directly with asyn-
chronous automata for automating decision procedures in logic, instead of
using asynchronous cellular automata. Incorporating the alphabet into the
state space of the automaton is known to be expensive in such applications—
for example, the decision procedure for monadic second-order logic on strings
generates alphabets that are exponential in the number of free variables in the
input formula; see [HJJ] for techniques which allow automata with exponen-
tially sized alphabets to be represented and manipulated within polynomial
bounds.

Working directly with asynchronous automata is also relevant to model
checking—a technique for mechanically verifying if a program satisfies a prop-
erty specified in a logical language. If the same kind of automata are used
both for describing the program and for checking satisfiability, the model
checking problem reduces to a simple intersection problem involving the au-
tomata [VW]. Since asynchronous automata are a natural model for dis-
tributed programs, automata-theoretic model checking can be applied to the
logics considered in [EM, Thi].

The paper is organized as follows. We begin with some definitions re-
garding asynchronous automata. In Section 2 we introduce Biichi and Rabin
asynchronous automata and formulate the problem. The next three sections
recapitulate some basic techniques developed in [KMS, MS]| for manipulating
asynchronous automata. In Section 6 we show how to apply these techniques
to determinize Biichi asynchronous automata. To preserve continuity, some
detailed explanations, examples and proofs have been moved from the main
text into separate Appendices.

1 Preliminaries

The following definitions are essentially those of [KMS] adapted to the setting
of infinite inputs.

Distributed alphabets Let P be a finite set of processes, where the size
of Pis N. A distributed alphabet is a pair (X,0) where ¥ is a finite set of
actions and 0 : ¥ — 2% assigns a non-empty set of processes to each a € X.

State spaces With each process p, we associate a finite set of states de-
noted V,. Each state in V), is called a local state. For P C P, Vp denotes the
product [,ep V. An element @ of Vp is a tuple or joint state that determines
a local state for each p in P. We refer to a joint state from Vp as a P-state.
A P-state is also called a global state.

Given v € Vp, and P’ C P, ¥p: denotes the projection of ¢ onto Vp:.
Also, U5 abbreviates vp_pr. For a singleton p € P, we write 7, for v,;. For
a € X, we write V, to mean Vj,) and V5 to mean Vm. Similarly, if 7 € Vp

—

and 0(a) C P, we write 9, for Uj(q) and vz for Ugtay-

Asynchronous automata An asynchronous automaton 2 over (%, 0) is of
the form ({V,},ep, {—a}aes, Vo), where —, C V, x V is the local transition
relation for a, and Vo C V5 is a set of initial global states. Each relation
—q specifies how the processes 6(a) that meet on a may decide on a joint
move. Other processes do not change their state. Thus we define the global
transition relation = C Vp X ¥ x Vp by 7 == ¢ if ¥, —, ¥/, and U7 = .

2 is called deterministic if the global transition relation of 2 is a function
from Vp x X to Vp and if the set of initial states Vg is a singleton.

Runs Let a be an infinite word over Y. It is convenient to think of a as
a function of time; i.e., @ : N — X. (We use N to denote the set {1,2,...}
and Ny for {0,1,2,...}.) We shall also deal with finite words over ¥. Let
u € ¥* be a word of length m. We denote u as a function u : [1..m] — X,
where [i..j] abbreviates the set {7,i+1,...,j}.

A global run of 2 on a word o : N — ¥ is a function p : Ny — V4 such

that p(0) € Vy and, for i € N, p(i—1) ol p(i). Similarly, a global run of

2 on a finite word w : [1..m] — ¥ is a function p : [0..m] — Vp such that

p(0) € Vy and, for i € [1..m], p(i—1) & p(i).

For P C P, p, denotes the projection of p onto the P-components.
Note that p, is a sequence of P-states. As usual, inf(p,) denotes the set
of P-states which occur infinitely often in p,; i.e., inf(p,) = {0 € Vp |
for infinitely many i, p, (i) = U}.

2 Asynchronous automata on infinite inputs

To define how an asynchronous automaton accepts an infinite input «, we
have to analyze the communication pattern between processes in the limit,
as « is being processed.

Limit graphs With each infinite word «, we associate an undirected graph
Sa = (P, E,) called the limit graph of a. The graph has an edge between
processes p and g provided they synchronize infinitely often while 21 processes
a. In other words, (p,q) € E, iff for infinitely many i, {p, ¢} C 0(a(7)). Let
Conn, denote the maximal connected components of G,.

Let Finite, denote the set of processes which move only finitely often
while 2 reads a—i.e., p belongs to Finite,, if there are only finitely many i
such that p € 0(a(i)). Clearly, if p € Finite, then the singleton {p} belongs
to Conn,.

Biichi asynchronous automata A Bichi asynchronous automaton is a
pair B2 = (2, Tp) where 2 is an asynchronous automaton and Tp is a Biichi
acceptance table. The table Tp is a list (11, 72, ..., 7). Each entry 7; in Tp is
of the form (C, T, {(p.,Gc)}cec), where C is a partition of P, T is a subset
of P and, for each subset C' € C, p,, is a designated process from C' and G¢
is a set of p_-states. We call the processes {p. }cec the signalling processes
in 7;.

A run p of the automaton B2l = (2, Tp) on an input « is said to satisfy
an entry 7 = (C,T,{(p., Ge)}cec) in Tp provided C = Conn,, T = Finite,
and, for each signalling process p,, inf(p,.) N Gc # (. The automaton
accepts « if there is a run p on « and a table entry 7 such that p satisfies 7.

Recall that every process p in Finite, constitutes a separate singleton
component in Conn,. For a signalling process p € T, the set GG, denotes the
set of possible terminating states for p. On the other hand, for a signalling
process p which does not belong to T', G}, is a set of recurring states, one of
which must be visited infinitely often by 2 for p to satisfy 7.

Our definition of Biichi asynchronous automata is adapted from [Mus| and
differs from the original formulation of Gastin and Petit [GP]. We discuss
the relationship between the two definitions in Appendix A. The crucial
part of our definition is the extra information we record about Conn, in

each entry of the acceptance table. This allows us to separate the processes
in 2 into independent groups. After a finite prefix of o has been read, there
will be no further synchronizations between processes in different connected
components of G,. So, in the limit, each subset C' € Conn, moves as a
separate, independent unit.

As in the case of Biichi automata on infinite strings, non-deterministic
Biichi asynchronous automata are strictly more powerful than their deter-
ministic counterparts [GP]. So, to determinize these automata, we have to
strengthen the acceptance condition. We shall work with a generalization of
the “pairs” condition proposed by Rabin [Rab].

Rabin asynchronous automata A Rabin asynchronous automaton is a
pair R = (A, Tr) where 2 is an asynchronous automaton and Tg is a Rabin
acceptance table. The table Tg is a list (7, 72,...,7;). Each entry 7; in
Tg is of the form (C, T, {(p., pairs_)}cec), where C, T and p. are as in a
Biichi acceptance table and, for each signalling process p., pairs_ is a list
{(GL, RL)Yjep. ko) such that for each pair (G%, R%), both G% and Rl are
subsets of V.

The automaton R = (2, Tg) accepts an input « if there is a run p of
2 on «a such that for some entry 7 = (C, T, {(p,, pairs_)}cec) in the table
Tr, C = Conn,, T = Finite, and, for each signalling process p_, there is an
entry (G%, R%) in pairs,, such that inf (pp,.) NG # () and inf(ppc)ﬂRj =1.

The problem For a given non-deterministic Biichi asynchronous automa-
ton B2 = (A, Tg) over (3, 0), construct a deterministic Rabin asynchronous
automaton RB = (B, Tr) over (¥, #), such that B2 and R accept the same
set of infinite words over ..

Notice that an asynchronous automaton where P is a singleton {p} is
just a conventional sequential finite state automaton. Further, if P = {p},
our definitions of Biichi and Rabin asynchronous automata reduce to the
standard formulations of these automata in the setting of infinite strings
[Tho].

For sequential Biichi automata, Safra has described an elegant deter-
minization construction [Saf]—see Appendix B for a brief sketch of the con-
struction. To determinize Biichi asynchronous automata, we shall apply
Safra’s construction in a distributed setting. Let B2 = (2, Tp) be a Biichi

asynchronous automaton. Our strategy will be to construct a determinis-
tic Rabin automaton RSB, = (8B,,Tr,) corresponding to each entry 7 in
the table Tp. The automaton R, accepts an input « provided there is a
run p of B2l which satisfies 7. We can then combine the individual automata
{RB;}+e7, into a deterministic Rabin automaton RSB which accepts exactly
the same infinite strings as B.

To construct the automaton R, corresponding to the table entry 7 =
(C,T,{(p.,Gc)}cec), we have to check that for each signalling process p.,
ppe N Ge # 0. To do this, we run Safra’s construction for each signalling
process p,., using the subset construction for asynchronous automata [KMS]
in place of the classical subset construction for sequential automata.

The catch is that each signalling process p. may meet its recurring set G¢
infinitely often along a different run. So, we have to further ensure that the
accepting runs detected by the independent copies of Safra’s construction
at each signalling process are mutually consistent. This will involve some
analysis of the way information is passed between the components before
they branch out as independent groups.

3 Local and global views

We represent words over a distributed alphabet as labelled partial orders.
The notions we use are essentially those of trace theory [Maz]. Appendix C
has a few examples illustrating the ideas introduced in the next couple of
sections.

Events With a : N — 3, we associate a set of events &,. Each event
(7, (7)) consists of a letter (i) together with the time ¢ of its occurrence.
In addition, we define an initial event denoted 0. The initial event marks
the beginning when all processes synchronize and agree on an initial global
state. Usually, we will write & for €,. If e = (i,a) is an event, then we may
use e instead of @ in abbreviations such as V,, which stands for V,, i.e., Vjq),
or —., which is just —,. For p € P and e = (i,a), we write p € e to denote
that p € 6(a) when e # 0; for e = 0, we define p € e to hold for all p € P. If
p € e, then we say that e is a p-event.

Ordering relations on &€ The word a naturally imposes a total order <
on events: e < f if e happens at time ¢ and f happens at time j with ¢ < 7.

Each process p imposes a total order <, on the events in which is partic-
ipates. Thus e <, f if p participates in both e and f and e < f. If e is the
p-event that immediately precedes the p-event f, then we write e <, f. Thus
eq, fife <, fand no g with e < g < f is a p-event.

The asynchronous nature of the automaton is reflected more accurately
by the partial order generated by the relations {<j, },ep than by the temporal
order <. We say that e is an immediate predecessor of f and write e < f
if e <, f for some p. Let C be the reflexive and transitive closure of <. If
e C f, then we say e is below f. Note that the initial event 0 is below any
event. The set of events below e is denoted e|. They represent the only
synchronizations that may have affected the state of 2 at e.

Ideals An ideal I is any set of events closed with respect to C. Ideals
represent possible partial computations of the system. We assume that every
ideal I we consider is non-empty—i.e., 0 always belongs to I. Let a,, denote
the prefix of a of length m. Then the events {(i,a(i)) | i < m} U {0} form
an ideal. Conversely, every ideal gives rise to a subword of a—if [is the
finite ideal {0, (i1, a1), (i2,a2), ..., (im,am)}, then a[l] : [1..m] — ¥ is the
word a(ir)a(iz) - a(im) = @16z - - - an. Similarly, we can associate infinite
ideals in € with infinite subsequences of a. Even when [is finite, a[I] is not,
in general, a prefix of a because of the asynchronous manner in which « is
processed. Clearly the entire set € is an ideal, as is the set e| for any event
ecc.

P-views Let I be an ideal. The p-view of I, 0,(I), is the set {e € I | 3f €
I.pe fand e C f}. So, 9,(I) is the set of all events in I which p can “see”.
If the number of p-events in [is finite—for instance, if I itself is finite—it is
easy to see that 0,(/) = maz,(I)], where maz,(I) is the maximum p-event
in I with respect to C.

For P C P, the P-view of I, denoted dp(I), is U,ep Op({). Notice that
Op(I) is always an ideal. In particular, we have dp(1) = I.

4 Local runs and histories

For the rest of this section, we fix a (non-determinstic) asynchronous au-
tomaton A = ({V,}pep, {—a}tacs, Vo).

Neighbourhoods The neighbourhood of an event e, nbd(e), consists of e
together with its immediate predecessors; i.e., nbd(e) = {e} U{f | f<e}.
Notice that if e € dp(I) for some P C P, then nbd(e) C dp(I) as well.

Local runs A local run on an ideal I assigns a joint state to each event
in [in such a way that all neighbourhoods are consistently labelled. More
precisely, a local run on [is a function r that assigns to each e € [an e-
state—i.e., a state in V,—such that 7(0) € Vy and for all e # 0, r is consistent
with —. in nbd(e) in the following sense: suppose that ¢/ is the e-state whose
p-component, for each p € e, is the same as the p-component of r(f,), where
fp is the immediate p-predecessor of e. In other words, for each p € e,
Uy, = 1(fp)p, where f, <, e. Then r is such that ¢ —. r(e). Given a local run
7, there is a natural “last” global state ¢’ defined by i, = r(maz,(I)) for all
p. We say that ¢ is a state of 2 on I. Similarly, a P-state of 20 on [is vUp,
where ¥ is a state of 2 on [.

Let R(I) denote the set of all local runs on I. The following is easy to
verify.

Proposition 1 Let o : N — X and I C &, an ideal. Then, there is a 1-1
correspondence between R(I) and the set of global runs of A on «[I].

Histories A history on an ideal [is a partial function h that assigns joint
states to some events in I. Thus dom(h) C I and when h(e) is defined it
denotes a tuple in V.. A history is reachable if there is some local run r on
I such that h(e) = r(e) for e in dom(h). A set of histories H is consistent if
each pair of histories h and A’ in the set agree on all common events; i.e., for
each h,h' € H, for each e in dom(h) N dom(h'), h(e) = h(€).

History Products Let Z = {[;,5,...,I,} be a set of ideals with J =
Ujep.m Ij- Let {h1,ha,..., h,} be a consistent set of histories such that h;

is a history over I; for each j € [1..n]. We define the product h = @,e1._n I
as follows:

dom(h) = {ee€ J| forall j €[l..n],if e € I; then e € dom(h;)}

h(e) = hg(e),where k is such that e € dom(hy) (the choice of k
does not matter since {h;} cp1.n is consistent).

In other words, h is a history over J which inherits its values from the set
{h;}ien.n. The value h(e) is defined whenever h;(e) is defined for all j such
that e € I;. This means that if e is in I; N I}, for some pair {/;, I;} C 7 and
e € dom(h;) but e ¢ dom(hy), then e ¢ dom(h).

We can extend the notion of product to sets of histories spanning a set
of ideals. Let Z = {Iy,I5,...,I,} be a set of ideals as before, with J =
Ujepn Ij- Let Hz = {Hy, Ha, ..., H,} where Hj is a set of histories over
I; for each j € [1..n]. A choice from Hz is a set {h;};ecn.n) which picks out
a history h; € H; for each j € [1l..n]. The choice is consistent if the set
{hj}jen.n) is. We can then define

QR Hz={ & hj|{hj}jen.n is a consistent choice from Hz}.
j€El.n]

So, @ Hz contains all histories on J that may be pieced together from mu-
tually consistent histories in the collection Hz.

Products of histories play a crucial role in the subset construction for
asynchronous automata [KMS]. When determinizing an asynchronous au-
tomaton, it is not sufficient for each process to maintain just the subset of
states it can be in after reading a part of the input. Suppose X, and X, are
the sets of possible states of p and g on ideal I. The set of possible joint
{p, q}-states on I is not, in general, the naive product X, x X,. To determine
which states from X, x X, are valid {p, ¢}-states on I, p and ¢ have to record
additional information about the runs leading to each state in the current
subsets X, and X,. Since the amount of information that a process can store
is bounded, it can at best record histories defined over a finite subset of the
events it has seen.

In the subset construction of [KMS], after an ideal I, each process p
maintains the set H, of all reachable histories over a specific bounded subset
of 0,(I). This subset includes maz,(I), so H, has, in particular, information
about all the possible states that p can be in on I. Suppose a subset P C P

10

synchronizes after reading a part of the input. In terms of the notation
above, we have Z = {0,(I)}pep, J = Op(I) and Hz = {Hp,}pep. The goal
is to ensure that @ Hz generates all possible consistent “joint” histories of
P over an appropriate subset of dp(I). This will allow the processes in P
to jointly compute all the possible moves they can make on reading the new
letter from the input.

The key step is to characterize when the product of a set of reachable
histories {h;};eq1.n over Z = {Ii,I5,...,I,} remains a reachable history
over the joint ideal J = Uj¢1.., I;- For this, we need the notion of a frontier.

Frontiers Let I and J be ideals and p a process. We say that event e
of I is an p-sentry for I relative to J if e is also in J and its p-successor
is in J but not in I. Thus the process p “leaves” I at e. Let border(l,J)
be the set of all such sentries. Note that there is at most one p-sentry for
each p, so there are at most N events in border(I,.J)—recall that N =
|P|. In general, border(I,.J) # border(J,I). We are normally interested in
the two sets together, which we denote frontier(I,J); i.e., frontier(I,J) =
border(I,J) U border(J, I). 1t is clear that frontier(I,J) = frontier(J,I) and
frontier(I,I) = (. We then have the following crucial result which is proved
in [KMS].

Lemma 2 Let T = {I,,1s,...,I,} be a set of ideals and {h;};cp1.n) a con-
sistent set of histories such that for each j € [1..n]:

(1) h; is a reachable history over I;; and
(ii) dom(h;) includes Ugepr.) frontier(I, Ir).
Then h = @®jcp.n hy s a reachable history over J = Ujep n) ;-

So, whenever the reachable histories {h;};c.n span all the frontiers be-
tween the ideals in Z = {Iy, I5, ..., I,}, their product is also reachable.

Recall that each process p maintains H,, the set of all reachable histories
over a specific subset of d,(I). Suppose that this specific subset of 9,(/)
includes frontier,(I), where

frontier (1) = | J frontier(d,(I), 04(1)).

qeEP

11

Then, if Z = {0,(I)},ep and Hz = {H, }pep, the previous lemma guarantees
that every history in ® 3z is reachable in dp(1).

The problem now is for a process p to compute the bounded set of events
frontier (I). This can be done using slightly larger, but still bounded, sets
of events called primary and secondary information, which between them
subsume the frontiers.

5 Primary and secondary information

Primary information Let I be a finite ideal. Recall that maz,(I) denotes
the C-maximum p-event in I. The primary information of I, primary(I), is
the set of events {maz,(I)}yep. We can define primary(l) analogously for
infinite ideals as well, where we include the events maz,(I) for only those
processes p such that there are only finitely many p-events in I.

Secondary and tertiary information Let I be a finite ideal. The sec-
ondary information in I, secondary(I), is the set of events {J,cp primary(d,(1)).
The tertiary information in I, tertiary(l), is the set of events

Up,qe primary(9,(9,(1))).

The primary information of I represents the latest information avail-
able in I about each process in the system. Similarly, the secondary in-
formation primary(0,(I)) is the latest information that process p has in
I about the other processes in the system, while the tertiary information
primary(0,(0,(1))) is the latest information that p has about the primary
information of ¢ in I.

It is clear that every event in primary(I) also belongs to secondary(I),
since maz,(0,(I)) = maz,(I) for all p € P. Similarly, every event in
secondary(I) belongs to tertiary(Il). (Actually, primary(l), secondary(l)
and tertiary(I) are indexed sets of events—an event e € [may be both
maz,(I) and maz,(I) for different processes p and ¢ and must hence be rep-
resented twice in primary(I), say as the pairs (e, p) and (e, q). However, we
shall normally ignore this aspect and just treat all these indexed collections
as sets of events.)

Let I and J be ideals. If I and J satisfy a simple condition, the events
in frontier(I, J) can be characterized in terms of the primary and secondary

12

information of I and J, as described in the following lemma. (A proof of the
lemma can be found in [KMS].)

Lemma 3 Let I and J be ideals such that I = 0p(K) and J = 0g(K), where
K is an ideal and P,Q) C P are sets of processes. Let e be a p-sentry for I with
respect to J. Then e = max,(I) and, for some process q, e = max,(0y(J)).
Thus, e € primary(I) N secondary(J).

Let I be an ideal. From the previous lemma, it is clear that for a pro-
cess P to maintain reachable histories over frontier, (1), it is sufficient for p
to maintain reachable histories over secondary(9,(I)). Processes can unam-
biguously keep track of their primary and secondary information by using
time-stamps.

Time-stamps and the subset construction

Let I be a finite ideal. Then, there are at most N? distinct events in
tertiary(l). We can thus use a finite set L of labels to time-stamp each
event in this set. We can denote the assignment of time-stamps to the events
in tertiary(l) as a function A : tertiary(l) — L. For p € P, let A\, denote
the restriction of A to 0,(I). It turns out that the processes in P can lo-
cally maintain and update the functions A, so that, overall, the events in
tertiary(I) are assigned consistent time-stamps.

Theorem 4 (Time-stamping [MS]) For any distributed alphabet (3,0),
we can fix a finite set of labels L and construct a deterministic asynchronous
automaton A over (X,0) in which, on any finite ideal I, each process p
maintains X, : secondary(0,(1)) — L, where A, is the restriction to 0,(I)
of a consistent labelling X : tertiary(l) — L. Process p maintains A, as a
function from P x P to L. The value A\,(q,r) is the label assigned to the event
maz,(maz,(0,(1))).

The automaton 2y allows each process to maintain reachable histories
over the set secondary(d,(I))—each history h is maintained as a partial
function assigning joint states to labels in £ such that whenever A(e) = ¢
for some event e € secondary(d,(I)), h(€) is defined and yields an e-state. In
conjunction with Lemmas 2 and 3, this yields the following result.

13

Theorem 5 (Subset construction [KMS]) Let 2 be a non-deterministic
asynchronous automaton over (X,0). Then, we can construct a deterministic
asynchronous automaton Ag over (X,0) such that for any finite ideal I, the
unique global state ¥ reached by As on I has the following properties:

(i) For each process p, v, contains H,, the set of all reachable histories
over secondary(0,(I)).

(ii) For any subset P of P, we can compute the set of all possible P-states
of A on I from the information in the P-state Up. In particular, from
U we can recover the set of possible global states of 2 on 1.

6 Determinizing Biichi asynchronous
automata

We now have enough machinery at hand to apply Safra’s construction in
a distributed setting. Recall that we are initially given a non-deterministic
Biichi asynchronous automaton B2l = (2,Tg). Our goal is to construct a
deterministic Rabin asynchronous automaton R®8 = (9B, Txr) which accepts
the same set of infinite strings that B2l does.

As we remarked earlier, our strategy is to construct a separate determin-
istic Rabin automaton RB, = (8B,,Tg_.) for each entry 7 in the Biichi table
Tp such that R, accepts an input « iff there is a run p of B2l on « which
satisfies 7. We shall then combine these individual automata {R®B,},c7,
into a single automaton R% which accepts the same inputs as B2l.

Let 7 = (C, T, {(p., Gc)}cec) be an entry from T5. We first describe how
to construct the corresponding Rabin automaton R9,. For simplicity, we
assume that 7' = (—i.e., a run p of B on an input « can satisfy 7 only if
Finite, = (). In other words, every process moves infinitely often as 2 reads
a. Later, we shall see how to eliminate this “progress” assumption.

The automaton RSB, has to check that there is a run p of 2% on a such
that along p, each signalling process p, visits some recurring state from G¢
infinitely often. Each process p. can detect whether there is some local run
r. of 2 on o which meets G¢ infinitely often by running Safra’s construction
locally. However, we have to check that the individual runs {r_}cec are
mutually consistent.

14

Let Zo, = {Ic}ceconn, be the set of ideals such that Ic = 0x (&) for each
C € Conn,. (Recall that each set C' is a subset of P, so the C-view of &
is well-defined.) If there is a run of 2l satisfying 7, it must be the case that
C = Conng, so we can alternatively regard Z,, as the collection {0¢(€)}coec.

Let 179" denote the set of events which occur in more than one ideal in
the collection Z,—i.e., [?" = {e € £ | 3C,C" € C. C # C" and e € [cNIc}.
Since C = Conn,, it must be the case that 7" is finite—“above” I the
ideals in Z,, are pairwise disjoint. Moreover, the union UZ, is the entire set
€. So, if we can ensure that the local runs {r.}cec agree on the events in
7ot they can be “pasted” together to form a global run p of 2 satisfying 7.

Actually, it is not necessary that the local runs {r . }cec agree on the entire
set 17" in order to synthesize a global run p satisfying 7. It is sufficient for
these local runs to agree along the frontiers of the ideals in Z,.

Lemma 6 Leta : N — X be an infinite word. For Io € I, let frontier(Ic,Zy)
denote the set of events spanning the frontiers of I with respect to all the
ideals in L, —i.e., frontier(Ic,Zy) = Ucree frontier(Io, Ier).

Let R = {r_}cec be a set of local runs of A on « such that:

(i) For C €C, r. is a local run over Ic.

(ii) For each pair C,C" € C, the local runsr, andr _, agree on frontier(Ic, Icr).

c/

Then, there is a local run r of A over & which agrees with each runr, € R for
all events e € Io “above” frontier(Ic,Z,). In other words, for each C € C,
for each e € I, if there exists [€ frontier(Ic,Z,) such that f C e, then

r(e) =r.(e).

Proof For C € C, let h¢ be the history generated by restricting ., to the
set {e € Io | 3f € frontier(Ic,Z,). f C e}. It is easy to check that the
histories in {h¢}oec satisfy the assumptions of Lemma 2. So h = Q¢ ho
is a reachable history over UZ, = &. Let r be the local run extending h to
all of €. O

So, if the local runs {r_ }cec detected by the copies of Safra’s construction
agree along the frontiers in Z,,, we can synthesize a local run r over & which
agrees with each local run 7, outside I2°. It is clear that the global run p
of 2l on a which corresponds to r does in fact satisfy 7. Of course, to check

15

the conditions of the previous lemma, we have to verify that, in the limit, the
local runs detected by each signalling process agree on the frontier events.
In principle, this involves an infinite amount of computation. However, since
there is only a finite amount of communication across the ideals in Z,, the
frontier events of interest get “frozen” at some finite stage.

Lemma 7 Let o : N — X be an infinite word. Let J be an ideal such that
[omt C J C €. Then, for each pair {C,C"} in Conn,,

frontier(0c(J), Dcr(J)) = frontier(0c(€), 0 (€)).

Proof Observe that for every J such that 1797 C J, and for every pair
{C,C"} in Conng, Oc(J) NI (J) = 0c(€) N Ier (€). The result then follows.
O

Let « be an infinite word and C,C’” be components in Conn,. From
Lemma 3, we know that the events in frontier(0c(€),0c(€)) are contained
in secondary(0c(€)) and secondary(de(€)).

Let p. and p_, be processes in C' and C’ respectively. From the defini-
tion of Conn,, it follows that dc(€) = 0, _(€) and Jcr (€) = apC,(E). So,
frontier(0c(€), 0cr(€)) is, in fact, contained in the secondary information of
both 8, (€) and 9, _, (€).

Let e € secondary(dy,(€)). From the definition of secondary informa-
tion, e = maz,(9y(0,,(€))) for some pair of processes ¢ and 7. In other
words, there are only finitely many r-events in 9y(9,_(€)). There are two
possibilities:

e The ideal 0,(0p,, (€)) is itself finite, in which case ¢ € (P — C).

e Theideal 9,(9,,,(€)) is infinite, but the number of r-events in 9,(9,_,(€))
is finite. This means that ¢ € C but r € (P — C).

This observation prompts the following definition:

Stable information Let o : N — X be an infinite word and let p, € C
for some connected component C' € Conn,. For any ideal I, the stable
information of p. in I, stable-info,_ (1) is the subset of secondary(9,, (1))
given by

16

{maz,(0,(0,, (1)) | ¢ & C,r € Py U{maz,(94(0p, (1)) | ¢ € C,r ¢ C}.

The events in stable-info,(I) are frozen once I grows beyond the finite initial
portion 79" in €. In other words, for any ideal J D [7°"* stable-info,, (J) =
stable—infopc(E). By our earlier observations, this means that for any J D

1y, stable-info, (J) subsumes the events lying in the sets
UC’G Conna frontier(@c(g), 80’ (8))

Let us get back to our distributed version of Safra’s construction corre-
sponding to an entry 7 = (C, T, {(p.,Gc)}cec) in Tp. Suppose that each
signalling process p. ensures that it has crossed the finite portion Z°™ be-
fore starting Safra’s construction. Then, along with each successful run r,
on 0c(€&) that it detects, it can record the value of r_ on stable-info,, (&). If
the successful runs {r.}cec agree on the stable information across all the sig-
nalling processes, we know that the runs satisfy the assumption of Lemma 6,
which means that there is some global run of 2 on « which satisfies 7.

The catch is that the signalling processes have no way of knowing when
the finite portion [7°™ is over. However, since %, includes the subset au-
tomaton for 2, B, also incorporates the time-stamping automaton 20y which
maintains consistent labels across tertiary(I) at the end of any ideal I. If
the time-stamps assigned by r to the events in stable-info,, (I) change, the
process p, knows that I2°™ is not yet over.

So, we adopt the following strategy. Initially, each signalling process p,
starts off Safra’s construction. Whenever it detects that stable-info, (I) has
changed, it “kills” the old copy of Safra’s construction and restarts a new
copy. In fact, the process starts a separate copy of Safra’s construction for
each distinct history over stable—infopc(l). So, in the limit, p_. can signal
whether or not there is an accepting local run 7. for each history over its
stable information.

The structure of R%,

Let 7 = (C,T,{(p.,Gc)}cec). The local state of each signalling process p,
in 9B, consists of the following information:

(i) The local state of the subset automaton for 2. This includes the set
H, . of all reachable histories over secondary(9, (1)) at the end of any
input ideal 1.

17

This component incorporates the local state of the time-stamping au-
tomaton 2Ar, which stores the labels of events in secondary(9, (1)) as
a function A, : P x P — L. The time-stamps assigned to the events
in stable-info, (I) are the values Ay(q,r) where either ¢ ¢ C'or (¢ € C

and r ¢).

(i) Let Hg be the set of reachable histories over stable-info, (I). For each
h € Hg, p., maintains an independent labelled coloured tree as dictated
by Safra’s construction.

The non-signalling processes need not run Safra’s construction; it is sufficient
for them to maintain the first component of the state, corresponding to the
subset automaton.

On reading an input letter a, each process p in 6(a) updates its local
states as follows:

(i) First p updates the local state components corresponding to the time-
stamping automaton and the subset automaton.

(ii) If pisasignalling process and if the time-stamps assigned to stable-info, ()
have not changed, then p updates the trees in each copy of Safra’s con-
struction using the new information provided by the subset automaton.

On the other hand, if the time-stamp corresponding to any event in
stable-info,(I) changes, p erases all the existing copies of Safra’s con-
struction and begins a fresh copy for each history in the new set Hg.

The single entry 7 in T5 generates a table Tz in R%, with multiple en-
tries. Each possible history h over Ucec stable-info,, (&) generates a distinct
entry 7, of the form (C,T,{(p., pairs.)}cec) in Tg,. In 7, the entries C,
T and the set of signalling processes {p.}cec are as in the original entry
T € TB.

Let |Vpc| = M¢ be the number of possible local states for p_, in 2. Then,
there are 2M¢ possible pairs (G%, R%) in the list pairs o> corresponding to
the labels {{1, (s, ..., lapnr. } used by Safra’s construction to label the nodes
in the tree associated with the current subset of possible p_ states.

The set jS consists of all possible states of pc in which the set of histories
over stable-info, (€) includes the projection h,, of h onto stable-info, ()

18

and, moreover, in the labelled tree from Safra’s construction corresponding
to hy_, the node labelled ¢; is coloured green.

The set ch consists of all possible states of pc in which the set of histories
over stable-info, (€) includes the projection hy of h onto stable-info, ()
and, moreover, in the labelled tree from Safra’s construction corresponding
to hy_, there is no node labelled ¢;.

It is straightforward though tedious to verify that R, accepts an input
a : N — X iff there is a run of B2 on « satisfying 7.

Removing the progress assumption So far we have assumed that T = ()
in the Biichi table entry 7. Suppose T # () and there is a run of 2 on a which
satisfies 7. Then each process p € T' moves only finitely often while 2(reads
a. So, we just run the subset construction for p and verify that it terminates
in one of the states in G,,.

In other words, for each entry 7, of R®B,, we have a single pair (G}, R,)
in pairsg,,, where R} = () and G consists of all possible states of the subset
automaton such that there is a history A’ in H, which agrees with h on
stable-info,(€) where the terminal state assigned to p by h' belongs to G.

Combining the individual automata {R%,},c5, We can combine the
individual automata {R®, } e, using a standard product construction which
preserves determinacy. The construction is essentially the same as in the se-
quential case and we omit the details.

A complementation construction We can complement a Rabin asyn-
chronous automaton by viewing the acceptance table as a Streett condition,
as in sequential automata [Tho|. This Streett condition can then be checked
efficiently by a non-deterministic Biichi asynchronous automaton using the
technique proposed by Vardi (described in [Saf]). So, from R we can con-
struct an Biichi automaton B2 such that B accepts an infinite string « iff
RS does not accept a. Since RSB accepts the same inputs that B2 does,
B2 is a complement automaton for B(. See Appendix D for details of how
to construct B2

Complexity analysis In the input automaton B2l = (,Tg), let N be
the number of processes in 2, M the size of the largest set in the collection

19

{V,}per and K the number of entries in Tp.

Then, in the deterministic Rabin automaton R which we construct, the
number of local states of each process p is bounded by QKMO(NB), while in
the complement automaton B2(, the number of local states of each process

p is bounded by 25°M °™ Details of how these bounds are derived can be
found in Appendix E.

In [KMS], it is shown that in the subset automaton for 2, the number of

3
states of each process p is bounded by QMOWT) So, the blow-up involved in
the construction of RSB and B2 is essentially the same as that of the subset
construction.

Consolidating the results of this section, we have the main result of this
paper.

Theorem 8 Let BA = (A, Tp) be a non-deterministic Biichi asynchronous
automaton over (X,0). Then, we can construct a deterministic Rabin asyn-
chronous automaton RB = (B,Tg) over (X,0) such that R®B accepts the
same set of infinite strings that B does. From R, we can construct a com-
plementary non-deterministic Biichi automaton B2 over (3, 0) which accepts
an infinite string « iff the original automaton BA does not accept a.

The number of local states of each process in RS and B is essentially
exponential in the number of global states of the original automaton B2.

References

[CMZ] R. Cori, Y. Metivier, W. Zielonka: Asynchronous mappings

and asynchronous cellular automata, Inf. and Comput., 106 (1993)
159-202.

[DM] V. Diekert, A. Muscholl: Deterministic asynchronous automata
for infinite traces, Acta Inf., 31 (1994) 379-397.

[EM] W. Ebinger, A. Muscholl: Logical definability on infinite traces,
Proc. ICALP ’93, LNCS 700 (1993) 335-346.

[GP] P. Gastin, A. Petit: Asynchronous cellular automata for infinite
traces, Proc. ICALP "92, LNCS 623 (1992) 583 594.

20

[HJJ]

[Mus]

[Nie]

[Rab]

J.G. Henriksen, J. Jensen, M. Jgrgensen, N. Klarlund,
B. Paige, T. Rauhe, A. Sandholm: Mona: Monadic Second-
order logic in practice, Report RS-95-21, BRICS, Department of
Computer Science, Aarhus University, Aarhus, Denmark (1995).

N. Klarlund: Progress measures for complementation of w-
automata with applications to temporal logic, Proc. 32nd IEEE
FOCS, (1991) 358-367.

N. Klarlund, M. Mukund, M. Sohoni: Determinizing asyn-
chronous automata, Proc. [CALP ’94, LNCS 820 (1994) 130-141.

A. Mazurkiewicz: Basic notions of trace theory, in:
J.W. de Bakker, W.-P. de Roever, G. Rozenberg (eds.), Linear time,
branching time and partial order in logics and models for concurrency,

LNCS 354, (1989) 285-363.

M. Mukund, M. Sohoni: Gossiping, asynchronous automata and
Zielonka’s theorem, Report TCS-94-2, School of Mathematics, SPIC
Science Foundation, Madras (1994). See also “Keeping track of the
latest gossip: Bounded time-stamps suffice”, Proc. FSTETCS 93,
LNCS 761 (1993) 388-399.

A. Muscholl: On the complementation of Biichi asynchronous
cellular automata, Proc. I[CALP ’94, LNCS 820 (1994) 142-153.

P. Niebert: A pu-calculus with local views for systems of sequential
agents, Proc. MFCS 95, to appear.

M.O. Rabin: Decidability of second order theories and automata
on infinite trees, Trans. AMS, 141(1969) 1-37.

S. Safra: On the complexity of w-automata, Proc. 29th IEEE
FOCS, (1988) 319-327.

P.S. Thiagarajan: TrPTL: A trace based extension of linear time
temporal logic, Proc. 9th IEEE LICS, (1994) 438-447.

W. Thomas: Automata on infinite objects, in J. van Leeuwen
(ed.), Handbook of Theoretical Computer Science, Volume B, North-
Holland, Amsterdam (1990) 133-191.

21

[VW] M. Vardi, P. Wolper: An automata theoretic approach to auto-
matic program verification, P. 1st IEEE LICS, (1986) 332-345.

[Ziel] W. Zielonka: Notes on finite asynchronous automata,
R.A.LLR.O.—Inf. Théor. et Appl., 21 (1987) 99-135.

[Zie2] W. Zielonka: Safe executions of recognizable trace languages, in
Logic at Botik, LNCS 363 (1989) 278-289.

A Comparison with Gastin-Petit automata

The original formulation of Biichi asynchronous automata by Gastin and
Petit [GP] differs from the one we use in this paper. In the original definition,
information about Conn, and Finite, is not part of the acceptance condition.
Instead, in the acceptance table, each entry is a tuple of the form {G}}pep. A
run p is accepting if there is some table entry { G, } pe» such that inf (p,) 2 G,
for each process p. It is not difficult to verify that our automata are equivalent
to those of Gastin and Petit.

Notice that the Gastin-Petit acceptance table uses a “covering” condition
on the sets G, rather than the simple recurring set condition we have in our
automata. This covering condition is awkward to work with when trying to
determinize these automata.

Actually, to eliminate the “covering” condition it is sufficient to record
information about Finite, in the acceptance table [Nie]. The extra informa-
tion we record about Conn, allows us to separate the processes in 2 into
independent groups. After a finite prefix of o has been read, there will be
no further synchronizations between processes in different connected compo-
nents of §,. So, in the limit, each subset C' € Conn, moves as a separate
unit, independent of the others.

From Gastin-Petit automata to our automata ...

We can use our automata to simulate Biichi automata with Gastin-Petit
acceptance tables as follows. On reading an input «, the simulating au-
tomaton guesses a partition C of P corresponding to Conn, together with
a set of processes T' corresponding to Finite,. It also guesses a table entry

22

T = {Gp}pep from the Gastin-Petit table. It then generates a runp of the
original automaton on the input « and checks if p satisfies 7.

To do this, we fix a signalling process p., € C' for each component C' € C.
The process p,, has to verify that every other process p’ € C meets every state
in G infinitely often along the run being simulated. This can be achieved
by organizing the processes in C' in a spanning tree rooted at p_, where the
edges in the tree come from the graph G,.

Each process p, corresponding to a leaf in this spanning tree can check
that it meets (), infinitely often using a simple counter. Each time p, cycles
through sz completely, it informs its parent in the tree—if C = Conn,, p,
will synchronize infinitely often with its parent and so will pass on this signal
infinitely often.

Each internal process p, in the tree maintains two counters: one for itself
and one correponding to its children. The first counter checks that p, cycles
through G, infinitely often. The second counter checks that all the children
report success infinitely often. Each time both counters complete a cycle, p,
informs its parent in the tree.

Eventually, all the information propagating up the tree reaches the root,
which is the signalling process p.. So, p. can use a simple recurring Biichi
condition to check that all the processes in C' meet their “covering” Biichi
condition corresponding to the table entry 7.

The blow-up in this simulation corresponds to guessing a partition C,
a set T and a table entry 7. The number of choices of C is bounded by
2V? where N is the number of processes—each choice of C corresponds to
dropping some edges from the complete graph on N vertices, which has N2
edges. The number of choices for T is bounded by 2%, while the choice of 7
depends on K, the number of entries in the original table. Thus, overall the
blow-up is O(K2V).

(Actually, we can do better. The connectivity we begin with does not
correspond, in general, to the complete graph on N vertices. The alphabet
(33,0) restricts the communication pattern in the system. So, the number
of different ways of partitioning the processes in P is actually bounded by

2Bl where E is the number of edges in the “connectivity graph” induced by
(3, 0). The overall blow-up is then O(K2!F).)

23

...and back

The simulation in the other direction is as follows. Let B2 = (2, Tp) be
one of our Biichi asynchronous automata. At the initial state, the simulating
automaton guesses an entry 7 = (C, T, {(p,, G¢)}cec) in T and sees if B
has a run on the input which satisfies 7.

The simulating automaton has to check the following:

e While reading the input, each process in 7" must move only finitely
often, while each process outside 7" must move infinitely often.

e Each component C € C must actually constitute a connected compo-
nent in the limit graph of the input.

e For each component C' € C, the signalling process p, must visit G¢
infinitely often along the run.

The first condition can be checked by tagging the state space of each
process with a two element counter.

For processes in T', one of the counter values denotes that it is “live”
and the other that it is “dead”—in other words, that it will not make any
further moves. There are no transitions enabled from the “dead” part of
the state space. The simulating automaton non-deterministically sends each
terminated process into a dead state when it feels that it has finished its
finite quota of moves over a particular input.

For processes not in 7', the simulating automaton ensures that with each
move, the process switches between the counter values. So, the simulating
automaton can record whether or not a process moves infinitely often in the
original automaton by checking that it visits both copies of the state space
infinitely often. Notice that to check this, the simulating automaton must use
a covering Biichi condition—in general, a simple recurring Biichi condition
will not suffice.

To check the second condition, the simulating automaton keeps track of
when the gossip information of each process changes. Let p belong to a
component C' € C. Then, while reading the input, p’s primary information
about other processes in C' must change infinitely often, while p’s primary
information about processes outside C' becomes frozen at some stage. So, p
non-deterministically guesses when the primary information of all processes

24

outside C'is frozen. After this, if p ever has to update it primary information
for some ¢ outside C, it moves into a reject state.

After making this guess, p uses a counter to cycle through the processes in
C, waiting for its primary information about each process to change. When
it completes each cycle, it goes into a “good” state.

It is easy to verify that C' is a connected component of the limit graph iff
p does not go into its reject state and, in addition, p visits its “good” state
infinitely often.

Finally, each signalling process p. can easily check on the side that it
visits some state from G¢ infinitely often.

The blow-up in the state space is linear in the size of Tg—each entry of
the table generates a copy of the original state space together with at most
two counters, one of size two and one whose size is bounded by N, the number
of processes in the system. However, the number of entries in the new table
could be exponential in the size of Tz since recurring Biichi conditions in the
original automaton have to be encoded in terms of covering Biichi conditions
in the simulating automaton.

B Safra’s construction

Let BA be a non-deterministic sequential Bilichi automaton with n states and
a set G of recurring states. Safra constructs a deterministic sequential Rabin
automaton RA with a table {(G}, R;)} cp.2n) such that RA accepts an input
v iff there is some run of BA passing through G infinitely often.

Safra uses the classical subset construction of Rabin and Scott to record
the possible states that BA can be in after reading any finite prefix of a. The
subset of possible states is maintained as a labelled tree—the elements of the
subset are in 1-1 correspondence with the nodes of the tree and each node
has a distinct label drawn from a set of names of size 2n. In addition, each
node of the tree is coloured either white or green.

After reading a letter from the input, the subset construction updates the
set of possible current states of BA. As a result, the shape of the correspond-
ing tree changes. In the process some nodes are discarded from the tree and
some new nodes are added. However, Safra’s construction ensures that the
labels associated with the old nodes are not reused in the same step for the
new nodes. In other words, if a node is dropped at some stage from the tree,

25

€0 €1 €2 €3 €4 €5 €6 er €s
p [e] o] o] [o] [o]
[l [l
q |e >0 il >0 >0
r |e e o] e o
S |e e °
o b a c b a c d d

Figure 1: An example

its label temporarily disappears from the tree.

These labelled trees are used to keep track of runs in the underlying
computation. The colours white and green are used to signal when a run of
BA visits the recurring states G. Thus, when updating the trees, the colours
of the nodes may also change. When a node is added to the tree, it is assigned
the colour white. During its “lifetime” in the tree, it may periodically change
colour from white to green and back to white again.

Recall that nodes are labelled using a set of names {¢1, (s, ..., {3, } of size
2n. Let us look at the entry (G;, R;) in the table for RA. Condition R; says
that the label ¢; disappears from the tree only finitely often. In other words,
a node with label ¢; is added to the tree at some point and this node is never
deleted during the rest of the run of RA. Condition G; then guarantees that
this node turns green infinitely often.

C Examples

Consider the word a = bacbacd® over the alphabet (X, 6) for P = {p, q,r, s},
where ¥ = {a,b,c,d} and 6(a) = {p,q}, 0(b) = {q,7}, O(c) = {r,s} and
0(d) = {p}. The set of events &, is then {eq, e1, €2, €3, €4, €5, €6, €7, €5, ...} =
{0,(1,0),(2,a), (3,¢), (4,b),(5,a), (6,¢), (7,d), (8,d),...}.

Figure 1 describes (£,,C). The arrows between the events indicate the
relations <, <,, <, and <,. For example, ey <, e; holds, but e <, e; does not
hold.

26

Ideals and views The set of events e;] is {eo, €1, €2, €3, €4, €5, €7} while eg]
is {eq, €1, €2, €3, €4, €6}

In this example, 0,(&) = maz,.(&)]= esl= {eo, €1, ea,€3,€e4,e6}. On the
other hand, 0,(&) = {eo, e1,e2,€3,€4,€5,e7,e5...} = & — {eg}. Notice that
maz,(€) is undefined.

Neighbourhoods The neighbourhood of e5, nbd(es), is {es, €4, e5}.

Let & = ({V,}per, {—a}aes, Vo) be an asynchronous automaton over (X, 0).
Each process has four local states. Thus, V, = {1,,2,,3,,4,}, Vo = {14, 24,
3¢, 44} ete.

Let the local transition relations of 2 be defined as in the table below:

—a b —c —d ‘
{((1p:29), 3p, 30)) | {({Lgs 1), (24, 2r)) | {((2r; L), (4rs45)) | {((3p) (4p))
((1p,3g): (4p:49)) | ((Lgy 1), (3¢:3r)) | ((2r535), (4r,4s)) | ({4p), (3p))}
(Bp:29), (4p149)) | (Bgy4r), (24:20)) | ((2r,4s), (1, 1))
(<4p’ 2q) <3p7 3q)} (<4q= 37‘) <2q7 27‘)} (<3T‘7 15) <37‘7 35)}

Local runs Let I be the ideal {eg, e1, e, €3, €4, €5, €6, €7}. Then, the local
runs corresponding to the only two possible global runs of 2l on I are shown
in Figure 2. The left half of each event is labelled by the first run and the
right half by the second run.

Histories and products For p, let h; and hf? be two histories over 0,(/)
where
h% = {(e3— (4,,4s),e4 — (24,2,), €5 —
hp: {(63'_> <37“738>7€4'_> <2q72r>7€5'_> D
For s, let h! and h? be two histories over d(I) where
h; = {(62 = <3p73Q>7€4 = <2q727“>7€6 = 4T748>)}7 and
h? = {(62 = <4p74Q>7€4 = <2q727“>7€6 = <17“7 18>)}
All four of these histories are reachable. The product & {{h1 h2}, {h! h2}}

P> 'p 57"
generates four possible runs over 0y, (/). However, only two of these runs
are reachable—those generated by h, ® h} and h2 ® h2. The “bad” entry
hf, ® hl implies that (4,,3,,1,,15) is a valid global state of 2 after I, which
is not the case.

4,,4,),e7— (3p))}, and
3p,3q), €7 = (4p)) }.

o~~~

27

€0 €1 €2 €3 €4 €5 €6 er

P ply 3p:4p 4p:3p 3pd,
q 1q§1q 2434 3qi4q 242 4qi3q
r 1’“i1’“ 2Ti3r 4,3, 2Ti2T 1,4,
s 1Si15 45i38 15i45
b a c b a c d

Figure 2: Local runs

D Streett asynchronous automata and com-
plementation

Let RA = (2, Tr) be a Rabin asynchronous automaton. Then, it is easy to
verify that R2l does not accept an input « iff for every run p of 2 on a and
for every entry 7 = (C, T, {(p., pairs,)}cec) in TR, the following holds:

If C = Conn, and T = Finite,
then 3C € C. Vi € [1..kc]. (inf, (p) NGy, # 0) = (inf, (p) N Ry, #0).

This corresponds to a “complemented pairs” condition, first investigated by
Streett in the setting of automata over infinite strings [Tho].

So, we can formally define a Streett asynchronous automaton as a pair
S2 = (A, Tg) where the table Tg has the same structure as a Rabin table—
i.e., each entry 7 in T is of the form (C, T\, {(p,, pairs_.)}cec)-

A run p of A on « satisfies 7 provided it meets the condition described
above. The automaton 2 accepts « if there is a run p on a which satisfies
every table entry in Tg.

(Actually, due to the extra quantification over the partitions in C, this
definition of a Streett asynchronous automaton is perhaps not the natural
one. A more intuitive condition for a run p over « to satisfy a table entry
7= (C,T,{(p., pairs_)}cec) is to stipulate that the following holds:

If C = Conn, and T = Finite,
then VC' € C. Vi € [1..k¢]. (infpc (p)N Gy, # 0) = (infpc (p) N R, # 0).

28

This definition is not complementary to that of Rabin acceptance in our
setting. Since our primary goal is to complement the given Rabin automaton,
we shall stick to our “unnatural” definition of a Streett automaton.)

To complement Biichi asynchronous automata using our determinization
construction, it suffices to be able to simulate a deterministic Streett asyn-
chronous automaton by a Biichi asynchronous automaton. Starting with
a non-deterministic Biichi asynchronous automaton B2 = (2, Tg), deter-
minization produces an equivalent Rabin asynchronous automaton RB =
(B, Tr). Since RB is deterministic, if we interpret Tr as a Streett table Tg,
we get a deterministic Streett automaton SB = (B, Ts) which is comple-
mentary to B. We can then simulate S%B using a non-deterministic Biichi
asynchronous automaton to obtain the complementary automaton B2l which
we set out to construct.

To simulate a deterministic Streett asynchronous automaton S2 by a
non-deterministic Biichi asynchronous automata BB, we proceed as follows:

(i) The simulating automaton should accept an input « if there is no entry
7 = (C,T,{(p., pairs) }cec) for which C = Conn, and T = Finite,.
This can be achieved using an automaton which has just one state for
each process along with one table entry for each pair (C,T") which does
not occur in the table for SA. In all these new table entries, the Biichi
condition for each process is the trivial one.

(i) If the first case does not hold, let X, = {71, 72, ..., 7n} be the set of all
entries in Jg such that each entry 7 € X, is of the form
(C,T,{(pe, pairs) }cec) where C = Conn, and T' = Finite,.

In [Saf], Safra describes an elegant construction due to Vardi for sim-
ulating a (sequential) Streett automaton by a (sequential) Biichi au-
tomaton. For each entry 7, € X, we construct a Biichi asynchronous
automaton B%; in which each signalling process p, runs Vardi’s con-
struction to check if the (unique) run of the original automaton on «

satisfies all the complemented pairs {(G%, ch)}je[l..kc]-

The acceptance table for B%B; has one entry 7, for each C' € C. All
entries in the new table have the same partition C and set of terminated
processes 1" as in 7,. The difference between the entries lies in the ac-
ceptance condition—the recurring set for p,, in the entry 7. checks that
p.. satisfies its complemented pairs condition in the original automaton.

29

The recurring condition in 7, for signalling processes p_, corresponding
to components C’ # C is the trivial one.

It is straightforward to see that B9, accepts an input « provided the
(unique) run p, of S2 on « satisfies 7;. Notice that p, trivially satisfies
all table entries not in X,,. We can check that p, satisfies all the entries
in X, by intersecting the automata {B%B;}icn.m). (We omit the details
of how to intersect two Biichi asynchronous automata.)

Overall, we can partition Tg according to the values of C and T in the
entries. For each pair (C,T'), we can then construct a Biichi asynchronous
automaton as described in step (ii) above. To get a single Biichi automaton
simulating S2, we take the union of all the automata constructed in this
fashion together with the automaton of step (i) which catches all inputs
which do not match any of the table entries.

E Complexity analysis

Determinization In the input automaton B2l = (A, Tg), let N be the
number of processes in A, M the size of the largest set in the collection
{V,}per and K the number of entries in Tp.

We first estimate the number of bits required to describe the state of a
signalling process p., in RB, corresponding to a single entry 7 € Tp. This
state consists of the state of the subset automaton for 2 together with one
copy of the labelled tree used by Safra’s construction for each history in Hg,
the set of histories over stable-info, (I).

The state of the subset automaton for 20 can be written down using
MOW?) bits. Each labelled tree maintained by Safra’s construction requires
O(M log M) bits [Saf]. In [KMS], it is shown that there are at most M)
elements in H,_, the set of all reachable histories over secondary(9,, (1))

Since this is also a bound on |Hg|, p. maintains at most MOW?) copies of

Safra’s construction and, overall, the state of p, can be written down using
MOWN?) - O(M log M) = MO bits. Thus, the number of local states of p,.

in RB, is 21 O(NS), which is essentially the same as in the subset construction
of [KMS].

When combining the individual automata in {R®B; },;c7,, we take the K-
fold product of the state space of each individual process p. So, overall, the

30

. o(N3
number of local states of a process is 2KM°™

The number of entries in the Rabin table Tz of the final deterministic
automaton RB = (B,Tg) is KMOWN: each individual automaton RB, =
(B, Tr,) has as many entries in Tg, as there are possible histories over the
events Ucec stable-info, (I). The number of such histories is bounded by

MOWY, Taking the product of the automata {RB, },c7, results in the tables
{TRr. }re7, being concatenated together. Since K copies are concatenated,
the final table has at most K MO entries.

The product construction does not affect the lengths of the lists pairs,,.
So, for each entry 7 = (C, T, {(p, pairs,.)}cec) in Tr, the number of pairs
in the list pairs_, for each C' € C is bounded by 2M.

Complementation The complexity of complementation is that of deter-
minzation together with the cost of simulating a Streett automaton by a
Biichi automaton. Let us analyze the second cost independently.

In the input Streett automaton SA = (2, Ts), let N’ be the number of
processes in A, M’ the size of the largest set in the collection {V,},ep, K’
the number of entries in Tg and L’ the length of the longest list of pairs
{GL, R} jeli.k,) across all signalling processes and all table entries.

Vardi’s procedure for simulating an n-state Streett automaton with A
pairs in the acceptance condition generates a Biichi automaton with n2"
states. So, in step (ii) of the simulation procedure for Streett automata,
each signalling process in the automaton B9, we construct will have at most
M'2" local states. The intersection of the automata {B;}.cx, will involve
at most K’ automata at a time, since the number of table entries overall is
bounded by K’. Intersecting K’ Biichi asynchronous automata essentially
generates the K’ fold product of each process’s local state space together
with a modulo K’ counter. Thus, each process in the resulting automaton
will effectively have (M'2F)K" = M'5'2K'L" Jocal states.

When we take the union of all the automata constructed according to
step (ii), we will make upto K’ disjoint copies of each process’s local state
space. We then merge this with the trivial automaton constructed in step (i),
which has only one local state per process. So, overall the Biichi asynchronous
automaton simulating S2 will have not more than K’ M 2K'L" Jocal states
for each process.

If we plug in values for K’, M’ and L’ after determinization, we see that

31

3
K' = KMOWNY M = 2KMONY and I/ = 2M, where K, M and N are
the parameters corresponding to the original non-deterministic Biichi asyn-
g g y
chronous automaton. So, number of local states of each process in the com-
plementary Biichi asynchronous automaton B is bounded by K MW 0.
3 4 4 4
(KM YRMONT gKMOND2M - which js 2K M,

32

Recent Publications in the BRICS Report Series

RS-95-58 Nils Klarlund, Madhavan Mukund, and Milind Sohoni.
Determinizing Asynchronous Automata on Infinite Inputs
November 1995. 32 pp.

RS-95-57 Jaap van OostenTopological Aspects of TracesNovem-
ber 1995. 16 pp.

RS-95-56 Luca Aceto, Wan J. Fokkink, Rob J. van Glabbeek, and
Anna Ingolfsdotti. Axiomatizing Prefix Iteration with
Silent Steps November 1995. 25 pp.

RS-95-55 Mogens Nielsen and Kim Suneserlrace Equivalence -
Partially Decidable! November 1995.

RS-95-54 Nils Klarlund, Mogens Nielsen, and Kim SunesenUs-
ing Monadic Second-Order Logic with Finite Domains for
Specification and Verification November 1995.

RS-95-53 Nils Klarlund, Mogens Nielsen, and Kim SunesenAu-
tomated Logical Verification based on Trace Abstractions
November 1995,

RS-95-52 Antorin Kucera. Deciding Regularity in Process Algebras
October 1995. 42 pp.

RS-95-51 Rowan DaviesA Temporal-Logic Approach to Binding-
Time Analysis October 1995. 11 pp.

RS-95-50 Dany Breslauer. On Competitive On-Line Paging with
Lookahead September 1995. 12 pp.

RS-95-49 Mayer Goldberg. Solving Equations in theX-Calculus
using Syntactic EncapsulationSeptember 1995. 13 pp.

RS-95-48 Devdatt P. Dubhashi.Simple Proofs of Occupancy Tail
Bounds September 1995. 7 pp. To appear ifrrRandom
Structures and Algorithms

RS-95-47 Dany BreslauerThe Suffix Tree of a Tree and Minimizing
Sequential TransducersSeptember 1995. 15 pp.

