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Abstract

In [14], we proposed a framework for the automatic verification of reac-
tive systems. Our main tool is a decision procedure, Mona, for Monadic
Second-order Logic (M2L) on finite strings. Mona translates a formula in
M2L into a finite-state automaton. We show in [14] how traces, i.e. finite
executions, and their abstractions can be described behaviorally. These
state-less descriptions can be formulated in terms of customized temporal
logic operators or idioms.

In the present paper, we give a self-contained, introductory account of
our method applied to the RPC-memory specification problem of the 1994
Dagstuhl Seminar on Specification and Refinement of Reactive Systems.
The purely behavioral descriptions that we formulate from the informal
specifications are formulas that may span 10 pages or more.

Such descriptions are a couple of magnitudes larger than usual tem-
poral logic formulas found in the literature on verification. To securely
write these formulas, we introduce Fido [16] as a reactive system descrip-
tion language. Fido is designed as a high-level symbolic language for
expressing regular properties about recursive data structures.

All of our descriptions have been verified automatically by Mona from
M2L formulas generated by Fido.

Our work shows that complex behaviors of reactive systems can be
formulated and reasoned about without explicit state-based programming.
With Fido, we can state temporal properties succinctly while enjoying
automated analysis and verification.

∗Previously announced under the title: Using Monadic Second-Order Logic with Finite
Domains for Specification and Verification.
†Author’s current address: AT&T Research, Room 2C-410, 600 Mountain Ave., Murray

Hill, NJ 07974; E-mail: klarlund@research.att.com
‡Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
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1 Introduction

In reactive systems, computations are regarded as sequences of events or states.
Thus programming and specification of such systems focus on capturing the
sequences that are allowed to occur. There are essentially two different ways of
defining such sets of sequences.

In the state approach, the state space is defined by declarations of program
variables, and the state changes are defined by the program code.

In the behavioral approach, the allowed sequences are those that satisfy a set
of temporal constraints. Each constraint imposes restrictions on the order or
on the values of events.

The state approach is used almost exclusively in practice. State based de-
scriptions can be effectively compiled into machine code. The state concept is
intuitive, and it is the universally accepted programming paradigm in industry.

The behavioral approach offers formal means of expressing temporal or
behavioral patterns that are part of our understanding of a reactive system.
As such, descriptions in this approach are orthogonal to the state approach—
although the two essentially can express the same class of phenomena.

In this paper, we pursue the purely behavioral approach to solve the RPC-
memory specification problem [3] posed by Manfred Broy and Leslie Lamport
in connection with the Dagstuhl Seminar on Specification and Refinement of
Reactive Systems. The main part of the problem is to verify that a distributed
system P implements a distributed system S, that is, that every behavior of P is
a behavior of S. Both systems comprise a number of processes whose behaviors
are described by numerous informally stated temporal requirements like “Each
successful Read(l) operation performs a single atomic read to location l at some
time between the call and return.”

The behavioral approach that we follow is the one we formulated in [14]. This
approach is based on expressing behaviors and their abstractions in a decidable
logic. In the present paper, we give an introductory and self-contained account
of the method as applied to the Dagstuhl problem.

We hope to achieve two goals with this paper:

• to show that the behavioral approach can be used for verifying compli-
cated systems—whose descriptions span many pages of dense, but read-
able, logic—using decision procedures that require little human interven-
tion; and

• to introduce the Fido language as an attractive means of expressing finite-
state behavior of reactive systems. (Fido is a programming language de-
signed to express regular properties about recursive data structures [16].)

An overview of our approach

Our approach is based on the framework for automatic verification of distributed
systems that we described in [14]. There, we show how traces, ie. finite compu-
tations, can be characterized behaviorally. We use Monadic Second-order Logic
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(M2L) on finite strings as the formal means of expressing constraints. This
decidable logic expresses regular sets of finite strings, that is, sets accepted by
finite-state machines. Thus, when the number of processes and other parameters
of the verification problem is fixed, the set LP , of traces of P can be expressed
by finite-state machines synthesized from M2L descriptions of temporal con-
straints. Similarly, a description of the set LS of traces of the specification can
be synthesized.

The verifier, who is trying to establish that P implements S, cannot just
directly compare LP and LS . In fact, these sets are usually incomparable, since
they involve events of different systems. As is the custom, we call the events of
interest the observable events. These events are common to both systems. The
observable behaviors Obs(LP ) of LP are the traces of LP with all non-observable
events projected away. That P implements S means that Obs(LP ) ⊆ Obs(LS).

One goal of the automata-theoretic approach to verification is to estab-
lish Obs(LP ) ⊆ Obs(LS) by computing the product of the automata describ-
ing Obs(LP ) and Obs(LS). Specifically, we let AP be an automaton accept-
ing Obs(LP ) and we let AS be a automaton representing the complement of
Obs(LS). Then Obs(LP ) ⊆ Obs(LS) holds if and only if the product of AP and
AS is empty. Unfortunately, the projection of traces may entail a significant
blow-up in the size of AS as a function of the size of the automaton represent-
ing LS . The reason is that the automaton AS usually can be calculated only
through a subset construction.

The use of state abstraction mappings or homomorphisms may reduce such
state space blow-ups. But the disadvantage to state mappings is that they tend
to be specified at a very detailed level: each global state of P is mapped to a
global state of S.

In [14], we formulate well-known verification concepts, like abstractions and
decomposition principles for processes in the M2L framework. The resulting
trace based approach offers some advantages to conventional state based meth-
ods.

For example, we show how trace abstractions, which relate a trace of P to a
corresponding trace of S, can be formulated loosely in a way that reflects only
the intuition that the verifier has about the relation between P and S—and
that does not require a detailed, technical understanding of how every state of
P relates to a state of S. A main point of [14] is that even such loose trace
abstractions may (in theory at least) reduce the non-determinism arising in the
calculation of AS .

The framework of [14] is tied closely to M2L: traces, trace abstractions, the
property of implementation, and decomposition principles for processes are all
expressible in this logic—and thus all amenable, in theory at least, to automatic
analysis, since M2L is decidable.

In the present paper, we have chosen the Fido language both to express
our concrete model of the Dagstuhl problem and to formulate our exposition of
the framework of [14]. Fido is a notational extension of M2L that incorporates
traditional concepts from programming languages, like recursive data types,
functions, and strongly typed expressions. Fido is compiled into M2L.
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An overview of the Dagstuhl problem

The Specification Problem of the Dagstuhl Seminar on Specification and Re-
finement of Reactive Systems is a four page document describing interacting
components in distributed memory systems. Communication between compo-
nents takes place by means of procedures, which are modeled by call and return
events. at the highest level, the specification describes a system consisting of a
memory component that provides read and write services to a number of pro-
cesses. These services are implemented by the memory component in terms of
basic i/o procedures. The relationships among service events, basic events, and
failures are described in behavioral terms.

Problem 1 in the Dagstuhl document calls for the comparison of this memory
system with a version, where a certain type of memory failure cannot occur.

Problem 2 calls for a formal specification of another layer added to the
memory system in form of an RPC (Remote Procedure Call) component that
services read and write requests.

Problem 3 asks for a formal specification of the system as implemented using
the RPC layer and a proof that it implements the memory system of Problem
1.

In addressing the problems, we deal with safety properties of finite systems.
Problems 4 and 5 address certain kinds of failures that are described in a

real-time framework. Our model is discrete, and we have not attempted to solve
this part.

Previous work

Tne TLA formalism by Lamport [19] and the temporal logic of Manna and
Pnueli [23, 13] provide uniform frameworks for specifying systems and state
mappings, and for complex reasoning about systems. Both logics subsumes
predicate logic logic and hence defy automatic verification in general. However,
work has been done on providing mechanical support in terms of proof checkers
and theorem provers, see [8, 9, 22].

The use of state mappings have been widely advocated, see e.g. [20, 18, 19,
13] and for a survey [21]. The involved theory of state mappings applicable to
possibly infinite-state systems was established in [1, 15, 25].

The Concurrency Workbench [6] offers automatic verification of the existence
of certain kinds of state-mappings between finite-state systems.

Decomposition is a key aspect of any verification methodology. In particular,
almost all the solutions of the RPC-memory specification problem [3] in [4] use
some sort of decomposition. In [2], Lamport and Abadi gave a proof rule for
compositional reasoning in an assumption/guarantee framework. A non-trivial
decomposition of a closed system is achieved by splitting it into a number of
open systems with assumptions reflecting their dependencies. In our rule, de-
pendencies are reflected in the choice of trace abstractions between components
and a requirement on the relationship between the trace abstractions.
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For finite-state systems, the COSPAN [10] tool based on the automata-
theoretic framework of Kurshan [17] implements a procedure for deciding lan-
guage containment for ω-automatas.

In [5], Clarke, Browne, and Kurshan shows how to reduce the language con-
tainment problem for ω-automata to a model checking problem in the restricted
case where the specification is deterministic. The SMV tool [24] implements a
model checker for the temporal logic CTL [7]. In COSPAN and SMV, systems
are specified using typed C-like programming languages.

In the rest of the paper

In Section 2, we first explain M2L and then introduce the Fido notation by an
example. Section 3 and 4 discuss our framework and show how all concepts can
be expressed in Fido. We present our solution to the RPC-memory specification
problem [3] dealing with the safety properties of the untimed part in Sections 5
to 8.

Acknowledgements

We would like to thank the referees for their comments and remarks.

2 Monadic second-order logic on strings

The logical notations we use are based on the monadic second-order logic on
strings (M2L). A closed M2L formula is interpreted relative to a natural number
n (the length). Let [n] denote the set {0, . . . , n − 1}. First-order variables range
over the set [n] (the set of positions), and second-order variables range over
subsets of [n]. We fix countably infinite sets of first and second-order variables
Var1 = {p, q, p1, p2, . . .} and Var2 = {P, P1, P2, . . .}, respectively. The syntax of
M2L formulas is defined by the abstract syntax:

t ::= p < q | p ∈ P
φ ::= t | ¬φ | φ ∨ φ | ∃p.φ | ∃P.φ

where p,q and P range over Var1 and Var2, respectively.
The standard semantics is defined as follows. An M2L formula φ with free

variables is interpreted relative to a natural number n and an interpretation
(partial function) I mapping first and second-order variables into elements and
subsets of [n], respectively, such that I is defined on the free variables of φ. As
usual, I[a ← b] denotes the partial function that on c yields b if a = c, and
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otherwise I(c). We define inductively the satisfaction relation |=I as follows.

n |=I p < q
def⇐⇒ I(p) < I(q)

n |=I p ∈ P
def⇐⇒ I(p) ∈ I(P )

n |=I ¬φ
def⇐⇒ n 6|=I φ

n |=I φ ∨ ψ
def⇐⇒ n |=I φ ∨ n |=I ψ

n |=I ∃p.φ
def⇐⇒ ∃k ∈ [n].n |=I[p←k] φ

n |=I ∃P.φ
def⇐⇒ ∃K ⊆ [n].n |=I[P←K] φ

As defined above M2L is rich enough to express the familiar atomic formulas
such as successor p = q + 1, as well as formulas constructed using the Boolean
connectives such as ∧, ⇒ and ⇔, and the universal first and second-order quan-
tifier ∀, following standard logical interpretations. Throughout this paper we
freely use such M2L derived operators.

There is a standard way of associating a language over a finite alphabet
with an M2L formula. Let α = α0 . . . αn−1 be a string over the alphabet {0, 1}l.
Then the length |α| of α is n and (αj)i denotes the ith component of the l-tuple
denoted by αj. An M2L formula φ with free variables among the second-order
variables P1, . . . , Pl defines the language:

L(φ) = {α ∈ ({0, 1}l)∗ | |α| |=Iα φ}

of strings over the alphabet {0, 1}l, where Iα maps Pi to the set {j ∈ [n] |
(αj)i = 1}.

Any language defined in this way by an M2L formula is regular; conversely,
any regular language over {0, 1}l can be defined by an M2L formula. More-
over, given an M2L formula φ a minimal finite automaton accepting L(φ) can
effectively be constructed using the standard operations of product, subset con-
struction, projection, and minimization. This leads to a decision procedure for
M2L, since φ is a tautology if and only if L(φ) is the set of all strings over
{0, 1}l. The approach extends to any finite alphabet. For example, letters of
the alphabet Σ = {a, b, c, d} are encoded by letters of the alphabet {0, 1}2 by
enumeration: a, b, c and d are encoded by (0, 0), (1, 0), (0, 1) and (1, 1), respec-
tively. Thus, any language over Σ can be represented as a language over {0, 1}2

and hence any regular language over Σ is the language defined by some M2L for-
mula with two free second-order variables P1 and P2. For example, the formula
φ:

∀p.p 6∈ P1 ∧ p 6∈ P2

defines the language {a}∗, that is, L(φ) = {(0, 0)}∗. In particular since L(φ) is
not the set of all strings over {0, 1}2, φ is not a tautology and any string not in
L(φ) yields a length and an interpretation falsifying φ.
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2.1 Fido

As suggested above, any regular language over any finite alphabet can be defined
as the language of an open M2L formula by a proper encoding of letters as
bit patterns, that is, by enumerating the alphabet. In our initial solution to
the Dagstuhl problem, we did the encoding “by hand”using only the Unix m4

macro processor to translate our specifications into M2L; this is an approach we
cannot recommend, since even minor syntactic errors are difficult to find. The
Fido notation helps us overcome these problems. Below, we explain the Fido

notation by examples introducing all needed concepts one by one.
Consider traces, i.e. finite strings, over an alphabet Event consisting of events

Read and Return with parameters that take on values in finite domains and the
event τ . A Read may carry one parameter over the domain {l0, l1, l2}, and a
Return may carry two parameters, one from the domain {v0, v1}, and one from
the domain {normal, exception}. In Fido, the code:

type Loc = l0,l1,l2;
type Value = v0,v1;
type Flag = normal,exception;

declares the enumeration types Value, Flag, and Loc. They define the domains
of constants {l0, l1, l2}, {v0, v1}, and {normal, exception}, respectively. The type
definitions:

type Read = Loc;
type Return = Value & Flag;

declare a new name Read for the type Loc and the record type Return, which
defines the domain of tuples {[v, f] | v ∈ Value ∧ f ∈ Flag}. The alphabet Event
is the union of Read, Return and {τ}:

type Event = Read j Return j � ;

The union is a disjoint union by default, since the Fido type system requires
the arguments to define disjoint domains. The types presented so far all define
finite domains. Fido also allows the definition of recursive data types. For our
purposes recursively defined types are of the form:

type Trace = Event(next: Trace) j empty;

Thus, Trace declares the infinite set of values {e1e2 . . .enempty | ei ∈ Event}.
In other words, the type Trace is the set of all finite strings of parameterized
events in Event with an empty value added to the end. The details of coding the
alphabet of events in second-order M2L variables is left to the Fido compiler.

Fido provides (among others) four kinds of variables ranging over strings,
positions, subsets of positions and finite domains, respectively. The Fido code:

string 
: Trace;

declares a free variable γ holding an element (a string) of Trace. We often refer
to γ just as a string.

A first-order variable p may be declared to range over all positions in the
string γ by the Fido declaration:

8



pos p: 
;

Similarly, a second-order variable P ranging over subsets of positions of the
string can be declared as:

set P: 
;

A variable event holding an element of the finite domain Event is declared by:

dom event: Event;

The Fido notation includes, besides M2L syntax for formulas, existential and
universal quantification over all the kinds of variables and more. We introduce
additional syntax when used. For example, we can specify as a formula that the
event Read:[l0] from the domain Event occurs in γ:

9pos p :
.(
(p) = Read:[l0])

which is true if and only if there exists a position p in γ such that the pth
element in γ is the event Read:[l0].

If we want to refer to a Read event without regard to the value of its param-
eter, we write:

9pos p :
;dom l: Loc.(
(p) = Read:[l?])

which is true if and only if there exists a position p in γ and an element l in
Loc such that the pth element in γ is the event Read:[l]. To make the above
formula more succinct, we can use the pattern matching syntax of Fido, where
a “dont’t care” value is specified by a question mark:

9pos p :
.(
(p) = Read:[?])

The Fido compiler translates such question marks into explicit existential quan-
tifications over the proper finite domain.

A Fido macro is a named formula with type-annotated free variables. Below,
we formulate some useful temporal concepts in Fido that formalize high-level
properties of intervals. In the rest of the paper, we use strings to describe
behaviors over time and therefore we refer to positions in strings as time instants
in traces.

To say that a particular event event of type Event occurred before a given
time instant t in trace α of type Trace, we write:

func Before(string �: Trace; pos t: �; dom event: Event): formula;
9pos time: �.(time<t^�(time)=event)

end;

To express that event occur sometime in the interval from t1 to t2 (both ex-
cluded), we write:

func Between(string �: Trace; pos t1,t2: �; dom event: Event): formula;
9pos time: �.(t1 <time ^ time<t2 ^�(time)=event)

end;
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The property that in a trace γ a Return is always preceded by a Read is expressed
as:

8pos t: 
.(
(t)=Return:[?,?])Before(
,t,Read:[?]));

We can also express that a Return event occurs exactly once in an interval:

func ExactlyOneReturnBetween(string �: Trace; pos t1,t2: �): formula;
9pos time: �.(t1<time ^ time<t2 ^�(time)=Return:[?,?]^

:Between(�,t1,time,Return:[?,?])^
:Between(�,time,t2,Return:[?,?])

end;

That a Read event occurred at both end points of the interval, but not in the
interval, is expressed as:

func ConseqReads(string �: Trace; pos t1,t2: �): formula;
t1<t2 ^�(t1) =Read:[?]^�(t2)=Read:[?]^
:Between(�,t1,t2,Read:[?])

end;

Using the macros above it is easy to specify more complicated properties. For
example, to specify that a Read event is blocking, in the sense that any Return
is issued in response to a unique Read event and no two read events occurs
consecutively without a return in between, we write:

func ReadProcs(string �: Trace): formula;
8pos t1: �.

�(t1)=Return:[?,?]
)

9pos t0: �.(t0 <t1 ^ �(t0)=Read:[?] ^
:Between(�,t0,t1, Return:[?,?]))^

8pos time1,time2: �.
ConseqReads(�,time1,time2)
)

ExactlyOneReturnBetween(�,time1,time2)
end;

Finally in our Fido overview, we mention that strings may be quantified over
as well. For example, the formula:

9string �: 
;pos t: 
. (
(t)=�(t));

expresses that there is a string α of the same type and length as γ and some
time instant t in γ (and therefore also in α) such that the tth element of γ and
α, respectively, are the same.

2.2 Automated translation and validity checking

Any well-typed Fido formula is translated by the Fido compiler [16] into an
M2L formula. Hence, the Fido compiler together with the Mona tool [11]
provides automatic verification, in terms of deciding whether or not a given

10



-- -
6

MONA YESFIDO M2L-formula

Counter-example

Variable orderings

FIDO-formula

Figure 1: The Fido and Mona tools.

Fido input translates into a valid M2L formula, see Fig. 1. Furthermore, in
the negative case, a witness in terms of a minimal interpretation falsifying the
translation of φ is provided, and translated back to Fido level from the (minimal
deterministic) automaton recognizing L(φ).

We will not describe the efficient translation of the high-level syntax of Fido

into M2L formulas here. Instead, we emphasize that the translation is in prin-
ciple straightforward: a string over a finite domain D is encoded using as many
second-order variables (bits) as necessary to enumerate D ∪ {empty}, quantifi-
cation over strings amounts to quantification over the second-order variables
encoding the alphabet, and existential (universal) quantification over finite do-
mains amounts to a finite disjunction (conjunction) over the elements of the
domain.

The Mona tool provides an efficient implementation of the underlying M2L
decision procedure [11]. Since the implementation is based on BDD represen-
tations of automatas, it, importantly, allows formulas to be decorated with
variable orderings.

3 Systems

We reason about computing systems through specifications of their behaviors
in Fido, i.e. viewed as traces over parameterized events specified in terms of
Fido formulas.

A system A determines an alphabet ΣA of events, which is partitioned into
observable events ΣObs

A and internal events ΣInt
A . It is the observable events that

matters when systems are compared. A behavior of A is a finite sequence over
ΣA. The system A also determines a prefix–closed language LA of behaviors
called traces of A. We write A = (LA, ΣObs

A , ΣInt
A ). The projection π from a set

Σ∗ to a set Σ′∗ (Σ′ ⊆ Σ) is the unique string homomorphism from Σ∗ to Σ′∗

given by π(a) = a, if a is in Σ′ and π(a) = ε otherwise, where ε is the empty
string. The observable behaviors of a system A, Obs(A), are the projections
onto ΣObs

A of the traces of A, that is Obs(A) = {π(α) | α ∈ LA}, where π is the
projection from Σ∗A onto (ΣObs

A )∗.
A system A is thought of as existing in a universe of the systems with

which it may be composed and compared. Formally, the universe is a global
alphabet U , which contains ΣA and all other alphabets of interest. Moreover,
U is assumed to contain the distinguished event τ which is not in the alphabet
of any system. The set NΣ(A) of normalized traces over an alphabet Σ ⊇ ΣA
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is the set h−1(LA) = {α | h(α) ∈ LA}, where h is the projection from Σ∗ onto
Σ∗A. Normalization plays an essential rôle when composing systems and when
proving correctness of implementation of systems with internal events.

A systems can conveniently be expressed in Fido. Following the discussion
in Section 2 a finite domain U representing the universal alphabet U , and a
data type, TraceU, representing the traces over U are defined. A system A =
(LA, ΣObs

A , ΣInt
A ) is then represented by a triple:

A = (NormA,ObsA,IntA)

of macros defining the normalized traces, NormA, of A over U, the observable
events, ObsA, and the internal events, IntA. That is, let γ be a string over TraceU

then NormA(γ) is true if and only if γ denotes a trace of NU (A) and let u be
an element of U then ObsA(u) and IntA(u) are true if and only if u denotes an
element of ΣObs

A and ΣInt
A , respectively. When writing specifications in Fido,

we often confuse the name of a system with the name of the macro defining its
set of normalized traces.

Our first example of a system in Fido is the system ReadProcs living in the
universe given by Event from Section 2. The normalized traces of ReadProcs are
defined by the macro ReadProcs, the alphabet of observable events by:

func ObsReadProcs(dom v: Event; dom id: Ident): formula;
v=Read:[?]_ v=Return:[?,?]

end;

and the alphabet of internal events by:

func IntReadProcs(dom v: Event; dom id: Ident): formula;
false

end;

That is, ReadProcs has observable events Read:[?] and Return:[?,?], and no
internal events:

ReadProcs = (ReadProcs,ObsReadProcs,IntReadProcs)

3.1 Composition

Our notion of composition of systems is that of CSP [12], adjusted to cope with
observable and internal events. We say that systems A and B are composable
if they agree on the partition of events, that is, if no internal event of A is
an observable event of B and vice versa, or symbolically, if ΣInt

A ∩ ΣObs
B = ∅

and ΣInt
B ∩ ΣObs

A = ∅. Given composable systems A and B, we define their
composition A ‖ B = (LA‖B , ΣObs

A‖B , ΣInt
A‖B), where

• the set of observable events is the union of the sets of observable events of
the components, that is, ΣObs

A‖B = ΣObs
A ∪ ΣObs

B ,

• the set of internal events is the union of the sets of internal events of the
components, that is, ΣInt

A‖B = ΣInt
A ∪ ΣInt

B , and
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• the set of traces is the intersection of the sets of normalized traces with
respect to the alphabet ΣA‖B , that is, LA‖B = NΣA‖B (A) ∩ NΣA‖B (B).

As in CSP, a trace of A ‖ B is the interleaving of a trace of A with a trace
of B in which common events are synchronized. Composition is commutative,
idempotent and associative, and we adopt the standard notation, A1 ‖ . . . ‖ An

or just ‖Ai, for the composition of n composable systems Ai.
In Fido, composability of A and B is expressed by:

8pos t:
. (IntA(
(t)) ) : ObsB(
(t))) ^ (IntB(
(t)) ) : ObsA(
(t)))

and given composable systems A and B, composition is defined by:

A ‖ B = (NormA‖B, ObsA‖B, IntA‖B)

where the set of normalized traces are defined by conjunction:

func NormAkB(string �: TraceU): formula;
NormA(�) ^ NormB(�)

end;

and the alphabets by disjunction:

func ObsAkB(dom v: U): formula;
ObsA(v) _ ObsB(v)

end;

func IntAkB(dom v: U): formula;
IntA(v) _ IntB(v)

end;

To exemplify composition, we extend the universe Event with the events given
by:

type Mem = Loc & Value & Flag;

Hence, the type Event is now:

type Event = Mem j Read j Return j � ;

The macro:

func MemBetween(string �: Trace): formula;
8 dom l: Loc;dom v: Value;pos t1,t2: �.

�(t1)=Read:[l?]^�(t2)=Return:[v?,?]
)

9pos t0: �. t0<t1 ^�(t0)=Mem:[l?,v?,?]
end;

is true on a trace if and only if there exists an atomic read event Mem:[l,v,?]
between any read event Read:[l] to location l and return event Return:[v,?] with
value v. We define the system MemBetween with observable events Read:[?] and
Return:[?,?], and internal events Mem:[?,?,?]:
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MemBetween = (MemBetween,ObsMemBetween,IntMemBetween)

where

func ObsMemBetween(dom v: Event; dom id: Ident): formula;
v=Read:[?]_ v=Return:[?,?]

end;

and

func IntMemBetween(dom v: Event; dom id: Ident): formula;
Mem:[?,?,?]

end;

The systems ReadProcs and MemBetween are composable since they do not
disagree on the partition of their alphabets. We define their composition:

MReadProcs = ReadProcs ‖ MemBetween

Hence, MReadProcs has observable events Read:[?] and Return:[?,?], and inter-
nal events Mem:[?,?,?], and the normalized traces of MReadProcs specify the
behaviors of read procedure calls with atomic reads.

3.2 Implementation

We formalize the notion of implementation in terms of language inclusion, again
adjusted to cope with observable and internal events. We say that systems A
and B are comparable if they have the same set of observable events ΣObs, that
is, ΣObs = ΣObs

A = ΣObs
B . In the following A and B denote comparable systems

with ΣObs
A = ΣObs

B = ΣObs.

Definition 1 Let A and B denote comparable systems. A implements B if and
only if Obs(A) ⊆ Obs(B)

In Fido, comparability between systems is easily expressible:

∀pos t:γ.ObsA(γ(t))⇔ObsB(γ(t)) (1)

Implementation is less obvious. One sound approach is to attempt a proof of
NU (A) ⊆ NU (B), which is easily expressible in Fido as the formula NormA(γ) ⇒
NormB(γ). However, when the systems A and B have different internal behaviors
the approach does not work in general.

Consider our example systems from above, we define the system

RMReadProcs = (RMReadProcs,ObsRMReadProcs,IntRMReadProcs)

specifying reliable read procedures, that is, read procedures that never trig-
gers exceptional atomic reads, where ObsRMReadProcs and IntRMReadProcs
are equivalent to ObsMReadProcs and IntMReadProcs, respectively, and

func RMReadProcs(string �: Trace): formula;
MReadProcs(�)^:9pos t: �.�(t)=Mem:[?,?,exception]

end;
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The systems RMReadProcs and ReadProcs are comparable as they have the
same set of observable events and the first implements the second since the
implication:

RMReadProcs(γ) ⇒ ReadProcs(γ)

holds for all traces γ over Trace. The opposite implication does not hold, a sim-
ple counterexample is the trace Read:[l0] Mem:[l0,v0,exception] Return:[v0 ,normal]
empty. However, the observable behaviors of the systems RMReadProcs and
ReadProcs are clearly identical. In the next section, we show how to prove the
implementation property using Fido.

4 Relational trace abstractions

A trace abstraction is a relation on traces preserving observable behaviors. In
the following A and B denote comparable systems with ΣObs

A = ΣObs
B = ΣObs

and π denotes the projection of U∗ onto (ΣObs)∗.

Definition 2 [14] A trace abstraction R from A to B is a relation on U∗ × U∗
such that:

1. If αRβ then π(α) = π(β)

2. NU (A) ⊆ dom R

3. rng R ⊆ NU (B)

The first condition states that any pair of related traces must agree on observable
events. The second and third condition require that any normalized trace of A
should be related to some normalized trace of B, and only to normalized traces
of B.

Theorem 3 [14] There exists a trace abstraction from A to B if and only if A
implements B.

Hence, the search for a trace abstraction is a sound and complete technique for
deciding implementation. In the following, we incorporate the technique in the
Fido framework.

Given strings α = α0 . . .αn ∈ Σ∗1 and β = β0 . . . βn ∈ Σ∗2, we write α∧β for
the string (α0, β0) . . . (αn, βn) ∈ (Σ1 ×Σ2)∗. Every language LR over a product
alphabet Σ1 × Σ2 has a canonical embedding as a relation RL ⊆ Σ∗1 × Σ∗2 on
strings of equal length given by α∧β ∈ LR

def⇔αRLβ. We say that a trace
abstraction is regular if it is the embedding of a regular language over U × U .

Not all trace abstractions between finite-state systems are regular. However,
to use Fido we have to restrict ourselves to regular abstractions.
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Definition 4 Given a subset Σ′ of Σ, we say that strings α, β ∈ Σ∗ are Σ′–
synchronized if they are of equal length and if whenever the ith position in α
contains a letter in Σ′ then the ith position in β contains the same letter, and
vice versa.

The property of being ΣObs-synchronized is Fido expressible:

func Observe(string �: TraceU; string �: �): formula;
8pos t: �.(ObsA(�(t))_ObsB(�(t)) ) �(t)= �(t))

end;

Definition 5 Let R̂ be the language over U × U given by α∧β ∈ R̂ if and only
if

β ∈ NU (B) and α, β are ΣObs-synchronized

Since NU (B) is a regular language, so is R̂, and furthermore it may be expressed
in Fido by:

func R(string �: TraceU; string �: �): formula;
Observe(�; �) ^ NormB(�)

end;

The next proposition gives a sufficient condition for R̂ and any regular subset
of R̂ to be a trace abstraction. We return to the significance of the last part
when dealing with automated proofs.

Proposition 6 [14] If NU (A) ⊆ dom R̂ then R̂ is a regular trace abstraction
from A to B. Moreover in general, for any regular language C ⊆ (U × U)∗, if
NU (A) ⊆ dom R̂ ∩ C, then R̂ ∩ C is a regular trace abstraction from A to B.

Importantly, also prerequisites of this proposition may be expressed in Fido,
and hence validity checking:

NormA(�) ) 9string �: �.R(
,�)

is a sound and fully automated (!) technique for deciding implementation.
To prove that the system MReadProcs implements RReadProcs we instantiate

macro Observe and R properly, and then check that:

MReadProcs(
) ) 9string �: �.R(
,�)

holds.

4.1 Decomposition

One thing is to have a sound proof technique, another is to have an efficient
automated implementation of it. It is well known that compositional reasoning
is one important way of obtaining efficiency, and one important aspect of trace
abstractions is that they allow compositional reasoning, in the following formal
sense [14].
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Theorem 7 [14] Let Ai and Bi be pairwise comparable systems forming the
compound systems ‖Ai and ‖Bi. If

Ri is a trace abstraction from Ai to Bi. (2)⋂
i dom Ri ⊆ dom

⋂
i Ri (3)

then
‖Ai implements ‖Bi

We call the extra condition (3) the compatibility requirement. By allowing com-
ponents of a compound systems to also interact on internal events, we allow
systems to be non-trivially decomposed. This is why the compatibility require-
ment (3) is needed, intuitively, it ensures that the choices defined by the trace
abstractions can be made to agree on shared internal events. Formally, the
intuition is expressed by the corollary:

Corollary 4.1 [14] If additionally the components of the specification are non-
interfering on internal events, that is, ΣInt

Bi
∩ ΣInt

Bj
= ∅, for every i 6= j, then Ai

implements Bi implies ‖Ai implements ‖Bi.

Again, the compatibility requirement is expressible in Fido:∧
i=1,...,n (∃string βi: γ.(Ri(γ,βi))) ⇒ ∃string β: γ.(

∧
i=1,...,n Ri(γ,β)) (4)

where Ri is a Fido macro taking as parameters two strings of type Trace and n
is some fixed natural number.

The use of Theorem 7 for compositional reasoning about non-trivial decom-
positions of systems is illustrated in Section 8.

5 The RPC-memory specification problem

The rest the paper describes our solution to the RPC-memory specification
problem proposed by Broy and Lamport [3] considering the safety properties of
the untimed part. In the hope of improved readability and comparability we
choose to copy into the text parts of the informal description in small pieces
printed in italic.

5.1 The procedure interface
The problem [3] calls for the specification and verification of a series of com-
ponents interacting with each other using a procedure-calling interface. In our
specification, components are systems defined by Fido formulas. Systems inter-
act by synchronizing on common events - internal as well as observable - there
is no notion of sender and receiver on this level. A procedure call consists of a
call and the corresponding return. Both are indivisible (atomic) events. There
are two kinds of returns, normal and exceptional. A component may contain
a number of concurrent processes each carrying a unique identity. Any call or
return triggered by a process communicates its identity. This leads us to declare
the parameter domains:
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type Flag = normal,exception;
type Ident = id0,: : :,idk;

of return flags and process identities for some fixed k, respectively.

6 A memory component
The first part of the problem [3] calls for a specification of a memory component.
The component should specify a memory that maintains the contents of a set
MemLocs of locations such that the contents of a location is an element of a set
MemVals. We therefore introduce the domains:

type MemLocs = l0,. . . ,ln;
type MemVals = initVal,v1,. . . ,vm;

of locations and of values for some fixed n and m, respectively. The reason for
defining the distinguished value initVal follows from: The memory behaves as
if it maintains an array of atomically read and written locations that initially
all contain the value InitVal. Furthermore, we accordingly define the following
Mem events carrying five parameters.

type Mem = Operation & MemLocs & MemVals & Flag & Ident;

The first parameter defined by the domain:

type Operation = rd,wrt;

indicates whether the event denotes an atomic read or write operation. The
second and third carry the location to be and the value read or written, respec-
tively. The fourth indicates the success of the operation. We hence also allow
atomic reads and writes to exhibit exceptional behavior. Finally, the fifth pa-
rameter carries a process identity (meant to indicate the identity of the process
that triggered the event).

The component has two procedure calls: reads and writes. The informal
description [3] notes that being an element of MemLocs or MemVals is a “se-
mantic” restriction, and cannot be imposed solely by syntactic restrictions on
the types of arguments. As we aim for automatic verification the number of
states as well as events are crucial. Hence, we try to be particular in not tac-
itly reducing any of these by faithfully modeling all possible erroneous events.
Hence, we introduce the domains:

type Tag = ok,error;
type Loc = MemLocs & Tag;
type Value = MemVals & Tag;

The idea is that procedure calls and returns pass arguments of type Loc and
Value whose first components denote semantically correct elements of respec-
tively MemLocs and MemVals if and only if the value of the corresponding Tag
components are ok. In the informal description [3], a read procedure is described
as:
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Name Read
Arguments loc : an element of MemLocs
Return Value an element of MemVals
Exception BadArg : argument loc is not an element of MemLocs.

MemFailure: the memory cannot be read.
Description Returns the value stored in address loc.

In our specification, a read procedure is called by issuing a Read event of the
type:

type Read = Loc & Ident & Visible;

A Read event takes as first parameter an element of Loc that might not be a
“semantically” correct element of MemLocs. and as second parameter a process
identity. The last parameter is an element of the domain:

type Visible = internal,observable;

When verifying the implementation we need the parameter Visible to be able to
change the view of reads, writes and returns from observable to internal events.

The return of a read procedure in our specification is a Return event given
by:

type Return = Value & Flag & RetErr & Ident & Visible;

The first parameter is the value returned. The second indicates whether the
return is normal or exceptional. In case, it is exceptional the third parameter
is an element of the domain:

type RetErr = BadArg,MemFailure;

of possible errors returned by an exceptional return as described above.
Again, the fourth and fifth parameter are elements of the domains Ident

and Visible with the intended meaning as for Read events. Similarly, a write
procedure is specified in terms of Write events defined by:

type Write = Loc & Value & Ident & Visible;

and Return events. Hence, the universe for our systems is given by:

type Event = Mem j Read j Write j Return j � ;

and traces (strings) over the universe by:

type Trace = Event(next: Trace) j empty;

We specify the memory component Spec by the compound system:

Spec = MemSpec(id0) ‖ . . . ‖ MemSpec(idk) ‖ InnerMem

constructed from systems MemSpec(id) that specify read and write procedures
for fixed process identities id and a system InnerMem that specifies the array
maintained by the memory component. Each of the systems MemSpec(id) are
themselves compound systems:

MemSpec(id) = ReadSpec(id) ‖ WriteSpec(id)
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defined by composing the systems ReadSpec(id) and WriteSpec(id) specifying
respectively read and write procedures for fixed process identities id.

For a fixed process identity id in Ident, the system ReadSpec(id) with ob-
servable events Read:[?,id,observable] and Return:[?,?,?,id,observable] and inter-
nal events Mem:[rd,?,?,?,id] specifies the allowed behaviors of read procedure
calls involving the process with identity id. In Fido notation, a logical and
(∧) can alternatively be written as a semicolon (;). The normalized traces of
ReadSpec(id) are defined by the macro:

func ReadSpec(string �: Trace; dom id: Ident; dom vis: Visible): formula;
BlockingCalls(�,id,vis);
CheckSuccessfulRead(�,id,vis);
WellTypedRead(�,id,vis);
ReadBadArg(�,id,vis);
OnlyAtomReadsInReadCalls(�,id,vis)

end;

That is, γ is a normalized trace of ReadSpec(id) if and only if
ReadSpec(γ,id,observable) is true. In the following, we often implicitly special-
ize macros, e.g. we write ReadSpec(id,observable) for the macro obtained from
ReadSpec by instantiating the parameters id and vis. The system ReadSpec(id)
is then given by the triple:

(ReadSpec(id,observable),ObsReadSpec(id,observable),IntReadSpec(id))

where

func ObsReadSpec(dom v: Event; dom id: Ident; dom vis: Visible): formula;
v=Read:[?,id?,vis?]_ v=Return:[?,?,?,id?,vis?]

end;

and

func IntReadSpec(dom v: Event; dom id: Ident): formula;
v=Mem:[rd,?,?,?,id?]

end;

The macro ReadSpec is the conjunction of five clauses. The first clause Block-
ingCalls specifies as required in [3] that procedure calls are blocking in the sense
that a process stops after issuing a call and waits for the corresponding return
to occur. The last clause OnlyAtomReadsInReadCalls specifies that an atomic
read event occurs only during the handling of read calls. This requirement is
not described in [3]. Reading in between the lines however, it seems clear that
the specifier did not mean for atomic reads to happen without being part of
some read procedure call. Both clauses are straightforwardly defined in Fido

using interval temporal idioms similar to those explained in Section 2.1.
As we demonstrate below, the three mid clauses are defined as fairly direct

transcriptions of the text of [3] describing read procedure calls. But first, a
convenient macro definition. Following [3], an operation consists of a procedure
call and the corresponding return. We define the macro:
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func Opr(string �: Trace; pos t1,t2: �;
dom call,return: Event; dom id: Ident; dom vis: Visible): formula;

t1<t2 ^ �(t1)=call^ �(t2)=return;
:Between(�,t1,t2,Read:[?,id?,vis?]);
:Between(�,t1,t2,Write:[?,?,id?,vis?]);
:Between(�,t1,t2,Return:[?,?,?,id?,vis?])

end;

which is true for a trace γ, time instants t1 and t2 in γ and events call and return
if and only if the events call and return occurred at t1 and t2, respectively, and
none of the events Read, Write and Return occurred between t1 and t2 (both
excluded). An operation is successful if and only if its return is normal (non-
exceptional).

The lines (excluding the last one) quoted from [3] above describing a read
procedure are translated into the following macro quantifying over both location
and value tags, flags, return errors and time instants:

func WellTypedRead(string �: Trace; dom id: Ident; dom vis: Visible): formula;
8dom vt,lt: Tag; dom retErr: RetErr; dom flg: Flag; pos t1,t2: �.

Opr(�,t1,t2, Read:[[?,lt?],id?,vis?],Return:[[?,vt?],flg?,retErr?,id?,vis?],id,vis)
)

(flg=normal;lt=MemLocs;vt=MemVals) _
(flg=exception;retErr=MemFailure) _
(flg=exception;:lt=MemLocs;retErr=BadArg)

end;

establishing the connection among the parameters received and those returned.
Whenever a read call and the corresponding return has occurred, then either
the return was normal and the value as well as the location passed were of the
right types (respectively MemVals and MemLocs) or the return was exceptional
and the error returned was MemFailure or the return was exceptional and the
location passed was not of the right type (MemLocs) and the returned error was
BadArg.

Furthermore, it is stated in [3] that:

An operation that raises a BadArg exception has no effect on the memory.

We transcribe this into the macro:

func ReadBadArg(string �: Trace; dom id: Ident; dom vis: Visible): formula;
8 pos t1,t2: �.

Opr(�,t1,t2,Read:[?,id?,vis?],Return:[?,exception,BadArg,id?,vis?],id,vis)
)

:Between(�,t1,t2,Mem:[?,?,?,?,id?])
end;

specifying that between the call and the return of a read operation resulting
in an exceptional return with return error BadArg no atomic read or write is
performed. (Note that we interpreted no effect on the memory as the absence
of atomic reads and writes.)
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Finally, a read procedure must satisfy that:

Each successful Read(l) operation performs a single atomic read to location l
at some time between the call and return.

Together with the line excluded above we get that the value returned should be
the value read in the atomic read. This relation between a successful read and
the corresponding return is captured by the macro:

func CheckSuccessfulRead(string �: Trace; dom id: Ident; dom vis: Visible): formula;
8 dom v: MemVals; dom l: MemLocs; dom flg: RetErr; pos t1: �; pos t2: �.

(Opr(�,t1,t2, Read:[[l?,?],id?,vis?],Return:[[v?,ok],normal,?,id?,vis?],id,vis)
)

9 pos time: �.
(t1 <time^ time<t2 ^ �(time)=Mem:[rd,l?,v?,normal,id?];
:Between(�,t1,time,Mem:[rd,?,?,?,id?]);
:Between(�,time,t2,Mem:[rd,?,?,?,id?])))

end;

requiring that if the return is normal (and thus the read successful) then exactly
one atomic read is performed between the call and the return on the requested
location. Furthermore, the value returned is the value read.

The systems WriteSpec(id) are defined similarly to the systems ReadSpec(id)
though slightly more complicated since write calls carries more parameters. The
observable events of WriteSpec(id) are Write:[?,id,observable] and
Return:[?,?,?,id,observable], and the internal events are Mem:[wrt,?,?,?,id].

The system InnerMem defines the behaviors allowed by the array maintained
by the memory component. The informal description [3] refers to but does not
define an array. We apply the informal description: whenever a successful atomic
read to a location occurs the value thus returned is the value last written by a
successful atomic write on the location or if no such atomic write has occurred
its the initial value initVal. The normalized traces of InnerMem are defined by
the macro:

func InnerMem(string �: Trace): formula;
8 dom v: MemVals; dom l: MemLocs; pos t: �.

�(t)=Mem:[rd,l?,v?,normal,?]
)

9 pos t0: �.(t0 <t^ �(t0)=Mem:[wrt,l?,v?,normal,?]^
:Between(�,t0,t,Mem:[wrt,l?,?,normal,?]))_

v=initVal^:Before(�,t,Mem:[wrt,l?,?,normal,?])
end;

The system InnerMem has internal events Mem:[?,?,?,?,?] and no observable
events and is hence given by the triple:

InnerMem = (InnerMem,ObsInnerMem,IntInnerMem)

where ObsInnerMem is a macro yielding false on every v of Event and

func IntInnerMem(dom v: Event): formula;
v=Mem:[?,?,?,?,?]

end;
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The informal description [3] also calls for the specification of a reliable mem-
ory component which is a variant of the memory component in which no Mem-
Failure exceptions can be raised. We specify the reliable memory component by
the compound system:

RSpec = RMemSpec(id0) ‖ . . . ‖ RMemSpec(idk) ‖ InnerMem

where
RMemSpec(id) = MemSpec(id) ‖ Reliable(id)

and Reliable(id) is the system with the same alphabets as MemSpec(id) and with
normalized traces given by the following macro specifying that no exceptional
return with process identity id raising MemFailure occurs.

func Reliable(string �: Trace; dom id: Ident; dom vis: Visible): formula;
: 9pos t: �.(�(t)=Return:[?,exception,MemFailure,id?,vis?])

end;

That is, γ is a normalized trace of Reliable(id) if and only if Reliable(γ,id,observable)
is true.

Below, when we say that have proven a formula F(γ) by feeding it to our
tool we mean that we have fed a file consisting of all the type declaration for
fixed k, m, n and the macro definitions given above followed by:

string 
: Trace;
F(
)

to our tool. In all executions we have k = m = n = 1, that is, we have
two process identities, two locations and two values. Note that the reason for
restricting to two of each is not reflected in the simple verification problems
posed in problem 1 but rather by those of problem 3 below.

Problem 1

(a) Write a formal specification of the Memory component and of the Reliable
Memory component.

These are defined by Spec and RSpec, respectively.
(b) Either prove that a Reliable Memory component is a correct implementation
of a Memory component, or explain why it should not be.

We prove that:
RSpec(γ) ⇒ Spec(γ) (5)

is a tautology by feeding the formula to our tool.
(c) If your specification of the Memory component allows an implementation that
does nothing but raise MemFailure exceptions, explain why this is reasonable.

We first define the following macro stating that any return occurring is
exceptional and raises a MemFailure exception.

func NothingButMemFailure(string �: Trace): formula;
8 dom retErr: RetErr; dom flg: Flag; pos t: �.

(�(t)=Return:[?,flg?,retErr?,id?,vis?] ) flg=exception^ retErr=MemFailure)
end;
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Then we prove that:

Spec(γ) ∧ NothingButMemFailure(γ) ⇒ Spec(γ) (6)

is a tautology by running our tool. This seems reasonable for two reasons. First,
there is nothing in the informal description specifying otherwise. Second, from
a practical point of view disallowing such an implementation would mean disal-
lowing an implementation involving an inner memory that could be physically
destroyed or removed.

7 Implementing the memory

We now turn to the implementation of the memory component using an RPC
component.

7.1 The RPC component

The problem [3] calls for a specification of an RPC component that interfaces
with two components, a sender at a local site and a receiver at a remote site.
Its purpose is to forward procedure calls from the local to the remote site, and
to forward back the returns.

Parameters of the component are a set Procs of procedure names and a map-
ping ArgNum, where ArgNum(p) is the number of arguments of each procedure p.

We thus declare the domains:

type Procs = ReadProc,WriteProc;
type NumArgs = n1,n2;

of procedure names Procs and of possible numbers of arguments NumArgs. As
for elements of MemLocs and MemVals, we adopt the convention that being an
element of Proc is a “semantic” restriction, and cannot be imposed solely by
syntactic restrictions on the types of arguments. Therefore we declare:

type TProc = Procs & Tag;

The idea is that a remote procedure call passes arguments of type TProc whose
first component denotes a semantically correct element of Procs if and only if
the value of the Tag component is ok. The mapping ArgNum is specified by the
macro:

func ArgNum(dom n: NumArgs; dom proc: TProc): formula;
proc#Procs=ReadProc ) n=n1;
proc#Procs=WriteProc ) n=n2

end;

where we use the Fido notation ↓ to access a field in a record. That is,
proc↓Procs denotes the Procs field in the record denoted by proc.

In the informal description [3], a remote call procedure is described as:
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Name RemoteCall
Arguments proc : name of a procedure

args : list of arguments
Return Value any value that can be returned by a call to proc
Exception RPCFailure : the call failed

BadCall: proc is not a valid name or args is not a
syntactically correct list of arguments for proc.
Raises any exception raised by a call to proc.

Description Calls procedure proc with arguments args.

We declare the domains:

type Args = Loc & Value;
type RpcErr = RPCFailure,BadCall j RetErr;

of argument lists and of possible exceptions raised by exceptional return errors,
respectively. (Note that we restrict ourselves to lists of length at most two) In
our specification, a remote procedure is called by issuing a RemoteCall event of
the type:

type RemoteCall = TProc & NumArgs & Args & Ident;

A RemoteCall event takes as first parameter an element of TProc that might
not be a “semantically” correct element of Procs and as second parameter an
element of NumArgs denoting the length of the list from Args carried by the third
parameter. The last parameter is a process identity from Ident. The return of
a remote procedure is an RpcReturn event given by the declaration:

type RpcReturn = Value & Flag & RpcErr & Ident;

The first parameter is the value returned. The second indicates whether the
return is normal or exceptional. In case, it is exceptional the third parameter is
an element of the domain RetErr. The last parameter carries a process identity
from Ident. Hence, the universe for our systems is given by:

type Event = Mem j Read j Write j Return j RemoteCall j RpcReturn j � ;

and traces (strings) over the universe by:

type Trace = Event(next: Trace) j empty;

We specify the RPC component RPC by the compound system:

RPC = RPC(id0) ‖ . . . ‖ RPC(idk)

defined by composing the systems RPC(id).
For a fixed process identity id in Ident, the system RPC(id) with no observable

events and internal events Mem:[?,?,?,?,id], Read:[?,id,internal], Write:[?,id,internal],
Return:[?,?,?,id,internal], RemoteCall:[?,?,?,id] and RpcReturn:[?,?,?,id] specifies
the allowed behaviors of RPC procedure calls involving the process with iden-
tity id. The normalized traces of RPC(id) are defined by the macro:
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func RPC(string �: Trace; dom id: Ident): formula;
RemoteCallAndReturnAlternates(�,id);
RPCBehavior(�,id);
WellTypedRemoteCall(�,id);
OnlyInternsInRemoteCalls(�,id)

end;

That is, γ is a normalized trace of RPC(id) if and only if RPC(γ,id) is true. The
system RPC(id) is then given by the triple:

RPC(id) = (RPC(id),ObsRPC(id),IntRPC(id))

where ObsRPC(id) is a macro that yields false on every v of Event and

func IntRPC(dom v: Event; dom id: Ident): formula;
v=Mem:[rd,?,?,?,id?]_
v=Read:[?,id,internal]_ v=Write:[?,id,internal]_ v=Return:[?,?,?,id,internal]_
v=RemoteCall:[?,?,?,id]_ v=RpcReturn:[?,?,?,id]_

end;

The macro RPC is defined as the conjunction of four clauses each of which
except for the last one describes properties explicitly specified in [3]. The last
clause OnlyInternsInRemoteCalls specifies that any of the events Read:[?,id,internal],
Write:[?,id,internal] and Return:[?,?,?,id,internal] only occurs during the handling
of RPC calls. It seems clear that the specifier did not mean for read and write
procedure calls on the remote site to happen without being triggered by some
remote procedure call. But, the requirement is not made explicit in [3]. The first
clause, RemoteCallAndReturnAlternates specifies as required in [3] that remote
procedure calls are blocking in the sense that a process stops after issuing a call
and waits for the corresponding return to occur. Hence, there may be multiple
outstanding remote calls but not more than one triggered by the same process.
Both clauses are straightforwardly defined in Fido.

For convenience, we define the following macro specifying an RPC operation
by associating a RemoteCall with the corresponding RpcReturn.

func RpcOpr(string �: Trace; pos t1,t2: �;
dom call,return: Event; dom id: Ident): formula;

t1<t2 ^ �(t1)=call^ �(t2)=return;
:Between(�,t1,t2,RemoteCall:[?,?,?,id?]);
:Between(�,t1,t2,RpcReturn:[?,?,?,id?])

end;

The second clause is a fairly direct transcription of the quoted lines above (ex-
cluding the last line):

func WellTypedRemoteCall(string �: Trace; dom id: Ident): formula;
8 dom proc: TProc; dom num: NumArgs;

dom flg: Flag; dom rpcErr: RpcErr; pos t1,t2: �.
RpcOpr(�,t1,t2,RemoteCall:[proc?,num?,?,id?],RpcReturn:[?,flg?,rpcErr?,id?],id)
)

flg=normal ) proc#Tag=ok;ArgNum(num,proc);
flg=exception;rpcErr=BadCall , :(proc#Tag=ok;ArgNum(num,proc))

end;
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stating the relationship between the parameters of a remote call and the corre-
sponding return. The third clause specifies the properties described by:

A call of RemoteCall(proc,args) causes the RPC component to do one of the
following:

• Raise a BadCall exception if args is not a list of ArgNum(proc) arguments.

• Issue one call to procedure proc with arguments args, wait for the cor-
responding return (which the RPC component assumes will occur) and
either (a) return the value (normal or exceptional) returned by that call,
or (b) raise the RPCFailure exception.

• Issue no procedure call, and raise the RPCFailure exception.

This description is translated into the macro:

func RPCBehavior(string �: Trace; dom id: Ident): formula;
8 dom proc: TProc; dom num: NumArgs; dom lst: Args; dom val: Value;

dom flg: Flag; dom rpcErr: RpcErr; pos t1,t2: �.
RpcOpr(�,t1,t2,RemoteCall:[proc?,num?,lst?,id?],RpcReturn:[val?,flg?,rpcErr?,id?],id)
)

ABadCall(�,t1,t2proc,num,flg,rpcErr)_
OneSuccessfulRpcCall(�,t1,t2,proc,lst,val,flg,rpcErr,id)_
OneUnSuccessfulRpcCall(�,t1,t2,proc,lst,val,flg,rpcErr,id)_
NoCallOfAnyProcedure(�,t1,t2,flg,rpcErr,id)

end;

where

func ABadCall(string �: Trace; pos t1,t2: �;dom proc: TProc;
dom num: NumArgs; dom flg: Flag; dom rpcErr: RpcErr): formula;

(:proc#ProcTag=Procs _:ArgNum(num,proc))^
rpcErr=BadCall ^ flg=exception^
:Between(�,t1,t2,Read:[?,id?,internal]) ^
:Between(�,t1,t2,Write:[?,?,id?,internal])^
:Between(�,t1,t2,Return:[?,?,?,id?,internal])

end;

func OneSuccessfulRpcCall(string �: Trace; pos t1: �; pos t2: �;
dom proc: TProc; dom lst: Args; dom val: Value;
dom flg: Flag; dom rpcErr: RpcErr; dom id: Ident): formula;

9 dom retErr: RetErr.
ExactlyOneProcCallBetween(�,t1,t2,proc,lst#Loc,lst#Value,val,flg,retErr,id);
flg=exception ) (retErr=BadArg , rpcErr=BadArg;

retErr=MemFailure , rpcErr=MemFailure)
end;

func OneUnSuccessfulRpcCall(string �: Trace; pos t1: �; pos t2: �;
dom proc: TProc; dom lst: Args; dom val: Value;
dom flg: Flag; dom rpcErr: RpcErr; dom id: Ident): formula;
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flg=exception;rpcErr=RPCFailure;
9 dom val1: Value; dom flg1: Flag; dom err: RetErr.

ExactlyOneProcCallBetween(�,t1,t2,proc,lst#Loc,lst#Value,val1,flg1,err,id);
end;

func NoCallOfAnyProcedure(string �: Trace; pos t1: �; pos t2: �;
dom flg: Flag; dom rpcErr: RpcErr; dom id: Ident): formula;

flg=exception^ rpcErr=RPCFailure ^
:Between(�,t1,t2,Read:[?,id?,internal]) ^
:Between(�,t1,t2,Write:[?,?,id?,internal])^
:Between(�,t1,t2,Return:[?,?,?,id?,internal])

end;

The macro ExactlyOneProcCallBetween specifies that exactly one call of proce-
dure proc with parameters l,v,flg and retErr occurred between t1 and t2, and no
other internal procedure call occurred. Note that macro ABadCall additionally
to the description specifies that no internal procedure call occurs.

Problem 2

Write a formal specification of the RPC component.
The RPC component is specified by the system RPC.

7.2 The implementation

A Memory component is implemented by combining an RPC component with
a reliable memory component. A read or write call is forwarded to the reliable
memory by issuing the appropriate call to the RPC component and the return
from the RPC component is forwarded back to the caller.

We specify the implementation of the memory component Impl by the com-
pound system:

Impl = MemImpl(id0) ‖ . . . ‖ MemImpl(idk) ‖ InnerMem

defined by composing the systems MemImpl(id) specifying the allowed read and
write procedures for fixed process identities id. Each of the systems MemImpl(id)
are themselves compound systems:

MemImpl(id) = Clerk(id) ‖ RPC(id) ‖ IRMemSpec(id)

For a fixed process identity id in Ident, the system Clerk(id) with observable
events Read:[?,id,observable], Write:[?,id,observable] and Return:[?,?,?,id,observable],
and internal events Mem:[?,?,?,?,id], Read:[?,id,internal], Write:[?,id,internal],
Return:[?,?,?,id,internal], RemoteCall:[?,?,?,id] and RpcReturn:[?,?,?,id] specifies
the allowed behaviors of read and write procedure calls involving the process
with identity id. That is, it specifies how a local procedure call is forwarded
to a remote procedure call and how the return of a remote procedure call is
forwarded back as the return of the procedure call. The normalized traces of
Clerk(id) are defined by the macro:
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func Clerk(string �: Trace; dom id: Ident): formula;
BlockingCalls(�,id,observable);
RPCReadStub(�,id);
RPCWriteStub(�,id);
RPCReturnStub(�,id);
RetryOnlyOnRPCFailure(�,id);
RpcOnlyInObsCall(�,id)

end;

That is, γ is a normalized trace of Clerk(id) if and only if Clerk(γ,id) is true.
The system Clerk(id) is then given by the triple:

Clerk(id) = (Clerk(id),ObsClerk(id),IntClerk(id))

where ObsClerk(id) and IntClerk(id) are the obvious macros.
The second, third, fourth and fifth clauses of Clerk(id) are fairly direct trans-

lations of the informal description [3].

A Read or Write call is forwarded to the Reliable Memory by issuing
the appropriate call to the RPC component.

func RPCReadStub(string �: Trace; dom id: Ident): formula;
8 dom l: Loc; pos t1,t2: �.

(Opr(�,t1,t2, Read:[l?,id?,observable],Return:[?,?,?,id?,observable],id,observable)
)

9 pos tc,tr: �.
(t1<tc; tr<t2;
RpcOpr(�,tc,tr,RemoteCall:[[ReadProc,ok],n1,[l?,?],id?],RpcReturn:[?,?,?,id?],id)))

end;

The macro RPCWriteStub is similar.

If this call returns without raising an RPCFailure exception, the value returned is
returned to the caller. (An exceptional return causes an exception to be raised.)

func RPCReturnStub(string �: Trace; dom id: Ident): formula;
8 dom val1: Value; dom flg: Flag; dom retErr: RetErr; pos t1: �.

�(t1)=Return:[val1?,flg?,retErr?,id?,observable]
)

9 dom val2: Value; dom rpcErr: RpcErr; pos t0: �.
t0<t1; �(t0)=RpcReturn:[val2?,flg?,rpcErr?,id?];
:Between(�,t0,t1,RpcReturn:[?,?,?,id?]);
flg=normal ) val1=val2;
(flg=exception;rpcErr=RPCFailure) ) (retErr=MemFailure;
(flg=exception;:rpcErr=RPCFailure) ) (retErr=BadArg , rpcErr=BadArg;

retErr=MemFailure , rpcErr=MemFailure)
end;

If the call raises an RPCFailure exception, then the implementation may either
reissue the call to the RPC component or raise a MemFailure exception.
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func RetryOnlyOnRPCFailure(string �: Trace; dom id: Ident): formula;
8 pos t1,t2: �.

t1<t2;
�(t1)=RemoteCall:[?,?,?,id?];
�(t2)=RemoteCall:[?,?,?,id?];
:Between(�,t1,t2,Read:[?,id?,observable]) ^
:Between(�,t1,t2,Write:[?,?,id?,observable])^
:Between(�,t1,t2,Return:[?,?,?,id?,observable])
)

9 pos t: �. t1<t;t<t2; �(t)=RpcReturn:[?,exception,RPCFailure,id?]
end;

The last clause, RpcOnlyInObsCall(α,id) specifies that a remote procedure call
only occurs as the forwarding of an observable procedure call.

The systems IRMemSpec(id) specify a reliable memory with no observable
events and internal events Mem:[?,?,?,?,id], Read:[?,id,internal], Write:[?,id,internal]
and Return:[?,?,?,id,internal]:

IRMemSpec(id) = IMemSpec(id) ‖ IReliable(id)

where IReliable(id) are the systems with the same alphabets as IMemSpec(id) and
with normalized traces given by Reliable(id,internal), and where IMemSpec(id)
are defined by composition:

IMemSpec(id) = IReadSpec(id) ‖ IWriteSpec(id)

of the systems:

IReadSpec(id) = (ReadSpec(id,internal),ObsReadSpec(id,internal),IntReadSpec(id))

and the similarly defined systems IWriteSpec(id).

Problem 3

Write a formal specification of the implementation, and prove that it correctly
implements the specification of the Memory component of Problem 1.

The implementation is specified by the system Impl. We devote the next
section to proving the correctness of the implementation.

8 Verifying the implementation

We want to verify that the system Impl is an implementation of the system
Spec. First, we check that the systems are comparable by running the proper
instantiation of formula (1).

The obvious way to attempt verifying that the implementation is correct is
to check if the formula:

MemImpl(γ,id0) ⇒ MemSpec(γ,id0) (7)

holds. This is however not the case. Feeding it to the Mona tool results in the
following counterexample of length 13:
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Read:[[l1,ok],id0,observable]
RemoteCall:[[ReadProc,ok],n1,[[l1,ok],?],id0]
Read:[[l1,ok],id0,internal]
Mem:[rd,l1,v1,normal,id0]
Return:[[v1,ok],normal,?,id0,internal]
RpcReturn:[[initVal,?],exception,RPCFailure,id0]
RemoteCall:[[ReadProc,ok],n1,[[l1,ok],?],id0]
Read:[[l1,ok],id0,internal]
Mem:[rd,l1,v1,normal,id0]
Return:[[v1,ok],normal,?,id0,internal]
RpcReturn:[[v1,ok],normal,?,id0]
Return:[[v1,ok],normal,?,id0,observable]
empty

where we have left out most of the typing information. The counterexample
tells us that a successful read operation of the implementation may contain
two RPC procedure calls each triggering an atomic read whereas such a read
operation is not allowed by the specification. Hence, the counterexample reflects
that whereas the specification requires a successful read to contain exactly one
atomic read the implementation of the memory allows more than one.

An atomic read is however an internal event and fortunately, we can follow
our method explained in Section 4.

To avoid explicitly building the compound system Impl(γ) of the implemen-
tation, we apply the proof rule of Theorem 7.

First, we check and see that the systems MemImpl(γ,id) ‖ InnerMem(γ) and
MemSpec(γ,id) ‖ InnerMem(γ) for id = id0,id1 are comparable by running the
proper instantiations of formula (1). Let Obs denote a macro defining their
common alphabet of observable events and note that the internal events are
defined by IntMemImpl(id) and IntMemSpec(id), respectively. Let

func Observe(string �: Trace; string �: �; dom id: Ident): formula;
8pos t: �.(Obs(�(t),id)_Obs(�(t),id)) ) �(t)= �(t)

end;

and let

func R(string �: Trace; string �: �; dom id: Ident): formula;
Observe(�,�,id); MemSpec(�,id);InnerMem(�)

end;

We then prove that:

(MemImpl(γ,id);InnerMem(γ)) ⇒ ∃string β: γ.R(γ,β,id) (8)

is a tautology (for id = id0,id1; the formulas are symmetric) using our tool
and conclude by Proposition 6 and Theorem 3 that the system MemImpl(γ,id) ‖
InnerMem(γ) implements MemSpec(γ,id) ‖ InnerMem(γ) for id = id0,id1.

As discussed in Section 4, the compatibility requirement of Theorem 7
amounts to checking the formula (4). However, the Mona tool can not handle
the state explosion caused by the existential quantification on the right hand
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side of the implication. Intuitively, the existential quantification guesses the
internal behavior of the trace β needed to match the observable behavior of
the trace γ. We can however help guessing by constraining further for each
trace γ of the implementation the possible choices of matching traces β of the
specification. To do this we formulate more precise (smaller) trace abstractions
based on adding information of the relation between the internal behavior on
the implementation and specification level.

In particular, we formalize the intuition we gained from the counterexample
above that between a successful read call and the corresponding return on the
implementation level exactly the last atomic read should be matched by an
atomic read on the specification level. This is formalized by the macro:

func Map1(string �: Trace; string �: �; dom id: Ident): formula;
8pos t1,t2: �.

Opr(�,t1,t2,Read:[?,id?,observable],Return:[?,normal,?,id?,observable],id,observable)
)

9pos t: �.
t1<t;t<t2;
�(t)=Mem:[rd,?,?,?,id?];
�(t)=�(t);
:Between(�,t1,t,Mem:[rd,?,?,?,id?]);
:Between(�,t,t2,Mem:[rd,?,?,?,id?]);
:Between(�,t,t2,Mem:[rd,?,?,?,id?])

end;

Also, we define the macro Map2 specifying that an atomic read on the imple-
mentation level is matched either by the same atomic read or by a τ on the
specification level:

func Map2(string �: Trace; string �: �; dom id: Ident): formula;
8pos t: �.�(t)=Mem:[rd,?,?,?,id?] ) (�(t)=�(t)_ �(t)=� )

end;

and the macro Map3 specifying that any internal event but an atomic read on the
implementation level is matched by the same atomic read on the specification
level and conversely, that any internal event on the specification level is matched
by the same event on the implementation level:

func Map3(string �: Trace; string �: �; dom id: Ident): formula;
8pos t: �.

(IntMemImpl(�(t),id)^:�(t)=Mem:[rd,?,?,?,id?])_ IntMemSpec(�(t),id)
)

�(t)=�(t)
end

We sum up the requirements in the macro:

func C(string �: Trace; string �: �): formula;
Map1(�,�,id0); Map2(�,�,id0); Map3(�,�,id0);
Map1(�,�,id1); Map2(�,�,id1); Map3(�,�,id1)

end;
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We prove using our tool that:

MemImpl(γ,id0);InnerMem(γ) ⇒ ∃string β: γ.(C(γ,β))∧R(γ,β,id0)) (9)

is a tautology (for id = id0,id1; the formulas are symmetric) and conclude by
Proposition 6 that C ∩ R(id) is a trace abstraction from the system MemImpl(γ,id) ‖
InnerMem(γ) to the system MemSpec(γ,id) ‖ InnerMem(γ) for id = id0,id1. Fi-
nally, by running our tool we prove that the formula:

∃string β0: γ.(C(γ,β0)∧R(γ,β0,id0))∧ ∃string β1: γ.(C(γ,β1)∧R(γ,β1,id1))
⇒

∃string β: γ. (C(γ,β)∧R(γ,β,id0)∧R(γ,β,id1))
(10)

is a tautology and hence verify the compatibility requirement of Theorem 7 and
conclude that Impl(γ) implements Spec(γ).

An alternative reaction to the failure of proving (7) is to claim to have found
an error in the informal description and change the description such that it al-
lows the behavior described by the counterexample. In our formal specification,
this would amount to simply change the macro CheckSuccessfulRead to require
that at least one atomic read occurs instead of exactly one. Hence modified, we
prove using our tool that the formula (7) is a tautology. Likewise, we prove the
symmetric formula with id0 replaced for id1 and conclude by propositional logic
that:

MemImpl(γ,id0);MemImpl(γ,id1);InnerMem(γ)
⇒

MemSpec(γ,id0);MemSpec(γ,id1);InnerMem(γ)
(11)

and therefore by definition that:

Impl(
) ) Spec(
)

Note that when dealing with automatic verification, the difference between the
two solutions may be significant since opposed to the second the first involves the
projecting out of internal behavior and hence a potential exponential blow-up
in the size of the underlying automatas.

The full solution is written in 11 pages of Fido code. All the formulas (5),
(6), (7), (8), (9) and (10) are decided within minutes. The largest Fido formulas
specify M2L formulas of size more than 105 characters. During processing the
Mona tool handles formulas with more than 32 free variables corresponding
to deterministic automatas with alphabets of size 232. The proofs of (8), (9)
and (10) required user intervention in terms of explicit orderings of the BDD
variables - merging the variables encoding the traces compared.
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