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Nils Klarlund Mogens Nielsen Kim Sunesen
BRICS∗

Department of Computer Science
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Ny Munkegade
DK-8000 Aarhus C.

{klarlund,mnielsen,ksunesen}@daimi.aau.dk

Abstract

We propose a new and practical framework for integrating the behav-
ioral reasoning about distributed systems with model-checking methods.

Our proof methods are based on trace abstractions, which relate the
behaviors of the program and the specification. We show that for finite-
state systems such symbolic abstractions can be specified conveniently in
Monadic Second-Order Logic (M2L). Model-checking is then made possi-
ble by the reduction of non-determinism implied by the trace abstraction.

Our method has been applied to a recent verification problem by Broy
and Lamport. We have transcribed their behavioral description of a dis-
tributed program into temporal logic and verified it against another dis-
tributed system without constructing the global program state space. The
reasoning is expressed entirely within M2L and is carried out by a decision
procedure. Thus M2L is a practical vehicle for handling complex temporal
logic specifications, where formulas decided by a push of a button are as
long as 10-15 pages.

1 Introduction

This paper is concerned with the specification and verification of distributed sys-
tems. Often, the relationship between a program and a specification is expressed
in terms of a state-based refinement mapping, see [18] for a survey. Thus, when
systems are specified by behavioral or temporal constraints, it is necessary first
to find state-representations. In this process, important information may be
lost or misconstrued.
∗Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
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In this paper, we exhibit a logic of traces (i.e. finite computation sequences)
that allows compositional reasoning directly about behaviors. We formulate
trace abstractions and their proof rules as an alternative to the use of refinement
mappings for the verification of distributed systems.

Our main goal is to show that our method is useful in practice for complicated
examples. Thus, use of our logic and proof rules must be supported by a decision
procedure that will give answers to logical questions about the systems, such as
“Does trace abstraction R show that program P implements S?”

To this end, we formulate a sound and complete verification method based
on trace abstractions. We show that our method for finite-state systems can
be formulated in a very succinct formalism: the Monadic Second-order Logic
(M2L).

We address the important problem of relating a distributed program to a
non-deterministic specification that also is a distributed system. Non-determinism
arises when systems have alphabets that are partioned into observable and
internal actions. Abstracting away internal actions generally introduces non-
determinism.

Our contribution is to show an alternative to usual techniques, which tend to
involve rather involved concepts such as prophecy variables or mappings to sets
of sets of states. These can be replaced by behavioral predicates that need only
to partially link the program and the specification. The remaining information
is then calculated automata-theoretically by means of the subset construction.

We formulate a compositional rule to avoid the explicit construction of the
global program space.

Using the Mona implementation of M2L, we have verified a recent verification
problem by Broy and Lamport by transcribing several pages of informally stated
temporal properties. The formulas resulting are decided in minutes despite their
size (105 characters). A detailed treatement of this problem can be found in
[11].

1.1 Relations to previous work

The systems we define are closely related to those described by Hoare in [9],
where an alphabet Σ and a set of traces over Σ is associated with every pro-
cess. We use a composition operator, similar to Hoare’s parallel operator (‖ [9])
forcing systems to synchronize on events or actions shared by both alphabets.

We do not know of any earlier work using relations directly on traces. In
fact, the use of state mappings—one of the most advocated methods for proving
refinement, see e.g. [17, 15, 16, 10] and for a survey [18]—were introduced as a
way to avoid behavioral reasoning, often regarded as being too complex. The
theory of state mappings is by now well-understood, but not simple, with the
completeness results in [1, 12, 20]. In the finite state case, an important dif-
ference between the state mapping approach and ours is that in the traditional
approaches, the mapping is to be exactly specified state by state whereas in
our approach the relation between behaviors may be specified partially leaving
the rest to our verification tool. In [2], Lamport and Abadi gave a proof rule
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for proving correctness of implementation of compound systems based on an
assumption/guarantee method. A closed compound system is split into a num-
ber of open systems by factoring out dependencies as assumptions. Our rule
is very different in that dependencies are reflected in a requirement about the
relationship between trace abstractions for components.

The TLA formalism by Lamport [16] and the temporal logic of Manna and
Pnueli [10] offer unified frameworks for specifying systems and state mappings,
and for proving the correctness of implementation. Both logics are undecidable,
but work has been done on establishing mechanical support, see [6, 7].

Clarke, Browne, and Kurshan [4] have applied model checking techniques to
the language containement problem (L(M1) ⊆ L(M2)), where M1 and M2 are ω-
automata. They reduce the containment problem to a model-checking problem
by forming a product of the automata and checking whether the product is a
model for a certain CTL∗ formula. The method is applicable to any common
kind of ω-automata. Thus it deals with liveness properties unlike our method,
which only deals with logic over finite prefixes. However, the method in [4]
suffers from the restriction that M2 be deterministic.

Kurshan, see [13], has devised an automata-theoretic framework for modeling
and verifying synchronous transition systems. His use of homomorphisms allow
complex properties to be reduced to ones that can be verified by means of
model-checking.

Kurshan’s methods were extended in [14] to the asynchronous input/output
automata of [17]. There, Kurshan et al. give an account of interleaving com-
position in terms of conventional, synchronous automata. Our treatment of
concurrency is similar in its use of stuttering for modeling asynchrony except
that we do not consider fairness (which is a property of infinite sequences). A
principal difference is that our proposal is based on comparing sequences of
events, whereas the method of [14] is essentially state-based or event-based.

Binary Decision Diagrams (BDDs) are usually used in verification to com-
pactify representations of state-spaces, see e.g. [5]. The Mona implementation
[8] of a decision procedure for M2L uses BDDs to handle large alphabets.

1.2 Overview

In Section 2, we discuss our formal framework, which is based on an interleaving
semantics of processes that work in a global space of events. M2L is explained
in Section 3. We show in Section 4 that with some additional concepts, it is
possible to formulate the verification method of Section 2 in M2L. In Section 5,
we explain the role of trace abstractions in our solution of the Broy and Lamport
verification problem.

2 Traces and abstractions

We regard systems in a fairly standard way: they are devices that produce
sequences of events that are either observable or internal. Systems exist in
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a universe. They can be composed and compared. Trace abstractions relate
a program to a specification. These abstractions form a sound and complete
verification method, and a simple decomposition rule is easy to formulate.

2.1 Systems, universes and normalization

A system A determines an alphabet ΣA of events, which is partioned into observ-
able events ΣObs

A and internal events ΣInt
A . A behavior of A is a finite sequence

over ΣA. The system A also determines a prefix-closed language LA of behaviors
called traces of A. We write A = (LA, ΣObs

A , ΣInt
A ). The projection π from a set

Σ∗ to a set Σ′∗ (Σ′ ⊆ Σ) is the unique string homomorphism from Σ∗ to Σ′∗

given by π(a) = a, if a is in Σ′, and π(a) = ε otherwise, where ε is the empty
string. The observable behaviors of a system A, Obs(A), are the projections on
ΣObs

A of the traces of A, that is Obs(A) = {π(α) | α ∈ LA}, where π is the
projection from Σ∗A onto (ΣObs

A )∗.
A system A is thought of as existing in a universe which contains the systems

with which it is composed and compared. The events possible in this universe
constitute a global alphabet U , which contains ΣA and all other alphabets of
interest. Moreover, U is assumed to contain the distinguished event τ , which is
not in the alphabet of any system. The set NΣ(A) of normalized traces over an
alphabet Σ ⊇ ΣA is the set h−1(LA), where h is the projection from Σ∗ onto
Σ∗A. Normalization plays an essential rôle when composing systems and when
proving correctness of implementation of systems with internal events.

2.2 Composition

We say that systems A and B are composable if they do not disagree on the
partition of events, that is, if no internal event of A is an observable event of
B and vice versa, or symbolically, if ΣInt

A ∩ ΣObs
B = ∅ and ΣInt

B ∩ ΣObs
A = ∅.

Given composable systems A and B, we define their composition A ‖ B =
(LA‖B , ΣObs

A‖B , ΣInt
A‖B ), where

• the set of observable events is the union of the sets of observable events of
the components, that is, ΣObs

A‖B = ΣObs
A ∪ ΣObs

B ,

• the set of internal events is the union of the sets of internal events of the
components, that is, ΣInt

A‖B = ΣInt
A ∪ ΣInt

B , and

• the set of traces is the intersection of the sets of normalized traces with
respect to the alphabet ΣA‖B , i.e. LA‖B = NΣA‖B (A) ∩ NΣA‖B (B).

(Note that the restriction above for composability ensures that A ‖ B has also
disjoint observable and internal events.)

A trace of A ‖ B is the interleaving of a trace of A with a trace of B in which
common events are synchronized. The projection of a trace of A ‖ B onto the
alphabet of any of the components is a trace of the component. Composition
is commutative, idempotent, and associative, and extends straightforwardly to
any number n of composable systems Ai. We write A1 ‖ . . . ‖ An or just ‖Ai.
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Example 2.1 To make the concepts clearer, we show how to present the well-
known scheduler [19] of Milner in terms of our systems. The distributed sched-
uler is based on passing a token consecutively between a number of computing
agents. We consider a three-agent version of the scheduler. The ith agent Si

performs observable events ai and bi to indicate the begining and the end of com-
puting, respectively, and it synchronizes with its neighbor agents by interacting
on the internal events ci and ci	1, where i is 0, 1, or 2, and 	 is subtraction
modulo 3.

For a regular expression r, we denote by LPre(r) the regular language ob-
tained by taking the prefix-closure of the language associated with r. Thus the
agents may be described by:

S0 = (LPre((a0c0(b0c2 + c2b0))∗), {a0, b0}, {c0, c2}),
S1 = (LPre(c0(a1c1(b1c0 + c0b1))∗), {a1, b1}, {c0, c1}),
S2 = (LPre(c1(a2c2(b2c1 + c1b2))∗), {a2, b2}, {c1, c2})

The scheduler is defined in terms of the compound system:

S = S0 ‖ S1 ‖ S2

where the set of observable events then consists of the ai’s and bi’s.

2.3 Implementation

We say that systems A and B are comparable if they have the same set of
observable events ΣObs, that is, ΣObs = ΣObs

A = ΣObs
B . In the following, A

and B denote comparable systems and π denotes the projection from U∗ onto
(ΣObs)∗.

Definition 2.1 A implements B if and only if Obs(A) ⊆ Obs(B)

Example 2.2 Another way of defining a scheduler is to use a central agent C.
The ith agent still performs observable events ai and bi but now synchronizes
with the agent C by interacting on the internal event di. The agents are given
by the systems

C = (LPre((d0d0d1d1d2d2)∗), ∅, {d0, d1, d2}),
Pi = (LPre((diaidibi)∗), {ai, bi}, {di}), i = 0, 1, 2

and the scheduler is defined by the compound system:

P = P0 ‖ P1 ‖ P2 ‖ C

where the observable events are the ai’s and bi’s and internal events are the di’s.
The systems S and P may be seen as existing in the universe U = {ai, bi, ci, di, τ |

i = 0, 1, 2} and are clearly comparable. The reader may convince himself that
P implements S, but in general this not an easy task.
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2.4 Relational trace abstractions

A trace abstraction is a relation on traces preserving observable behaviors.

Definition 2.2 A trace abstraction R from A to B is a relation on U∗ × U∗
such that

1. If αRβ then π(α) = π(β)

2. NU (A) ⊆ dom R

3. rng R ⊆ NU (B)

The first condition states that any pair of related traces must agree on observable
events. The second and third condition require that any normalized trace of A
should be related to some normalized trace of B, and only to normalized traces
of B. The use of trace abstractions forms a sound and complete method in
the sense that there exists a trace abstraction from A to B if and only if A
implements B.

Theorem 2.1 There exists a trace abstraction from A to B if and only if A
implements B.

We would like to prove that a compound system ‖Ai implements another
compound system ‖Bi by exhibiting trace abstractions Ri from Ai to Bi. A
simple extra condition is neeeded for this to work:

Theorem 2.2 Let Ai and Bi be pairwise comparable systems forming the com-
pound systems ‖Ai and ‖Bi. If

Ri is a trace abstraction from Ai to Bi (1)⋂
i dom Ri ⊆ dom

⋂
i Ri (2)

then
‖Ai implements ‖Bi

Intuitively, the extra condition 2., which we call the compatibility requirement ,
ensures that the choices defined by the trace abstractions can be made to agree
on internal events.

Due to the possibility of non-trivial interference on internal events among
the component systems, the first premise alone of the composition rule is not
sufficient to ensure the conclusion. Consider e.g. the following systems

A1 = ({a}∗, {a}, ∅), B1 = ({ac}∗{ε, a}, {a}, {c})
A2 = ({b}∗, {b}, ∅), B2 = ({bc}∗{ε, b}, {b}, {c})

where ε is the empty string. Obs(Ai) ⊆ Obs(Bi), but Obs(A1 ‖ A2) 6⊆ Obs(B1 ‖
B2), since aa ∈ Obs(A1 ‖ A2), but aa 6∈ Obs(B1 ‖ B2).

The next example illustrates that even when significant internal interaction
exists among the components, the decomposition theorem may be applied.
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Example 2.3 Consider the schedulers from before. For each i = 0, 1, 2 let χi

be the string homomorphism from U∗ to U∗ inductively defined by χi(ε) = ε,
and for α ∈ U∗ and u ∈ U ,

χi(αu) =


χi(α)ci if u = di &

the number of dis in α is odd
χi(α) if u = ci

χi(α)u otherwise

where ε is the empty string. χi maps every string α into a string identical
to α except for every occurrence of ci being erased and every even occur-
rence of di being replaced by ci. Let χ = χ0 ◦ χ1 ◦ χ2. We use χ to relate
the internal behaviors of P and S. It is not hard to check that the relations
Ri = {(α, χ(α)) | χ(α) ∈ NU (Si)} are trace abstractions from Pi ‖ C to Si,
respectively. (Requirements 1. and 3. are satisfied by definition. To see that 2.
holds, we consider some α ∈ NU (Pi ‖ C) and argue that χ(α) ∈ NU (Si).) Also,
it is not hard to see that

⋂
i dom Ri ⊆ dom

⋂
i Ri. (For each α there is exactly

one χ(α).) Hence by Theorem 2.2, it follows that (P0 ‖ C) ‖ (P1 ‖ C) ‖ (P2 ‖ C)
implements S and therefore that P implements S.

An almost trivial observation is:

Corollary 2.1 If additionally the components of the specification are non-
interfering on internal events, that is, ΣInt

Bi
∩ ΣInt

Bj
= ∅, for every i 6= j, then Ai

implements Bi implies ‖Ai implements ‖Bi.

3 Monadic second-order logic on strings

The logical language we use is the monadic second-order logic (M2L) on strings,
where a closed formula is interpreted relative to a natural number n (the length).
First-order variables p, q, . . . range over the set {0, . . . , n − 1} (the set of po-
sitions), and second-order variables P, Q, . . . , P1, P2, . . . range over subsets of
{0, . . . , n − 1}. Atomic formulas are of the form p = q, p = q + 1, p < q
and q ∈ P . Formulas are constructed in the standard way from atomic for-
mulas by means of the Boolean connectives ¬, ∧, ∨, ⇒ and ⇔, and first and
second-order quantifiers ∀ and ∃. We adopt the standard notation of writing
φ(P1, . . . , Pk, p1, . . . , pl) to denote an open formula φ whose free variables are
among P1, . . . , Pk, p1, . . . , pl. Let 0 and $ be the M2L definable constants de-
noting the positions 0 and n − 1, respectively. The expressive power of M2L is
illustrated by the formula

∃P.0 ∈ P ∧ (∀p.p < $ ⇒ (p ∈ P ⇔ p + 1 6∈ P ))

which defines the set of even numbers. A second-order variable P can be seen
as denoting a string of bits b0 . . . bn−1 such that bi = 1 if and only if i ∈ P . This
leads to a natural way of associating a language L(φ) over Σ = IBm of satisfy-
ing interpretations to an open formula φ(P1, . . . , Pm) having only second-order
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variables occurring free (IB denotes the set {0, 1}). As an example, consider the
formula φ ≡ ∀p.p ∈ P1 ⇔ p 6∈ P2. Then L(φ) is a language over the alphabet
Σ = IB2, where each (b1, b2) ∈ IB2 denotes the membership status of the current
position relative to P1 and P2. For example, writing the tuples as columns, we
have

P1: 11010
P2: 00101 ∈ L(φ) and P1: 11010

P2: 01000 6∈ L(φ)

Any language defined by a M2L formula is regular and conversely any regu-
lar language can be defined by a M2L formula. Given a formula φ, a minimal
finite automaton accepting L(φ) can effectively be constructed using the stan-
dard operations of complementation, product, subset construction, and projec-
tion. In particular, the existential quantifier becomes associated with a subset
construction—and a potential exponential blow-up in the number of states. The
construction of automata constitutes a decision procedure for M2L, since φ is a
tautology if and only if L(φ) is the set of all strings. In case φ is not a tautology,
a witness in terms of a minimal interpretation falsifying φ can be derived from
the minimum deterministic automaton recognizing L(φ). We use the tool Mona
[8], which implements the decision procedure and the counter-example facility.

4 The finite state case

We now restrict attention to systems with regular trace languages. We show
for a large class of finite-state systems that trace abstractions definable by reg-
ular languages constitute a complete method for proving the implementation
property.

Given strings α = α0 . . .αn ∈ Σ∗1 and β = β0 . . . βn ∈ Σ∗2, we write α∧β for
the string (α0, β0) . . . (αn, βn) ∈ (Σ1 ×Σ2)∗. Every language LR over a product
alphabet Σ1 × Σ2 has a canonical embedding as a relation RL ⊆ Σ∗1 × Σ∗2 on
strings of equal length given by α∧β ∈ LR

def⇔αRLβ. Hence in the following
we shall use the two representations interchangeably. Accordingly, we say that
a trace abstraction is regular if it is the embedding of a regular language over
U × U .

Not all trace abstractions between finite-state systems are regular, since
there may be an unbounded number of internal events between pairs of corre-
sponding observable events. The next definition is an essential step towards the
identification of regular trace abstractions.

Definition 4.1 Given a subset Σ′ of Σ we say that strings α, β ∈ Σ∗ are Σ′–
synchronized if they are of equal length and if whenever the ith position in α
contains a letter in Σ′ then the ith position in β contains the same letter, and
vice versa.

Definition 4.2 Let R̂ be the language over U × U given by α∧β ∈ R̂ if and
only if

β ∈ NU (B) and α, β are ΣObs-synchronized

Since NU (B) is a regular language (by assumption of this Section), so is R̂. The
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next proposition gives a sufficient condition for R̂ and any regular subset of R̂
to be a trace abstraction. We return to the significance of the last part when
dealing with automated proofs.

Proposition 4.1 If NU (A) ⊆ dom R̂ then R̂ is a regular trace abstraction
from A to B. Moreover, in general for any regular language C ⊆ (U × U)∗, if
NU (A) ⊆ dom R̂ ∩ C, then R̂ ∩ C is a regular trace abstraction from A to B.

It is not hard to see that if R̂ is a regular trace abstraction, then it is the
largest such relating ΣObs-synchronized traces. In this case we denote R̂ the
canonical trace abstraction.

Non-regularity of trace abstractions occurs if for example there are arbitrar-
ily many non-observable events between any two observable events. However,
it may also happen that a behavior of the program may have too few internal
events between two observable events in the sense that any behavior of the spec-
ification with the same observable behavior may require more internal events.
We next give a precise definition of this phenomenon. Let πA and πB be the
projections from Σ∗A and Σ∗B, respectively, onto (ΣObs)∗.

Definition 4.3 A trace α ∈ LA is internally finer than a trace β ∈ LB if
πA(α) = πB(β), and for all e, e′ ∈ ΣObs, u ∈ (ΣInt

A )∗, v ∈ (ΣInt
B )∗, α1, α2 ∈ Σ∗A

and β1, β2 ∈ Σ∗B , such that πA(α1) = πB(β1)

α = α1eue′α2 ∧ β = β1eve′β2
∨

α = ue′α2 ∧ β = ve′β2

 ⇒ |u| ≥ |v|

A system A is internally finer than a system B if for any trace α of A such that
πA(α) ∈ Obs(B), there exists a trace β of B such that α is internally finer than
β.

Consider the scheduler example. System P is internally finer than S, whereas
the converse is not true. We restate the soundness and completeness result from
the general case for a constrained class of systems and regular trace abstractions.

Theorem 4.1 Assume that A is internally finer than B. There exists a canon-
ical trace abstraction from A to B if and only if A implements B.

The restriction on programs to be internally finer than their specifications can
be overcomed simply by adding more internal behavior to the program. More
precisely, given systems A and B there always exists a system A′ such that A
and A′ have the same observable behaviors, that is, Obs(A) = Obs(A′), and
such that A′ is internally finer than B. E.g. using S′0 = (LPre((d0a0d0c0(b0c2 +
c2b0))∗), {a0, b0}, {c0, c2, d0}) instead of S0 and with similar changes using S′1
and S′2 for S1 and S2, respectively, we have that S′ = S′0 ‖ S′1 ‖ S′2 is internally
finer than P and that Obs(S) = Obs(S′).
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4.1 A uniform logical framework

In the finite setting, reasoning about systems can conveniently be expressed
in M2L. Let U = IBm be the universe, where m is a natural number. Any
behavior α over U can be viewed as an interpretation of a sequence of second-
order variables Uα

1 , . . . , Uα
m. So behaviors over, say, 1024 different events may

be coded using just 10 variables.
We use for each event σ = (b1, . . . , bm) ∈ U and α the notation α(t) = σ for

the M2L predicate
(
∧

bi=1

t ∈ Uα
i ) ∧ (

∧
bi=0

t 6∈ Uα
i ),

which states that the behavior denoted by α has a σ event in the position
denoted by t. A system A = (LA, ΣObs

A , ΣInt
A ) is represented by a triple

A = (φA, φObs
A , φInt

A )

of formulas defining the normalized traces of the system, φA(α), the observable
events, φObs

A (α, t), and the internal events, φInt
A (α, t). That is, NU (A) = L(φA)

and φObs
A (α, t)) and φInt

A (α, t) are predicates that are true if and only if the posi-
tion denoted by t in the behavior denoted by α is an element of ΣObs

A and ΣInt
A ,

respectively. Given composable systems A and B, composition is represented
by

A ‖ B = (φA ∧ φB , φObs
A ∨ φObs

B , φInt
A ∨ φInt

B )

We have that L(φA ∧ φB) = L(φA) ∩ L(φB) = NU (A ‖ B) and that φObs
A ∨ φObs

B

and φInt
A ∨ φInt

B defines the union of the observable and the internal events,
respectively. Let now behavior β be represented by Uβ

1 , . . . , Uβ
m. The property

that behaviors α and β in U∗ are ΣObs-synchronized is expressed by predicate
φObs

A,B(α, β) defined by

∀t : (φObs
A (α, t) ∨ φObs

B (α, t)) ⇒ α(t) = β(t)

The canonical trace abstraction R̂ of Definition 4.2 is defined by

R̂A,B(α, β)
def≡ φB(β) ∧ φObs

A,B(α, β)

By Proposition 4.1 and Theorem 4.1, the implementation property is implied
by NU (A) ⊆ dom R̂ and hence by the validity of

φA(α) ⇒ ∃β : R̂A,B(α, β) (3)

where ∃β is defined as ∃Uβ
1 . · · · ∃Uβ

m. Let Ri(α, β)
def≡ R̂Ai,Bi(α, β) ∧ φi(α, β).

The premises of the decomposition rule 2.2 are expressed by∧
i

(φAi(α) ⇒ ∃β : Ri(α, β)) (4)∧
i

∃βi : Ri(α, βi) ⇒ ∃β :
∧
i

Ri(α, β) (5)
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To express the premise of Corollary 2.1 simply replace equation (5) above
by ∧

i 6=j

∀t : φInt
Bi (α, t) ⇒ ¬φObs

Bj (α, t)

Also, properties like composability and comparability can be expressed. The
former by

∀t : (φInt
A (α, t) ⇒ ¬φObs

B (α, t)) ∧
(φInt

B (α, t) ⇒ ¬φObs
A (α, t))

and the latter by
∀t : φObs

A (α, t) ⇔ φObs
B (α, t)

In general M2L is a very flexible logical language making it easy to write tense
time and interval temporal logic operators in a straightforward manner. As
examples, consider the past operator φBefore

σ,µ (α) defined by

∀t1. α(t1) = µ ⇒ ∃t0. t0 < t1 ∧ α(t0) = σ,

and the interval operator φBetween
σ (α, t1, t2)

∃t. t1 < t < t2 ∧ α(t) = σ

4.2 Automated proofs

Formulas (3), (4), and (5) are potentially very difficult, since they involve quan-
tification over behaviors, that is, over m second-order variables. Each quantifi-
cation can lead to an exponential blow-up. But if A has much internal behavior,
then it seems reasonable to use a more clever trace abstraction guided by A’s
internal events. In fact, it must be suspected that it is inappropriate that the
definition of R̂ does not involve A at all.

The canonical trace abstraction can be constrained by adding more precise
information about the connection between the internal behavior of system A
and B. This may reduce the blow-up—or even avoid it in the case a functional
regular trace abstraction is formulated.

We next turn to a substantial verification problem to illustrate our technique.

5 A specification problem

In this section, we consider the problem proposed by Broy and Lamport [3].
The first part of [3] calls for a specification of a reactive system consisting of a
number of sequential processes issuing blocking read and write calls to a memory
server. The memory server maintains its memory by performing special atomic
reads and writes whenever requested to do so by read and write calls. Depending
on the success of atomic reads and writes, return events contain the answers to
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read and write calls. The memory must be able to handle several calls (from
different processes) concurrently.

The second part of [3] calls for an implementation based on a remote pro-
cedure call protocol. The protocol involves a local and a remote party. Calls
received locally are forwarded to the remote site, where they are executed. The
resulting return events are propagated back to the local site. Altogether, we
deal here with four levels of calls and returns.

The goal of [3] is now to verify that every observable trace of the imple-
mentation (where atomic read and writes and the remote events are abstracted
away) is an observable trace of the specification.

The full informal description [3] includes many technical complications con-
cerning the parameters passed and different kinds of erroneous behaviors. A
detailed presentation of our solution can be found in [11].

In performing the verifications, we have limited ourselves to finite domains.
We have chosen to have two locations, two kinds of values, two kinds of flags,
and two process identities (in addition to the memory process). The resulting
program has approximately a hundred thousand states and the specification
approximately a thousand states. The systems allow thousands of different
events. The systems are modelled as deterministic automata. The full speci-
fication amounts to more than 13 pages of M2L formulas (written in a macro
language).

The aspect that we are interested in here is the use of trace abstractions.
Without going into any further details, we assume that the M2L formulas φP1 ∧
φP2 and φS1 ∧φS2 define the implementation and the specification, respectively,
of our solution. The universe U consists of τ and a number of parameterized
events: rd, wrt, rtn, atmrd, atmwrt, rpcCall, rpcRtn denoting reads, writes,
returns, atomic reads, atomic writes, rpc calls and rpc returns respectivly. For
example, rd : [?, obs, 1] is a read event, where the first parameter is unspecified,
the second is obs, which stands for an observable event, and the last parameter
1 denotes the process id. A similar notation is used for other events.

The Mona tool is currently not able to handle automata of the size corre-
sponding to the distributed program just discussed. Hence we prove the cor-
rectness of the implementation by using our composition rule. The obvious idea
is to try whether

φPi(α) ⇒ φSi(α)

holds (for i = 1 or i = 2; the formulas are symmetric). The Mona tool, however,
quickly determines that this formula is not valid. There is a counter-example of
length 12:

rd:[obs], rpcCall, rd, atmrd, rtn, rpcRtn,
rpcCall, rd, atmrd, rtn, rpcRtn, rtn:[obs]

where we have left out most of the parameters. The counter-example arises
because the specification system requires exactly one atomic read in every suc-
cessful read call, whereas the implementation is allowed to retry on failure.
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Fortunately, we can let Mona establish

φPi(α) ⇒ ∃β. R̂i(α, β), (6)

where R̂i(α, β)
def≡ φObs

Pi,Si
(α, β) ∧ φSi(α, β) is the canonical trace abstraction.

Thus, φPi implements φSi .
To avoid explicitly modeling the whole system at the implementation level,

we use the proof rule for compound systems. The compatibility premise of
Theorem 2.2 becomes:∧

i

∃βi : R̂i(α, βi) ⇒ ∃β :
∧
i

R̂i(α, β) (7)

However, the existential quantification on the right hand side of the implication
leads to a state explosion that cannot be handled by the Mona tool.

Instead, we can exploit the information that the counter-example provided
to formulate a more precise trace abstraction. So we have defined predicates
that in more detail describe how internal events at one level relate to internal
events at the other level. For example, we may add our intuition that between
any successful read and its corresponding return at the implementation level
only the last atomic read is mapped to an atomic read on the specification level.
This formula, which we denote by ψi, looks like:

∀t1, t2. (t1 < t2 ∧
α(t1) = rd : [?, obs, i] ∧
α(t2) = rtn : [?, ?, normal, obs, i] ∧
¬φBetween

rd:[?,obs,i]
(α, t1, t2) ∧

¬φBetween
wrt:[?,?,obs,i]

(α, t1, t2))
⇒

(∃t. t1 < t < t2 ∧
α(t) = β(t) = atmrd : [?, ?, ?, i] ∧
¬φBetween

atmrd:[?,?,?,i](α, t, t2) ∧
¬φBetween

atmrd:[?,?,?,i](β, t1, t) ∧
¬φBetween

atmrd:[?,?,?,i](β, t, t2))

We define the new trace abstractions Ri(α, β) to be equal to R̂i conjoined
with the ψi and two other similar predicates (one stating that any event on
the program level—but an atomic read—is matched by the same event on the
specification level; the other stating that an atomic read event on the program
level is matched by either an atomic read event or a τ event on the specification
level). With Ri, the Mona tool proves formulas (6) and (7) within minutes.

The compatibility property (7) is stated in a single M2L formula of size
105 with approximately 32 visible variables at the level of deepest nesting (cor-
responding to an alphabet size of 232). During its processing automata with
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millions of BDD nodes are created. The proof required user intervention in
the form of an explicit (but natural) ordering of BDD variables. Also, we have
supplied a little information about evaluation order in the form of parentheses.

6 Conclusion

We have offered a practical alternative to the use of refinement mappings. We
have indicated how the user contribution of information about behavioral simi-
larities directly can be used to reduce the computational work involved in guess-
ing internal events when two distributed systems are compared.

Our method is entirely formulated within M2L: state machines, temporal
properties, finite domains, and verification rules all take on the syntax of the
Mona system.

Our experiments show that very complex temporal logic formulas on finite
segments of time can be decided in practice—quite in contrast to the situation
for temporal logic on the natural numbers.
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A Proof of Theorem 2.1

Proof: Only if:
Assume that R is a trace abstraction from A to B.
Let η ∈ Obs(A). Then there exists a trace α ∈ LA ⊆ NU (A) such that
η = π(α). By 2.) and 3.) of Definition 2.2 there exists a β ∈ NU (B) such
that αRβ and hence by 1.) of Definition 2.2 such that π(α) = π(β). Hence
η = π(α) = π(β) ∈ Obs(B).
If:
Assume Obs(A) ⊆ Obs(B). Define R = {(α, β) | β ∈ NU (B) ∧ π(α) = π(β)} ⊆
U∗ × U∗. We prove that R is a trace abstraction from A to B. Clearly, 1) and
3) of Definition 2.2 are satisfied. To see that 2) is satisfied let α ∈ NU (A). Then
π(α) ∈ Obs(A) ⊆ Obs(B) by assumption. Hence there exists a β ∈ LB ⊆ NU (B)
such that π(α) = π(β). Thus αRβ and therefore α ∈ domR. 2

B Proof of Theorem 2.2

Proof: The key is that the Ri’s are trace abstractions on U∗×U∗. Assume (1)
and (2).
By Theorem 2.1, it is enough to prove that

⋂
i Ri is a trace abstraction from

‖Ai to ‖Bi on U∗ × U∗.
We show that

⋂
i Ri satisfies 1.)-3.) of Definition 2.2.

1.) Obvious.

2.) NU (‖Ai) =
⋂

i NU (Ai) ⊆
⋂

i dom Ri ⊆ dom
⋂

i Ri.
The first inclusion follows from assumption (1) and Definition 2.2(2). The
second inclusion from assumption (2).

3.) rng
⋂

i Ri ⊆
⋂

i rng Ri ⊆
⋂

i NU (Bi) = NU (‖Bi).
The second inclusion follows from assumption (1) and Definition 2.2(3).

2

C Proof of Corollary 2.1

Proof: Assume that ΣInt
Bi

∩ ΣInt
Bj

= ∅ for every i 6= j and that Ai implements
Bi. Let ΣObs

i = ΣObs
Ai

= ΣObs
Bi

, ΣObs = ΣObs
‖Ai = ΣObs

‖Bi , and let π, πi and hi be the
projections from U∗ to (ΣObs)∗, (ΣObs

i )∗ and (ΣBi )∗, respectively. By Theorem
2.1, there exist trace abstractions from Ai to Bi. Let Ri be the largest such,
that is Ri = {(α, β) | β ∈ NU (Bi) ∧ πi(α) = πi(β)}.
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We first prove that if Ri is a trace abstraction then also R′i given by Ri ∩
{(α, β) | π(α) = π(β)} is a trace abstraction. Clearly, it is sufficient to show that
for all α ∈ U∗ if there exists a β ∈ NU (Bi) such that πi(α) = πi(β) then there
exists a β′ ∈ NU (Bi) such that π(α) = π(β′). To show this assume that α ∈ U∗
and β ∈ NU (Bi) such that πi(α) = πi(β). Then hi(β) ∈ LBi ⊆ NU (Bi) and
πi(hi(β)) = πi(α) = o1 . . . om, where oj ∈ ΣObs

i . Let α1, . . . , αm+1 ∈ (U−ΣObs
i )∗

and β1, . . . , βm+1 ∈ (ΣInt
Bi

)∗ be such that

α = α1o1α2 . . . αmomαm+1,

hi(β) = β1o1β2 . . . βmomβm+1

then

β′ = π(α1)β1o1 . . . π(αm)βmomπ(αm+1)βm+1

is in NU (Bi), since hi(β′) = hi(β) as π(αi) ∈ (ΣObs − ΣObs
i )∗ and clearly

π(α) = π(β′).

We next prove that
⋂

i dom R′i ⊆ dom
⋂

i R′i and hence the result follows
from Theorem 2.2. Given α ∈

⋂
i dom R′i. Let

α = α1o1α2 . . .αmomαm+1

where oj ∈ ΣObs and αj ∈ (U − ΣObs)∗. Then there exists

β1 = β1
1o1 . . . β1

momβ1
m+1 ∈ NU (B1)

...
βn = βn

1 o1 . . . βn
momβn

m+1 ∈ NU (Bn)

where βi
1, . . . , β

i
m+1 ∈ (ΣInt

Bi
)∗ such that αR′iβi. Hence

η = β1
1 . . . βn

1 o1 . . . β1
m . . . βn

momβ1
m+1 . . . βn

m+1

is in NU (‖Bi), since hi(η) = βi as ΣInt
Bi

∩ΣInt
Bj

= ∅ for i 6= j, and thus α(
⋂

i Ri)η.
2

D Proof of Proposition 4.1

Proof: Assume that NU (A) ⊆ dom R̂ then by Definition 4.2, R̂ is a trace
abstraction, c.f. Definition 2.2.

To see that R̂ is regular consider the following definition.
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Definition D.1 Let DU and DB be the deterministic finite automata associated
with the sets of normalized traces of the finite system B and the universe U ,
respectively. Define from these a non-deterministic automaton DU ⊗DB on the
alphabet U × U as follows. The initial state is the pair of initial states. A state
is accepting iff it is a pair of accepting states. The transition relation is given

by the set {(s, s′)
(a,b)→ (t, t′)|s a→ t ∧ s′

b→ t′ ∧ ((a 6∈ ΣObs ∧ b 6∈ ΣObs) ∨ a = b)}
The product automaton lock steps the two automata forcing observable

events to be synchronized and guessing the right pair otherwise.
Let α = α1 . . . αn ∈ U and β = β1 . . . βn ∈ U . Assume α∧β ∈ L(DU ⊗ DB).

Then there exists an accepting run

(s0, t0)
(α1,β1)→ (s1, t1)

(α2,β2)→ . . .
(αn,βn)→ (sn, tn)

of DU ⊗ DB and it is now trivial to check that α and β are ΣObs-synchronized
and that β ∈ NU (B). Hence α∧β ∈ R̂. Conversely, assume that 1) α and β are
ΣObs-synchronized, 2) β ∈ NU (B). We prove that α∧β ∈ L(DU ⊗ DB). Since
α ∈ U∗ there exists an accepting run

s0
α1→ s1

α2→ . . .
αn→ sn

of DU and likewise, since β ∈ NU (B) there exists an accepting run

t0
β1→ t1

β2→ . . .
βn→ tn

of DB . Due to 1.) and Definition D.1 it follows that

(s0, t0)
(α1,β1)→ (s1, t1)

(α2,β2)→ . . .
(αn,βn)→ (sn, tn)

is an accepting run of DU ⊗ DB accepting α∧β.

Finally, since C is regular the last result follows trivially. 2

E Proof of Theorem 4.1

Proof: The only if direction is as in the proof of Theorem 2.1, c.f. appendix A.
We prove the if direction.
Let π be the projection from U∗ onto (ΣObs)∗.
Assume that A implements B. Let R̂ be the language defined in Definition 4.2.
According to Proposition 4.1, we only need to prove that NU (A) ⊆ dom R̂.
Let α ∈ NU (A). Then, since A implements B, π(α) ∈ Obs(A) ⊆ Obs(B), and
hence by assumption there exists a trace β ∈ LB such that α′ = h(α) ∈ LA is
internally finer that β, where h is the projection from U∗ onto Σ∗A.
Let π(α′) = π(α) = π(β) = o1 . . . on and

α = α1o1α2 . . .αnonαn+1,
α′ = α′1o1α

′
2 . . .α′non,

β = β1o1β2 . . . βnon
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where oj ∈ ΣObs, αj ∈ (U − ΣObs)∗, α′j ∈ (ΣInt
A )∗ and βj ∈ (ΣInt

B )∗. Note, that
since LA and LB are prefix-closed we can with out lose of generality assume
that α′ and β end in observable events. Since α′ is internally finer than β, it
follows that |α′i| ≥ |βi| for every i = 1, . . . , n, and since α′ is the projection of α
onto Σ∗A, it follows that |αi| ≥ |α′i| for every i = 1, . . . , n. Define

η = η1o1η2 . . . ηnonηn+1

where ηi = βiτ
|αi|−|βi| for i = 1, . . . , n and ηn+1 = τ |αn+1|. Hence we have the

required η such that αRη, since η and α are ΣObs–synchronized and η ∈ NU (B).
2
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