0G-G6-Sd SOldd

peayexo0] yum buibed aui7-uQ aannadwo) uQ :ianejsaig g

BRICS

Basic Research in Computer Science

On Competitive On-Line Paging with
Lookahead

Dany Breslauer

BRICS Report Series RS-95-50

ISSN 0909-0878 September 1995

Copyright (© 1995, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work

Is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recenpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540

DK - 8000 Aarhus C

Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/

ftp ftp.brics.dk (cd pub/BRICS)

On Competitive On-Line Paging with Lookahead

Dany Breslauer*

Abstract

This paper studies two methods for improving the competitive effi-
ciency of on-line paging algorithms: in the first, the on-line algorithm can
use more pages; in the second, it is allowed to have a lookahead, or in
other words, some partial knowledge of the future. The paper considers a
new measure for the lookahead size as well as Young’s resource-bounded
lookahead and proves that both measures have the attractive property
that the competitive efficiency of an on-line algorithm with k extra pages
and lookahead [depends on k4. Hence, under these measures, an on-line
algorithm has the same benefit from using an extra page or knowing an
extra bit of the future.

1 Introduction

The paging problem models a virtual memory computer system with K pages
of fast memory and N — K pages of slow memory. The system has to serve a
sequence of page requests. To serve a request, the requested page must be in
fast memory. If the page is not in fast memory, a page fault occurs, and the
page has to be brought into fast memory by evicting one of the pages already
in the fast memory and replacing it by the requested page. The paging problem
is that of deciding which page to evict from the fast memory. The performance
of a paging algorithm is measured as the number of page faults it makes. We
denote the number of page faults made by a paging algorithm .4 on the sequence
of pages o by Ca(0).

Belady [2] gave an optimal algorithm for the paging problem. His algorithm
evicts the page in fast memory that will not be requested for the longest time.
This algorithm is off-line in the sense that it requires knowledge of the future
requests. In contrast, a paging algorithm is said to be on-line if its decision of
which page to evict does not depend on future requests.

*Basic Research in Computer Science, Centre of the Danish National Research Founda-
tion, Department of Computer Science, University of Aarhus, DK-8000 Aarhus C, Denmark.
Partially supported by the ESPRIT Basic Research Action Program of the EC under contract
#7141 (ALCOM II).

In competitive analysis of on-line paging algorithms, the performance of an
on-line algorithm A is compared to that of an optimal off-line algorithm OPT.
Algorithm A is said to be h-competitive if C4(c) < h - Copr(c) + a, for all
request sequences o and some fixed constant a. Sleator and Tarjan [9] showed
that for any on-line paging algorithm A with K + k pages (of fast memory),
there exist request sequences o with Copr (o) arbitrarily large, such that,

They also showed that there exist on-line paging algorithms A, such that for
any request sequence o,

In other words % is the best competitive ratio achievable by an on-line pag-
ing algorithm with K 4+ k pages when compared to an optimal off-line paging
algorithm with IC pages.

If the on-line paging algorithms are allowed to make random choices, the
number of page faults C 4(o) is defined to be the expected number of page faults.
When a randomized on-line paging algorithm with K pages is confronted with
the oblivious adversary, an adversary that knows the behavior of the algorithm,
but can not see its random internal state, it has been shown by Fiat et al. [4]
that the best attainable competitive ratio is at least H(K), where H(K) =
1+ % + -+ % are the harmonic numbers. McGeoch and Sleator [8] gave
a randomized on-line paging algorithm that is H(KC)-competitive, improving a
2 - H(K)-competitive algorithm given by Fiat et al. [4].

Off-line and on-line algorithms are two extremes. An obvious generalization
that comes to mind is that of algorithms that are allowed to see some part of
the future request sequence before making their decision of which page to evict.
Such algorithms are called on-line algorithms with lookahead. Unfortunately, by
allowing an algorithm to see the next [requests, for any finite constant [, an on-
line algorithm does not gain any advantage in the worst case, since any request
sequence ¢ = o1, ...,0, can be replaced by the request sequence ol,...,0l in
which each request is repeated [times, thus, hiding the future requests from the
algorithm. Empirically, however, on-line algorithms benefit from using such a
lookahead and several authors have suggested other models for the evaluation
of on-line algorithms in which this lookahead makes a difference [3, 7, 6, 10].

Young [11] suggested an alternative measure for the lookahead size which
he calls resource-bounded lookahead. He showed that there exists an on-line

paging algorithm with resource-bounded lookahead I that has competitive ratio®

max {2 . %, 2}, and that no such algorithm can achieve a competitive ratio

Lookahead [in our notation corresponds to lookahead I 4 1 in Young’s notation.

Ktk+l
E+I+1
algorithm with C pages that is 2 - (In % + 1)-competitive and showed that no

such algorithm can attain a competitive ratio that is smaller than In # —

K+l _ 2
7 I

smaller than Young [11, 12] also gave a randomized on-line paging

Inln

Albers [1] defined another measure for the lookahead size that she calls
strong lookahead. Albers showed that under this measure, there exists an on-
line paging algorithm with I pages and strong lookahead I, 0 <1 < I — 2, that
has competitive ratio K — ! and that this competitive ratio is the best possible.
Albers also considered randomized paging algorithms with K pages and strong
lookahead I, 0 < [< K — 2, and proved that there exists an algorithm that
is 2 - H(K — I)-competitive and that no algorithm is better than H(K — I)-
competitive.

In this paper we define a new measure for the lookahead size, which we call
natural lookahead. We show that under this measure there exists a deterministic
on-line paging algorithm with I + k pages and natural lookahead [that has
competitive ratio ’,Ejrrlkjll and that this is the best attainable competitive ratio.
The same tight competitive bounds are shown also for Young’s resource-bounded
lookahead. Notice that these bounds have the attractive property that the
competitive ratio is a function of k 4+ [. Thus, under these measures for the
lookahead size, an on-line algorithm obtains the same benefit from using an
extra page or knowing an extra bit of future requests.

The paper is organized as follows. Section 2 introduces the basic terminology
and concepts. Section 3 shows that natural lookahead can be simulated by extra
pages and Section 4 gives the competitive bounds with natural and resource-
bounded lookaheads. Concluding remarks are given in Section 5.

2 Paging algorithms

Throughout the paper we compare the performance of an optimal off-line paging
algorithm OPT to that of an on-line algorithm A. The off-line algorithm OPT
has K fast memory pages. We adopt the notation A[k, [] for an on-line algorithm
A with lookahead ! and k extra fast memory pages (K + k fast memory pages in
total). An on-line algorithm without lookahead is denoted by A[k]. The overall
number of fast and slow memory pages is denoted by N.

There are few paging algorithms that we use in this paper. Belady’s optimal
off-line algorithm, denoted as algorithm OPT hereafter?, or OPT}, when it has
h fast memory pages, evicts the page in fast memory that will not be requested
for the longest time. The on-line algorithm LRUIk], which stands for least
recently used, evicts the page in fast memory that was not requested for the
longest time®. We only consider here demand paging algorithms that exchange
pages between the fast and the slow memories only when necessary.

20ften refered to in the literature as algorithm MIN.
3The results obtained in this paper for algorithm LRU can be similarly derived for ap-

We shall use Young’s [11] general lookahead model. In this model, a paging
algorithm has a lookahead queue whose content can be examined freely (time
and space are not an issue here). An on-line paging algorithm may either service
the current page request at the head of the queue (if there is one) or expose an
additional request and place it at the end of the queue (if there is one). The
three different lookahead definitions mentioned in the introduction differ in their
measure of the lookahead size.

Young’s [11] defined an on-line paging strategy to have resource-bounded
lookahead [if it will never incur more than [+ 1 page faults on the requests in
the lookahead queue. (Grove [5] considers a similar lookahead definition.) Notice
that with this definition, the lookahead queue depends on the algorithm’s past
behavior (which pages it currently has in fast memory) and its future behavior
(when the algorithm is to decide if it can extend its lookahead, it must consider
the precise number of page faults it will make on the requests it already sees in
the lookahead queue.)

Albers [1] defined an on-line paging strategy to have strong lookahead [if it
never has more than [+ 1 distinct page requests in the lookahead queue. Notice
that with this definition, the lookahead queue at each step may be defined
independently of the algorithm, to contain always [4+ 1 distinct page requests
(fewer if the request sequence has ended).

We define an on-line paging strategy to have natural lookahead [if at no time
it has in the lookahead queue more than [+ 1 distinct page requests that are not
currently in fast memory. Notice that with this definition, the lookahead queue
depends on the algorithm’s past behavior (which pages it currently has in fast
memory), but not on its future behavior. We argue in Section 3 that this seems
to be the most natural definition of the three lookahead measures mentioned
above.

It would be perhaps more intuitive to define the resource-bounded and nat-
ural lookahead measures to exclude the current request. Namely, an on-line
algorithm has resource-bounded lookahead [if it will not fault more than [
times on the requests it sees in the lookahead queue, excluding the current re-
quest; similarly, an on-line algorithm has natural lookahead [if it never has
more than [distinct requests in the lookahead queue that are different from the
current request and from the pages currently in its fast memory. If we measure
the lookahead size only when the current request is for a page that is not in fast
memory, these more intuitive definitions coincide with the original definitions.
Notice that if the current request is for a page that is already in fast memory,
the on-line algorithm does not need to evict any page and it may continue to
serve the next requests without consulting the lookahead queue.

The natural lookahead closely resembles the strong lookahead. In fact, under
both measures, the lookahead queue can be loaded regardless of which paging

propriate lookahead versions of other on-line paging algorithms, such as first-in first-out and
flush-when-full.

strategy is being used, since the lookahead does not depend on the future be-
havior of the algorithm. This is obvious for the strong lookahead where more
pages can be loaded until the lookahead queue contains [+ 1 distinct pages.
With the natural lookahead, however, one needs to be more careful: pages can
be loaded into the lookahead queue until it contains [+ 1 distinct pages that are
not currently in fast memory; when some page is being evicted, since we only
consider demand paging algorithms, one page is brought into fast memory and
one is evicted, so the number of distinct pages in the lookahead queue which
are not in fast memory is still bounded by [+ 1.

An interesting observation is that the natural lookahead is longer than both
the resource-bounded lookahead and the strong lookahead in the sense that it
always allows to see at least as many future requests. If I < K+ k — 1, then the
resource-bounded lookahead may also be longer than the strong lookahead.

The lookahead version of algorithm LRU is defined as follows:

After the lookahead queue is loaded, the algorithm evicts the page
that will not be requested for the longest time by consulting the
lookahead queue. If there is more than one such page, namely, if
there are two or more fast memory pages that are not requested
within the requests in the lookahead queue, the algorithm applies
the least recently used rule to these pages and evicts the page that
was not requested for the longest time.

As mentioned above, under the strong and the natural lookahead measures,
the lookahead queue can be loaded regardless of which algorithm is being used.
Under the resource-bounded lookahead measure, the lookahead queue of algo-
rithm LRUIk,] can be loaded so that LRU [k,] will fault on exactly [+ 1 pages
in the lookahead queue (or fewer if the request sequence has ended): if at some
point LRU [k, [] decides that it would not fault on a page in its lookahead queue,
it must keep that page in its fast memory from before; LRU [k,] never decides to
evict such a page because of some page that is requested later in the lookahead
queue.

The following lemma holds under all lookahead measures defined above.

Lemma 2.1 If algorithm LRUIk,l] faults twice on requests to the same page,
then the part of the request sequence between these two page faults contains
requests for at least K+ k + 1 distinct pages.

Proof: Let p be the page that is faulted twice. Consider the page request when
p is evicted, after the first page fault on p. If algorithm LRU |k, [] can see in the
lookahead queue the request causing the second page fault on p, then necessarily,
it sees before that request K + k distinct requests for other pages. Otherwise,
say it only sees in the lookahead queue requests for h < IC+ k — 1 distinct pages
that are currently in the fast memory. Of the remaining K + k — h fast memory
pages p has been requested least recently. Hence, since the last request for p,

there have been K + k — h requests for distinct pages, which together with the
current request and the h lookahead requests that are currently in fast memory
we get IC+ k + 1 distinct requests. O

Finally, we shall need the following lemma that allows us to compare the
performance of algorithm OPT when it starts with different configurations of
pages in its fast memory. We shall use the following notation: OPTS refers to
the optimal off-line algorithm OPT that starts with its h = |C| fast memory
pages containing the pages in C; C, C C' is the subset of pages in C that are
requested somewhere within the sequence o; we write C <¢ D, if for all but
at most ¢ pages d; € D,, there exist distinct pages ¢; € C, such that ¢; is
requested for the first time in o not later than the first request for d;.

o: l cmal c 1l hbij kdef
C: c a b d e f g
D: a h i j k

Figure 1: An example with C <2 D.

Lemma 2.2 Let C' and D be sets of pages initially in the fast memories of
OPTS and OPT? and assume that h > g. Then, for any request sequence o,

Copre(0) < Coprr (o) +[Ds \ C.
In addition, if C <% D, then
Copre(0) < Coprr(0).

Proof: Let 0 = 01,...,0,. Denote by C™ and D" the sets of pages in the
fast memories of OPTS and OPT? , respectively, after processing the requests

01,...,0, and let ¢, and d,, denote the number of page faults made by OPTS
and OPT? , respectively, while processing the requests o1, ...,0,. Define the
potential function,

®(n) =min{p >0 | C™ <2 D"},

—On+1,---,0p
We prove inductively that,
en <dp, — ®(n) + ¢(0).

The inductive claim holds vacuously when n = 0. There are four cases in proving
the inductive step, all are easy to verify.

o Ifo, €C" N D" ! then ¢, = cy_1, dp = d,,—1 and ®(n) = ®(n — 1).

eIfo, € C" ' and 0, ¢ D" !, then ¢, = ¢p_1, dy = dp_1 + 1 and
O(n) <P(n—1)+1.

Notice that if o, ¢ C™1, then by the definition of algorithm OPT, the
nearest future request for the page evicted by OPTS is not earlier than requests
for the other h —1 pages in its fast memory. Therefore, since h > g, this eviction
does not affect ®(n).

elfo, gC"tUuD" ! thenc, =c,1+1,d, =dy1+1and ®(n) <
d(n —1).

eIfo, ¢ C" ' and 0, € D" !, then ¢, = ¢o_1 + 1, d, = d,,_; and
®(n)=d(n—-1)— 1.

Since ®(p) > 0 and ®(0) < |D, \ C|, we get that,
¢p < dp — @(p) + (0) < dp + [Do \ O,

and if C' <Y D, then ®(0) =0 and ¢, < d,. O

3 Simulating lookahead

Young [11] observed that resource-bounded lookahead can be simulated by extra
pages. We give next a slightly more general simulation for the natural lookahead.
Notice that since the resource-bounded and the strong lookaheads are shorter
than the natural lookahead, extra pages can also simulate these lookaheads.
It is clear from the proof below, however, that the natural lookahead attains
the limits of this simulation method. We therefore believe that the natural
lookahead is a more natural measure for the lookahead size.

Lemma 3.1 Let Alk,l] be an on-line paging algorithm. Then, for any integer
c € {l,...,l}, there exists an on-line paging algorithm B[k + ¢,1 — c]|, such that
on any request sequence o,

CBlk+c,1—c) (0) < Capr,y(0).

Proof: Algorithm B[k + ¢,l — ¢| simulates algorithm A[k,], mimicing natu-
ral lookahead [by maintaining lookahead [— ¢ together with ¢ additional fast
memory pages.

The simulating algorithm B maintains IC 4+ k pages that correspond to the
K + k pages of algorithm 4. The additional ¢ pages are used to simulate the
lookahead. Initially, algorithm B keeps the K + k pages that contain the same
pages that were originally in algorithm A4’s fast memory and loads the first ¢
distinct page requests that are not in A’s fast memory into the ¢ additional
pages it has.

Current request Lookahead [
Algorithm A[k,] [] |

Algorithm B[k + ¢,l — ¢ | " " |

c distinct requests Current request Lookahead | — ¢

Figure 2: Simulating natural lookahead by additional pages: B[k +
¢, — c]’s additional pages keep ¢ distinct pages that are not currently
in A[k,[]’s fast memory.

Next, observe that the lookahead queue of algorithm B contains [— ¢ + 1
distinct page requests that are different from the I + k + ¢ pages in B’s fast
memory. These page requests together with the ¢ distinct pages that are in B’s
additional fast memory pages form the [+ 1 distinct pages in the lookahead
queue of algorithm A. See Figure 2.

Algorithm B can then “evict” the same page that is evicted by algorithm A
and “serve” A’s “current” request by swapping the roles of the page containing
the “current” request (one of the c additional pages) with one of the K+ k pages
containing the page to be evicted by A.

If the page evicted by A is not requested before B’s current request, then
algorithm B may serve its own current request by evicting the page that was
evicted by algorithm A4; load its lookahead queue until it contains [— ¢ + 1
distinct pages that are not currently in its fast memory (provided that the
request sequence has not ended); and then, continue serving the future requests
as long that they are for pages that are currently in its fast memory. It is clear
that algorithm B makes at most as many page faults as algorithm A does, but
somewhat in advance. O

4 Paging with lookahead

In this section we give tight lower and upper bounds on the competitive ratios
attainable by algorithms with natural or resource-bounded lookaheads.

Theorem 4.1 (Sleator and Tarjan [9]) Given an on-line paging algorithm
Alk], there exist request sequences o, such that Copr(c) is arbitrarily large,
and,

K+k

Car (o) > y -Copr(0),

provided that the number of pages N > K + k + 1.
As a simple consequence of the simulation in Lemma 3.1 and of the theorem

above, we obtain the following corollary for natural lookahead. This corollary
was first proved by Young [11] for resource-bounded lookahead.

Corollary 4.2 Given an on-line paging algorithm Alk, 1], there exist request
sequences o, such that Copr (o) is arbitrarily large, and,

K+k+1
> rTrre
Caen(9) 2 T3777

provided that the number of pages N > K +k+1+1.

-Copr(0),

Proof: By Lemma 3.1, given any paging algorithm A[k,[], there exists an
algorithm B[k + [], such that on any request sequence o,

Cak+1) (o) < Cafp,y (o).

By Theorem 4.1, given any algorithm B[k + [], there exist request sequences o
on N > K+ k +1+ 1 pages, with Copr (o) arbitrarily large, such that,

K+k+1
. < < . O
I Copr(0) < Cpryy(0) < Capr,(o)
We prove next that algorithm LRUIk,] with natural or resource-bounded
lookahead has competitive ratio which is the best possible by the corollary above.

Theorem 4.3 For any request sequence o,

K+k+1

< 7,{_’_14—1 'COPT(J)-l-]C.

CLRU[k,l] (o)
Proof: The proof given next is identical for the natural and the resource-
bounded lookaheads. Partition the request sequence o into phases t; #;, o =
ty &1 to ty -+ tp tm, such that for i = 2,...,m, t; contains precisely K +
k — 1 distinct requests that are different from the last request in ;4 ;1 and
algorithm LRU [k,!] makes exactly [+ 1 page faults on requests in t;. In the
first phase t1 t1, if t; contains fewer than K + k distinct page requests, then #;
is empty, and otherwise, if ¢; contains K + k distincts request, then LRU |k,]
faults at most [+ 1 times on requests in #;. The crucial property of this partition
is that when LRU |k,] starts handling the requests in t;, it has in its lookahead
queue all the requests in ; on which it will fault.

The partition can be easily constructed by grouping the requests from the
end of the request sequence towards its start repeating the following: the last
part of the request sequence on which LRU[k,[] faults [+ 1 times is #; the
preceding part of the request sequence that contains requests to K+ k—1 distinct
pages is t; t is extended to include all the preceding requests to pages already in
t, ensuring that the preceding request is not in t; t and ¢ are removed from the
end of the request sequence. The partitioning procedure above terminates when
the construction of ¢ £ can not be completed since the beginning of the request
sequence has been reached. Then, the remaining part of the request sequence

is partitioned into ¢; that contains the first requests to K + k distinct pages
(or fewer if there are not enough requests) and {, that contains the remaining
requests on which LRU [k,] makes no more than [+ 1 page faults.

Consider some phase t; t;, for i = 2,...,m, and let p; be the last page
requested in the previous phase t;_1 tiq. Then, t; contains K 4+ k — 1 distinct
page requests that are different from p; and LRUIk,] faults [4+ 1 times on the
requests in £;. By Lemma 2.1, LRU|[k,[] makes at most K + k — 1 page faults
on requests in ¢; and at most K + k + [page faults in the phase t; ;.

Assume that while handling the requests in ¢; algorithm O PT avoids making
page faults on the first requests in p; t; for s; distinct pages, and let §; denote
the number of pages that were not requested in p; t;, but are still in OPT"’s fast
memory when it is about to start handling the requests in ;. Then, algorithm
OPT must have kept these s; + §; pages in fast memory since the previous
phase. Since OPT has only K fast memory pages and one of these pages was
used for p;, we have that s; + §; < K — 1. Hence, OPT must make at least
K+k—s;—12>k+ 3; page faults while handling the requests in ¢;. We shall
prove next that OPT makes at least [— §; + 1 pages faults while handling the
requests in %;, establishing that it makes at least k 4+ [+ 1 page faults in the
phase t; i;.

Let C be the set of K + k pages that LRU [k, [] has in its fast memory when
about to start handling the requests in #; and recall that at this point LRU [k,]
has in its lookahead queue all the requests in #; on which it will fault. Hence,
by definition, LRU [k, (] makes exactly Cp pre,, (t;) page faults while handling

the requests in #;. Let D be the set of K + k pages that are requested in p; t;
and let E be the set of IC pages in O PT’s fast memory when it is about to start
handling the requests in ¢;. Then, clearly |E;, \ D| < 3; and by the definition of
algorithm LRU |k, 1], C ggi D. Therefore, by Lemma 2.2,

L+1=Copre, (ti) < Coprp, (t) < Copre(ti) + 4,

and by definition, algorithm OPT makes C, PTE (t;) > 1 — 3 + 1 page faults

while handling the requests in .

Similar analysis can be applied to the first phase, proving that LRU|k, !
makes at most K more page faults than OPT while handling the requests in
t1 t1. Putting this together with the fact that on each subsequent phase the
ratio between the number of page faults made by LRU [k,] and OPT is at most

’gil]ﬂ:rll, we get the desired bound. O

Remark. Observe that extra pages are strictly stronger than any lookahead
since the number of page faults made by an optimal off-line algorithm with C
pages can be arbitrarily large on request sequences that include K 4 1 distinct
pages, but there exist on-line algorithms with +1 pages that make at most +1
page faults on any such request sequence. If the number of pages N < K+ k+1,
then there exist on-line algorithms with natural lookahead which are as good

10

as the optimal off-line algorithm since the lookahead queue contains the whole
request sequence.

5 Conclusion

We have introduced the natural lookahead and given tight bounds on the com-
petitive performance of paging algorithms with natural and resource-bounded
lookaheads. Unfortunately, the practical value of lookahead, whether it is
Young’s resource-bounded lookahead, Albers’ strong lookahead or the natural
lookahead, seems to be very small, since all three lookahead measures require
the prediction of an arbitrarily long sequence of future request. On the other
hand, in practice, it might be extremly easy to add extra fast memory pages.
Our results establish the tight relation between these two methods for improv-
ing the performance of on-line paging algorithms with resource-bounded and
natural lookaheads. The precise relation between extra pages and lookahead in
randomized algorithms, and between extra pages and Albers’ strong lookahead,
remains to be explored.

6 Acknowledgments

We thank Susanne Albers and Adi Rosen for discussions and comments.

References

[1] S. Albers. The Influence of Lookahead in Competitive Paging Algorithms.
In Proc. 1st European Symposium on Algorithms, number 726 in Lecture
Notes in Computer Science, pages 1-12. Springer-Verlag, Berlin, Germany,
1993.

[2] L.A. Belady. A study of replacement algorithms for a virtual-storage com-
puter. IBM Systems Journal, 5(2):78-101, 1966.

[3] S. Ben-David and A. Borodin. A New Measure for the Study of On-Line
Algorithms. Algorithmica, 11:73-91, 1994.

[4] A. Fiat, R. Karp, M. Luby, L. McGeoch, D.D. Sleator, and N.E. Young.
Competitive Paging Algorithms. J. Algorithms, 12:685—699, 1991.

[5] E.F. Grove. Online Bin Packing with Lookahead. In Proc. 6th ACM-SIAM
Symp. on Discrete Algorithms, pages 430—436, 1995.

[6] E. Koutsoupias. On-Line Algorithms and the k-server Conjecture. PhD
thesis, Dept. of Computer Science and Engineering, University of Califor-
nia, San Diego, 1994.

11

7]

[12]

E. Koutsoupias and C.H. Papadimitriou. Beyond Competitive Analysis.
In Proc. 35th IEEE Symp. on Foundations of Computer Science, pages
394-400, 1994.

L.A. McGeoch and D.D. Sleator. A strongly competitive randomized paging
algorithm. Algorithmica, 6:816-825, 1991.

D.D. Sleator and R.E. Tarjan. Amortized Efficiency of List Update and
Paging Rules. Comm. of the ACM, 28(2):202-208, 1985.

E. Torng. A Unified Analysis of Paging and Caching. In Proc. 36th IEEE
Symp. on Foundations of Computer Science, 1995. To appear.

N. Young. Competitive Paging and Dual-Guided On-Line Weighted
Caching and Matching Algorithms. PhD thesis, Dept. of Computer Sci-
ence, Princeton University, 1991.

N. Young. On-Line Caching as Cache Size Varies. In Proc. 2nd ACM-SIAM
Symp. on Discrete Algorithms, pages 241-250, 1991.

12

Recent Publications in the BRICS Report Series

RS-95-50 Dany Breslauer. On Competitive On-Line Paging with
Lookahead September 1995. 12 pp.

RS-95-49 Mayer Goldberg. Solving Equations in theX-Calculus
using Syntactic EncapsulationSeptember 1995. 13 pp.

RS-95-48 Devdatt P. Dubhashi.Simple Proofs of Occupancy Tail
Bounds September 1995. 7 pp.

RS-95-47 Dany BreslauerThe Suffix Tree of a Tree and Minimizing
Sequential TransducersSeptember 1995. 15 pp.

RS-95-46 Dany Breslauer, Livio Colussi, and Laura Toniolo.On
the Comparison Complexity of the String Prefix-Matching
Problem August 1995. 39 pp. Appearsin Leeuwen, editor,
Algorithms - ESA '94: Second Annual European Sympo-
sium proceedingsLNCS 855, 1994, pages 483-494.

RS-95-45 Gudmund Skovbjerg Frandsen and Sven SkyumDy-
namic Maintenance of Majority Information in Constant
Time per Update August 1995. 9 pp.

RS-95-44 Bruno Courcelle and Igor WalukiewiczMonadic Second-
Order Logic, Graphs and Unfoldings of Transition Systems
August 1995. 39 pp. To be presented at CSL '95.

RS-95-43 Noam Nisan and Avi WigdersonLower Bounds on Arith-
metic Circuits via Partial Derivatives (Preliminary Ver-
sion). August 1995. 17 pp. To appear ir86th Annual Con-
ference on Foundations of Computer ScienceOCS '95,
IEEE, 1995.

RS-95-42 Mayer Goldberg. An Adequate Left-Associated Binary
Numeral System in the\-Calculus August 1995. 16 pp.

RS-95-41 Olivier Danvy, Karoline Malmkjeer, and Jens Palsberg.
Eta-Expansion Does The TrickAugust 1995. 23 pp.

RS-95-40 Anna Inglfsdottir and Andrea Schalk. A Fully Abstract
Denotational Model for Observational CongruenceAu-
gust 1995. 29 pp.

