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Abstract

Syntactic encapsulation is a relation between an expression and one of
its sub-expressions, that constraints how the given sub-expression can
be used throughout the reduction of the expression. In this paper, we
present a class of systems of equations, in which the right-hand side of
each equation is syntactically encapsulated in the left-hand side. This
class is general enough to allow equations to contain self-application,
and to allow unknowns to appear on both sides of the equation. Yet
such a system is simple enough to be solvable, and for a solution
(though of course not its normal form) to be obtainable in constant
time.
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1 Introduction

1.1 Syntactic Encapsulation and Systems of Equa-
tions

In this paper, we introduce the notion of syntactic encapsulation, and explore
its relevance to solving systems of equations in the untyped A-calculus.

The central result of the paper is Theorem 3.1, which lists sufficient con-
ditions for the existence of solutions to a particular system of equations.
Solving the system characterised by Theorem 3.1 does not involve searching
through a space of possible solutions: the solution is generated in constant
time.

We present two applications of our main theorem. In the first, we show
that a one-point basis can be constructed for the A—K calculus extended by
finitely many constants. In the second application, we show that the problem
of filling in a magic square, adapted to the A-calculus, is solvable.

1.2 Prerequisites and Notation

We assume some familiarity with the A-calculus [1, 2]. Applications are
by default left-associative, and A-abstractions are Curried. 7 abbreviates
x1,. .., Ty [1, Ttem 2.1.3, Page 22| The set of terms generated by a set S is
denoted by §*. The symbol @ (pronounced “arb”) denotes an arbitrary A-
term. The set of free variables in a A\-term M is given by FreeVars(M).
The Boolean false and true are given by Azxy.y and Axy.xr, respectively.
Negation is given by not = Az.(x F T). Conjunction is denoted by
and = (Azy.(z (y T F) F)). For any terms M, N, the ordered-pair [M, N]
is given by A\zx.(x M N), where z ¢ FreeVars(M) U FreeVars(N), and
the first and second projections are given by 7% = Ap.(p (Axy.z)) and
5 = A\p.(p (Azy.y)), respectively. A proper combinator [5, Chapter 5C]
is a term of the form AZ.M, where M € {Z}". The n-th Church numeral is
denoted by "n'. Definitions for "n ', the successor, predecessor, test for zero,
and test for equality on Church numerals are given by
n' = ey (z---(z y)--)

—
n times

Succ?, . = Ansz.(s (n s z))



Pred?,,,., = An.(r} (n (p[(Succt,,,., (v p).(x? p))) [07.707))

h
Zero?, . = An.(n (K F)True)
Equal? = Anm.(and (Zero?, . (n Pred?, . m))

"Church
(ZerO?Church (m Pred?church n)))

respectively. The following combinators are used throughout this paper:
I = Mz, K = \xyx, B = Mayz.(x (y2)), C = dzyz.(z z y), S =
Aryz.(z z (y z)). Finally, the reflexive, transitive closure of the one-step
reduction — is given by —.

2 Syntactic Encapsulation

Syntactic encapsulation can be seen as a relation between an expression and
one of its sub-expressions, that specifies how the given sub-expression can be
used throughout the reduction of the expression:

2.1 Definition: Syntactic Encapsulation. A A-term M is said to
syntactically encapsulate a A»-term N if:

1. N occurs as a subexpression in M.

2. For all M’ such that M —M’, and N occurs as a sub-expression in M’,
such an occurrence is not in the functional position of an application.

Occurrences of sub-expressions are, of course, modulo a-equivalence.

When an expression N is syntactically encapsulated in an expression M,
no assumption about N is made in M: N can be passed around, returned
or discarded, but it can never be applied. In the next section we solve a
system of equations, in which expressions on the left-hand side syntactically
encapsulate expressions on the right-hand side. When the algorithm for
solving such a system of equations is translated into a computer program,
the terms on the right-hand side can therefore be of any type: They can
be procedures, strings, numbers, arrays, etc. Their type is immaterial, since
they will never be used as procedures.



3 Systems of Equations

Many problems in the A-calculus can be reduced to solving a system of equa-
tions of the following form:

(Plxl"'xn) =
: (1)
(mel"'xn) = Qn

where P = {F;}/L, and Q = {Q;}}%, are given for some m,n € N, and we
need to solve for zy,...,z,. Surprisingly, perhaps, there exist such systems
which can be solved without making any assumptions about what Q1, ..., @
really are. In such situations, we are able to abstract over the ();’s, so that
we could automatically solve the system for any particular {Q;}72,. Such
systems syntactically encapsulate Q1, ..., Qm.

Of course, not all systems of equations of the form (1) have a solution:
For example, when ¢ # j and F; = P; but not ); = @, the system is
inconsistent, and has no solution. Similarly, if F; is a sub-expression of P;,
there may or may not be solutions.

The following theorem describes sufficient conditions on P and Q for the
system in (1) to have a solution.

3.1 Theorem: LetP={F, ={A\x1- - xn.Byp: By € {x1,...,z,} " }}7,
be a sequence of m proper combinators (each taking n arguments), and let
Q = {Qk}~, be a sequence of m A-terms, such that:

e For all i # j, B, is not a proper sub-expression of B;.
e For all 4,7, if P, = P}, then @Q); = Q;.

then the system in (1) can be solved for & = x1, ..., z,.
The following facts hold for the given system of equations and its solution:

e If O is a sequence of combinators, then x4, ..., z, can be chosen to be
combinators as well.

e Terms in @ may contain as free variables any of z1, ..., z,, for which
we are solving.

e For any given system, specified by particular P and Q, there exist
countably many solutions & that are not a/fn-equivalent to each other.
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Before we proceed with the actual proof, we note that since members of P
are proper combinators they have the effect of permuting and associating &
arbitrarily.

Proof: In order to recognise and distinguish between various possible
permutations of zy,...,x,, we need an injection from {zi,...,z,}1 into a
set on which an equality predicate is A-definable. We choose to use LISP
S-expressions [6], so that the solution can translate easily into the Scheme
dialect of LISP [3].

We encode the n-th variable using "n ', the n-th Church numeral [1, 2],
and we encode an application (M N) as a pair of the encoding of M and the
encoding of N. Since we need to distinguish between variables and applica-
tions, we tag encodings of variables with the Boolean F, and encodings of
applications with a Boolean T. The j-th variable is thus encoded as [F," j .
As a convention, we let [F," 0] represent the empty list. We now define:

Empty-List = [F,F] (2)
cons = \ab.[T,[a,b]]
car = A\z. (7r1 (72 )

cdr = Mx.(n2 (73 z))
list = Azy.(cons z (cons y Empty-List))
Encode-Variable = Mn.[F,n]

atom? = \z.(not (77 2))
null? = \z.(atom? (Zero?, . (73 z))F)
pair? = Mo.(riz TF) = Wf
equal? = (® (Aes;sq.(an (pa1r‘7 s1) (pair? s)
(and (e (car s;) (car sq))

(e (cdr s1) (cdr s3)))
(and (atom? s;) (atom? s)
(Equal?_ (75 s1) (73 s2))

F))))

where @ is any fixed-point combinator

For each P; = (Avy---z,.B;) € P we can encode B; as the list Bj. For
example, let P; = Avyzox3.(x1 3 (22 x3)). We have B; = ((z1 x3) (22 x3)).



The encoding of B; is given by

B;- = (cons (cons (Encode-Variable "1')
(Encode-Variable '3 "))
(Encode-Variable "2")

(Encode-Variable "3 ")))

(cons

We now construct an environment env, that associates B;-’s with their re-
spective @;’s. We need to know if a lookup in env, was successful, and so
we tag the ();’s by pairing them with the Boolean value T; If the lookup
fails, it doesn’t really matter what is returned so long as we can identify the
lookup as a failure, so we return [F, @], which is a pair of the Boolean value
F, with any A-term (denoted by @). The environment is defined as follows:

env, = Mz.(equal? z B [T, Q] (4)
(equal? z B} [T, Q-]

| (equal? z B! [T, Q)
[F, 1))

As stated earlier, the role of the sequence P is to permute and associate
T1,..., %, The application (Pj x;...x,) needs to construct Bj so that it
could be looked up in the environment env,. To accomplish this, we exploit
the following property of the standard representation for ordered pairs in the
A-calculus: For any A-terms M, a, b, we have

([M,a] [M,b]) —> (M Mba) (5)
So M is passed a copy of itself, as well as a and b. We define M as follows:

M = dmba.((Ae.((Av.(72 v (72 v) (6)
[m, c]))

(env, c)))
(list a b))

Given that a,b in (5) are encodings of either variables or applications, M

constructs an encoding of the application ([M,a] [M,b]). This encoding is
then looked up in the environment env,,. If it is found in the environment,

6



then the respective (Q; is returned. Otherwise, M is paired with the new
encoding.
If we assume that

{z1,...,2,} N | FreeVars(Q;) = 0 (7)
j=1
i.e. that the ();’s do not contain any of zi,...,z, as free variables, we can
let
z; = [M,(Encode-Variable ;)] (8)
and have
(Pjxy---2z,) —> (env, B;) 9)

However, since the condition in (7) is not a requirement of the theorem, we
must fiz any free occurrence of the zi,...,z, in the @);’s by using mutual
fixed-point combinators.

Recall the definition of a mutual fixed-point combinator:

3.2 Definition: Mutual Fized-Point Combinators. The A-terms
®q, ..., P, are said to be mutual fized-point combinators if for any A-terms
xi,...,T, we have:

(@ 21 20) = (2 (D) a1+ 30) - (D @1+ 1)) (10)

for j € {1,...,n}

Constructions for mutual fixed-point combinators in the A-calculus are well-

known. For an example, see Barendregt’s text [1, Ttem 6.5.2, Page 142].
Let {®;}7_; be such a sequence of mutual fixed-point combinators. We now
define

z; = (®; (Avy---2,.[M,(Encode-Variable "1')]) (11)

(Azy - - - 2,.[M, (Encode-Variable 'n')]))
for j € {1,...,n}



The solution to the system of equations is given by ¥ = 1, ..., z,. Note that
each of the z; syntactically encapsulates Q1,. .., Qn.

Finally, for any particular system of equations given by P and Q, there
exist countably many solutions which are not afGn-equivalent. To show this,
we note that no assumption were made throughout the proof, about the
value of m, which corresponds to the number of equations in a given system:
So long as the conditions on P and Q are met, such a system can be solved
regardless of m. For a system S of equations, we can find, using the procedure
outlined in the proof, values for x1, ..., x,, for which the system is satisfied.
We can extend the system S into a system S’ by adding additional equations
(so long as the constraints on the P;’s and the @),’s are still met). Using

the procedure outlined in the proof, we derive z/, ..., z!, which are not a3n-
equal to x4, ..., z,, and which solve both §" as well as S. This completes the
proof. W

3.3 Corollary: A basis of n terms can be reduced into a basis of 1
term, by syntactically encapsulating these n terms.

Proof: Let Q@ = {Q;}}_, be a sequence of n terms. Let P = {F;}}_, be
defined as follows:

P = Xu.(z (z (12)

It follows from Theorem 3.1 that there exists a term z such that for j €
{1,...,n}, we have:

(P 2) — (v (2 -2))

e (13
So {z} is a basis for Q. B

We now consider two applications of Theorem 3.1 and Corollary 3.3:
3.4 Application: The immediate application of Corollary 3.3 is the
construction of a 1-point basis for the A-calculus with [finitely many]| con-
stants [7]. We know that {S, K} form a basis for the A-calculus [1, Item 8.1.2,
Page 165]. So, for example, let A° be the set of all terms generated by S, K,



and a constant c. A basis for A can be generated as follows: Let

Q1 = S
@ = K (14)
Qs = ¢

For all j € {1,2,3}, let P; be defined as in Corollary 3.3. This corollary
guarantees the existence of a term x, such that

(z (zx)) — S
(x (xzxx) — K (15)

(x(xxxx) — C

We have the mechanism for encapsulating n terms into a 1-point basis im-
plemented in the Scheme programming language [3]:

> (define X (MakeBasis addl 6 "Hello World!"))
> X

#<procedure>

> (X (X X))

#<system procedure 1+>

> (X (X X) X))

6

> (X (X X) X) X))

"Hello World!"

> (X (X X)) (X (X X) X))
7

>

The above transcript clearly shows why syntactic encapsulation is essen-
tial for this application: We must guarantee that constants such as strings
and numbers do not appear in the functional position in an application.
3.5 Application: Tragic Squares. Consider the problem of filling a
magic square adapted to the A-calculus: A magic square is an n X n matrix to
be filled with integers. With each magic square we associate a sum, which is
a number the entries in each row, column and diagonal must add up to. For
example, a 3 x 3 magic square with a sum of 15 can be filled in the following
way:



8116
31517
41912

We extend the notion of a magic square to that of a tragic square. A tragic
square is an n X n matrix, for which we are given the cover, i.e. a separate
value for each row, column and diagonal to add up to. A magic square is
simply a special case of a tragic square where all the sums in the cover must
be equal, and therefore filling a magic square is a simpler problem than that
of filling a tragic square. We can extend the problem to higher dimensions by
noting that a k + 1-dimensional hypercube will have a k-dimensional cover.

Finally, we adapt the problem of filling a tragic square to the A-calculus:
Rather than filling each entry of the n x n square with an integer, we shall
fill each entry with a A-term; Rather than adding up rows, column and
diagonals we shall apply entries to each other, in order, along rows columns
and diagonals; And finally, rather than supply a cover of integers to which
the rows, columns and diagonals should add up, we shall supply a cover of
A-terms to which the various rows, columns and diagonals should g-reduce.
The adapted problem is different in several significant ways from its number-
theoretic ancestor:

e Because application is not commutative in the A-calculus, we need to
specify all the values in the cover.

e Because application is not associative in the A-calculus, we need to
specify how the application associates. For example, concerning the
first row of the following 3 x 3 square

11 | L12 | 13
T21 | L22 | T23
L31 | 32 | L33

we can apply the entries of ‘ T ‘ T1o ‘ T13 ‘ in two ways: FEither
((x11 x12) x13) or (w11 (w12 x13)). The order of application of the vari-
ous rows, columns and diagonals can be handled quite conveniently by
choosing the sequence P = { Py }x=1 of proper-combinators appropri-
ately. In fact, by associating a pair (P, Q) with each possible group-
ing of entries of each row, column and diagonal, it is possible to specify
a cover that includes a value for any possible association of entries.

10



Theorem 3.1 guarantees the existence of countably many solutions for
any k-dimensional tragic square, whereas the number-theoretic problem of
filling a tragic square doesn’t always have a solution.

4 Conclusion and Issues

4.1 Syntactic Encapsulation

In this paper, we introduced the notion of syntactic encapsulation, which is
essentially a constraint on how a sub-expression can be used throughout the
reduction of an expression. Imposing this additional constraint on a system
of equations guarantees that the solutions obtained are extremely general.

Theorem 3.1 solves a system of equations by syntactically encapsulat-
ing the expressions on the right-hand side of the system. The variables we
are solving for, however, may appear as free variables in expressions on the
left-hand side as well, which allows for the possibility of circularity in the
solutions. In our Ph.D. thesis [4] we explore in detail the implications of
such circularity.

4.2 The M-I Calculus

The M -calculus [2] is a restricted form of the A-calculus, where the variable
of a Ad-abstraction must occur free in the body of the A-abstraction. Thus, for
example, K = Azxy.z isnot in the M -calculus. Using syntactic encapsulation
within the A\—1 calculus introduces special difficulties, because a general
selection mechanism (as in (4)) is not possible (for lack of the K combinator).
When information about the I-solvability [1, Item 2.2.10, Page 41] of the
syntactically encapsulated expressions is available, it is often possible to use
syntactic encapsulation until a selection becomes necessary, and then use I-
solvability, which clearly violates the conditions of syntactic encapsulation.
In this manner, however, a one-point basis can be generated, for example, for
the A—I calculus, by syntactically encapsulating the I, B, C, S combinators,
which form a basis for the A I -calculus, and all of which are I-solvable.

11



4.3 One-Point Basis

Several one-point bases are known for the pure A I and K calculi. In this
paper, however, we show how to construct a one-point basis for a A-calculus,
even if this calculus has been extended with finitely many constants.

We have implemented the mechanism for creating such a one-point basis
in the Scheme programming language, and the transcript of Item 3.4 makes
it intuitively clear why syntactic encapsulation is needed for this application:
Some of the constants we are encapsulating in our example (e.g. strings and
integers) cannot be applied to other expressions.

An alternate derivation of a one-point basis, which uses syntactic encap-

sulation as well, but which can be implemented more efficiently, can be found
in our Ph.D. thesis [4].

4.4 Systems of Infinitely-Many Equations

Under certain conditions it is possible to extend Theorem 3.1 to solve systems
of infinitely many equations. This is desirable, for example, in order to
construct a basis for the MK calculus extended by countably many constants.
We discuss some results in this area in our Ph.D. thesis [4].
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