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On the Comparison Complexity of the String
Prefix-Matching Problem

Dany Breslauer∗ Livio Colussi† Laura Toniolo‡

Abstract

In this paper we study the exact comparison complexity of the string
prefix-matching problem in the deterministic sequential comparison model
with equality tests. We derive almost tight lower and upper bounds on
the number of symbol comparisons required in the worst case by on-line
prefix-matching algorithms for any fixed pattern and variable text. Unlike
previous results on the comparison complexity of string-matching and
prefix-matching algorithms, our bounds are almost tight for any particular
pattern.

We also consider the special case where the pattern and the text are the
same string. This problem, which we call the string self-prefix problem, is
similar to the pattern preprocessing step of the Knuth-Morris-Pratt string-
matching algorithm that is used in several comparison efficient string-
matching and prefix-matching algorithms, including in our new algorithm.
We obtain roughly tight lower and upper bounds on the number of symbol
comparisons required in the worst case by on-line self-prefix algorithms.

Our algorithms can be implemented in linear time and space in the
standard uniform-cost random-access-machine model.
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1 Introduction

In the string prefix-matching problem one is interested in finding the longest
prefix of a pattern string P[1..m] that starts at each position of a text string
T [1..n]. The output of the problem is an integer array Φ[1..n], 0 ≤ Φ[t] ≤
min(m, n−t+1), such that for each text position t, T [t..t+Φ[t]−1] = P[1..Φ[t]]
and if Φ[t] < m and t + Φ[t] ≤ n, then T [t + Φ[t]] 6= P[Φ[t] + 1].

The string prefix-matching problem is a natural generalization of the stan-
dard string-matching problem where only complete occurrences of the pattern
are sought. The classical linear-time string-matching algorithm of Knuth, Mor-
ris and Pratt [32] can be easily adapted to solve the prefix-matching prob-
lem in the same time bounds without making additional symbol comparisons1.
This observation was first made by Main and Lorentz [35] who used a prefix-
matching algorithm to detect repetitions in strings. In the parallel setting,
Galil’s [22] string-matching algorithm also solves the prefix-matching problem.
Breslauer [5] and Hariharan and Muthukrishnan [31] gave more efficient parallel
algorithms and recently Ga̧sieniec and Park [27] obtained a time-work optimal
parallel prefix-matching algorithm. Prefix-matching algorithms have also been
used in the sequential two-dimensional pattern-matching algorithms of Amir,
Benson and Farach [2] and Galil and Park [25] and in an early version of the
parallel two-dimensional pattern-matching algorithm of Cole et al. [11].

In this paper we study the exact number of comparisons performed by de-
terministic sequential prefix-matching algorithms that have access to the input
strings by pairwise symbol comparisons that test for equality. This work was
motivated by recent interest in the exact comparison complexity of the string-
matching problem and is continuation of an earlier work by the same authors
[7].

In a sequence of papers on the number of symbol comparisons required
in string-matching algorithms Colussi [14], Galil and Giancarlo [24], Breslauer
and Galil [9] and Cole and Hariharan [12] improved the upper bounds, while
Galil and Giancarlo [23], Zwick and Paterson [38], Cole and Hariharan [12] and
Cole et al. [13] tightened the lower bounds. Currently, the complexity of the
string-matching problem is determined almost exactly with an upper bound
of n + (8/3m)(n − m) comparisons and a lower bound of n + (9/4m)(n − m)
comparisons2. There are numerous other papers that study the exact number of
comparisons required in the string-matching problem, in order statistics prob-
lems and in various other problems. Most relevant perhaps is the literature on
constant-space linear-time string-matching algorithms [6, 17, 20, 21, 26, 28] and

1Since complete occurrences of the pattern cannot start at text positions larger than n−
m+1, the string-matching algorithm can stop before reaching the end of the text. The prefix-
matching algorithm must continue until the end of the text and therefore, it might make at
most m extra comparisons.

2These bounds are on the number of comparisons made by on-line algorithms in the text
processing step, after an unaccounted pattern preprocessing. There is a larger gap between
the lower and upper bounds for off-line algorithms.
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on variants of the Boyer-Moore string-matching algorithm [3, 4, 10, 15, 18, 19,
29, 32, 33].

Boyer and Moore [4] showed that in the string-matching problem it is not
always necessary to examine all n text symbols. On the other hand, Rivest [37]
has proved that in the worst case any string-matching algorithm must always
examine at least n −m+1 text symbols. Clearly, any algorithm that solves the
prefix-matching problem must examine all n text symbols since it must deter-
mine if each text symbol is equal to the first pattern symbol. Note that if the
input alphabet is known to contain only two symbols, then the prefix-matching
problem requires exactly n comparisons, since inequality to one alphabet symbol
implies equality to the other.

Breslauer, Colussi and Toniolo [7] defined on-line prefix-matching algorithms
and presented a family of algorithms that make at most b(2 − 1/m)nc symbol
comparisons. They also gave a tight lower bound for any prefix-matching algo-
rithm that has to match the pattern ‘abm−1’. These results imply that the two
similar string-matching and prefix-matching problems have intrinsically differ-
ent asymptotic comparison complexities, approaching n and 2n, respectively, as
m grows. However, on-line prefix-matching algorithms have many similarities
to the on-line string-matching algorithms given by Colussi [14] and Breslauer
and Galil [9]. The definition of on-line prefix-matching algorithms also coincides
with the finite automata approach to string matching. In an analysis of Simon’s
automata based string-matching algorithm Hancart [30] independently obtained
the same bounds that were given in [7] for on-line prefix-matching algorithms
(see also [16]). The new results about on-line prefix-matching algorithms pre-
sented in this paper apply as well to automata based string-matching, and thus
extend also Hancart’s work.

Our main effort in this paper is to determine c
P[1..m]
on−line(n), the number of

symbol comparisons required in the worst case by on-line prefix-matching al-
gorithms to match a fixed pattern P[1..m] in a variable text of length n. We
determine c

P[1..m]
on−line(n) almost exactly by showing that for any pattern P[1..m],

there exists a constant CP[1..m]
on−line, 1 ≤ CP[1..m]

on−line ≤ 2 − 1/m, such that,

CP[1..m]
on−line × (n − m) + m ≤ c

P[1..m]
on−line(n) ≤ CP[1..m]

on−line × n.

And thus,

lim
n→∞

c
P[1..m]
on−line(n)

n
= CP[1..m]

on−line.

The upper bound of at most CP[1..m]
on−line×n comparisons is achieved by an algorithm

that takes linear time and uses linear space. Unlike previous publications on
the comparison complexity of string-matching and prefix-matching algorithms
that give worst case bounds for a specific pattern, our bounds are almost tight
for any given pattern.
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We then consider the special case where the pattern and the text are the
same string. This problem, which we call the self-prefix problem, is similar to
the failure function that is computed in the preprocessing step of the Knuth-
Morris-Pratt [32] string-matching algorithm3. The Knuth-Morris-Pratt failure
function is used in various string-matching algorithms and also in the pattern
preprocessing step of our prefix-matching algorithm. Using the techniques we
develop for the prefix-matching problem, we obtain an on-line algorithm for the
self-prefix problem that makes at most 2m − d

√
2me symbol comparisons. We

also prove a roughly tight lower bound (up to an additive constant 2) on the
number of symbol comparisons required by such an algorithm, and thus, deter-
mine the worst case comparison complexity of the on-line self-prefix problem and
of computing the Knuth-Morris-Pratt failure function. The self-prefix algorithm
and the whole pattern preprocessing step of the prefix-matching algorithm take
linear time and use linear space.

Finally, we consider general off-line prefix-matching algorithms. Such algo-
rithms are more difficult to analyze since they have more liberties about the
way they might proceed comparing the input symbols. We were unable to ob-
tain tight bounds for off-line algorithms. However, we show that there exist
pattern strings for which off-line algorithms require significantly fewer symbol
comparisons than on-line algorithms.

The paper is organized as follows. In Section 2 we give the lower and upper
bounds for on-line prefix-matching algorithms. In Section 3 we prove that off-
line algorithms can be superior to on-line algorithms in some cases. In Section
4 we present the algorithm for the self-prefix problem and in Section 5 we
show how to implement the prefix-matching and self-prefix algorithms in the
standard random-access-machine model. Conclusions and open problems are
given in Section 6.

2 On-line prefix-matching

The discussion below proceeds in the comparison model where only comparisons
of input symbols are counted and all other computation is free. We assume that
our algorithms can obtain complete information about the pattern P[1..m] in
an unaccounted pattern preprocessing step that might compare even all

(
m
2

)
pairs of pattern symbols. In Section 5 we discuss the efficient implementation
of our algorithms, including the pattern preprocessing, in the standard random-
access-machine computational model [1].

Recall the definition of on-line string prefix-matching algorithms given by
Breslauer, Colussi and Toniolo [7].

3In fact, these two problems are equivalent with respect to the number of comparisons they
require; the output of either one can be computed from the output of the other in linear-time
without any extra comparisons of the input symbols.
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Definition 2.1 A prefix-matching algorithm is on line if before comparing the
text symbol T [t] it has determined if the pattern prefixes that start at text posi-
tions l, for 1 ≤ l < t, terminate before text position t.

Comparison efficient on-line prefix-matching algorithms are restricted about
the choice of comparisons they can make. It is not difficult to verify that on-line
algorithms that compare pairs of text symbols are not more efficient than those
that compare only pattern symbols to text symbols.

Let Kt =
{
kt

i | t − m < kt
0 < · · · < kt

qt
= t

}
be the set of all text positions for

which Φ[kt
i] can not be determined without examining T [t]. Namely, T [kt

i..t −
1] = P[1..t − kt

i] and T [t] must be compared in order to check whether Φ[kt
i] =

t−kt
i or Φ[kt

i] > t−kt
i . Then, all comparisons at text position t must be between

T [t] and the pattern symbols P[t − kt
i + 1] or otherwise can be answered by

an adversary as unequal without giving an algorithm any useful information,
provided that the text alphabet is large enough.

Clearly, T [t] has to be compared either until it is found to be equal to
some symbol P[t − kt

i + 1] or until it is known to be different from all these
symbols. Thus, the only difference between the comparison efficient on-line
prefix-matching algorithms we consider next, is the order according to which
T [t] is compared to the pattern symbols P[t − kt

i + 1].

2.1 Periods in strings

Periods are regularities of strings that are exploited virtually in all efficient
string-matching algorithms. In this section we give some basic properties of
periods and define the notation that we use throughout the paper. For an
extensive treatment of periods and their properties see Lothaire’s book [34].

Definition 2.2 A string S[1..h] has a period of length π if S[g] = S[g + π], for
g = 1, . . . , h − π. We define the set ΠS[1..h] =

{
πS

i | 0 = πS
0 < · · · < πS

ph
= h

}
to be the set of all period lengths of S[1..h]. πS

1 , the smallest non-trivial period
length of S[1..h], is called the period of S[1..h].

A string S[1..l], such that ΠS[1..l] = {0, l}, is sometimes called unbordered.
The simple properties of periods given next follow immediately from the defini-
tion.

Proposition 2.3 The set ΠS[1..l] satisfies: ΠS[1..l] \ {l} ⊆ ΠS[1..l−1].

In the last proposition the inclusion in the opposite direction usually does
not hold; the periods π ∈ ΠS[1..l−1], such that π 6∈ ΠS[1..l], are said to terminate
at position l.

Proposition 2.4 For any π ∈ ΠS[1..l],

ΠS[1..l] ∩ {π, . . . , l} =
{

π + τ | τ ∈ ΠS[1..l−π]
}

.
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Periods are connected to on-line prefix-matching algorithms by the following
observation.

Lemma 2.5 The members of the set Kt correspond to the periods of the pattern
prefix P[1..t − kt

0] by the following relation:

Kt =
{

kt
0 + π | π ∈ ΠP[1..t−kt

0]
}

.

Proof. By the definitions, if kt
i ∈ Kt, then T [kt

i ..t − 1] = P[1..t − kt
i]. In

particular, T [kt
0..t − 1] = P[1..t − kt

0] and therefore P[1..t − kt
i ] = P[kt

i − kt
0 +

1..t − kt
0], establishing that kt

i − kt
0 ∈ ΠP[1..t−kt

0]. Similarly, if π ∈ ΠP[1..t−kt
0],

then by the definition of periods P[1..t − kt
0 − π] = P[π + 1..t − kt

0]. Since
T [kt

0..t − 1] = P[1..t − kt
0] we get that T [kt

0 + π..t − 1] = P[1..t − kt
0 − π],

establishing that kt
0 + π ∈ Kt. 2

By Lemma 2.5, {P[t − kt
i + 1] | kt

i ∈ Kt}, the set of all the pattern symbols
that T [t] might be compared to, is equal to

{
P[l − π] | π ∈ ΠP[1..l−1]

}
, for l =

t − kt
0 + 1. We define ΣP

l =
{
P[l − π] | π ∈ ΠP[1..l−1]

}
, for l = 1, . . . , m. Notice

that ΣP
l is a set, thus containing distinct symbols and identifying equal symbols.

One can visualize this definition by aligning copies of the pattern P with the
text starting at the positions kt

i ∈ Kt; then the elements of ΣP
t−kt

0+1 are the
pattern symbols that are aligned with the text symbol T [t].

The following property follows immediately from the definitions.

Proposition 2.6 For any π ∈ ΠP[1..l−1], ΣP
l−π ⊆ ΣP

l . Furthermore, if π =
π

P[1..l−1]
1 , then ΣP

l−π ∪ {P[l]} = ΣP
l . (Notice that ΣP

l−π = ΣP
l if and only if

ΠP[1..l] 6= {0, l}.)

Given some symbol σ ∈ ΣP
l , we define two functions that give the smallest

and the largest period lengths of P[1..l − 1] that introduce the symbol σ into
the set ΣP

l :

πl
first(σ) = min

{
π | π ∈ ΠP[1..l−1] and P[l − π] = σ

}
,

and,

πl
last(σ) = max

{
π | π ∈ ΠP[1..l−1] and P[l − π] = σ

}
.

The function πl
first(σ) is important in on-line algorithms since it determines

what will be kt+1
0 as a function of kt

0 and T [t].

Lemma 2.7 If T [t] ∈ ΣP
t−kt

0+1, then kt+1
0 = kt

0 + π
t−kt

0+1
first (T [t]), except if t −

kt
0 + 1 = m and T [t] = P[m], where kt+1

0 = kt
0 + π

P[1..m]
1 .
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Proof. Given kt
0 and T [t] ∈ ΣP

t−kt
0+1, by Lemma 2.5,

kt+1
0 = min

{
ki | ki ∈ Kt and T [t] = P[t − kt

i + 1]
}

= kt
0 + π

t−kt
0+1

first (T [t]),

with the exception that if a complete occurrence of the pattern is discovered,
namely if t − kt

0 + 1 = m and T [t] = P[m], then kt
0 6∈ Kt+1 and kt+1

0 =
kt
0 + π

P[1..m]
1 . 2

The function πl
last(σ) is used in the development of comparison efficient on-

line algorithms. Its main properties are summarized in the following lemma.

Lemma 2.8 For any l = 1, . . . , m, and π ∈ ΠP[1..l−1],

πl
last(σ) = π + πl−π

last (σ) for σ ∈ ΣP
l−π

and

πl
last(σ) < πl

last(τ) for σ ∈ ΣP
l \ ΣP

l−π and τ ∈ ΣP
l−π .

Proof. By Proposition 2.6, πl
last(σ) is defined for σ ∈ ΣP

l−π and by Proposition
2.4, πl

last(σ) = π + πl−π
last (σ) ∈ ΠP[1..l−1]. By Proposition 2.4, if πl

last(σ) ≥ π,
then σ ∈ ΣP

l−π . Thus, if τ ∈ ΣP
l−π , then πl

last(τ) ≥ π, and if σ ∈ ΣP
l \ΣP

l−π , then
πl

last(σ) < π. 2

The following technical lemmas will be used throughout the paper.

Lemma 2.9 The set ΠP[1..l−1] is disjointly partitioned according to ΣP
l :

ΠP[1..l−1] =
⋃

σ∈ΣP
l

{
π + τ | π = πl

first(σ) and τ ∈ ΠP[1..l−π] and τ < l − π
}

.

Proof. Define for σ ∈ ΣP
l ,

Πl
σ =

{
π + τ | π = πl

first(σ) and τ ∈ ΠP[1..l−π] and τ < l − π
}

.

By Proposition 2.3 and Proposition 2.4, Πl
σ ⊆ ΠP[1..l−1], for all σ ∈ ΣP

l . In
addition, if π̂ ∈ Πl

σ , then P[l− π̂] = σ, establishing that the sets Πl
σ are disjoint

for different σ. On the other hand, if π̂ ∈ ΠP[1..l−1], then π̂ ∈ Πl
P[l−π̂]. 2

Lemma 2.10 For any π ∈ ΠP[1..l] and 0 ≤ h ≤ l − π,

h+π∑
g=h+1

|ΣP
g | ≤ 2π − 1.
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Proof. Observe that if P[g − π] 6= P[g], then π 6∈ ΠP[1..g]. By Proposition 2.3,

|ΣP
g | = |

{
P[g − π] | π ∈ ΠP[1..g−1]

}
|

= 1 + |
{
P[g − π] | π ∈ ΠP[1..g−1]

}
\ {P[g]} |

≤ 2 + |ΠP[1..g−1]| − |ΠP[1..g]|.

Thus, for any π, not necessarily a period length, such that 1 ≤ π ≤ l and
0 ≤ h ≤ l − π,

h+π∑
g=h+1

|ΣP
g | ≤ 2π + |ΠP[1..h]| − |ΠP[1..h+π]|.

If π ∈ ΠP[1..l] \ {0}, then by Proposition 2.4, |ΠP[1..h]| ≤ |ΠP[1..h+π]| − 1, estab-
lishing the claim. 2

The following two lemmas describe the relations between the lengths of the
pattern prefixes and the maximal delay.

Lemma 2.11 Let dh = max
{
|ΣP

l | | l = 1, . . . , h
}
. Then,

2dh − 1 ≤
h∑

l=1

|ΣP
l | ≤ 2h − 1.

Proof. The right side inequality is a special case of Lemma 2.10. The left side
inequality is proved by induction on h. By Proposition 2.6, dh ≤ dh−1 +1. The
basis of the induction for h = 1 holds since |ΣP

1 | = 1 and d1 = 1. The inductive
hypothesis clearly holds if dh = dh−1. So it remains to prove the claim if
dh = dh−1+1. Let π = π

P[1..h−1]
1 . Then, by Proposition 2.6, dπ = dh−π = dh−1,

and by the inductive hypothesis,

2dh − 1 = 2dπ + 2dh−π − 1 ≤
π∑

l=1

|ΣP
l | +

h−π∑
l=1

|ΣP
l | + 1 ≤

h∑
l=1

|ΣP
l |. 2

Lemma 2.12 Let dh = max
{
|ΣP

l | | l = 1, . . . , h
}
. Then, for g ≥ h,

|ΣP
g | ≤ dh + blog2

2g

h + 1
c.

Proof. We prove by induction on g, for g ≥ h ≥ 1, that,

dg ≤ dh + blog2
2g

h + 1
c.
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By Proposition 2.6, dg ≤ dg−1 + 1. It suffices to prove the claim above only for
those indices g > h, such that dg = dg−1 + 1. Let g1, g2, . . . , be the sequence of
these indices. The basis of the induction for g1 clearly holds since:

dg1 = dh + 1 ≤ dh + blog2
2g1

h + 1
c.

Let π = π
P[1..gi−1]
1 . By Proposition 2.6 and by the inductive hypothesis, dgi−1 =

dgi−1 = dgi−π , and thus gi − π ≥ gi−1. But by Proposition 2.6, also π ≥ gi−1.
Therefore, gi ≥ 2gi−1, establishing the claim. 2

Example. The delay at text position t, |ΣP
t−kt

0+1|, is the maximal number of
comparisons that an algorithm will have to make at this text position. Define
the strings ∆h[1..2h] over the alphabet {σ0, . . . , σh} as:

∆h[g] = σmax{k | 2k divides g}.

An equivalent recursive definition is:

∆0 = σ0 and
∆h = ∆h−1[1..2h−1] ∆h−1[1..2h−1 − 1] σh.

These are the only strings for which Lemma 2.11 is satisfied with equality
in both parts. They have been used by Hancart [30] and Breslauer and Galil
[9] as worst case examples for the proportion between their length 2h and the
delay |Σ∆h

2h | = h + 1.

2.2 Static algorithms

We define a subclass of the on-line algorithms that we call static algorithms.
These algorithm are restricted enough to be easy to analyze, but still general
enough to draw conclusions about the performance of on-line algorithms from
their analysis.

Definition 2.13 An on-line prefix-matching algorithm is said to be static if the
order according to which the symbols in ΣP

t−kt
0+1 are compared to the text symbol

T [t] depends only on t − kt
0 + 1.

Since in a static algorithm A the order of comparisons depends only on l =
t − kt

0 + 1, it will be defined by the functions:

ΛA,l(h) :
{
1, . . . , |ΣP

l |
}

7−→ ΣP
l for l = 1, . . . , m,

where the algorithm A compares T [t] first to ΛA,l(1), then to ΛA,l(2) and so
on. The number of comparisons that algorithm A makes to discover that T [t] =
σ, for some symbol σ ∈ ΣP

l , is Λ−1
A,l(σ). As static algorithms depend on the

9



particular pattern, we shall denote by A(P[1..m]) the static algorithm A for
the pattern string P[1..m]. We ommit the pattern from our notation when it is
clear from the context what it is.

Example. The Knuth-Morris-Pratt string-matching algorithm compares the
symbols in ΣP

l =
{
P[l − π] | π ∈ ΠP[1..l−1]

}
, in increasing order of the periods

π, sometimes repeating unnecessary comparisons. We define the static prefix-
matching algorithm KMP to proceed in the spirit of the Knuth-Morris-Pratt
algorithm, comparing the symbols P[l − π] in increasing order of the periods
π, skipping symbols that were already compared. The order of comparisons
ΛKMP,l(h) is defined such that,

πl
first(ΛKMP,l(h)) < πl

first(ΛKMP,l(g))
for l = 1, . . . , m, and 1 ≤ h < g ≤ |ΣP

l |.

2.3 The optimization problem

In this section we describe the method we use to evaluate the performance of
static prefix-matching algorithms and define a measure to compare the relative
efficiency of algorithms.

Define the cost function ΩA(l) to reflect the number of comparisons that the
static algorithm A makes to match the pattern prefix P[1..l]:

ΩA(l) =
{

0 l = 0
ΩA(l − 1) + Λ−1

A,l(P[l]) l = 1, . . . , m.

The goal is to bound the number of comparisons made by A by an expression
of the form CA × n, for some constant CA that will be determined later. When
the algorithm reaches text position t, just before comparing the text symbol
T [t], we maintain inductively that the number of comparisons made so far is
at most CA × (kt

0 − 1) + ΩA(t − kt
0). This bound obviously holds initially at

text position t = 1. However, when the algorithm advances to the next text
position the term Ω(t+1−kt+1

0 ) might not account for all the comparisons. We
shall bound the excess number of comparisons by CA × (kt+1

0 − kt
0), in order to

maintain the inductive claim.
Let l = t−kt

0 +1. If the algorithm discovers that T [t] = σ, for σ ∈ ΣP
l , then

it has made Λ−1
A,l(σ) comparisons at this text position. If σ = P[l] and l < m,

then by Lemma 2.7, kt+1
0 = kt

0, and the inductive hypothesis still holds as the
cost function accounts for these comparisons.

However, if σ 6= P[l], then by Lemma 2.7, kt+1
0 = kt

0 + πl
first(σ) and on-

ly ΩA(l − πl
first(σ)) comparisons will be accounted by the cost function. To

maintain the inductive hypothesis, we require that the remaining ΩA(l − 1) +
Λ−1

A,l(σ) − ΩA(l − πl
first(σ)) comparisons are also accounted by imposing the

10



following constraint on CA:

ΩA(l − 1) + Λ−1
A,l(σ) − ΩA(l − πl

first(σ))

πl
first(σ)

≤ CA. (1)

If the algorithm concludes that T [t] 6= σ, for all σ ∈ ΣP
l , then kt+1

0 = kt
0+l =

t +1 and there are ΩA(l − 1) + |ΣP
l | comparisons that will not be accounted by

the cost function. To maintain the inductive hypothesis in this case, we make
certain that these comparisons are also accounted by requiring that:

ΩA(l − 1) + |ΣP
l |

l
≤ CA. (2)

In addition, if the algorithm discovers that T [t] = P[l] and the end of the
pattern is reached, that is l = m, then by Lemma 2.7, kt+1

0 = kt
0 + πP

1 and only
ΩA(m − πP

1 ) comparisons will be accounted by the cost function. To maintain
the inductive hypothesis we require also that:

ΩA(m) − ΩA(m − πP
1 )

πP
1

≤ CA. (3)

Finally, when the end of the text is reached, that is when t = n + 1, the
number of comparisons made is bounded by the inductive hypothesis by CA ×
(kt

0 − 1) + ΩA(t − kt
0). Since ΩA(h)/h ≤ (ΩA(h − 1) + |ΣP

h |)/h ≤ CA, for
h = n−kn+1

0 +1, by Inequality 2, we get that the number of comparisons made
is at most CA × n, establishing the inductive claim.

For any static algorithm A let the characteristic constant CA be the smallest
constant satisfying the three inequalities above. Inequality 1 has to be satisfied
at pattern positions l = 1, · · · , m, and for all σ ∈ ΣP

l \ {P[l]}; Inequality 2 at
pattern positions l = 1, · · · , m; Inequality 3 does not depend on the pattern
position. Note that by the same line of reasoning, an adversary can force a
static algorithm A to make at least CA × (n − m) + m comparisons. Thus, as
algorithms with smaller characteristic constants make fewer comparisons in the
worst case as n grows, the characteristic constant can be used to compare the
relative efficiency of static prefix-matching algorithms. The constraints on CA
are summarized in the following lemma.

Lemma 2.14 The number of comparisons an algorithm A makes while scan-
ning the text T [1..n] is at most CA × n, where the characteristic constant

CA = max



ΩA(l−1)+Λ−1
A,l

(σ)−ΩA(l−πl
first (σ))

πl
first(σ)

for l = 1, . . . , m, and σ ∈ ΣP
l \ {P[l]} ;

ΩA(l−1)+|ΣPl |
l for l = 1, . . . , m; ΩA(m)−ΩA(m−πP1 )

πP1


.
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Notice that CA is always a rational number with denominator between 1 and
m. Breslauer, Colussi and Toniolo [7] and Hancart [30] proved that the number
of symbol comparisons made by a certain class of on-line prefix-matching algo-
rithms, which include all static algorithms, is at most 2n − 1. We prove next a
similar claim about static algorithms using the notation we developed above.

Lemma 2.15 The characteristic constant of any static algorithm A satisfies:

1 ≤ CA ≤ 2.

Proof. Clearly 1 ≤ CA. Recall that ΩA(l) =
∑l

h=1 Λ−1
A,h(P[h]) and that

Λ−1
A,h(σ) ≤ |ΣP

h |, for any σ ∈ ΣP
h . Given some σ ∈ ΣP

l \ {P[l]}, define

P̂[1..l] = P[1..l − 1] σ. Then |ΣP
l | ≤ |ΣP̂

l | + 1 and P̂ [1..l] has period length
π = πl

first(σ). By Lemma 2.10, Inequality 1 becomes:

ΩA(l − 1) + Λ−1
A,l(σ) − ΩA(l − π)

π
≤

∑l
h=l−π+1 |ΣP

h |
π

≤
1 +

∑l
h=l−π+1 |ΣP̂

h |
π

≤ 2.

By Lemma 2.11, Inequality 2 becomes:

ΩA(l − 1) + |ΣP
l |

l
≤

∑l
h=1 |ΣP

h |
l

≤ 2 − 1
l
.

And by Lemma 2.10, Inequality 3 becomes:

ΩA(m) − ΩA(m − πP
1 )

πP
1

≤
∑m

h=m−πP1 +1 |ΣP
h |

πP
1

≤ 2 − 1
πP

1
. 2

In the next sections we address the problem of finding some static prefix-
matching algorithm OPT that minimizes the characteristic constant COPT .
Such an algorithm clearly exists as there is only a finite number of static prefix-
matching algorithms.

Example. Consider an instance of the prefix-matching problem with the
pattern string P[1..m] = ‘aαbβ’, for α ≥ 2, β ≥ 1 and m = α + β. If α = 0 or
β = 0, then the number of comparisons required is clearly n and if α = 1 and
β ≥ 1, then the number of comparisons required is b(2 − 1/m)nc as shown by
Breslauer, Colussi and Toniolo [7] and Hancart [30].

Let us try to find an optimal static algorithm OPT that has the smallest
possible characteristic constant COPT . We define two algorithms. The first,
which we call algorithm AB (it compares first ‘a’ and then if necessary ‘b’), is
defined as:

ΛAB,l(h) =
{

‘a’ h = 1 and 1 ≤ l ≤ m
‘b’ h = 2 and α < l ≤ m,

12



and the second algorithm, which we call algorithm X (identical to algorithm AB
up to position α+1 and from there on it compares first ‘b’ and then if necessary
‘a’), is defined as:

ΛX ,l(h) =


‘a’ h = 1 and 1 ≤ l ≤ α + 1
‘b’ h = 1 and α + 1 < l ≤ m
‘a’ h = 2 and α + 1 < l ≤ m
‘b’ h = 2 and l = α + 1.

It is easy to verify that CAB = 1 + (m − α)/m and that for any algorithm A
other than AB and X , CA > CX . If β = 1, then the two algorithms are identical
and if β ≥ 2, then CX = (α + 3)/(α + 1). Thus, the optimal static algorithm
OPT can be chosen as the algorithm that has the smaller characteristic constant
CAB or CX , and COPT = min{CAB, CX }. Notice that there is a tie CAB = CX
only for the patterns ‘aαb’, ‘aabbbb’ and ‘aaabbb’.

In this example we have been able to reduce the number of candidates for
an optimal static algorithm from the 2β different algorithms to the two algo-
rithms AB and X . We show that in the general case it suffices to consider only
few algorithms as candidates for an optimal algorithm. These algorithms are
closely related to the generalized form of algorithm AB that we call algorithm
REVERSE.

2.4 The algorithm REVERSE

In this section we define a static prefix-matching algorithm that has some special
properties. This algorithm, which we call REVERSE, or REV for short, will
be the basis for the optimal static algorithm that is developed in Section 2.5.

The order of comparisons ΛREV ,l(h) in algorithm REV is defined such that,

πl
last(ΛREV ,l(h)) > πl

last(ΛREV ,l(g)) for l = 1, . . . , m, and 1 ≤ h < g ≤ |ΣP
l |.

More intuitively, if we recall that ΣP
l =

{
P[l − π] | π ∈ ΠP[1..l−1]

}
, then algo-

rithm REV compares the symbols P[l −π] in decreasing order of the periods π,
skipping the symbols that were already compared. Notice that algorithm KMP
compares the symbols P[l − π] in increasing order of the periods π, exactly the
opposite of algorithm REV . See Figure 1.

The main property of algorithm REV that is used later in developing the
optimal static algorithm is given in the following lemma.

Lemma 2.16 The cost function of algorithm REV is additive. That is,

ΩREV (l − 1) + Λ−1
REV ,l(P[l − π]) = ΩREV (π) + ΩREV (l − π),

for l = 1, . . . , m, and π ∈ ΠP[1..l−1].

In most places we use this lemma with π = πl
first(σ), for some σ ∈ ΣP

l

13



1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

a c a b a c a a a c a b a c a c a c a b a c a a a c a b a c a D
a c a b a c a a a c a b a c a C

a c a b a c a A
a c a B

a C
A

ΣP
32 = {‘a’, ‘b’, ‘c’, ‘d’}

Figure 1: Algorithm REV compares first ‘a’, then ‘c’, then ‘b’ and
last ‘d’. Algorithm KMP compares ‘d’, ‘c’, ‘a’ and ‘b’. Note that
these comparison orders are not opposite of each other.

Proof. By Proposition 2.6, Lemma 2.8 and the definition of algorithm REV ,

ΛREV ,h(g) = ΛREV ,h−π(g) for h = π + 1, . . . , l, and g = 1, . . . , |ΣP
h−π|.

If π = 0, then by definition ΩREV (l) = ΩREV (l − 1) + Λ−1
REV ,l(P[l]). If π > 0,

then we prove by induction on h that ΩREV (h) = ΩREV (π)+ΩREV (h −π), for
h = π, . . . , l − 1. The basis of the induction for h = π clearly holds. Observing
that P[h] = P[h − π], for h = π + 1, . . . , l − 1,

ΩREV (h) = ΩREV (h − 1) + Λ−1
REV ,h(P[h])

= ΩREV (π) + ΩREV (h − π − 1) + Λ−1
REV ,h−π(P[h − π])

= ΩREV (π) + ΩREV (h − π).

Finally, Λ−1
REV ,l(P[l − π]) is defined since P[l − π] ∈ ΣP

l , and thus,

ΩREV (l − 1) + Λ−1
REV ,l(P[l − π]) =

ΩREV (π) + ΩREV (l − π − 1) + Λ−1
REV ,l−π(P[l − π]) =

ΩREV (π) + ΩREV (l − π).

One can also verify that REV is the only algorithm that has this property. 2

Intuitively, the last lemma means that in the analysis of algorithm REV ,
comparisons made at any text position can be charged against the text symbol
being compared and the charges do not have to be reassigned later.

The constraints on the characteristic constant in Lemma 2.14 are redundant
for algorithm REV .

Lemma 2.17 The characteristic constant CREV is given as,

CREV = max
l=1,...,m

{
ΩREV (l)

l

}
.

It suffices to take the maximum only over those l, such that P[1..l] is unbordered.
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Proof. The proof follows from Lemma 2.16. The constraints imposed by In-
equality 1 become:

ΩREV (l − 1) + Λ−1
REV ,l(σ) − ΩREV (l − πl

first(σ))

πl
first(σ)

=
ΩREV (πl

first(σ))
πl

first(σ)
.

The constraints imposed by Inequality 2 satisfy:

ΩREV (l)
l

=
ΩREV (l − 1) + Λ−1

REV ,l(P[l])
l

≤ ΩREV (l − 1) + |ΣP
l |

l
≤ CREV .

Taking σ = ΛREV ,l(|ΣP
l |), these constraints become:

ΩREV (l − 1) + |ΣP
l |

l
=

ΩREV (l − 1) + Λ−1
REV ,l(σ)

l

=
ΩREV (πl

first(σ)) + ΩREV (l − πl
first(σ))

l
.

And if πl
first(σ) > 0, then,

ΩREV (πl
first(σ)) + ΩREV (l − πl

first(σ))
l

≤

max
{

ΩREV (πl
first(σ))

πl
first(σ))

,
ΩREV (l − πl

first(σ))
l − πl

first(σ)

}
.

Similarly to the last inequality, one sees that it suffices to take the maximum
only over those l, such that P[1..l] is unbordered. Finally, the constraint imposed
by Inequality 3 becomes:

ΩREV (m) − ΩREV (m − πP
1 )

πP
1

=
ΩREV (πP

1 )
πP

1
. 2

Breslauer, Colussi and Toniolo [7] and Hancart [30] described a family of
algorithms that make at most b(2 − 1/m)nc symbol comparisons. One can
verify that algorithm REV belongs to that family. Using the tools we have
developed above we prove this bound directly.

Corollary 2.18 The characteristic constant CREV ≤ 2 − 1/m.

Proof. By Lemma 2.17 and Lemma 2.11,

CREV = max
l=1,...,m

{
ΩREV (l)

l

}
≤

max
l=1,...,m

{∑l
h=1 |ΣP

h |
l

}
≤ max

l=1,...,m

{
2 − 1

l

}
= 2 − 1

m
. 2
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The next corollary shows that on two letter alphabets the pattern ‘abm−1’
is the only pattern, up to permuting the symbols ‘a’ and ‘b’, that requires
b(2 − 1/m)nc symbol comparisons. Note that for the strings ∆h[1..2h] defined
in Section 2.1, CREV (∆h) = 2 − 1/2h similarly to ‘abm−1’.

Corollary 2.19 If the pattern alphabet contains at most two distinct symbols,
then,

CREV = 1 + max
l=1,...,m

{
| {h | 1 < h ≤ l and P[h] 6= P[1]} |

l

}
.

Proof. By the definition of algorithm REV , if the pattern contains only two
distinct symbols, then ΩREV (l) = l+ | {h | 1 < h ≤ l and P[h] 6= P[1]} | and the
claim follows from Lemma 2.17. 2

The following lemma describes the relation between the cost function of
algorithm REV on the pattern prefixes and the maximal delay.

Lemma 2.20 Let dl = max
{
|ΣP

h | | h = 1, . . . , l
}
. Then,

2dl−1 − 1 ≤ ΩREV (l) − l.

Proof. The claim is proved by induction on l, similarly to the proof of Lemma
2.11. The basis of the induction for l = 1 clearly holds. By Proposition 2.6,
dl ≤ dl−1 + 1. The inductive hypothesis holds if dl = dl−1. So it remains to
prove the claim if dl = dl−1 + 1. Let π = πl

first(ΛREV ,l(|ΣP
l | − 1)). Then, by

Proposition 2.6 and by Lemma 2.16,

ΩREV (l) = ΩREV (l − 1) + |ΣP
l | = ΩREV (π) + ΩREV (l − π) + 1.

By the definition of algorithm REV and by Proposition 2.6, dπ = dl−π = dl−1.
By the inductive hypothesis,

2dl−1 − 1 ≤ ΩREV (π) − π + ΩREV (l − π) − (l − π) + 1 = ΩREV (l) − l. 2
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2.5 The optimal static algorithm

We define the variants of algorithm REV that we call R:θ, for 2 ≤ θ ≤ m, such
that P[θ] 6= P[1], as:

ΛR:θ,l(h) =



ΛREV ,l(h) 1 ≤ l < θ and 1 ≤ h ≤ |ΣP
l |

ΛREV ,θ(h) l = θ, 1 ≤ h ≤ |ΣP
θ | and

h 6∈
{
Λ−1

REV ,θ(P [θ]), Λ−1
REV ,θ(χθ)

}
P[θ] l = θ and h = Λ−1

REV ,θ(χθ)
χθ l = θ and h = Λ−1

REV ,θ(P[θ])
P[l] θ < l ≤ m and h = 1
ΛREV ,l(h − 1) θ < l ≤ m and 2 ≤ h ≤ Λ−1

REV ,l(P[l])
ΛREV ,l(h) θ < l ≤ m and Λ−1

REV ,l(P[l]) < h ≤ |ΣP
l |,

where the symbol χθ ∈
{

ΛREV ,θ(h) | h = 1, . . . , Λ−1
REV ,θ(P[θ]) − 1

}
is defined

for algorithm R:θ, such that,

ΩREV (πθ
first(χθ)) + Λ−1

REV ,θ(P[θ]) − Λ−1
REV ,θ(χθ)

πθ
first(χθ)

≤

ΩREV (πθ
first(σ)) + Λ−1

REV ,θ(P[θ]) − Λ−1
REV ,θ(σ)

πθ
first(σ)

∀σ ∈
{

ΛREV ,θ(h) | h = 1, . . . , Λ−1
REV ,θ(P[θ]) − 1

}
.

The algorithms R:θ are constructed from three parts. The first part is used
in positions l = 1, . . . , θ − 1, and is exactly identical to algorithm REV . The
second part is used in position l = θ and is identical to algorithm REV , except
that the order in which P[θ] and χθ are compared is exchanged. In the third
part that is used in positions l = θ + 1, . . . , m, the relative comparison order
of the symbols is the same as in algorithm REV , except that P[l] is compared
first.

We prove next that the algorithms R:θ defined above are similar enough
to algorithm REV to satisfy claims which are closely related to those given in
Lemma 2.16 and Lemma 2.17. Unfortunately, in the analysis of the algorithms
R:θ, we run across some special cases that require that we slightly change the
definition above.

Definition 2.21 Let θ̂ = min{θ | P[θ] 6= P[1]}. A position θ, such that P[θ] 6=
P[1], is said to be <π, l> malignant if the following conditions hold:

π = π
P[1..l−1]
1 ;

π < θ ≤ l − π;

P[h] = P[1] for all h = 1, . . . , θ̂ − 1 and h = θ̂ + 1, . . . , π;
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P[l] 6∈
{
P[1], P[θ̂]

}
; and

P[l − π] = P[θ̂].

Notice that for a given pattern P[1..m], if θ1 is <π1, l1 > malignant and θ2
is <π2, l2 > malignant, then π1 = π2 and l1 = l2.

If θ is <π, l> malignant, then we change the definition of algorithm R:θ at
position l, and define ΛR:θ,l(h) = ΛKMP,l(h), for h = 1, 2, 3. Namely,

ΛR:θ,l(h) =


P[l] h = 1
P[θ̂] h = 2
P[1] h = 3.

Lemma 2.22 The cost function of algorithm R:θ satisfies for l = 1, . . . , m, and
π ∈ ΠP[1..l−1]:

1. If π < θ and l − π < θ, then

ΩR:θ(l − 1) + Λ−1
R:θ,l(P[l − π]) ≤ ΩR:θ(π) + ΩR:θ(l − π),

except if l = θ and P[l − π] = χθ, where

ΩR:θ(θ − 1) + Λ−1
R:θ,θ(χθ) =

ΩR:θ(π) + ΩR:θ(θ − π) + Λ−1
REV ,θ(P[θ]) − Λ−1

REV ,θ(χθ).

2. If π < θ and l − π ≥ θ, then

ΩR:θ(l − 1) + Λ−1
R:θ,l(P[l − π]) ≤ ΩR:θ(π) + ΩR:θ(l − π).

3. If π ≥ θ and l − π < θ, then

ΩR:θ(l − 1) + Λ−1
R:θ,l(P[l − π]) ≤ ΩREV (θ) + π − θ + ΩR:θ(l − π),

except if θ is <π
P[1..l−1]
1 , l> malignant and P[l − π] = P[1], where

ΩR:θ(l − 1) + Λ−1
R:θ,l(P[l − π]) = ΩREV (θ) + π − θ + ΩR:θ(l − π) + 1.

4. If π ≥ θ, and l − π ≥ θ > θ̂, then4

ΩR:θ(l − 1) + Λ−1
R:θ,l(P[l − π]) ≤

ΩREV (θ) + (1 +
1
θ̂
)(π − θ) + ΩR:θ(l − π).

4We ommit the inequality for the case θ = θ̂.
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Proof. We prove the four inequalities separately. From the definition of algo-
rithm R:θ,

ΩR:θ(l) = ΩREV (l) for l = 1, . . . , θ − 1,

ΩR:θ(θ) ≤ ΩREV (θ) − 1,

ΩR:θ(l) = ΩR:θ(θ) + l − θ for l = θ + 1, . . . , m.

1. If π = 0, then the claim follows by the definition of the cost function.

If l = θ and P[l − π] = χθ, then by Lemma 2.16,

ΩR:θ(θ − 1) + Λ−1
R:θ,θ(χθ) =

ΩR:θ(θ − 1) + Λ−1
REV ,θ(P[θ]) =

ΩR:θ(π) + ΩR:θ(θ − π) + Λ−1
REV ,θ(P[θ]) − Λ−1

REV ,θ(χθ).

Recalling that algorithm R:θ is identical to algorithm REV in positions
l = 1, . . . , θ − 1, and that at position l = θ,

Λ−1
R:θ,θ(σ) ≤ Λ−1

REV ,θ(σ) for σ ∈ ΣP
θ \ {χθ} ,

the claim follows for l = 1, . . . , θ, by Lemma 2.16. It remains to prove the
claim for θ < l < θ + π. For the positions h = θ, . . . , l − 1, we prove by
induction that:

ΩR:θ(h) ≤ ΩR:θ(π) + ΩR:θ(h − π) − 1.

The basis of the induction for h = θ holds since ΩR:θ(θ) ≤ ΩREV (θ) − 1,
and the inductive step holds since:

ΩR:θ(h) = ΩR:θ(h − 1) + 1 ≤ ΩR:θ(π) + ΩR:θ(h − π) − 1.

Finally, since l − π < θ and Λ−1
R:θ,l(P [l − π]) ≤ Λ−1

REV ,l−π(P [l − π]) + 1, by
the inductive hypothesis we get that,

ΩR:θ(l − 1) + Λ−1
R:θ,l(P[l − π]) ≤

ΩR:θ(l − 1) + Λ−1
REV ,l−π(P[l − π]) + 1 ≤

ΩR:θ(π) + ΩR:θ(l − π − 1) + Λ−1
REV ,l−π(P[l − π]) =

ΩR:θ(π) + ΩR:θ(l − π).

2. If π = 0, then the claim follows by the definition of the cost function.

The claim we wish to prove is equivalent to showing that:

π + Λ−1
R:θ,l(P[l − π]) − 1 ≤ ΩR:θ(π).
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Let dg = max
{
|ΣP

h | | h = 1, . . . , g
}
. Since π ∈ ΠP[1..l−1], by Proposition

2.6,

Λ−1
R:θ,l(P[l − π]) − 1 ≤ dl − 1 ≤ dπ.

Therefore, if dπ ≥ 3, then by Lemma 2.20,

π + Λ−1
R:θ,l(P[l − π]) − 1 ≤ π + dπ ≤ π + 2dπ−1 − 1 ≤ ΩR:θ(π).

It remains to prove the claim for dπ = 2. In this case, the inequality

π + Λ−1
R:θ,l(P[l − π]) − 1 ≤ ΩR:θ(π),

might be violated if and only if ΩREV (π) = π + 1 and Λ−1
R:θ,l(P[l − π]) =

dl = 3, which is equivalent to saying that θ is < π, l > malignant. But
by the (modified) definition of algorithm R:θ, ΛR:θ,l(3) = P[1], and thus
P[l − π] = P[1], in contradiction to θ being <π, l> malignant.

3. The claim we wish to prove is equivalent to showing that:

ΩR:θ(θ) + l − π − 1 + Λ−1
R:θ,l(P[l − π]) ≤ ΩREV (θ) + ΩR:θ(l − π)

If θ is not <π
P[1..l−1]
1 , l> malignant or if P[l−π] 6= P[1], then since l > θ:

Λ−1
R:θ,l(P[l − π]) ≤ Λ−1

REV ,l−π(P[l − π]) + 1.

So it suffices to show that:

ΩR:θ(θ) + l − π + Λ−1
REV ,l−π(P[l − π]) ≤ ΩREV (θ) + ΩR:θ(l − π).

But, by the definition of algorithm R:θ, ΩR:θ(θ) ≤ ΩREV (θ) − 1, and,

l − π + Λ−1
REV ,l−π(P[l − π]) ≤ ΩR:θ(l − π) + 1,

establishing the claim.

If θ is <π
P[1..l−1]
1 , l> malignant and P[l − π] = P[1], then

Λ−1
R:θ,l(P[l − π]) = Λ−1

REV ,l−π(P[l − π]) + 2 = 3,

and the claim follows.

4. We first prove that:

ΩR:θ(l − 1) + Λ−1
R:θ,l(P[l − π]) ≤

ΩREV (θ) + π − θ + ΩR:θ(l − π) + blog2
2π

θ + θ̂
c,
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which is equivalent to showing that:

Λ−1
R:θ,l(P[l − π]) − 1 ≤ ΩREV (θ) − θ + blog2

2π

θ + θ̂
c.

Let dg = max
{
|ΣP

h | | h = 1, . . . , g
}
. Since π ∈ ΠP[1..l−1], by Proposition

2.6,

Λ−1
R:θ,l(P[l − π]) − 1 ≤ dl − 1 ≤ dπ.

If ΩREV (θ) − θ ≥ 4 or if ΩREV (θ) − θ = 3 and dθ = 2, then by Lemma
2.12 and by Lemma 2.20,

dπ ≤ dθ + blog2
π

θ + 1
c + 1 ≤ ΩREV (θ) − θ + blog2

2π

θ + θ̂
c.

If ΩREV (θ) − θ = dθ = 3, then dθ = dθ−1 + 1, and by Lemma 2.12,

dπ ≤ dθ + blog2
π

θ
c ≤ ΩREV (θ) − θ + blog2

2π

θ + θ̂
c.

Since θ > θ̂, the only remaining possibility is that ΩREV (θ) − θ = dθ = 2.
Then, by a close inspection of the possible pattern prefixes P[1..θ + θ̂],
dθ+θ̂−1 = 2, and by Lemma 2.12,

dπ ≤ ΩREV (θ) − θ + blog2
2π

θ + θ̂
c.

But,

blog2
2π

θ + θ̂
c ≤ π − θ

θ̂
,

establishing that

ΩR:θ(l − 1) + Λ−1
R:θ,l(P[l − π]) ≤

ΩREV (θ) + (1 +
1

θ̂
)(π − θ) + ΩR:θ(l − π). 2

The constraints in Lemma 2.14 are redundant also for the algorithms R:θ.

Lemma 2.23 The characteristic constants of the algorithms R:θ are given as:

CR:θ = max

{
CREV (θ − 1),

ΩREV (πθ
first(χθ)) + Λ−1

REV ,θ(P[θ]) − Λ−1
REV ,θ(χθ)

πθ
first(χθ)

}
.
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Proof. The proof is almost identical to the proof of Lemma 2.17, using Lemma
2.22 instead of Lemma 2.16. If θ = θ̂, then CR:θ = 2, by Inequality 1 and Lemma
2.15. The constraints arising from Inequalities 1 and 2, imply that:

CR:θ ≥ max

{
CREV (θ − 1),

ΩREV (πθ
first(χθ)) + Λ−1

REV ,θ(P[θ]) − Λ−1
REV ,θ(χθ)

πθ
first(χθ)

}
.

The other constraints are dominated by those above, since for l ≥ θ > θ̂,

ΩR:θ(l)
l

≤ ΩREV (θ) + l − θ

l
≤ ΩREV (θ)

θ
,

and since,

ΩREV (θ) + (1 + 1
θ̂
)(l − θ)

l
≤ max

{
ΩREV (θ)

θ
,
ΩREV (θ̂)

θ̂

}
.

But,

ΩREV (θ)
θ

≤

max

{
ΩREV (πθ

first(χθ)) + Λ−1
REV ,θ(P[θ]) − Λ−1

REV ,θ(χθ)

πθ
first(χθ)

,
ΩREV (θ − πθ

first(χθ))
θ − πθ

first(χθ)

}
.

If θ is <π
P[1..l−1]
1 , l> malignant and P[l − π] = P[1], then the remaining con-

straint araising from case 3 in Lemma 2.22 is also dominated by the constraints
above, since by Lemma 2.16,

ΩREV (θ) + π − θ + 1
π

≤

max

{
ΩREV (πθ

first(χθ)) + Λ−1
REV ,θ(P[θ]) − Λ−1

REV ,θ(χθ)

πθ
first(χθ)

, 1 +
1

π − πθ
first(χθ)

}
,

establishing the claim. 2

Given any static prefix-matching algorithm A, define

ρ(A) = min
{

l | 1 ≤ l ≤ m and Λ−1
A,l(P[l]) < Λ−1

REV ,l(P [l])
}

.

If ρ(A) is defined above, then P[ρ(A)] 6= P[1], and algorithm R:ρ(A) is also
defined.

Theorem 2.24 Given any static prefix-matching algorithm A, then either

CR:ρ(A) ≤ CA or CREV ≤ CA.
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Proof. If ρ(A) is not defined, then ΩREV (l) ≤ ΩA(l), for l = 1, . . . , m, and by
Inequality 2,

CA ≥ max
l=1,...,m

{
ΩA(l)

l

}
≥ max

l=1,...,m

{
ΩREV (l)

l

}
= CREV .

Assume that ρ(A) is defined. Then, ΩREV (l) ≤ ΩA(l), for l = 1, . . . , ρ(A) − 1,
and by Inequality 2,

CA ≥ max
l=1,...,ρ(A)−1

{
ΩREV (l)

l

}
.

Since Λ−1
A,ρ(A)(P[ρ(A)]) < Λ−1

REV ,ρ(A)(P[ρ(A)]), there must be at least one sym-
bol

χ ∈
{

ΛREV ,ρ(A)(h) | h = 1, . . . , Λ−1
REV ,ρ(A)(P[ρ(A)]) − 1

}
,

such that Λ−1
A,ρ(A)(χ) ≥ Λ−1

REV ,ρ(A)(P[ρ(A)]). But then, by Inequality 1,

ΩREV (πρ(A)
first (χρ(A))) + Λ−1

REV ,ρ(A)(P[ρ(A)]) − Λ−1
REV ,ρ(A)(χρ(A))

π
ρ(A)
first (χρ(A))

≤

ΩREV (πρ(A)
first (χ)) + Λ−1

REV ,ρ(A)(P[ρ(A)]) − Λ−1
REV ,ρ(A)(χ)

π
ρ(A)
first (χ)

≤

ΩA(ρ(A) − 1) + Λ−1
A,ρ(A)(χ) − ΩA(ρ(A) − π

ρ(A)
first (χ))

π
ρ(A)
first (χ)

≤ CA,

and by Lemma 2.23, CA ≥ CR:ρ(A). 2

By the last theorem one can find an optimal static algorithm among the m
or fewer algorithms R:θ, 2 ≤ θ ≤ m, and algorithm REV . Thus, we define the
static algorithm REVERSE OPTIMAL, or RO for short, to be the algorithm
among algorithms R:θ and REV with the smallest characteristic constant. We
define CP[1..m]

on−line = CRO(P[1..m]).

Example. Consider the pattern P[1..10] = ‘abaacabacb’. Then, CR:2 = 2,
CR:5 = 5

3 , CR:7 = 5
3 , CR:9 = 12

7 , CR:10 = 16
9 , and CREV = 17

10 . Thus, algorithm
RO can be either algorithm R:5 or algorithm R:7.

Remark. If the pattern contains only two distinct symbols, then the analysis
above is substantially simplified. The simplified proof for this special case, which
captures the main ideas, was sketched in the conference extended abstract [8].
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2.6 The lower bound

By the observations made before, static algorithms must make at least CP[1..m]
on−line×

(n − m) + m symbol comparisons. We prove that the same lower bound holds
for any on-line algorithm.

Theorem 2.25 Any on-line prefix-matching algorithm must make at least
CP[1..m]

on−line × (n − m) + m symbol comparisons.

Proof. The proof is similar to the proof of Theorem 2.24. Recall that CP[1..m]
on−line =

CRO. We prove by induction that the number of symbol comparisons made by
any on-line algorithm, when reaching text position t, just before comparing the
text symbol T [t], is at least

CRO × (kt
0 − 1) + ΩREV (t − kt

0),

and that ΩREV (l)/l < CRO, for l = 1, . . . , t − kt
0. The inductive base clearly

holds for t = 1. We assume that the inductive hypothesis holds at text position
t and show how an adversary can force the inductive hypothesis to hold at text
position t + 1.

Let l = t − kt
0 + 1. Observe that by answering comparisons made by the

on-line algorithm as unequal, an adversary will eventually force the algorithm
to compare T [t] to all symbols in ΣP

l . If (ΩREV (l − 1) + |ΣP
l |)/l ≥ CRO,

then the adversary forces the algorithm to compare T [t] to all symbols in ΣP
l ,

giving unequal answers, resulting in kt+1
0 = t+1, and maintaining the inductive

hypothesis.
Otherwise, let Λ−1(σ) be the number of comparisons that the on-line al-

gorithm makes at text position t until comparing σ ∈ ΣP
l to T [t]. Notice

that Λ−1(σ) is not known to the adversary in advance. Then, if Λ−1(P[l]) ≥
Λ−1

REV ,l(P[l]), the adversary sets T [t] = P[l] and the inductive hypothesis is
maintained by the definitions. Observe that by Lemma 2.17, this situation
might not continue until l = m, since CRO ≤ CREV .

If Λ−1(P[l]) < Λ−1
REV ,l(P[l]), then the adversary answers that T [t] 6= P[l]

and the algorithm must continue comparing the symbols in ΣP
l . There must be

at least one symbol χ ∈
{
ΛREV ,l(h) | h = 1, . . . , Λ−1

REV ,l(P[l]) − 1
}

, such that

Λ−1(χ) ≥ Λ−1
REV ,l(P[l]). The adversary sets T [t] = χ. Then, by the definition

of the algorithms RO and R:θ, CRO ≤ CR:l, and by the inductive hypothesis
and by Lemma 2.23, we get that kt+1

0 = kt
0 + πl

first(χ), and

ΩREV (l − 1) + Λ−1(χ) − ΩREV (l − πl
first(χ))

πl
first(χ)

≥

ΩREV (πl
first(χ)) + Λ−1

REV ,l(P[l]) − Λ−1
REV ,l(χ)

πl
first(χ)

≥ CR:l,
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establishing the inductive claim.
Once the inductive claim is established, recalling that ΩREV (l) ≥ l and that

CRO ≥ 1, we get that the number of comparisons made by the algorithm is at
least

CRO × (kt
0 − 1) + ΩREV (t − kt

0) ≥ CRO × (n − m) + m. 2

Remark. The lower bound given above could be expressed in a tighter form.
However, our technique will always leave some gap between the lower and upper
bounds due to boundary situations. Observe that as the end of the text is
reached, there is no need to consider the whole pattern, but only its prefix that
can still occur within the text. Thus, it makes sense to use at text position t,
the static algorithm RO(P[1.. min(m, n − kt

0 + 1)]), that depends on t. Notice
that this algorithm is either some fixed algorithm R:θ, or algorithm REV ,
and therefore, it might not be static over the whole text. In addition, since
CRO(P[1..l]) is non-decreasing in l, it also makes sense, in many cases, to break
ties between the characteristic constants CR:θ and CREV , in favour of using the
algorithm R:θ with smaller value of θ.

Nevertheless, in some cases, optimal static algorithms do not give the best
on-line solution. For example, consider the pattern P[1..4] = ‘abac’ and a text
of length 4. The optimal static algorithm can be forced by an adversary to make
7 comparisons, while an algorithm that will compare the text symbol T [2], first
to ‘b’ and then to ‘a’, a comparison order that can never be followed by an
optimal static algorithm, will make at most 6 comparisons.

2.7 Infinite length patterns

The prefix-matching problem can be analogously defined for infinite length pat-
terns P[1..∞] by observing that the lengths of the pattern prefixes that occur
in the text can not exceed the text length. We define,

C
P[1..∞]
on−line = lim

m→∞
lim

n→∞

c
P[1..m]
on−line(n)

n
= lim

m→∞
CP[1..m]

on−line.

The constant C
P[1..∞]
on−line is always well defined since CP[1..m]

on−line is non-decreasing in
m and bounded above by Lemma 2.15. We prove next that the characteristic
constants of infinite length patterns cover the whole real interval [1..2].

Lemma 2.26 Given any real constant α, 1 ≤ α ≤ 2, there exists an infinite
length pattern P[1..∞], such that, C

P[1..∞]
on−line = α.

Proof. The proof constructs for any given α, 1 ≤ α ≤ 2, an infinite length pat-
tern P[1..∞] over the alphabet {‘a’, ‘b’}, whose characteristic constant C

P[1..∞]
on−line

25



is equal to α. The pattern is defined inductively by setting P[1] = ‘a’, and, for
l = 2, 3, . . . ,

P[l] =
{

‘b’ if ΩREV (P[1..l−1])(l−1)+2
l ≤ α

‘a’ otherwise.

By Corollary 2.19, CREV (P[1..l]) ≤ α. We prove that CR:l ≥ α, for all l, and
that,

C
P[1..∞]
on−line = lim

l→∞
CREV (P[1..l]) = α.

If P[1..∞] contains finitely many symbols ‘a’, then liml→∞ CREV (P[1..l]) = α = 2,
by Corollary 2.19. If P[l] = ‘b’, then algorithm R:l is defined. Let π = πl

first(‘a’).
If π + 1 < l, then P[π + 1] = ‘a’, and by Lemma 2.23,

CR:l ≥ ΩREV (π) + 1
π

≥ ΩREV (π + 1) + 1
π + 1

≥ α.

If π + 1 = l, then let h = max {g | 1 ≤ g < l and P[g] = ‘a’}. By Lemma 2.23
and by the definition of P[h] = ‘a’,

CR:l ≥ ΩREV (π) + 1
π

≥ ΩREV (h) + 1
h

≥ α.

Assume by contradiction that there exists an ε > 0, such that α−CREV (P[1..l]) ≥
ε, for all l. Let h be a position of P[1..∞], such that h ≥ 1/ε and P[h] = ‘a’.
Then, by Corollary 2.19,

ΩREV (h − 1) + 2
h

=
ΩREV (h)

h
+

1
h

≤ CREV (P[1..h]) + ε ≤ α,

in contradiction to the definition of P[h] = ‘a’. 2

3 Off-line prefix-matching

The analysis of off-line prefix-matching algorithms is complicated by the greater
freedom they possess. Breslauer, Colussi and Toniolo [7] showed that for the
pattern ‘abm−1’ off-line algorithms are not better than on-line algorithms. N-
evertheless, off-line algorithms can be superior to on-line algorithms in certain
cases as we show next.

Lemma 3.1 There exists pattern strings for which off-line prefix-matching al-
gorithms require fewer symbol comparisons than on-line algorithms.

Proof. Consider the pattern P[1..7] = ‘aaaabbb’. This pattern belongs to the
family of patterns discussed in the example in Section 2.3. It is not difficult
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to verify that C‘aaaabbb’
on−line = 7

5 and thus, on-line prefix-matching algorithms re-
quire about 7

5n symbol comparisons. We show next that there exists an off-line
prefix-matching algorithm that requires only about 4

3n symbol comparisons.
(The lower bound proof of Breslauer, Colussi and Toniolo [7] can be applied
almost unchanged to this pattern, showing that this bound is tight for off-line
algorithms, up to a small additive constant.)

The off-line algorithm relies on the fact that the optimal static algorithm
for the pattern P[1..7] is R:6, while the optimal static algorithm for the pattern
P[1..6] is REV . The off-line algorithm examines a single text position ahead to
help it decide whether to proceed as algorithm R:6 or as algorithm REV .

Observe that the comparison order functions ΛR:6,l and ΛREV ,l are identical
for l = 1, . . . , 5. The off-line algorithm proceeds in the same manner as these
on-line algorithms as long as t − kt

0 + 1 ≤ 5. When t − kt
0 + 1 = 6, the off-line

algorithm compares the text symbol T [kt
0 + 9] to ‘a’. If T [kt

0 + 9] = ‘a’, then
the algorithm proceeds as algorithm R:6, and otherwise as algorithm REV . In
both cases, the off-line algorithm will avoid comparing T [kt

0 +9] to ‘a’ again. It
is straightforward to verify that this off-line algorithm makes at most 4

3n symbol
comparisons. 2

4 The self-prefix problem

In this section we consider the special case of the prefix-matching problem where
the pattern and the text are the same string and all symbol comparisons are
accounted5. This problem, which we call the self-prefix problem, is the essence
of the pattern preprocessing step of the prefix-matching algorithm. Throughout
this section we assume that the input to the self-prefix problem is the pattern
string P[1..m].

Proposition 4.1 The periods lengths π
P[1..l]
1 , for l = 1, . . . , m, can be computed

from the output of the self-prefix problem Φ[1..m], and vice versa, in O(m) time
without making any extra symbol comparisons.

Observe that the Knuth-Morris-Pratt string-matching algorithm computes
in its pattern preprocessing step, the so called failure function, f(l) = l−π

P[1..l]
1 ,

which is essentially the same as the prefix period lengths π
P[1..l]
1 , for l = 1, . . . , m.

Clearly, if the text is identical to the pattern, then there must be an occur-
rence of the pattern starting at the first position of the text. Since we do not
wish to spend any labour to discover this trivial fact, we formally define the
text T [1..m− 1] to be P[2..m]. Thus, in the self-prefix problem we always have

5In contrast to the unaccounted pattern preprocessing step in the discussion about on-line
prefix-matching algorithms.
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that:

kt
h = π

P[1..t]
h+1 for t = 1, . . . , m − 1 and h = 0, . . . , |ΠP[1..t]| − 2.

On-line self-prefix algorithms, which are defined analogously to on-line prefix-
matching algorithms, always compare the symbol T [t] = P[t+1], t = 1, . . . , m−
1, to the symbols σ ∈ ΣP

t−π
P[1..t]
1 +1

.

The self-prefix problem can be solved by any on-line static prefix-matching
algorithm A. Denote by ωA(l), the number of symbol comparisons made by the
static prefix-matching algorithm A, when used to solve the self-prefix problem
on the input prefix P[1..l]. Then,

ωA(l) =


0 l = 1
ωA(l − 1) + ΛA,l−π

P[1..l−1]
1

(P[l]) l = 2, . . . , m and P[l] ∈ ΣP
l−π
P[1..l−1]
1

ωA(l − 1) + |ΣP
l−π
P[1..l−1]
1

| l = 2, . . . , m and P[l] 6∈ ΣP
l−π
P[1..l−1]
1

.

Let µ(P[1..l]) be the number of non-empty unbordered prefixes of the string
P[1..l]. We first prove some upper bounds on the number of symbol comparisons
made by the self-prefix algorithm REV .

Lemma 4.2 The number of symbol comparisons made by the self-prefix algo-
rithm REV satisfies:

ωREV (m) = ΩREV (m) − µ(P[1..m]).

Proof. We prove by induction on l = 1, . . . , m, that:

ωREV (l) = ΩREV (l) − µ(P[1..l]).

The base of the induction for l = 1 clearly holds. Assume that the inductive
hypothesis holds for l − 1. If P[l] ∈ ΣP

l−π
P[1..l−1]
1

, then P [1..l] is bordered and by

the definition of algorithm REV , by Proposition 2.6 and by Lemma 2.8,

ωREV (l) = ΩREV (l − 1) + Λ
REV ,l−π

P[1..l−1]
1

(P[l]) − µ(P[1..l − 1])

= ΩREV (l) − µ(P[1..l]).

Otherwise, P [1..l] is unbordered and,

ωREV (l) = ΩREV (l − 1) + |ΣP
l−π
P[1..l−1]
1

| − µ(P[1..l − 1])

= ΩREV (l − 1) + |ΣP
l | − µ(P[1..l])

= ΩREV (l) − µ(P[1..l]). 2

The pattern preprocessing of the Knuth-Morris-Pratt [32] string-matching
algorithm makes in some cases as many as 2m − 4 symbol comparisons. We
show next that the self-prefix algorithm REV is more efficient.
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Corollary 4.3 The number of symbol comparisons made by the self-prefix al-
gorithm REV is at most 2m − dlog2 me − 2.

Proof. Let P[1..u1], P[1..u2], . . . , be all the unbordered prefixes of P[1..m],
such that 1 = u1 < · · · < uh, and uh = m whether P[1..m] is bordered or not.
Then, ωREV (u1) = 0, and by Lemma 2.17 and Corollary 2.18, for g = 2, . . . , h,

ωREV (ug) ≤ ωREV (ug−1) + bCREV (P[1..ug−1]) × (ug − ug−1)c

≤ ωREV (ug−1) + 2(ug − ug−1) − d ug

ug−1
− 1e.

Expanding the last inequality,

ωREV (m) ≤ 2m − 2 −
h∑

g=2

d ug

ug−1
− 1e ≤ 2m − dlog2 me − 2. 2

Notice that the last bound is tight for infinitely many strings, since the self-
prefix algorithm REV will make 2m − log2 m − 2 symbol comparisons when
presented with the input strings P[1..m] = ∆h[1..2h] that are defined in Section
2.1.

As long that the input string P[1..m] contains at most two distinct symbols,
algorithm REV achieves better bounds. The next upper bound is tight with
respect to the lower bound given by Breslauer, Colussi and Toniolo [7] for on-line
self-prefix algorithms. Notice that we do not assume a priori that there are at
most two distinct symbols in P[1..m] since in that case inequality to one alphabet
symbol would imply equality to the other and m−1 symbol comparisons would
suffice.

Corollary 4.4 The number of symbol comparisons made by the self-prefix algo-
rithm REV as long that the input string P[1..m] contains at most two distinct
symbols is at most 2m − d2

√
me.

Proof. By Lemma 2.17 and Corollary 2.18,

CREV (P[1..m]) ≤ 2 − 1
µ(P[1..m])

.

But, by Lemma 4.2,

ωREV (m) ≤ bCREV (P[1..m]) × mc − µ(P[1..m])

≤ 2m − d m

µ(P[1..m])
e − µ(P[1..m])

≤ 2m − d2
√

me. 2

We are now ready to prove the main upper and lower bounds for on-line
self-prefix algorithms.
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Theorem 4.5 There exists an on-line self-prefix algorithm that makes at most
2m − d

√
2me symbol comparisons. This is roughly tight for on-line self-prefix

algorithms.

Proof. We describe an on-line self-prefix algorithm that makes about 2m −
d
√

2me symbol comparisons and prove that this is roughly the best possible
for on-line algorithms (up to an additive constant 2). Let ω(h) denote the
number of symbol comparisons made by the on-line self-prefix algorithm on
the pattern prefix P[1..h]. The self-prefix algorithm starts making comparisons
in the same order as the static self-prefix algorithm REV until it reaches the
smallest position ζ, such that CREV (P[1..ζ]) > CR:lζ , where algorithm R:lζ is
the algorithm with the smallest characteristic constant for 2 ≤ lζ ≤ ζ. From
position ζ + 1 until the end of the string P[1..m] the algorithm follows the
comparison order of the static self-prefix algorithm R:lζ . If no such position ζ
is ever reached, then by Lemma 4.2,

ω(m) = ωREV (m) ≤ bCREV × mc − µ(P[1..m]).

Otherwise, P[1..ζ] must be unbordered by Lemma 2.17 and Lemma 2.23. By
the minimality of ζ, CREV (P[1..ζ]) = ΩREV (ζ)/ζ and CREV (P[1..ζ])×ζ = bCR:lζ ×
ζc + 1. Therefore, by Lemma 4.2,

ω(m) ≤ ωREV (ζ) + bCR:lζ × (m − ζ)c
= ΩREV (ζ) + bCR:lζ × (m − ζ)c − µ(P[1..ζ])
= bCREV (P[1..ζ]) × ζc + bCR:lζ × (m − ζ)c − µ(P[1..ζ])
≤ bCR:lζ × mc − µ(P[1..ζ]) + 1.

The αβ decomposition of P[1..m] is defined as follows: α1 is the number of
symbols at the beginning of P[1..m] that are equal to P[1]; β1 is the number
of following symbols that are different from P[1]; α2 is the number of following
symbols that is equal to P[1]; β2 is the number of following symbols that are
different from P[1]; and so on. Let δh =

∑h
g=1(αg +βg) and let b be the smallest

integer such that δb = m. E.g. the αβ decomposition of P[1..9] = ‘aabbcacca’ is
α1 = 2, β1 = 3, α2 = 1, β2 = 2, α3 = 1 and β3 = 0; δ1 = 5, δ2 = 8, δ3 = 9 and
b = 3.

The proof distinguishes between the following cases.

1. If β2 = 0, then the algorithm follows the comparison order of algorithm
REV . The number of symbol comparison made is at most m − 1. From
now on assume that β2 ≥ 1.

2. If α1 ≥ 2, notice that if β1 ≥ 2, then algorithm R:α1+2 is defined and
CR:α1+2 ≤ 5

3 ; otherwise, if β1 = 1, then CR:δ1+α2+1 ≤ 5
3 . If the on-line
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self-prefix algorithm does not reach the position ζ defined above, then
CREV ≤ 5

3 . Since µ(P[1..m]) ≥ 2,

ω(m) = ωREV (m) ≤

bCREV × mc − µ(P[1..m]) ≤ b5
3
mc − 2 ≤ 2m − d

√
2me.

If the position ζ defined above is reached, then CR:lζ ≤ 5
3 and µ(P[1..ζ]) ≥

3. But then,

ω(m) ≤ bCR:lζ × mc − µ(P[1..m]) + 1 ≤ b5
3
mc − 2 ≤ 2m − d

√
2me.

3. The most complicated case is where α1 = 1. If α2 = 1 and P[δ1+2] = P[2],
or if α2 ≥ 2, then CR:δ1+α2+1 ≤ 2 − 1/(δ1 + 1). If the algorithm does not
reach the position ζ defined above, then CREV ≤ 2 − 1/(δ1 + 1) and
µ(P[1..m]) ≥ δ1. Thus,

ω(m) = ωREV (m) ≤ bCREV × mc − µ(P[1..m])

≤ 2m − d m

δ1 + 1
e − δ1

≤ 2m − d
√

2me.

If the algorithm reaches the position ζ defined above, then CR:lζ ≤ 2 −
1/(δ1 + 1) and µ(P[1..ζ]) ≥ δ1 + 1. Hence,

ω(m) ≤ bCR:lζ × mc − µ(P[1..ζ]) + 1 ≤

2m − d m

δ1 + 1
e − δ1 ≤ 2m − d

√
2me.

We have isolated the remaining case where α2 = 1 and P[δ1 + 2] 6= P[2].
Let d be the largest integer such that αg = 1 and P[δg−1 + 2] 6= P[2], for
all g = 2, . . . , d. Then, CR:l = 2, for all 1 ≤ l ≤ δd such that algorithm R:l
is defined and µ(P[1..δd]) = δd − d + 1 ≥ δd/2 + 1.

We get similarly to the other cases above that CR:δd+αd+1+1 ≤ 2−1/(δd + 1).
If the algorithm does not reach the position ζ defined above, then CREV ≤
2 − 1/(δd + 1) and µ(P[1..m]) ≥ δd/2 + 1. Therefore,

ω(m) = ωREV (m) ≤ bCREV × mc − µ(P[1..m])

≤ 2m − d m

δd + 1
e − δd + 1

2
≤ 2m − d

√
2me.
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If the algorithm reaches the position ζ, then CR:lζ ≤ 2 − 1/(δd + 1) and
µ(P[1..m]) ≥ δd/2 + 2. Hence,

ω(m) ≤ bCR:lζ × mc − µ(P[1..m]) + 1

≤ 2m − d m

δd + 1
e − δd + 1

2
≤ 2m − d

√
2me.

To see that this is roughly the best possible for on-line algorithms consider
the pattern P[1..m] that starts with the prefix P[1..δ] = ‘abac1ac2 . . . ach−1ach’,
such that δ = d

√
2me is even and ci 6∈ {‘a’, ‘b’}. Then, any on-line self-prefix

algorithm makes 3
2δ − 1 symbol comparisons on the pattern prefix P[1..δ], and

by carefully examining the proof of Theorem 2.25, at least CREV (P[1..δ]) × (m −
δ) − 1 = (2 − 1/δ)(m − δ) − 1 comparisons on the remaining suffix. This sums
up to at least 2m − d

√
2m + 3/2e symbol comparisons. 2

Example. Consider the strings P[1..m] = ∆h[1..2h], h ≥ 3, that are defined
in Section 2.1. Then, CR:2 = 2, CR:4 = 2, CR:6 = 9

5 and CREV (P[1..8]) = 15
8 .

Thus, the optimal static prefix-matching algorithm RO is algorithm R:6 and
CRO = 9

5 . The self-prefix algorithm that is used in Theorem 4.5 is also the
static algorithm R:6, since algorithm REV that is used on the input prefix
P[1..8] before the algorithm decides to use algorithm R:6, is used only based on
its definition on the input prefix P[1..4], which is identical to that of algorithm
R:6. On the other hand, consider any string P[1..m], whose prefix P[1..8] =
‘ababacac’. Then, CR:2 = 2, CR:4 = 5

3 , CR:6 = 7
4 , CR:8 = 11

6 and CREV (P[1..8]) =
7
4 . Thus, the optimal static prefix-matching algorithm RO is algorithm R:4 and
CRO = 5

3 . However, the self-prefix algorithm that is used in Theorem 4.5 is not
static, since it behaves as algorithm REV on the input prefix P[1..8] before its
decides to behave as algorithm R:4.

Remark. Breslauer, Colussi and Toniolo [7] proved a 2m − d2
√

me lower
bound for the self-prefix problem. They fail to mention, however, that their
proof holds for on-line algorithms, but not for general off-line algorithms, for
which the same proof gives only a 2m − d2

√
2me + 1 lower bound. We have

designed an off-line algorithm (not given here) that makes at most 2m−d2
√

me
symbol comparisons. We suspect that this can be improved.

5 Implementation details

In this section we show that any given static prefix-matching algorithm A, which
is described by its comparison order, can be implemented in the standard ran-
dom access machine computational model [1] in linear time and space. The
same techniques are used to implement the on-line self-prefix algorithm from
Theorem 4.5 and the optimal static prefix-matching algorithm RO, including
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the pattern preprocessing that creates it, in linear time and space. The imple-
mentation details somewhat resemble those of the string-matching algorithm of
Breslauer and Galil [9].

We assume that the description of the static prefix-matching algorithm
A(P[1..m]) includes the delay |ΣP

l | and the period lengths π
P[1..l]
1 , for l =

1, . . . , m, and the comparison order functions of algorithm A, that are given
as:

πl
first(ΛA,l(h)) for l = 1, . . . , m and h = 1, . . . , |ΣP

l |.

Notice that the functions ΛA,l(h) need not be a part of the description since,

ΛA,l(h) = P[l − πl
first(ΛA,l(h))].

The delay |ΣP
l | can also be computed from π

P[1..l]
1 , for l = 1, . . . , m, since by

Proposition 2.6,

|ΣP
l | =

 |ΣP
l−π
P[1..l−1]
1

| if π
P[1..l]
1 < l

|ΣP
l−π
P[1..l−1]
1

| + 1 otherwise.

The reason that we choose to represent the comparison order functions by
πl

first(ΛA,l(h)) is that the function πl
first(σ) is indexed by an alphabet symbol

σ ∈ ΣP
l , which is difficult to implement efficiently without making additional

symbol comparisons. The description of an algorithm requires O(m) space, by
Lemma 2.11.

Lemma 5.1 Any given static prefix-matching algorithm A(P[1..m]) can be im-
plemented in O(n) time with constant auxiliary space.

Proof. The generic implementation of the static algorithm A(P[1..m]) is given
in Figure 2. The implementation clearly does not make any extraneous symbol
comparisons and uses constant auxiliary space, apart from the output array
Φ[1..n] that is used only to store the results of the computation.

Let l = t − kt
0 + 1. By Lemma 2.9 and Lemma 2.5, the members kt

i ∈ Kt are
grouped into |ΣP

l | classes according to the symbols P[t − kt
i + 1] ∈ ΣP

l . If the
algorithm reaches the conclusion that T [t] 6= σ, for some σ ∈ ΣP

l , then it sets
Φ[kt

i] = t − kt
i , for all members kt

i ∈ Kt, such that,

kt
i ∈

{
kt
0 + π + τ | π = πl

first(σ) and τ ∈ ΠP[1..l−π] and τ < l − π
}

.

When the algorithm reaches the end of the text, there might still be members
kn+1

i ∈ Kn+1, such that the pattern prefixes that start at these positions of
the text continues until the end of the text. The algorithm sets Φ[kn+1

i ] =
n − kn+1

i + 1, for all kn+1
i ∈ Kn+1.

The total time spent by the algorithm is O(n), since the algorithm repeats
the main loop n times and assigns values to each of the n entries Φ[h] of the
output array only once. 2
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– The implementation of the static prefix-matching algorithm A(P[1..m]).
k = 1 – k is k t

0 until it is updated to be k t+1
0 .

for t = 1 to n do
h = 1
l = t − k + 1

– Find a symbol in ΣPl that matches T [t ].
while h ≤ |ΣPl | and T [t ] 6= ΛA,l(h) do

h = h + 1
– Terminate the pattern prefixes that start at positions k t

i ∈ K t , such that
– P[t − k t

i + 1] 6= T [t ]. (Lemma 2.5, Lemma 2.9 and Proposition 2.4.)
for g = 1 to |ΣPl | do

if g 6= h then – T [t ] 6= ΛA,l(g).
κ = k + πl

first(ΛA,l(g))
while κ ≤ t do

Φ[κ] = t − κ
κ = κ+ π

P[1..t−κ+1]
1

end
end

if h ≤ |ΣPl | then – A matching symbol was found.
if l = m and πl

first(ΛA,l(h)) = 0 then
Φ[k ] = m – A complete occurrence of P[1..m] was found.
k = k + π

P[1..m]
1

else
k = k + πl

first(ΛA,l(h))
else – No match was found.

k = t + 1
end
– Terminate all the remaining pattern prefixes. (Lemma 2.5 and Proposition 2.4.)
while k ≤ n do

Φ[k ] = n − k + 1
k = k + π

P[1..n−k+1]
1 .

end

Figure 2: The generic static prefix-matching algorithm.
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Lemma 5.2 The self-prefix algorithm and the pattern preprocessing step that
constructs the optimal static prefix-matching algorithm RO(P[1..m]) can be im-
plemented in O(m) time and space.

Proof. By Proposition 4.1, in order to solve the self-prefix problem it suffices to
compute the period lengths π

P[1..l]
1 , for l = 1, . . . , m. The pattern preprocessing

implements the algorithm in Theorem 4.5, constructs algorithm REV and all
the algorithms R:θ, and computes their characteristic constants CR:θ and CREV .
The algorithms REV (P[1..l]) and R:θ(P[1..l]) are constructed as soon as π

P[1..l]
1

is given, so they can be used immediately, already at the next pattern position.
The choice of which algorithm to use at the following pattern positions and
which algorithm will be algorithm RO is made by comparing the characteristic
constants of these algorithms.

Recall that the static algorithms R:θ are constructed from three parts. The
first part is identical to algorithm REV , while the second and third parts are
small variations on algorithm REV . Let algorithm M be defined at positions
l, such that P[l] 6= P[1], as6:

ΛM,l(h) =


ΛREV ,l(h) 1 ≤ h ≤ |ΣP

l | and h 6∈
{

Λ−1
REV ,l(P [l]), Λ−1

REV ,l(χl)
}

P[l] h = Λ−1
REV ,l(χl)

χl h = Λ−1
REV ,l(P[l]),

where χl is defined in Section 2.5. Algorithm E is defined such that,

ΛE,l(h) =


P[l] θ < l ≤ m and h = 1
ΛREV ,l(h − 1) θ < l ≤ m and 2 ≤ h ≤ Λ−1

REV ,l(P[l])
ΛREV ,l(h) θ < l ≤ m and Λ−1

REV ,l(P[l]) < h ≤ |ΣP
l |.

Our construction builds the three algorithms REV , M and E . Then, algorithm
R:θ is given as:

ΛR:θ,l(h) =

 ΛREV ,l(h) l = 1, . . . , θ − 1
ΛM,θ(h) l = θ
ΛE,l(h) l = θ + 1, . . . , m.

With the exception that if θ is < π, l > malignant, then ΛR:θ,l(h) = ΛM,l(h),
for h = 1, 2, 3. (It so happens that algorithm M has the right comparison order
in this case. Notice that it is possible to test if θ is malignant in constant time
without making any extra symbol comparisons.)

This definition in three parts allows to construct the algorithms R:θ in O(m)
time and their description to be stored in O(m) space. The construction of these
algorithms proceeds as the period lengths π

P[1..l]
1 are being computed using the

6Algorithm M is not used at positions l, such that P [l] = P [1], and it can be defined
arbitrarily, or left undefined, at these positions.
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previously constructed algorithms. Observe that π
P[1..l]
1 is computed by a single

iteration of the main loop in Figure 2.
At the beginning of this section we have shown how to compute |ΣP

l |, given
the period lengths π

P[1..l]
1 . By the definition of algorithm REV and by Propo-

sition 2.6,

ΛREV ,l(h) =

{
Λ

REV ,l−π
P[1..l−1]
1

(h) h = 1, . . . , |ΣP
l−π
P[1..l−1]
1

|
P[l] if |ΣP

l | > |ΣP
l−π
P[1..l−1]
1

| and h = |ΣP
l |.

The static algorithms M and E are constructed by appropriately modifying
the comparison order functions of algorithm REV . The characteristic constants
CREV (P[1..l]) and CR:l can be computed efficiently by Lemma 2.17 and Lemma
2.23. The construction of the static prefix-matching algorithms described above
and the computation of their characteristic constants takes O(|ΣP

l |) time at
position l, amounting to O(m) time over the whole input string P[1..m], by
Lemma 2.11. 2

The following theorem is an immediate consequence of Lemma 5.1 and Lem-
ma 5.2.

Theorem 5.3 The optimal static prefix-matching algorithm RO(P[1..m]), in-
cluding its preprocessing step, can be implemented in O(n+m) time using O(m)
auxiliary space.

6 Conclusions

We have been able to obtain roughly tight bounds on the number of comparisons
required by on-line self-prefix algorithms and almost tight bounds for on-line
prefix-matching algorithms with any given pattern. We hope that our techniques
and results can prove useful in improving the bounds for the string-matching
problem and in resolving some of the following problems.

1. What is the exact number of symbol comparisons required in on-line
prefix-matching algorithms as a function of the pattern string and the
text length? In off-line algorithms? If the pattern preprocessing is also
accounted?

2. How many comparisons are required in general off-line self-prefix matching
algorithms?

3. For which pattern strings off-line algorithms require fewer symbol com-
parisons than on-line?

4. Do comparisons of pairs of text symbols help in off-line prefix-matching
algorithms? Paterson, Tassa and Zwick [36] have recently shown that com-
parisons of pairs of text symbols can help in the string-matching problem.
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