
B
R

IC
S

R
S

-95-44
C

ourcelle
&

W
alukiew

icz:
M

S
O

Logic,G
raphs

and
U

nfoldings
ofTransition

S
ystem

s

BRICS
Basic Research in Computer Science

Monadic Second-Order Logic, Graphs
and Unfoldings of Transition Systems

Bruno Courcelle
Igor Walukiewicz

BRICS Report Series RS-95-44

ISSN 0909-0878 August 1995

Copyright c© 1995, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

Monadic Second-Order Logic, Graph Coverings and
Unfoldings of Transition Systems

Bruno Courcelle Igor Walukiewicz
LaBRI BRICS1,2

Université Bordeaux I
351, Cours de la Libération,

F-33405 Talence Cedex, France
e-mail: courcell@labri.u-bordeaux.fr

Department of Computer Science
University of Aarhus

Ny Munkegade
DK-8000 Aarhus C, Denmark

e-mail: igw@daimi.aau.dk

Abstract

We prove that every monadic second-order property of the unfold-
ing of a transition system is a monadic second-order property of the
system itself. We prove a similar result for certain graph coverings.

1 Introduction

A transition system can be seen as an abstract form of a program and the
infinite tree obtained by unfolding (or unraveling) it, can be seen as its
behavior. Since transition systems and their behaviors can be represented
by logical structures, one can express their properties by logical formulas.
We consider here monadic second-order logic as an appropriate logical lan-
guage because it subsumes many other formalisms like µ-calculus or tem-
poral logics (see Emerson and Jutla [6], Niwiński [8]) and it is decidable on
many structures and in particular on infinite trees (by Rabin’s Theorem, see
Thomas [11]). It was conjectured in Courcelle [2] that for every monadic
second-order property P of transition systems R defined by:

P (R) ⇔ Q(Un(R))
1Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

2On leave from: Institute of Informatics, Warsaw University, Banacha 2,
02-097 Warsaw, POLAND

1

where Un(R) is the unfolding of R and Q is a monadic second-order property,
is also monadic second-order (and is expressible by a formula constructible
from that which defines Q, which is the same for all systems R).

This conjecture was proved in [2] for deterministic transition systems
(possibly with infinitely many states) and we prove it here for the class of
all systems.

This new proof is independent of that in [2] and uses a different tech-
nique, based on a notion of covering: a covering of a transition system (or
more generally of a graph) G is a surjective homomorphism h : G′ → G
(where G′ is another transition system or graph) the restriction of which to
the “neighbourhood” of every state or vertex of G′ is an isomorphism. We
say that h is a k-covering if h−1(x) has cardinality ≤ k for each state or ver-
tex x of G. For a transition system if we take as “neighbourhood” of a state
the set of transitions outgoing from it, then there exists a universal covering
which is precisely the unfolding. The main lemma says that every monadic
second-order property of the universal covering of a transition system R is
equivalent to a monadic second order property of a k-covering of R for some
integer k depending only on the considered property (and not on R).

The notion of “neighbourhood” is a “parameter” of the notion of cover-
ing. In the case of graphs, we examine two possibilities for defining coverings.
The first possibility consists of taking the set of edges incident to a vertex as
its neighbourhood. Then the results concerning transition systems extend
for this notion of covering but only for graphs of bounded degree: every
monadic second-order property of the universal covering of a (finite or infi-
nite) graph (relatively to this notion of neighbourhood) can be expressed as
a monadic second order property of the graph.

A second possibility consists in taking as neighbourhood of a vertex
the subgraph induced by the vertices at distance at most 1: there exists
a corresponding notion of universal covering. However, we exhibit a finite
graph G, the universal covering of which is the infinite grid. This shows that
the result does not hold here because the monadic theory of the infinite grid
is undecidable whereas that of G is decidable (because G is finite).

Finally we relate unfoldings of a transition systems with a construction
by Shelah and Stupp, extended by Muchnik, about which we raise some
questions that indicate possible developments of the present work.

This paper is organized as follows.

Section 1 deals with transition systems, their coverings and automata,

Section 2 deals with monadic second order logic,

2

Sections 3 and 4 present some technical lemmas,

Section 5 gives the main proof,

Section 6 discusses the Shelah-Stupp-Muchnik construction,

Section 7 concerns coverings of graphs,

Section 8 reviews some open questions.

2 Transition systems

Let n, m ∈ N and m ≥ 1. A transition system of type (n, m) is a tuple
R = (G, x, P1, . . . , Pn, Q1, . . . , Qm), where G is a directed graph, x is a
vertex called the root of R from which all other vertices are accessible by a
directed path, P1, . . . , Pn are sets of vertices and Q1, . . . , Qm is a partition
of the set of edges.

A vertex of G is called a state of R and an edge is called a transition. A
transition in Qi is said to be of type i.

In order to have uniform notations, we let:

SR be the set of states of R,

TR be its set of transitions,

rootR be its root,

PiR be the i-th set of states,

QiR be the i-th set of transitions,

srcR = {(t, s) : t ∈ TR, s ∈ SR, s is the origin (or source) of t}

tgtR = {(t, s) : t ∈ TR, s ∈ SR, s is the target of t}

We shall also write s = srcR(t) (or s = tgtR(t)) if (t, s) ∈ srcR (or (t, s) ∈
tgtR(t) respectively).

A path in R is a finite or infinite sequence of transitions (t1, t2, . . .) such
that rootR = srcR(t1) and for each i, tgtR(ti) = srcR(ti+1). If it is finite, the
target of the last transition is called the end of the path.

3

Let R and R′ be two transition systems of type (n, m). We write R ⊆ R′

iff:

SR ⊆ SR′

TR ⊆ TR′

rootR = rootR′

PiR = PiR′ ∩ SR

QiR = QiR′ ∩ TR

srcR = srcR′ ∩ (TR × SR)
tgtR = tgtR′ ∩ (TR × SR)

A homomorphism h : R → R′ is a mapping SR ∪ TR → SR′ ∪ TR′ such
that:

h(SR) ⊆ SR′

h(TR) ⊆ TR′

h(srcR(t)) = srcR′(h(t)) for all t ∈ TR

h(tgtR(t)) = tgtR′(h(t)) for all t ∈ TR

h(rootR) = rootR′

s ∈ PiR iff h(s) ∈ PiR′ , for all s ∈ SR and i = 1, . . . , n

t ∈ QiR iff h(t) ∈ QiR′ , for all t ∈ TR and i = 1, . . . , m

A homomorphism h : R → R′ is a covering (we shall also say that R is a
covering of R′), if it is surjective and for every state s ∈ SR, h is a bijection
of outR(s) onto outR′(h(s)). (We denote by outR(s) the set of transitions
t of R such that srcR(t) = s.) It is a k-covering if each set h−1(s), where
s ∈ SR′ , has at most k elements.

Fact 1 If h is a homomorphism R → R′, the image of every path of R is
a path of R′. If furthermore, h is a covering, then every path in R′ is an
image by h of the unique path in R.

We now define the unfolding Un(R) of a transition system R; this is a
tree, and we shall consider it as the behavior of R.

We let NR be the set of finite paths in R. We have in particular the
empty path linking the root to itself. NR is the set of nodes of Un(R).

If p and p′ ∈ NR, we define an edge p → p′ (equivalently a transition) of
type i iff p′ extends p by exactly one transition of R of type i. We let Q∗i
denote the set of such transitions.

4

We let hR : NR → SR associate with every finite path its end. We obtain
a transition system Un(R) of type (n, m) by defining:

SUn(R) = NR

TUn(R) = Q∗1 ∪ . . . ∪ Q∗m
rootUn(R) = ε

PiUn(R) = P ∗i = h−1
R (PiR)

QiUn(R) = Q∗i

Fact 2 hR : Un(R) → R is a covering

Fact 3 If m : R → R′ is a covering then there exists a unique isomorphism
m̄ : Un(R) → Un(R′) such that hR′ ◦ m̄ = m ◦ hR.

Because of these properties, Un(R) will be called the universal covering
of R.

A transition system of type (n, m) is deterministic if no two transitions
with the same source belong to the same set Qi. It is complete deterministic
if in addition each state has exactly m outgoing transitions.

Fact 4 Let R and R′ be complete deterministic transition systems of the
same type. There is at most one homomorphism R → R′ and such a homo-
morphism is a covering. It exists iff there exists a mapping h : SR → SR′

such that: (a) h(rootR) = rootR′, (b) for every transition x → x′ of R there
is in R′ a transition h(x) → h(x′) of the same type, (c) for every x ∈ SR

and every i, x ∈ PiR iff h(x) ∈ PiR′.

2.1 Parity automata and transition systems

We denote by T the infinite complete binary tree. Its nodes are (as usual) de-
fined as words from {1, 2}∗. It is a complete deterministic transition system
of type (0, 2). We denote by Tn the set of tuples of the form (T , P1, . . . , Pn),
where P1, . . . , Pn are sets of nodes of T . These tuples can be considered as
infinite complete binary trees the nodes of which are labeled by subsets of
{1, . . . , n}; they are complete deterministic transition systems of type (n, 2).

A parity-automaton is a tuple PA = 〈S, Σ, s0, δ, Ω〉 where:

• S is a finite nonempty set of states,

5

• Σ is a finite set called alphabet, we will assume that it is the set of
subsets of {1, . . . , n} for some n ∈ N ,

• s0 ∈ S is the initial state,

• δ ⊆ S × Σ × S × S is a transition relation.

• Ω : S → N is a function defining acceptance condition.

A run of PA on a tree B ∈ Tn is a function r : T → S such that
r(rootB) = s0 and for any node x of T (i.e. x ∈ {1, 2}∗):

(r(x), {i : PiB(x)}, r(x1), r(x2)) ∈ δ

here x1 and x2 denote nodes obtained from x by appending 1 and 2 respec-
tively at the end of x.

For a given run r as above and a path P of T let us define by Inf(r(P)) the
set of states which appear infinitely often in the sequence r(P). We say that
run r is accepting if for every path P of T , the number min{Ω(Inf(r(P)))}
is even. We say that PA accepts B if there is an accepting run of PA on B.
The language recognized by PA is the set of trees accepted by PA.

We will say that a run r is regular if for every two nodes x, y of B:

if r(x) = r(y) and B/x is isomorphic to B/y (where B/x is the
subtree of B issued from x) then r(h(u)) = r(u) for every node
u of B/x, where h is the isomorphism: B/x → B/y.

Lemma 5 For every parity automaton PA and every tree B if PA accepts
B then there is a regular accepting run of PA on B.

Proof
The lemma follows from the results about games with parity conditions
considered in [7, 6]. It was shown there that such games have memoryless
strategies. We will briefly recall this result here and show how it applies in
our case.

Let n be a natural number and let Σ be the set of all the subsets of
{1, . . . , n}. A game over Σ is given by a bipartite directed graph G whose
set of nodes is partitioned in two sets NI and NII . From any node of NI
there may be an arbitrary number of edges to nodes of NII each edge is
labeled by a letter from Σ. No restrictions are imposed on this edges, there
may be several edges with the same label, edges with different labels may

6

have the same source and target. From every node of NII there is exactly
one left edge and exactly one right edge. The graph has designated start
node n0 which belongs to NI and is equipped with a function Ω : NI → N .

The game is played on an infinite labeled tree B ∈ Tn. The starting
position of the game is the pair consisting of the root r of B and the start
node n0 of G. The game proceeds in rounds. In a position (s, m) first
player I chooses a node n of NII reachable from m by an edge labeled by
the set {i : Pi(s)}. Then player II chooses a direction left or right. The new
position of the play consists of a node of T reachable from s in the chosen
direction and a node of G reachable from n in this direction. From this new
position a new round is started. The play may be finite or infinite. The
play may end in a finite number of steps only because player I cannot make
a move; in this case player II is the winner. If a play is infinite we get as
the result an infinite sequence n0, n1, . . . of nodes from NI . Player I is the
winner iff this sequence is accepted by condition Ω, i.e., the least number in
Inf(Ω(n0), Ω(n1), . . .) is even.

A strategy for player I in such a game is a partial function F which assigns
nodes from NII to positions. It must be defined for the initial position.
Moreover if F (s, m) is defined for some position (s, m) then node F (s, m)
must be reachable from m by an edge labeled {i : Pi(s)} and for every
direction d and nodes t, n reachable in direction d from s and F (s, m)
respectively F (t, n) must be defined. A strategy is winning iff it guarantees
that player I wins the game if only she follows the strategy. A strategy is
called memoryless iff whenever F is defined for two positions with the same
second component, say (s, m) and (t, m), and T/s is isomorphic to T/t then
F (s, m) = F (t, m).

Strategies for player II are defined similarly. In [7, 6] the following the-
orem was proved.

Theorem 6 The parity game described above is determined. If a player has
a winning strategy in the game then she has a memoryless strategy.

It is easy to see that every finite parity automaton PA can be transformed
into a graph of the game by taking NI to be the set of states of PA and
NII to be the set of its transitions. It is also easy to see that player I has a
winning strategy in the game on a tree T iff PA accepts T . From the above
theorem follows that whenever PA accepts T it has a regular accepting run
on T .

Next we introduce a concept of quasi-automaton, it is both an extension

7

and a restriction of the notion of parity automaton. It is an extension
because quasi-automata may have infinitely many states. It is a restriction
because in this automata moves to the left are independent from moves to
the right (there are languages recognized by automata but not by automata
with independent moves, see also Lemma 7 below).

A quasi-automaton is a pair A = (A, Ω) where A is a (possibly infinite)
transition system of type (n, 2), for some n, and Ω is a function assigning
a natural number from a finite set to every node of A. We require that the
image of Ω is finite.

Let A be as above and let U be a complete deterministic transition
system of type (n, 2) (in particular U can be a tree in Tn). A run of A on
U is a homomorphism of transition systems r : U → A. For every infinite
path P in U , we let InfΩ(P) to be the set of natural numbers k such that
{i : Ω(r(Pi)) = k} is infinite, where Pi denotes i-th element of P . We say
that r is successful if for every infinite path P , min(InfΩ(P)) is even. We say
that U is accepted by A if A has a successful run on U .

We let L(A) denote the set of trees accepted by A (hence L(A) ⊆ Tn).
Note that we may have n = 0; in this case L(A) is either empty or the
singleton {T }.

Let U be a complete deterministic transition system accepted by A.
Then Un(U) ∈ L(A). Consider a successful run r of A on U , it is a ho-
momorphism U → A and r ◦ hU : Un(U) → A is a successful run of A on
Un(U).

The definition of quasi-automaton departs from the definition of parity
automata in the following ways:

1. The transitions “towards the left successor” are independent from the
transitions “towards the right successor”: transitions are defined in
terms of two binary relations on states and not in terms of a single
ternary one.

2. The states “contain node labels”: if in a run r on a tree, a node x with
label w = (w1, . . . , wn) ∈ {0, 1}n has value r(x) = s, then for each
i = 1, . . . , n we have Pi(s) ⇔ wi = 1; hence w is completely defined
by s.

3. Quasi-automaton may have infinitely many states.

The following lemma shows that one can transform every parity automa-
ton into a finite quasi-automaton having more than one starting state.

8

Lemma 7 Let n be a natural number. Given a set S together with sets
Start, P1, . . . , Pn ⊆ S, two relations Q1, Q2 ⊆ S × S and a function Ω : S →
N with a finite image, we define for every s ∈ Start the quasi-automaton

As = (〈S, s, P1, . . . , Pn, Q1, Q2〉, Ω)

For every parity automaton PA over an alphabet Σ = P({1, . . . , n}) there
exists a finite set S and objects Start, P1, . . . , Pn, Q1, Q2, Ω as above such that
L(PA) =

⋃
s∈Start L(As).

We say that a quasi-automaton A = (A, Ω) is complete deterministic if
A is so. We write A ⊆ A′ if A = (A, Ω), A′ = (A′, Ω′), A and A′ are of
the same type, A ⊆ A′ and Ω′ restricted to A is equal to Ω. Note that
L(A) ⊆ L(A′) if A ⊆ A′.

We now give a technical tool. Let R be a finite or infinite transition
system where each state has at least two outgoing transitions, one of type 1
(called left transition) and one of type 2 (right transition).

We make it into a complete deterministic transition system Bin(R) where
each state has exactly two outgoing transitions by inserting new states.
Hence if a state s has n ≥ 3 transitions towards s1, s2, . . . , sn, where we
assume that transitions towards sn−1 and sn are of different types, we in-
sert new states u2, . . . , un−1. We delete transitions s → si for i = 2, . . . , n
and we add transitions s → u2, ui → si for i = 2, . . . , n − 1, ui → ui+1
for i = 2, . . . , n − 2 and, un−1 → sn. A new transition to si has the same
type as the corresponding transition s → si. The types of the other added
transitions are determined by this choice. If s has infinitely many transi-
tions towards s1, s2, . . . , sn, . . . we add similarly infinitely many new states
u2, u3, . . . , un, . . . and transitions s → u2, ui → si, ui → ui+1. (Although
Bin(R) is not unique because there is no unique linear ordering on transi-
tions of R, we denote it functionally)

For each state s of R let New(s) be the set of new states inserted to
make s binary (that is u2, . . . , un−1 from the description above). We denote⋃{New(s) : s ∈ SR} by New(SR).

Let A be a quasi-automaton A = 〈R, Ω〉. It follows that Un(Bin(R)) is
a binary tree with nodes being sequences of elements from SR ∪ New(SR).
This tree contains in some sense all possible runs of A on binary trees (see
Claim 8). We let UnΩ(Bin(R)) to be the tree obtained from Un(Bin(R)) by
labeling each node p by ∗ if p ends in a new state and by Ω(s) if p ends in
a state s 6∈ New(SR).

9

We shall now describe a finite parity automaton that “extracts” from
UnΩ(Bin(R)) the trees of L(A). Without loss of generality we assume that
Ω : SR → {2, 3, . . . , 2N} = I for some N ∈ N . We now construct an
automaton BΩ and a mapping Ω̄ from states of BΩ to {1, 2, . . . , 2N + 2} as
follows:

The states of BΩ are:

• ⊥ and we let Ω̄(⊥) = 1,

• i for every i ∈ I and we let Ω̄(i) = i,

• nlr, nl, nr and Ω̄ assigns 2N + 1 to each of them,

• > and we let Ω̄(>) = 2N + 2.

We now describe the transitions of BΩ. Intuitively this automaton should
accept nothing from state ⊥ and should accept everything from >. Visiting
some node not in New(SR) and being in a state i ∈ I the automaton looks
for left and right successors of the node skipping through new nodes. States
nlr, nl, nr are used for this. In state nlr automaton goes through new nodes
looking for both right and left successor. When it chooses, say, right succes-
sor it takes some appropriate state j ∈ I to the right and nl to the left. In
state nl the automaton looks only for right successor.

Formally the transitions of BΩ are given by 4-tuples listed in the following
table (a denotes any letter; i, j, j ′ stand for elements of I):

state letter state1 state2 state letter state1 state2

⊥ a ⊥ ⊥ > a > >
i a 6= i ⊥ ⊥ nlr i ⊥ ⊥
i i > nlr nlr ∗ nlr >
i i nlr > nlr ∗ > nlr

i i nl j nlr ∗ nl j
i i j nr nlr ∗ j nr

i i j j ′ nlr ∗ j j ′

nl i ⊥ ⊥ nr i ⊥ ⊥
nl ∗ > nl nr ∗ > nr

nl ∗ nl > nr ∗ nr >
nl ∗ > j nr ∗ j >

The starting state of BΩ is Ω(r) where r is the root of R.

10

We define as follows a tree reduction θ taking as an input T = UnΩ(Bin(R))
together with an accepting run r of BΩ on T and producing the following
tree θ(T, r) = T ′:

• Nodes(T ′) = {x ∈ Nodes(T) : r(x) ∈ I},

• rootT ′ = rootT ,

• x
i−→ z is an edge of type i ∈ {1, 2} in T ′ iff there is a path in T of

the form
x → y1 → y2 → · · · → yk → z

where r(x) ∈ I , r(z) ∈ I , r(y1), . . . , r(yk) ∈ {nlr, nl, nr}, yk → z is of
type i (if k = 0 one takes the condition that the transition x → z is of
type i).

The following claim explains the dependence between automata (R, Ω)
and BΩ.

Claim 8 Every accepting run r of BΩ on T = UnΩ(Bin(R)) can be trans-
formed into an accepting run of (R, Ω) on θ(T, r). Conversely every accept-
ing run of (R, Ω) on some tree can be transformed into an accepting run of
BΩ on UnΩ(Bin(R)).

Proof
Let r be an accepting run of BΩ on T = UnΩ(Bin(R)). Let σ be the
mapping Nodes(T) → SR ∪ New(SR) assigning to every node of T , which
is a sequence of nodes from SR ∪ New(SR), the last state of the sequence.
Then the restriction of σ to Nodes(θ(T, r)) (which is a subset of Nodes(T))
is an accepting run of (R, Ω) on θ(T, r).

The proof of the other part of the claim is similar.

Lemma 9 Let A be a (possibly infinite) quasi-automaton. If L(A) 6= ∅
then there exists a complete deterministic quasi-automaton A′ ⊆ A such
that L(A′) 6= ∅.

Proof
Let A = (R, Ω). If a state of R has no left transition or no right transition
then we can delete it because it cannot appear in a run accepting a binary
tree. Hence we can assume that all the states have both left and right
transitions. So there exists a system Bin(R).

11

Since L(A) 6= ∅ there exists a run of BΩ on T = UnΩ(Bin(R)) and even
a regular run by Lemma 5. Let us denote it by r.

Let σ be as in the proof of Claim 8. Let T ′ be the complete binary tree
θ(T, r) and σ′ be the restriction of σ to its nodes. Note that σ′ takes values
in SR. It follows that σ′ is an accepting run of (R, Ω) on T ′.

Let x, y be two nodes of T such that σ(x) = σ(y) ∈ SR and r(x), r(y) ∈
I . This implies that r(x) = r(y) = Ω(σ(x)) = Ω(σ(y)). The subtrees of
UnΩ(Bin(R)) issued from x and y are isomorphic (by the definition of UnΩ
and since Bin(R) is complete deterministic) and since r is a regular run, it is
identical (up to isomorphism) on these subtrees. It follows that the subtrees
of T issued from x and y are isomorphic and that σ′ is identical on them (via
the isomorphism). Hence T can be “folded” into a complete deterministic
transition system R′ ⊆ R, such that T = Un(R′). More precisely, any two
nodes x and y with isomorphic corresponding subtrees are made identical.
The mapping σ′ defines an accepting run of (R′, Ω) on T .

3 Monadic second-order logic

We denote by STR(R) the set of finite or countable structures of type R.
Any two isomorphic structures are considered as equal.

In order to express properties of transition systems by monadic second-
order (MS in short) formulas, we represent a transition system R of type
(n, m) by the relational structure:

|R|2 = 〈SR ∪ TR, rtR, srcR, tgtR, P1R, . . . , PnR, Q1R, . . . , QmR〉

where rtR = {rootR}. It is clear that R is completely defined (up to isomor-
phism) by |R|2.

We let L2(n, m) be the set of MS formulas written with the relation sym-
bols rt, src, tgt, Q1, . . . , Qm (and of course = and ∈) and with free variables
in {X1, . . . , Xn}.

We define |R|2 |= α where α ∈ L2(n, m) by taking P1R, . . . , PnR as
respective values of X1, . . . , Xn.

The properties of the behavior Un(R) of a system R as above can be
expressed in a similar way by formulas of L2(n, m) (since Un(R) is a tran-
sition system of type (n, m)). However, we shall use the following simpler
representation: For a transition system V of type (n, m) we let

|V |1 = 〈SV , rtV , suc1V , . . . , sucmV , P1V , . . . , PnV 〉

12

where (x, y) ∈ suciV iff there is in QiV a transition from x to y.
We let L1(n, m) denote the set of MS formulas written with the symbols

rt, suc1, . . . , sucm (in addition to = and ∈) and having their free variables
in {X1, . . . , Xn}. Again, we define |V |1 |= α for α ∈ L1(n, m) by taking
P1V , . . . , PnV as values of X1, . . . , Xn respectively. By the results of Cour-
celle [5], the same properties of trees can be represented by formulas of L2
and L1.

Our objective is to prove the following theorem.

Theorem 10 Let n, m ∈ N , m ≥ 1. For every formula ϕ ∈ L1(n, m) one
can construct a formula ψ ∈ L2(n, m) such that, for every transition system
R of type (n, m):

|R|2 |= ψ ⇔ |Un(R)|1 |= ϕ

We shall need the notion of an MS-definable transduction of relational
structures that we now recall from [4].

Let R and Q be two finite ranked sets of relation symbols. Let W be
a finite set of set variables, called here the set of parameters. (It is not a
loss of generality to assume that all parameters are set variables.) A (Q, R)-
definition scheme is a tuple of formulas of the form :

∆ = (ϕ, ψ1, · · · , ψk, (θw)w∈Q∗k)

where

k > 0, R∗k = {(q,~)| q ∈ Q, ~ ∈ [k]ρ(q)}

ϕ ∈ MS(R, W),

ψi ∈ MS(R, W ∪ {x1}) for i = 1, · · · , k,

θw ∈ MS(R, W ∪ {x1, · · · , xρ(q)}), for w = (q,~) ∈ Q∗k.

These formulas are intended to define a structure T in STR(Q) from a
structure S in STR(R) and will be used in the following way. The formula ϕ
defines the domain of the corresponding transduction; namely, T is defined
only if ϕ holds true in S. Assuming this condition fulfilled, the formulas
ψ1, . . . , ψk define the domain of T as the disjoint union of the sets D1, · · · , Dk,
where Di is the set of elements in the domain of S that satisfy ψi. Finally,
the formulas θw for w = (q,~),~ ∈ [k]ρ(q) define the relation qT . Here are the
formal definitions.

Let S ∈ STR(R), let µ be a W-assignment in S. A Q-structure T with
domain DT ⊆ DS × [k] is defined in (S, µ) by ∆ if :

13

(i) (S, µ) |= ϕ

(ii) DT = {(d, i) | d ∈ DS, i ∈ [k], (S, µ, d) |= ψi}

(iii) for each q in Q :

qT = {((d1, i1), · · · , (dt, it)) ∈ Dt
T | (S, µ, d1, · · · , dt) |= θ(q,~)},

where~ = (i1, · · · , it) and t = ρ(q).

(By (S, µ, d1, · · · , dt) |= θ(q,~), we mean (S, µ′) |= θ(q,~), where µ′ is the as-
signment extending µ, such that µ′(xi) = di for all i = 1, · · · , t ; a similar
convention is used for (S, µ, d) |= ψi.)

Since T is associated in a unique way with S, µ and ∆ whenever it
is defined, i.e., whenever (S, µ) |= ϕ, we can use the functional notation
def∆(S, µ) for T .

The transduction defined by ∆ is the relation def∆ := {(S, T) | T =
def∆(S, µ) for some W-assignment µ in S} ⊆ STR(R)×STR(Q). A trans-
duction f ⊆ STR(R)×STR(Q) is MS-definable if it is equal to def∆ for
some (Q, R)-definition scheme ∆. In the case where W = ∅, we say that
f is MS-definable without parameters (note that it is functional). We shall
refer to the integer k by saying that def∆ is k-copying ; if k = 1 we say that
it is non copying and we can write more simply ∆ as (ϕ, ψ, (θq)q∈Q). In this
case:

DT = {d ∈ DS | (S, µ, d) |= ψ}

and for each q in Q

qT = {(d1, · · ·dt) ∈ Dt
T | (S, µ, d1, · · ·dt) |= θq}, where t = ρ(q).

We give an example: the product of a finite-state automaton A by a
fixed finite-state automaton B. A finite-state automaton is defined as a 5-
tuple A = < A, Q, M, I, F > where A is the input alphabet, (here we shall
take A = {a, b}), Q is the set of states, M is the transition relation which is
here a subset of Q×A×Q (because we consider nondeterministic automata
without ε-transitions), I is the set of initial states and F is that of final
states. The language it recognizes is denoted by L(A). The automaton A
is represented by the relational structure : | A|=< Q, transa, transb, I, F >
where transa and transb are binary relations and :

transa(p, q) holds if and only if (p, a, q) ∈ M ,

14

transb(p, q) holds if and only if (p, b, q) ∈ M .

Let B = < A′, Q′, M ′, I ′, F ′ > be a similar automaton, and A ×B=< A, Q×
Q′, M”, I×I ′, F ×F ′ > be the product automaton intended to define the lan-
guage L(A)∩L(B). We let Q′ be {1, · · · , k} (let us recall that B is fixed). We
let ∆ be the k-copying definition scheme (ϕ, ψ1, · · · .ψk, (θw)w∈R∗k), where
R = {transa, transb, I, F} and :

ϕ is the constant true (because every structure in STR(R) represents an
automaton which may have inaccessible states and useless transitions),

ψ1, · · · , ψk are the constant true,

θ(transa,i,j)(x1, x2) is the formula transa(x1, x2) if (i, a, j) is a transition of
B and is the constant false otherwise,

θ(transb,i,j) is defined similarly,

θ(I,i)(x1) is the formula I(x1) if i is an initial state of B and is false other-
wise,

θ(F,i)(x1) is defined similarly.

It is not hard to check that | A×B | = def∆(| A |). Note that the language
defined by an automaton A is nonempty if and only if there is a path in A
from some initial state to some final state. This later property is expressible
in monadic second-order logic. Hence it follows from Proposition 12 below
that, for a fixed rational language K, the set of structures representing an
automata A such that L(A)∩K is nonempty is definable. This construction
is used systematically in Courcelle [2].

Fact 11 The domain of an MS-definable transduction is MS-definable.

Proof: ∆ be a definition scheme as in the general definition with W =
{X1, · · · , Xn}. Then Dom(def∆) = {S | S |= ∃X1, · · · , Xn.ϕ}.

The following proposition says that if S = def∆(T, µ), i.e., if S is de-
fined in (T, µ) by ∆, then the monadic second-order properties of S can be
expressed as monadic second-order properties of (T, µ). The usefulness of
MS-definable transductions is based on this proposition.

Let ∆ = (ϕ, ψ1, · · · , ψk, (θw)w∈Q∗k) be a (Q, R)-definition scheme, writ-
ten with a set of parameters W . Let V be a set of set variables disjoint
from W . For every variable X in V , for every i = 1, · · · , k, we let Xi

15

be a new variable. We let V := {Xi/X ∈ V , i = 1, · · · , k}. For every
mapping η : V ′ → P(D), we let η ↑ k : V → P(D × [k]) be defined by
η ↑ k(X) = η(X1) × {1} ∪ · · · ∪ η(Xk) × {k}. With these notations we can
state :

Proposition 12 For every formula β in MS(Q, V) one can construct a
formula β′ in MS(R, V ′∪W) such that, for every T in STR(R), for every
assignment µ : W→ T for every assignment η : V → T , we have:

def∆(T, µ) is defined (if it is, we denote it by S), η ↑ k is a
V-assignment in S, and (S, η ↑ k) |= β

if and only if
(T, η ∪ µ) |= β′.

Note that, even if S is well-defined, the mapping η ↑ k is not necessarily
a V-assignment in S, because η ↑ k(X) is not necessarily a subset of the
domain of S which is a possibly proper subset of D × [k].

From this proposition, we get easily :

Proposition 13 1. The inverse image of an MS-definable class of struc-
tures under an MS-definable transduction is MS-definable.

2. The composition of two MS-definable transductions is MS-definable.

Proposition 14 Let k, m ≥ 1, let n ≥ 0. There exists an MS-definable
transduction associating with every transition system R of type (n, m) the
set of its k-coverings (where a system R is represented by a structure |R|2).

Proof
Let R be a transition system of type (n, m) and h : R′ → R be a k-covering.

By choosing an arbitrary linear ordering of each set h−1(x), x ∈ SR,
we can assume that SR′ ⊆ SR × [k] and h(x, i) = x for every i such that
(x, i) ∈ SR′ . We can assume that rootR′ = (rootR, 1).

For each i ∈ [k], we let Yi = {x ∈ SR : (x, i) ∈ SR′}. For i, j ∈ [k], we let

Zi,j = {t ∈ Tr : h(t′) = t for some t′ ∈ TR′ with source (srcR(t), i)
and target (tgtR(t), j)}

Since h is a bijection of outR′(x) onto outR(h(x)) for every x ∈ SR′

it follows that for every t ∈ Zi,j, there is a unique t′ ∈ TR′ , with source
(srcR(t), i) and target (tgtR(t), j) such that h(t′) = t. We shall identify t′

with the triple (t, i, j).

16

Hence

SR′ =
⋃

{Yi × {i} : 1 ≤ i ≤ k} (1)

TR′ =
⋃

{Zi,j × {(i, j)} : i, j ∈ [k]} (2)

This gives a description of |R′| as the output of a definable transduction
taking as input |R|2 and the parameters Y1, . . . , Yk, Z1,1, . . . , Zk,k.

Specifically we have

rtR′ = {(x, 1)} where x is the unique state in rtR (3)
srcR′ = {((t, i, j), (x, i)) : i, j ∈ [k], t ∈ Zi,j, (t, x) ∈ srcR} (4)
tgtR′ = {((t, i, j), (x, j)) : i, j ∈ [k], t ∈ Zi,j, (t, x) ∈ tgtR} (5)
PiR′ = {(x, j) : x ∈ PiR ∩ Yj, j ∈ [k]}, i = 1, . . . , n (6)
QiR′ = {(t, j, j ′) : x ∈ QiR ∩ Zj,j′ , j, j

′ ∈ [k]}, i = 1, . . . , m (7)

In this construction, we have assumed that the parameters Y1, . . . , Yk, Z1,1,
. . . , Zk,k are defined from a k-covering R′ of R. In order to ensure that the
constructed transduction only defines k-coverings of the input transduction
systems we must find a formula ϕ(Y1, . . . , Yk, Z1,1, . . . , Zk,k) that verifies
that the structure defined by (1)–(7) is actually of the form |R′|2 for some
k-covering R′ of R.

We consider the following conditions:

SR =
⋃

{Yi : 1 ≤ i ≤ k} (8)

TR =
⋃

{Zi,j : i, j ∈ [k]} (9)

For every i ∈ [k], every x ∈ Yi, every transition t ∈
outR(x) there is one and only one j ∈ [k] such that t ∈ Zi,j

(10)

Every state of R′ is accessible by a path from rootR′ . (11)

Conditions (8)–(11) can be written as an MS-formula in parameters
Y1, . . . , Yk, Z1,1, . . . , Zk,k to be evaluated in |R|2. Let us review them: (8)–(9)
state that the mapping h : SR′ ∪ TR′ → SR ∪ TR defined by

h((x, i)) = x if (x, i) ∈ SR′ and
h((t, (i, j))) = t if (t, (i, j)) ∈ TR′

is surjective. From its definition it is a homomorphism. Condition 10 states
that it is a covering. Condition 11 states that R′ is indeed a transition
system.

17

Hence ϕ(Y1, . . . , Yk, Z1,1, . . . , Zk,k) is the desired formula which com-
pletes the proof.

Here is the last definition. Let S and S ′ be two classes of structures with
S ⊆ STR(R) and S ′ ⊆ STR(R′), and let f be a transduction S → S ′. We
say that f is MS-compatible if there exists an algorithm that associates with
every MS-formula ϕ over R′ an MS-formula ψ over R such that, for every
structure S ∈ S:

S |= ψ iff S ′ |= ϕ for some S ′ ∈ f(S)

It follows from Proposition 12 that every MS-definable transduction is
MS-compatible.

Our main result (Theorem 10) says that the transduction |R|2 7→ |Un(R)|1
is MS-compatible for R ranging over finite and infinite transition systems of
type (n, m).

4 A regularization lemma

If R is a transition system of type (n, m) and Y ⊆ SR, we denote by R ∗ Y
the system of type (n+1, m) consisting of R augmented with Y as (n+1)-st
set of states.

The following lemma is a crucial step for the main theorem.

Lemma 15 Let n ≥ 0 and α ∈ L1(n+1, 2). One can find an integer k such
that, for every (possibly infinite) complete deterministic transition system R
of type (n, 2), if |Un(R)|1 |= ∃Xn+1.α, then there exists a k-covering R′ of
R and a subset Y of SR′ such that |Un(R′ ∗ Y)|1 |= α.

Proof
We let PA be a parity automaton such that L(PA) = {U ∈ Tn+1 : |U |1 |= α}.
By Lemma 7 there exists a finite set SA and sets Start, P1A, . . . , PnA ⊆ S,
two relations Q1A, Q2A ⊆ SA × SA and a function Ω : SA → N such that
L(PA) =

⋃
s∈Start L(As).

Let Z be a set of nodes of Un(R) that satisfies α when taken as a value
of Xn+1. Hence

|Un(R) ∗ Z|1 |= α (12)

Note that Un(R) ∈ Tn and Un(R)∗Z ∈ Tn+1 and by 12, Un(R)∗Z ∈ L(PA).

18

Let r : Un(R) ∗ Z → As be an accepting run of the quasi-automaton As

for some s ∈ Start. For every node w of Un(R) we let

r̄(w) = (r(w), hR(w)) ∈ SA × SR (13)

where hR is the universal covering Un(R) → R.
We shall consider r̄ as an accepting run of a quasi-automaton B = (B, Ω̄)

that we now construct. We first construct a transition system B.
We let SB ⊆ SA × SR be the set of pairs (x, y) such that

x ∈ PiA ⇔ y ∈ PiR for every i = 1, . . . , n (14)

We let TB to be a set of transitions: (x, y) → (x′, y′) of type i, (i = 1, 2)
such that: (x, y), (x′, y′) ∈ SB, x → x′ and y → y′ are transitions of SA and
SR respectively, both of type i.

We take (rootA, rootR) as a root of B. We let also PiB be defined as
follows:

x ∈ PiB ⇔ x ∈ PiA (15)

for each i = 1, . . . , n + 1. We have thus “almost” a transition system of
type (n + 1, 2): almost because it may be the case that some states of SB

are not accessible. We obtain an actual transition system by restricting
SB to the accessible states and TB to the transitions having an accessible
source. Hence B is now a transition system and r̄ is a homomorphism:
Un(R)∗Z → B. We make B into a quasi-automaton B = (B, Ω̄) by defining
Ω̄((x, y)) = Ω(x).

Claim 16 r̄ is an accepting run of B = (B, Ω̄).

Proof: Since r̄ is a homomorphism: Un(R) ∗ Z → B, it is a run of B. It
is easy to see that it is accepting.

By Lemma 9 there exists a complete deterministic quasi-automaton B′ ⊆
B and an accepting run r′ of B′ on some tree W ′ ∈ Tn+1.

We let B′ be the transition system of B′ (of type (n+1, 2)) and R′ be the
transition system of type (n, 2) obtained from B′ by deleting the (n + 1)-st
set of states, Pn+1B′ , that we shall take as the desired set Y .

We have thus B′ = R′ ∗Y ; R′ and B′ are complete deterministic. We let
also k = Card(SA).

Claim 17 R′ is a k-covering of R

19

Proof: Since R′ and R are complete deterministic we need only de-
fine the desired covering as a mapping of SR′ onto SR. We define it as
the projection π2 that maps (x, y) ∈ SR′ ⊆ SA × SR onto y. We have
π2(rootR′) = rootR since rootR′ = (rootA, rootR) and π2 is a homomorphism
from the definitions. The remaining follows from Fact 4

Claim 18 |Un(B′)|1 |= α

Proof: The mapping π1 : SB′ → SA defined by π1(x, y) = x is a homomor-
phism of transition systems and even an accepting run of A. It follows that
Un(B′) ∈ L(A) hence that |Un(B′)|1 |= α.

Since B′ = R′ ∗ Y we have thus obtained the desired integer k and the
proof is complete.

We consider Lemma 15 as a regularization lemma because it says that
if |Un(R)|1 contains a set Z that satisfies α it contains another one having
a special “regular” form, defined from the unfolding of a k-covering of R.

Our next aim is to extend Proposition 15 to transition systems R that
are not deterministic. If R is a transition system of type (n, 1), then the
nodes of the tree Un(R) have finite unordered sets of successors. Such trees
will be represented by binary trees in way that we now describe.

5 Edge contractions and the proof of the main re-
sult

We first consider systems of type (n, 1). We define a transformation that
makes a tree T ∈ Tn+1 into a tree c(T) of type (n, 1).

Let T ∈ Tn+1 be defined by an (n+1)-tuple of subsets of {1, 2}∗, namely
by (P1T , . . . , Pn+1T). We let c(T) be the tree such that:

• Sc(T) = ({1, 2}∗ \ P1T) ∪ {ε}

• x → y in c(T) iff there is in T a path of the form x → z1 → z2 → · · · →
zp → y with p ≥ 0 and z1, z2, . . . , zp ∈ P1T (x → y is a shorthand for
“there is a transition from x to y”).

• Pi−1c(T) = PiT ∩ Sc(T) for i = 2, . . . , n + 1.

Our next aim is to define a similar operation on transition systems so
that

Un(c(R)) = c(Un(R))

20

A special transition system is a system R of type (n + 1, 2), for some n,
such that

1. R is complete deterministic,

2. rootR 6∈ P1R,

3. P1R ∩ (P2R ∪ . . . ∪ Pn+1R) = ∅,

We now define a transformation c that transforms any special transition
system R of type (n+1, 2) into one of type (n, 1). We let c(R) be such that

• Sc(R) = SR \ P1R,

• Pic(R) = Pi+1R ∩ Sc(R) for i = 2, . . . , n,

• rootc(R) = rootR,

• x → y is a transition of c(R) iff we have a path in R of the form
x → z1 → z2 → · · · → zp → y with x, y 6∈ P1R, z1, z2, . . . , zp ∈ P1R,
p ≥ 0.

Fact 19 If R is special then we have c(Un(R)) = Un(c(R))

Proof
Easy verification

Lemma 20 For every transition system R of type (n, 1) one can construct a
special transition system, Bin(R) of type (n+1, 2) such that c(Bin(R)) = R

Proof
We let R′ be the transition system of type (n + 1, 2) defined as follows:

1. we add a new “sink” state ⊥ and two transitions ⊥ → ⊥ of type 1 and
2,

2. for each state s ∈ SR we do the following:

21

(a) if outR(s) = ∅ we add two transitions s → ⊥ of types 1 and 2,

(b) if outR(s) = {t} we add a transition s → ⊥ of type 2 (note that
the transition t is necessary of type 1).

(c) if outR(s) consists of at least two transitions, we let one to be of
type 1, and the other one of type 2; they will be transitions of
R′.

We let Bin ′(R) = Bin(R′) where Bin is defined on page 9.

3. We let P1Bin ′(R), consist of all “new states” (the state ⊥ and the states
introduced in the construction of Bin(R′)) and we let Pi+1Bin ′(R) = PiR

for every i = 1, . . . , n.

Lemma 21 If R is a special transition system and K is a k-covering of
Bin(R) then K is also special and c(K) is a k-covering of R.

Proof
We let h : K → Bin(R) be a k-covering. We first check that K is a special
system. Condition 1 of the definition of a special system (saying that K is
complete deterministic) holds because every covering of a complete deter-
ministic system is complete deterministic. Conditions 2 and 3 hold easily.

It remains to prove that c(K) is a k-covering of R. Let us consider
h : Sc(K) → SR. It is the desired covering. This follows from the observations
establishing that K is a special system.

Proposition 22 Let n ≥ 0 and α ∈ L1(n + 1, 1). One can find an integer
k such that, for every transition system R of type (n, 1), if |Un(R)|1 |=
∃Xn+1.α then there exists a k-covering R′ of R and a subset Y of SR′ such
that |Un(R′ ∗ Y)|1 |= α.

Proof
We first construct a formula β ∈ L1(n + 2, 2) such that for every tree T in
Tn+2 we have

|T |1 |= β iff P1T ∩ (P2T ∪ . . . ∪ Pn+1T) = ∅ and |c(T)|1 |= α

This is possible because the mapping from |T |1 to |c(T)|1 is a definable
transduction of structures.

22

We let k be the integer associated with β by Proposition 15. Let R be
a transition system of type (n, 1) such that |Un(R)|1 |= ∃Xn+1.α. For some
set Z ⊆ SUn(R) we have thus

|Un(R) ∗ Z|1 |= α

Since Un(R) = c(Un(Bin ′(R))) we have also Z ⊆ SUn(Bin ′(R)) and
Z ∩ P1Un(Bin′(R)) = ∅. Hence

|Un(Bin ′(R)) ∗ Z|1 |= β

By Proposition 15 we have some Y ⊆ SK such that

|Un(K ∗ Y)|1 |= β

where K is some k-covering of Bin ′(R). It holds in particular that P1K∩Y =
∅. By Lemma 21 c(K) is a k-covering of R and Y ⊆ Sc(K).

Hence c(K) is the desired system R′ since

|c(Un(K ∗ Y))|1 |= α

and
c(Un(K ∗ Y)) = Un(c(K ∗ Y)) = Un(c(K) ∗ Y)

Proof of Theorem 10

Let us first consider the case of the systems of type (n, 1). We want to show
that for every formula ϕ ∈ L1(n, 1) one can construct a formula ϕ̂ ∈ L2(n, 1)
such that, for every transition system R of type (n, 1):

|R|2 |= ϕ̂ ⇔ |Un(R)|1 |= ϕ

The proof proceeds by induction on the structure of ϕ. We assume that
ϕ is a closed formula. This is not a restriction as two formulas are equivalent
iff closed formulas obtained by substituting unary relational symbols for free
variables are equivalent.

If ϕ is closed atomic formula then ϕ̂ = ϕ. The cases for conjunction and
negation are obvious.

Assume ϕ = ∃X.α(X). By Proposition 22 there is an integer k such that
for every transitions system of type (n, 1):

23

|Un(R)|1 |= ∃X.α(X) iff there exists a k-covering R′ of R and a
subset Y of SR′ such that |Un(R′ ∗ Y)|1 |= α[Pn+1/X].

By induction assumption we have a formula α̂[Pn+1/X] such that for
every transition system K of type (n + 1, 1):

|K|2 |= α̂[Pn+1/X] iff |Un(K)|1 |= α[Pn+1/X]

It remains to show that the property:

there exist a k-covering R′ of R such that R′ |= ∃X.α̂(X)

is MS-definable.
By Proposition 14 we know that the transduction associating with R the

set of its k coverings is MS-definable. (This transduction has parameters
Y1, . . . , Yk, Z1,1, . . . , Zk,k each admissible choice of parameters gives us a k-
covering). Proposition 12 gives us the desired formula ̂∃X.α(X).

We now prove the theorem for systems of the general type (n, m) with
m ≥ 1.

We define a transformation α making a transition system R of type
(n, m) into a transition system α(R) of type (n + m, 1) such that the trans-
duction |R|2 7→ |α(R)|2 is MS-definable, and a transformation β from tran-
sition systems of type (n + m, 1) to transition systems of type (n, m) such
that the transduction |R|1 7→ |β(R)|1 is MS-definable and

Un(R) = β(Un(α(R))) (16)

for every transition system of type (n, m). Clearly such transformations
reduce the general case of the Theorem 10 to the case of systems of type
(n, 1) which we have just proved.

Definition of α Let R be a transition system of type (n, m) with m ≥ 2.
The idea of the construction of α(R) is to replace a state x of R by m

states (x, 1), . . . , (x, m) in R′ and to replace a transition y → x of type i
by m transitions from (y, 1), . . . , (y, m) to (x, i) all of type 1. (If there is
no transition of type i from y to x then we need not put in α(R) the state
(x, i)).

Here is the formal definition of α(R). Suppose

R = 〈SR, TR, srcR, tgtR, rootR, P1R, . . . , PnR, Q1R, . . . , QmR〉

24

Let us denote by [m] the set {1, . . . , m}). First we define system R′ which
is the 5-tuple

〈SR′, TR′, srcR′ , tgtR′ , rootR′ , P1R′, . . . , PnR′ , P
′
1R′, . . . , P

′
mR′〉

where

SR′ = SR × [m]
TR′ = TR × [m]

(s, i) = srcR′(t, j) iff s = srcR(t) and i = j

(s, i) = tgtR′(t, j) iff s = tgtR(t) and t ∈ QiR

rootR′ = (rootR, 1)
PiR′(s, j) ⇔ s ∈ SR and PiR(s) for i = 1, . . . , n

P ′iR′(s, j) ⇔ s ∈ SR and i = j for i = 1, . . . , n

Then R′ is “almost” a transition system of type (n + m, 1): “almost”
because some sates may be unreachable. One obtains α(R) by restricting
R′ to the reachable states and transitions. It is clear from this definition
that |α(R)|2 is definable from |R|2 by a definable transduction. We omit the
details.

Definition of β Let R′ be a transition system of the form

〈SR′, TR′, srcR′ , tgtR′ , rootR′ , P1R′, . . . , PnR′ , P
′
1R′, . . . , P

′
mR′〉

where P1R′ , . . . , PnR′, P
′
1R′ , . . . , P

′
mR′ are properties of sates. Then we de-

fine a transition system β(R) iff (P ′1R′ , . . . , P
′
mR′) forms a partition of SR′ .

If this is the case we let β(R′) = R where SR = SR′ , TR = TR′ , srcR =
srcR′ , tgtR = tgtR′ , rootR = rootR′ , PiR = PiR′ for i = 1, . . . , n and QiR =
{t ∈ TR′|tgtR(t) ∈ P ′iR′} for i = 1, . . . , n. It is clear that |β(R)|1 is definable
from |R|1 by a definable transduction.

It is also clear from the construction that β(Un(α(R))) is well defined
for every transition system of type (n, m) and that:

β(Un(α(R))) = Un(R)

This completes the proof of Theorem 10.

25

6 The Shelah-Stupp-Muchnik construction

We recall a construction and a result from Shelah and Stupp [10, 11] ex-
tended by Muchnik. The result by Muchnik is stated without a proof in
Semenov [9]. We establish that it yields an improvement of our main result.
However, this result being unpublished we consider it as a conjecture and
not as a proved result.

We let R be a finite set of relational symbols where each symbol r has
a finite arity ρ(r) ∈ N+. We recall that we denote by S(R) the class of all
R-structures, i.e., of tuples of the form M = 〈DM , (rM)r∈R〉 where DM is a
nonempty set (the domain of M) and rM ⊆ D

ρ(r)
M for every r ∈ R.

We let son and cl be two relation symbols, binary and unary respectively,
which are not in R. We let R+ = R ∪ {son, cl}.

With M ∈ STR(R) we associate the R+-structure

M+ = 〈(DM)+, (rM+)r∈R, sonM+, clM+〉

where DM+ = (DM)+ is the set of nonempty sequences of elements of DM ,
and

rM+ = {(wd1, . . . , wdρ(r)) : w ∈ D∗M , (d1, . . . , dρ(r)) ∈ rM}
sonM+ = {(w, wd) : w ∈ D∗M , d ∈ DM}

clM+ = {wdd : w ∈ D∗M , d ∈ DM}

We use D∗M to denote the set of all the sequences of elements of DM (in-
cluding the empty sequence).

Intuitively, M+ is a “tree build over M”; son is the corresponding suc-
cessor relation and cl is the set of clones, i.e., of elements of M+ that are
“like their fathers” (if son(x, y) we also say that x is the father of y; it is
unique).

Conjecture 23 (Semenov [9]) The mapping M 7→ M+ is MS-compatible.
In words, for every formula ϕ in MS(R+) one can construct a formula ψ
in MS(R) such that for every M ∈ STR(R):

M+ |= ϕ iff M |= ψ

It is stated in Shelah [10] and Thomas [11] (without a proof) that, if a
structure M has a decidable monadic theory then so has the structure M+

26

with respect to the language MS(R+ −{cl}). This statement weakens Con-
jecture 23 in two respects: the “clone” relation is omitted and the statement
only concerns decidability of theories and not translations of formulas. From
Conjecture 23, one gets the following improvement of Theorem 10:

Theorem 24 If conjecture 23 is true, then, for every n, m ∈ N with m ≥ 1,
the transduction:

|R|1 7→ |Un(R)|1
is MS-compatible where R ranges over simple transition systems of type
(n, m).

A transition system is simple if no two distinct transitions have the
same source, target and type.

Since some properties of simple graphs are MS-expressible with set edge
quantifications but not without them, the result of Theorem 24 is an im-
provement of Theorem 10. (The property that a simple directed graph has
a directed spanning tree of out-degree no bigger than some constant is an
example of such a property; the existence of a Hamiltonian circuit is another
example [5], page 125.)

This theorem is an immediate consequence of

Proposition 25 For every n, m ∈ N , m ≥ 1, the transduction (|R|1)+ 7→
|Un(R)|1 where R is a simple transition system of type (n, m) is MS-definable.

Proof
We let M = |R|1 = 〈SR, rootR, suc1R, . . . , sucmR, P1R, . . . , PnR〉. We define
a binary relation W on S+

R (= DM+) as follows:

W (x, y) ⇔ W1(x, y) ∨ . . . ∨ Wm(x, y)

where for each i:

Wi(x, y) ⇔ ∃z.(son(x, z) ∧ cl(z) ∧ suci(z, y))

Note that Wi(x, y) implies that y is a son of x.
We let N ⊆ S+

R be defined as follows:

y ∈ N ⇔ there exists x ∈ SR+ such that
rootM+(x) ∧ ∀z(¬sonM+(z, x)) ∧ (x, y) ∈ W ∗

Note that the first two conjuncts of the above condition define x uniquely
since rootR consists of a unique state (x is r where rootR = {r}). We used
W ∗ to denote the transitive closure of W .

27

Hence N is the set of elements of S+
R that are accessible from this x by

a directed path all edges of which are in W .

Claim 26 |Un(R)|1 = 〈N, W ′
1, . . . , W

′
m, P ′1, . . . , P

′
n〉, where W ′

i = Wi ∩ (N ×
N) and P ′j = PjM ∩ N for every i = 1, . . . , m and j = 1, . . . , n.

Proof: We define a bijection h of Paths(R) (the set of nodes of Un(R))
onto N . Let p be a path in Paths(R), say p = (t1, . . . , tk), t1, . . . , tk ∈ TR.
We let h(p) = (s0, . . . , sk) ∈ DM+ = (SR)+ where s0 is the initial state of R
and for each i = 1, . . . , k, si−1 is the source of ti and si is the target of ti.

Since R is simple, h is one-to-one. It is not hard to see that if si → si+1
is a transition of type j then Wj((s0, . . . , si), (s0, . . . , si+1) holds. Hence h
maps Paths(R) onto N

It is then easy to verify that every y ∈ N is the image by h of some path
p (the proof is by induction on the unique integer k such that (x, y) ∈ W k

where x is the element of DM+ used in the definition of N). Finally, h is an
isomorphism. We omit the details.

It is clear from the definition that N is a definable subset of DM+ (by
an MS formula on M+) and that the relations W ′

1, . . . , W
′
m, P ′1, . . . , P

′
n are

MS-definable similarly. Hence |Un(R)|1 can be obtained from M+ = |R|1
by an definable transduction.

The proof of this proposition is due to W. Thomas.

Example Let R = ∅, M = 〈{0, 1}〉. Consider M+ = 〈{0, 1}+, sonM+, clM+〉.
One can define the complete binary tree B = 〈N, suc1, suc2〉 in M+ as fol-
lows: one lets x be any element of M+ having no father; one lets N to be
the set of elements y of DM+ such that (x, y) ∈ (sonM+)∗, one lets then

suc1(u, v) ⇔ sonM+(u, v) ∧ clM+(v)
suc2(u, v) ⇔ sonM+(u, v) ∧ ¬clM+(v)

There are only two choices for x and the corresponding structures are
both isomorphic to B.

It follows that the monadic theory of B reduces to that of M+ that is
decidable since (trivially) the monadic theory of M is decidable (since M is
finite).

28

7 Graph coverings

We have seen that the mapping from a transition system to its universal
covering is MS-compatible (where a system R is represented by |R|2). We
ask the same question for graphs. We consider actually two different notions
of covering for which the answers are completely different.

7.1 Bidirectional coverings

We consider directed graphs G, defined by means of sets: VG (vertices), EG

(edges) and the source and target mappings respectively srcG : EG → VG,
tgtG : EG → VG.

For x ∈ VG we denote by inG(x) the set of edges of G with target x and
by outG(x) the set of edges with the source x.

Definition 27 (Bidirectional covering) Let G, G′ be connected graphs.
A homomorphism h : G′ → G is a bidirectional covering iff it is surjective
and for every x ∈ VG′, h is a bijection of inG′(x) onto inG(x) and of outG′(x)
onto outG(x).

For short we shall write b-covering for bidirectional covering. Unlike
coverings, b-coverings treat incoming edges exactly as outgoing edges.

Definition 28 (Walks) A walk in G is a sequence w = ((e1, η1), . . . , (ek, ηk))
such that e1, . . . , ek ∈ EG, η1, . . . , ηk ∈ {+, −}, for every i = 1, . . . , k − 1
we have t(ei, ηi) = s(ei+1, ηi+1) where t(e, η) = tgtg(e) if η = + and
t(e, η) = srcg(e) if η = −. Similarly s(e, η) = t(e, −1 ∗ η). Moreover we
require that whenever ei = ei+1 then ηi = ηi+1. This condition means that
the edge cannot be traversed twice consecutively in opposite directions. This
condition allows to take the same edge successively twice if its source and
target are identical.

We say that w as above is walk from s(e1, η1) to t(ek, ηk).

Fact 29 If h : G → G′ is a homomorphism and ((e1, η1), . . . , (ek, ηk)) is a
walk from x to y in G then the image of the walk is defined as the sequence
((h(e1), η1), . . . , (h(ek), ηk)); it is a walk in G′ from h(x) to h(y).

Fact 30 If h : G → G′ is a b-covering, x ∈ VG, h(x) = x′ and w′ is a walk
from x′ to y′, then there is a unique walk w in G from x to some y such that
h(w) = w′; we have h(y) = y′.

29

We now construct a b-covering of a graph G in terms of finite walks.
Let G be connected, let s ∈ VG. Denote by W (s) the set of all the walks

from s to arbitrary vertices. We put in W (s) the empty walk ε and assume
that it goes from s to s.

We let H be the graph such that:

VH = W (s) EH = a disjoint copy of W (s) − {ε}

If w.(e, η) ∈ EH for some e ∈ EG and η ∈ {+, −}, we let srcH(w.(e, η)) = w
and tgtH(w.(e, η)) = w.(e, η) if η = + and srcH(w.(e, η)) = w.(e, η) and
tgtH(w.(e, η)) = w otherwise.

We now let h : H → G to be the homomorphism such that

h(ε) = s

h(w) = x such that w goes from s to x, w ∈ VH − {ε}
h(w) = e where w ∈ EH is of the form w′.(e, η)

Fact 31 h : H → G is a b-covering.

Proposition 32 For every b-covering k : K → G there is a surjective
homomorphism: m : H → K such that k ◦m = h which is a b-covering. For
any two such homomorphisms m, m′ : H → K, there is an automorphism i
of H such that m′ = m ◦ i

Proof: Easy consequence of Facts 29 and 30.
We shall call H the universal b-covering of G and denote it by UBC(G).

Theorem 33 Let d ∈ N . The transduction mapping |G|2 to |UBC(G)|1 for
connected graphs G of degree at most d is MS-compatible.

Proof
Let G be a graph of degree at most d. By Vizing’s theorem (see [1]) there
exists an edge-coloring of G with m = d+1 colors such that no two adjacent
distinct edges have the same color.

The result is proved in [1] for finite graphs but the extension to infinite
graphs is an easy application of Koenig’s lemma (see [3]).

The coloring can be defined by a partition X1, . . . , Xm of EG in m sets.
We let X0 = {s} be a singleton with s ∈ VG. We now construct from

30

(G, X0, . . . , Xm) deterministic transition system R of type (0, 2m) as follows:

SR = VG

TR = EG × {+, −}
srcR(e, +) = srcG(e)
srcR(e, −) = tgtG(e)
tgtR(e, +) = tgtG(e)
tgtR(e, −) = srcG(e)

QiR = Xi × {+} for i = 1, . . . , m

Qm+iR = Xi × {−} for i = 1, . . . , m

rootR = s where X0 = {s}

We shall denote R by R(G, X0, . . . , Xm). It is clear that the transduction
mapping (|G|2, X0, . . . , Xm) 7→ |R(G, X0, . . . , Xm)|2 is MS-definable.

We now define UBC(G) from Un(R(G, X0, . . . , Xm)) by an MS-definable
transduction.

We let H = Un(R) and define K as follows:
VK is the set of vertices of H defined by good paths in R, where we say

that a path is good if it does not contain two successive edges e and e′ such
that:

either e ∈ QiR and e′ ∈ Qm+iR for 1 ≤ i ≤ m
or e ∈ Qm+iR and e′ ∈ QiR for 1 ≤ i ≤ m

We let e ∈ EK iff e ∈ TR and its two ends are in VK. We let e link u → v
in K if e links u → v in R and e ∈ QiR, 1 ≤ i ≤ m and we let e link v → u
in K if it links u → v in R and e ∈ Qi+m for some 1 ≤ i ≤ m.

Fact 34 K = UBC(G)

Fact 35 There exists an MS-definable transduction τ such that

τ(|Un(R(G, X0, . . . , Xm)|2)) = |UBC(G)|1

for every connected graph G of degree at most d and every X0, . . . , Xm such
that R(G, X0, . . . , Xm) is well defined.

31

Proof: From the definition of K it follows that VK can be defined as
a subset of VH by an MS-formula, because the notion of a good path is
MS-expressible. It is easy to see that the relations srcK and tgtK are also
MS-definable. The result follows from the Fact 34.

We obtain thus that the transduction |G|2 7→ |UBC(G)|1 is MS-compatible
because it can be written as the following composition:

|G|2 7→ |R(G, X0, . . . , Xm)|2 7→ |Un(R(G, X0, . . . , Xm))|2 7→ |UBC(G)|2

where the first and the third transformations are MS-definable whereas the
second is MS-compatible (where of course G is connected and of degree at
most d, m = d + 1).

This concludes the proof of the Theorem 33.

a b

c

b
a

s

Figure 1: Example graph

Remarks

1. Since UBC(G) is a tree, one can replace in Theorem 33 |UBC(G)|1
by |UBC(G)|2 (and obtain thus a stronger statement) because the
mapping |H |1 7→ |H |2 is MS-definable whenever H is a tree. This is
proved in Courcelle [5] for finite graphs but the proofs are based on
coloring arguments which extend easily from finite to infinite graphs
essentially by Koenig’s lemma (see [3]).

32

2. Similarly the transduction |G|1 7→ |G|2 is MS-definable for finite and
infinite simple graphs G of degree at most d. It follows that in the
statement of Theorem 33, |G|2 can be replaced by |G|1 if G is restricted
to be simple.

Now we give an example to illustrate the construction of the proof of
Theorem 33.

Example We let G be the graph shown in Figure 1. Its edges are colored
by a, b, c and s is a distinguished vertex. For each edge e of G of color x,
we color by x the transition (e, +) of R and by x′ the “opposite” transition
(e, −).

The top part of the tree H = Un(R) is:

..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

.
..
. ..

. ..
...

.
a

ab

a’

c
a

b’

b

b’

b’

c

c’

c’

b

b
a’ a’b’

a’

After restriction to the vertices in VK we obtain

..

.
..
. ..

.

..

...
. ..

. ..
.

a

a’

c

b’

b

b’

a’

c

b’b
c’

b
a’

b’

c a

s

After reversal of the “primed” edges we get UBC(G):

33

a b

c

b

bb b b

a

a a

ac c

c

a

Open question: Can one waive the restriction to graphs of bounded degree
in Theorem 33 ?

Even if we assume Conjecture 23 to be true, we do not know the answer.
We shall conclude this section by a negative result concerning a “stronger

notion” of graph covering.

7.2 Definition: Distance-1-coverings

For every graph G and every x ∈ VG, we denote by BG(x) the subgraph of
G induced by {x} ∪ V , where V is the set of vertices adjacent to x.

A distance-1-covering (a d1-covering for short) is a covering h : G′ → G
such that for every y ∈ VG′ , h is a isomorphism: BG′(y) → BG(h(y)).
Example
G′ is d1-covering of G where G and G′ are presented in Figure 2 and h maps
x′ and x′′ to x for x ∈ {a, b, c, d}.

G

G1
G2

G′

.

a b

cd

a” b”

c”

d”

a’b’

c’

d’

Figure 2: Example of d1-covering

34

The graph G2 is a b-covering of the graph G1 presented in Figure 2. But
G2 is not a d1-covering. Clearly, G is isomorphic to all its d1-coverings since
G = BG(x) for some x.

We shall now construct a universal d1-covering of a graph G as a quotient
of its universal b-covering UBC(G).

We let H = UBC(G) (see Fact 31 above) and h : H → G. We let
E ⊆ (VH × VH) ∪ (EH × EH) be the equivalence relation defined as:

{(u, v) : h(u) = h(v) and u, v belong to a connected component of
h−1(BG(x)) for some x}

We let H ′ be the quotient graph H |E, we let k : H → H ′ be the canonical
surjective homomorphism such that h = h′ ◦ k. It is not hard to see that h′

is a d1-covering of G and that every d1-covering m : G′ → G factors into
h′ ◦m′ where m′ is a surjective homomorphism: G′ → H ′, and further more
a d1-covering. We shall call H ′ the universal-d1-covering of G and denote
it by UDC(G).

Proposition 36 The mapping |G|2 7→ |UDC(G)|1 is not MS-compatible
even if G is restricted to finite connected graphs of degree at most 6.

Proof
We construct a finite connected graph G of degree 6 such that UDC(G) is the
infinite grid (augmented with diagonals on each square). Since the monadic
theory of UDC(G) is undecidable (even if MS-formulas do not use edge set
quantification), and since the monadic theory of |G|2 is decidable (since G is
finite) it follows that MS-formulas expressing properties of UDC(H) cannot
be translated into equivalent MS-formulas on |H |2 in a uniform way, for all
finite connected graphs H , even of bounded degree at most 6.

The infinite grid with diagonals is the graph H such that:

VH = Int × Int
EH = {((x, y), (x′, y′))|x, y, x′, y′ ∈ Int,

x ≤ x′ ≤ x + 1, y ≤ y′ ≤ y + 1, (x, y) 6= (x′, y′)}

Int denotes the set of integers. Figure 3 shows a portion of H .
For x, x′ ∈ Int we let x ∼ x′ iff x−x′ is a multiple of 4. For (x, y), (x′, y′) ∈

VH we let (x, y) ∼ (x′, y′) iff x ∼ x′ and y ∼ y′. For e, e′ ∈ EH linking
respectively z1 to z2 and z′1 to z′2, we let e ∼ e′ iff z1 ∼ z′1 and z2 ∼ z′2.

35

Figure 3: A portion of H

Figure 4: Graph G

36

We let G be the quotient graph H | ∼. It is not hard to see that G is
the graph partially shown on Figure 4. We let h be the canonical surjective
homomorphism h : H → G.

It is easy to see that h is a d1-covering. In order to prove that H =
UDC(G) it is enough to prove that if k : K → H is a d1-covering then k is
an isomorphism.

So let k : K → H be a d1-covering of H . If k is not an isomorphism,
there exist x, y ∈ VK such that x 6= y and k(x) = k(y). Let us select such a
pair where x and y are at minimal distance, say n. Hence in K there exists
a walk from x to y of the form w = ((e1, η1), . . . , (en, ηn)). Its image under
k is a walk k(w) = ((k(e1), η1), . . . , (k(en), ηn)) from z = k(x) to itself.

The intermediate vertices on this walk are pairwise distinct and distinct
with z because otherwise, n would not be the distance between x and y or
one could find a pair x′, y′ ∈ VK such that k(x′) = k(y′), x 6= y′ and the
distance between x′ and y′ is less than n.

Consider now k(w). It defines a cycle on the planar graph H (where
edges can be traversed in either direction). This cycle is simple (it does not
cross itself) and has a certain area namely, the number of triangles forming
its interior part. We shall prove that we can replace w by a walk w′ from
x to y of the same length and such that the area of k(w′) is strictly smaller
than that of k(w). This will give us a contradiction and prove that k is an
isomorphism.

Let u be the unique vertex of k(w) having a maximal first component
among those that have a maximal second component. We first assume that
u 6= k(x) = k(y). Let v and v′ be the two neighbors of u on the circular walk
k(w). Let u = (u0, u1). Up to exchanges of v and v′ we have the following
possible cases (by the maximality conditions on u0 and u1):

case 1: v = (u0 − 1, u1), v′ = (u0 − 1, u1 − 1),

case 2: v = (u0, u1 − 1), v′ = (u0 − 1, u1 − 1),

case 3: v = (u0 − 1, u1), v′ = (u0, u1 − 1).

However case 1 cannot happen because w is minimal. Let us check this.
Let ū be the vertex of w with k(ū) = u. Since k is an isomorphism between
BK(ū) and BH(u) since v, v′ ∈ BH(u) and are adjacent, so are v̄ = k−1(v)
and v̄′ = k−1(v′) in BK(ū). It follows that w can be replaced by a shorter
walk, which connects directly v̄ and v̄′ and skips ū. This contradicts the
hypothesis that w has a minimal length.

37

Case 2 cannot happen for the similar reason.
In case 3 we cannot connect directly v̄ and v̄′ but we can link them via the

unique vertex k−1(u0−1, u1−1) in BK(ū) (note that v, v′ and (u0−1, u1−1)
belong all to BH(u)). The resulting walk w′ is such that k(w′) has a smaller
area than k(w) (smaller by 2).

If u = k(x) = k(y) we use a similar argument by replacing u by the
unique vertex of k(w) having a minimal first component among those that
have a minimal second component. The argument goes through with +1
instead of −1 everywhere.

8 Conclusions

We have shown the main conjecture of [2] (see Theorem 10) saying that
the unfolding operation is MS-compatible provided graphs (or transition
systems) are represented in a way making it possible quantifications on sets
of edges (or of transitions).

A stronger form of this result would follow from a conjecture by Muchnik
stated in Semenov [9].

We also considered “bidirectional unfolding” of graphs. Although it is
very close to the unfolding, we could not extend the main theorem without
the additional assumption that degree is uniformly bounded. Whether this
restriction can be lifted is also an open question.

These unfoldings have been defined as instances of the very general topo-
logical notion of covering (for appropriate notions of neighbourhood). The
two notions correspond to neighbourhoods of increasing strengths. For the
next step (distance 1-coverings), MS-logic becomes unmanageable.

References

[1] B. Bollobas. Extremal graph theory. Academic Press, 1978.

[2] Bruno Courcelle. The monadic second-order logic on graphs IX: ma-
chines and behaviours. Theoretical Computer Science. to appear.

[3] Bruno Courcelle. On the extension to infinte graphs of properties of
finite ones. In preparation.

[4] Bruno Courcelle. Monadic second-order graph transductions: A survey.
Theoretical Computer Science, 126:53–75, 1994.

38

[5] Bruno Courcelle. The monadic second-order logic on graphs vi: on
several representations of graphs by relational structures. Disc. Applied
Maths, 54:117–149, 1994.

[6] E.Allen Emerson and C.S. Jutla. Tree automata, mu calculus and de-
terminacy. In Proc. FOCS 91, 1991.

[7] Andrzej W. Mostowski. Games with forbidden positions. Technical
Report 78, University of Gdansk, 1991.

[8] Damian Niwiński. Fixed points vs. infinite generation. In Proc. 3rd.
IEEE LICS, pages 402–409, 1988.

[9] A.L. Semenov. Decidability of monadic theories. In MFCS’84, volume
176 of LNCS, pages 162–175. Springer-Verlag, 1984.

[10] Saharon Shelah. The monadic second order theory of order. Annals of
Mathematics, 102:379–419, 1975.

[11] Wolfgang Thomas. Automata on infinite objects. In J.van Leeuven,
editor, Handbook of Theoretical Computer Science Vol.B, pages 995–
1072. Elsvier, 1990.

39

Recent Publications in the BRICS Report Series

RS-95-44 Bruno Courcelleand Igor Walukiewicz.Monadic Second-
Order Logic, Graphs and Unfoldings of Transition Systems.
August 1995. 39 pp. To be presented at CSL '95.

RS-95-43 Noam Nisan and Avi Wigderson.Lower Bounds on Arith-
metic Circuits via Partial Derivatives (Preliminary Ver-
sion). August 1995. 17 pp. To appear in36th Annual Con-
ference on Foundations of Computer Science, FOCS '95,
IEEE, 1995.

RS-95-42 Mayer Goldberg. An Adequate Left-Associated Binary
Numeral System in theλ-Calculus. August 1995. 16 pp.

RS-95-41 Olivier Danvy, Karoline Malmkjær, and Jens Palsberg.
Eta-Expansion Does The Trick. August 1995. 23 pp.

RS-95-40 Anna Inǵolfsdóttir and Andrea Schalk. A Fully Abstract
Denotational Model for Observational Congruence. Au-
gust 1995. 29 pp.

RS-95-39 Allan Cheng.Petri Nets, Traces, and Local Model Check-
ing. July 1995. 32 pp. Full version of paper appearing in
Proceedings of AMAST '95, LNCS 936, 1995.

RS-95-38 Mayer Goldberg. Gödelisation in theλ-Calculus. July
1995. 7 pp.

RS-95-37 Sten Agerholm and Mike Gordon.Experiments with ZF
Set Theory in HOL and Isabelle. July 1995. 14 pp. To ap-
pear in Proceedings of the 8th International Workshop on
Higher Order Logic Theorem Proving and its Applications,
LNCS, 1995.

RS-95-36 Sten Agerholm.Non-primitive Recursive Function Defini-
tions. July 1995. 15 pp. To appear inProceedings of the 8th
International Workshop on Higher Order Logic Theorem
Proving and its Applications, LNCS, 1995.

RS-95-35 Mayer Goldberg.Constructing Fixed-Point Combinators
Using Application Survival. June 1995. 14 pp.

RS-95-34 Jens Palsberg.Type Inference with Selftype. June 1995.
22 pp.

