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Abstract

A domain theoretical denotational model is given for a simple sublan-
guage of CCS extended with divergence operator. The model is derived as
an abstraction on a suitable notion of normal forms for labelled transition
systems. It is shown to be fully abstract with respect to observational
precongruence.

1 Introduction

In describing the semantics of communicating processes the notion of bisimu-
lation, [Par81, Mil83], has became standard in the literature. In this setting
two processes are considered to be behaviourally equivalent if they can simulate
each other’s behaviour. It is standard practice to distinguish between strong
bisimulation, where the silent τ -moves are considered visible, and weak bisimu-
lation, which abstracts away from them. Weak bisimulation equivalence turns
out not to be a congruence with respect to some of the standard operators
found in process algebras, e.g. the choice operator of CCS, and therefore the
notion of weak bisimulation congruence, often called observational congruence,
has been introduced.

One of the main characteristics of weak bisimulation equivalence, and of the
associated congruence, is the fact that it allows for the abstraction from diver-
gence, i.e. infinite sequences of internal computations, in process behaviours.
Semantic theories for processes based on the bisimulation idea which take di-
vergence into account have also been considered in the literature, see, e.g.,
[Wal90, AH92]. In those studies, bisimulation equivalence is extended to a
bisimulation preorder, usually referred to as prebisimulation. Intuitively if a
process p is smaller than a process q with respect to the bisimulation preorder,
then the two processes are bisimilar, but p may diverge more often than q.
∗Basic Research in Computer Science, Centre of the Danish National Research Foundation.
†email: annai@iesd.auc.dk
‡email: Andrea.Schalk@cl.cam.ac.uk



For a further understanding and justification of the idea of bisimulation,
many researchers have presented more abstract formal descriptions for it, us-
ing different theoretical tools to analyse in depth the nature of the concept.
Examples of such alternative descriptions are characterizations of bisimulation
by means of modal logics, [Sti87, Mil89], sound and complete axiomatizations,
[Hen81, Wal90, AH92], and fully abstract denotational models, [Hen81, Abr91,
AH92]. The denotational models are usually given in terms of Σ-domains, i.e. ω-
algebraic cpos endowed with a continuous Σ-algebra structure. The existence
of a fully abstract model in terms of a Σ-domain has the consequence that the
behavioural preorder one is trying to model has to be finitary. Intuitively this
means that the behavioural preorder is completely induced by finite observa-
tions of process behaviours. This is, in general, not the case for bisimulation
as shown in, e.g., [Abr91]. For this reason, studies on mathematical models
for such relations usually focus on providing denotational models for finitary
versions of the bisimulation preorders [Hen81, Abr91, AH92].

There is a natural connection between sound and complete axiomatizations
of behavioural preorders and fully abstract denotational models. Denotational
models are often given in terms of initial Σ-domains satisfying a set of inequa-
tions [Hen88a]. In this kind of models the interpretation of a term is simply the
set of terms which can be proved equal to it by the proof system. This type of
denotational models is usually referred to as term models in the literature. Ex-
amples of such models may be found in, e.g., [Hen81], where the author defines
a fully abstract term model for strong prebisimulation on a simple extension of
SCCS, and in [AH92], where the authors give a fully abstract term model for
observational congruence over an extension of the standard CCS.

Term models have been criticized for not giving much more insight into the
semantics than the proof system already does. It is true that the existence
of a fully abstract model for a behavioural preorder in terms of an algebraic
cpo does imply that the behavioural preorder must be finitary, but usually this
property has to be proven first anyway to prove the full abstractness of such a
model. On the other hand by giving a syntax free representation of the term
model we may gain some insight into the properties of the semantics we want
to model. One way of obtaining such a syntax free representation, which is
fully abstract with respect to a finitary behavioural preorder, is to investigate
the preorder on the process graphs, that define the operational semantics. By
investigating this preorder for finite processes we may gain enough information
to be able to predict the behaviour for infinite processes. This is typically
done by introducing some notion of semantic normal form for process graphs
which contains enough information about the behavioural preorder. This kind
of semantic normal forms may then induce a poset which coincides with the
kernel of the behavioural preorder for finite processes. If all processes in the
language can be turned into syntactic normal forms (i.e process terms whose
process graph is in semantic normal form) in a sound way, i.e. preserving the
behavioural semantics, it is sometimes possible to obtain a fully abstract model
by taking the unique algebraic cpo which has the poset derived from semantic
normal forms as its representation of its compact elements. A similar approach
occurs in Hennessy’s model for testing equivalence based on finite acceptance
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trees which basically is a syntax free representation of the syntactic normal
forms he defines, [Hen85, Hen88b].

Yet another, and maybe the most mathematically elegant, way of defining
a denotational model is to define it as the initial solution to a recursive do-
main equation. The normal forms may now occur in the description of the
compact elements derived from this definition. In [Abr91] Abramsky defines a
fully abstract model for the finitary part of strong prebisimulation for SCCS.
The domain theoretic constructions he uses are a variant of the Plotkin power
construction and a notion of infinite sum. The poset of compact elements of
the model may, roughly speaking, be represented as finite convex closed sets of
finite synchronization trees ordered by the strong bisimulation preorder.

To give a short summary of the existing denotational models for bisimulation
we have: For strong ω-prebisimulation on SCCS a fully abstract term model is
given in [Hen81] and a fully abstract mathematical model in [Abr91]. For the
ω-version of observational precongruence a fully abstract term model is given
in [AH92] for an extension of CCS.

In this paper we will contribute to the investigation in a denotational setting
of bisimulation preorders by defining a syntax free model for the ω-observational
precongruence. Our aim is therefore to define a Σ-domain which is initial in
the class of Σ-domains satisfying the set of equation that characterizes the ω-
observational congruence and which does not mention terms or equations. Our
approach is based on the idea of normal forms and ideal closure as described
above. Thus we introduce semantic normal forms which are simply the pro-
cess graphs derived from the syntactic normal forms introduced by Walker in
[Wal90] ordered by strong bisimulation preorder. These normal forms may be
represented as restricted form for finite synchronization trees ordered by the
Egli-Milner preorder and can therefore be compared to Abramsky’s model in
[Abr91]. Our hope was to, instead of using equivalence classes as the elements of
our model, to represent the equivalence classes by some canonical elements, i.e.
the normal forms. Unfortunately our approach did not work quite as well as
we had hoped. All the equations turn out to be sound in this model apart from
the equation

µ.τ.x = µ.x (1)

which turns out to be difficult to model. Therefore our model is structured
on two levels: on the first level we define the normal synchronization trees as
described above whereas we obtain the second level by factoring out equation
(1). We show the full abstractness of our model with respect to ω-observational
precongruence.

We will focus on much simpler language than the one studied in [AH92].
Thus we only consider a language describing trees, finite or infinite, as all the
aspects we are interested in investigating are captured by this simple language.
(Most of the results we obtain may be easily extended to full CCS or similar
languages with divergence added to them.) In our study we make an extensive
use of properties already proven in the literature, e.g. in the definition of the
existing models for bisimulation preorders. Thus we may assume the soundness
and completeness of the proof system used to define the term model in [AH92]
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which of course is simplified and modified according to the different language.
In the same reference it is also proved that the ω-observational precongruence
is finitary. From [Wal90] we borrow a suitable notion of normal forms and a
corresponding normalization theorem. Furthermore we also get from that ref-
erence an alternative characterization of the observational precongruence which
turns out to be useful in our studies.

The structure of the paper is as follows: In Section 2 we give a short review
of labelled transition systems with divergence and the diverse notions of pre-
bisimulation and observational precongruence; in the same section we introduce
the notion of normal forms and give an alternative characterization of the ob-
servational precongruence on these. In Section 3 we define the language Trees
and give a short summary of existing results for this: a sound and complete
axiomatization of the observational preorder and a normalization theorem for
finite trees. In Section 4 we give a short overview over the domain theory we
need whereas Section 5 is devoted to the definition of our domain and a proof
of a full abstractness with respect to observational precongruence. We finish
the paper by giving some concluding remarks.

2 Labelled Transition Systems with Divergence

The operational semantics of the languages considered in this paper will be given
in terms of a variation on the notion of labelled transition systems [Kel76] that
takes divergence information into account. We refer the interested readers to,
e.g., [Hen81, Mil81, Wal90] for motivation and more information on (variations
of) this semantic model for reactive systems.

Definition 2.1 [Labelled Transition Systems with Divergence] A la-
belled transition system with divergence (lts) is a quadruple (P, Lab,→, ↑), where:

• P is a set of processes or states, ranged over by s, s′, si;

• Lab is a set of labels, ranged over by `;

• →⊆ P × Lab × P is a transition relation. As usual, we shall use the more
suggestive notation s

`→ s′ in lieu of (s, `, s′) ∈→;

• ↑⊆ P is a divergence predicate, notation s ↑.

We let Λ range over all lts’s. A process graph is a pair of the form (s0,Λ) where
s0 ∈ P is the initial state and P is the set of processes in Λ. 2

We write s ↓, read “s converges globally”, iff it is not the case that s ↑. The
lts Λ = (P, Lab,→, ↑) is said to be a finite state lts if P is finite; it is said to
be finite if it is a finite state lts and does not contain cycles. A finite tree lts
is defined in the obvious way. We note here that each finite lts may be turned
into a finite tree lts by making one copy of each state for each incoming arc
where the outgoing arcs and their descendants are the same as from the original
state. We note that the resulting lts is not isomorphic to the original one as
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in general it has more states. On the other hand it is strongly bisimilar to the
original one in the sense to be defined later in this section. In our semantic
theory the operational semantics for a process s, is given by a process graph
with the process as the initial state. Intuitively, a process graph is an lts with
a pointer to the initial state. If the underlying lts Λ is fixed we write s instead
of the process graph (s,Λ). A finite tree lts Λ, has a canonical initial state,
namely the root of the tree, root(Λ). Therefore, if Λ is a finite tree lts, we often
refer to the process graph (root(Λ),Λ) as Λ. In this study we will follow this
practice without further explanations.

We define the following operators on process graphs:

1. l : (s, (P,−→, ↑)) = (l : s, (P ∪ {l : s}, Lab ∪ {l},−→ ∪{(l : s, l, s)}, ↑))
where l : s 6∈ P is a new state.

2.
∑
◦ i≤N (si, (Pi, Labi,−→i, ↑i)) = (s′, (P′, Lab′,−→′, ↑′)) where

(a) s′ =
∑

i≤N si 6∈
⋃

i≤N Pi is a new state,

(b) P′ = {s′} ∪⋃i≤N (Pi \ {si}),

(c) Lab′ =
⋃

i≤N Labi,

(d) −→′=
⋃

i≤N (−→i \{(si, l, s
′
i)| (si, l, s

′
i) ∈−→i}

∪{(s′, l, s′
i)| (si, l, s

′
i) ∈−→i}),

(e) ↑′=
⋃

i≤N ↑i ∪{s′| ∃j.sj ∈↑j}.

We use the infix notation ⊕ for the sum over two lts’s. We assume that µ :
has priority over ⊕. The finite tree lts’s may be represented as the set of finite
synchronization trees over a set of labels Lab, denoted by ST(Lab). These are
the sets generated by the following inductive definition:

1. ∅, {⊥} ∈ ST(Lab),

2. `i ∈ Lab, ti ∈ ST(Lab) for i ≤ N implies {〈`i, ti〉 | i ≤ N}[∪{⊥}] ∈
ST(Lab),

where the notation [∪{⊥}] means optional inclusion of ⊥. The divergence
predicate and the transition relation are defined a follows:

• t ↑ iff ⊥ is in t, and

• t
`i→ ti iff 〈`i, ti〉 is in t.

We let t range over ST(Lab).
We note that the process graph operators also apply for ST(Lab); in this

representation we have µ : t = {〈µ, t〉} and ⊕ = ∪. Furthermore we often write
µ instead of {〈µ, ∅〉} or µ : ∅. This may simplify our notation considerably later
on.

The following norm on ST(Lab) will be needed in this study.

The depth of a normal form, d : NST(Actτ) −→ Nat is defined by

1. d(∅) = d({⊥}) = 0
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2. d(µ : t) = 1 + d(t)
3. (

∑
◦ i≤Nµi : ti[⊕{⊥})] = maxi d(µi : ti)

We extend the function d to d : ST(Lab) × ST(Lab) −→ Nat by
d(t1, t2) = d(t1) + d(t2).

In what remains of this section we let Λ = (P, Lab,→, ↑) be a fixed lts. Further-
more we let Rel(P) denote the set of binary relations over P. The behavioural
relations over processes that we shall study in this paper are those of prebisim-
ulation [Mil81, Hen81, Wal90]. (also known as partial bisimulation [Abr91]).

Definition 2.2 [Strong Prebisimulation] Define the functional Fs : Rel(P) →
Rel(P) (s stands for “strong”) by:

Given R ∈ Rel(P), s1Fs(R)s2 iff, for each µ ∈ Actτ ,

1. If s1
µ−→ s′

1 then, for some s′
2, s2

µ−→ s′
2 and s′

1Rs′
2.

2. If s1 ↓ then
(a) s2 ↓ and
(b) if s2

µ−→ s′
2 then, for some s′

1, s1
µ−→ s′

1 and s′
1Rs′

2.

The strong prebisimulation preorder (over Λ), <
∼Λ is defined as the largest fixed-

point for Fs. If Λ is known from the context we write <
∼ instead of <

∼Λ. 2

The relation <
∼ is a preorder over P and its kernel will be denoted by ∼, i.e.,

∼=<
∼ ∩ <

∼
−1. Intuitively, s1

<
∼ s2 if s2’s behaviour is at least as specified as

that of s1, and s1 and s2 can simulate each other when restricted to the part
of their behaviour that is fully specified. A divergent state s with no outgoing
transition is a minimal element with respect to <

∼ and intuitively corresponds
to a process whose behaviour is totally unspecified — essentially an operational
version of the bottom element ⊥ in Scott’s theory of domains [SS71, Plo81].

The preorder <
∼ (and other similar relations) is extended to process graphs

by
(s1,Λ1) <

∼ (s2,Λ2) if and only if s1
<
∼Λ1]Λ2 s2

where Λ1 ] Λ2 is the standard disjoint union of Λ1 and Λ2. Processes from
different lts’s are compared in this way where we usually write only s1

<
∼ s2. In

the sequel, this will be done without further comment. (We will often need to
compare states in an lts with finite synchronization trees.)

In this study, we shall be interested in relating the notion of prebisimulation
to a preorder on processes induced by a denotational semantics given in terms
of an algebraic domain [Plo81]. As such preorders are completely determined
by how they act on finite processes, we shall be interested in comparing them
with the “finitely observable”, or finitary, part of the bisimulation in the sense
of, e.g., [Gue81, Hen81]. The following definition is from [Abr91].

Definition 2.3 Let R ∈ Rel(P). The finitary part of R, RF is defined on any
lts by

sRF s′ ⇔ ∀t ∈ ST(Lab). tRs ⇒ tRs′ .

2
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An alternative method for using the functional Fs to obtain a behavioural
preorder is to apply it inductively as follows:

• <
∼0= Rel(P),

• <
∼n+1= Fs(<

∼n)

and finally <
∼ω=

⋂
n≥0

<
∼n. Intuitively, the preorder <

∼ω is obtained by restricting
the prebisimulation relation to observations of finite depth. The preorders <

∼,
<
∼ω and <

∼
F are, in general, related thus:

<
∼ ⊆ <

∼ω ⊆ <
∼

F
.

Moreover the inclusions are, in general, strict. The interested reader is referred
to [Abr91] for a wealth of examples distinguishing these preorders, and a very
deep analysis of their general relationships and properties. Here we simply state
the following useful result, which is a simple consequence of [Abr91, Lem. 5.10]:

Lemma 2.4 For every t ∈ ST(Lab), s ∈ P, t <
∼ s iff t <

∼ω s.

Next we define the weak version of the prebisimulation and the derived
observational precongruence. Following the standard practice we assume that
the set of labels Lab has the form Actτ = Act∪{τ} where Act is a set of visible
actions and τ 6∈ Act is an invisible action. We let a range over Act and µ over
Actτ . We let

µ
=⇒ denote ( τ−→)∗· µ−→ ·( τ−→)∗. So s1

µ
=⇒ s2 means that s1 may

evolve to s2 performing the action µ and possibly silent moves. We will also
use the relation ε=⇒, defined as ( τ−→)∗.

For any s, let Sort(s) = {µ ∈ Actτ | ∃ σ ∈ Act∗τ , s′ ∈ P : s
σµ−→ s′}, where,

for σ ∈ Act∗τ , σ−→ is defined in the natural way. In this study we only deal with
lts’s which are sort finite, that is where Sort(s) is finite for each s ∈ P. Some
of our results will depend on this fact.

Processes that can perform an infinite sequence of τ -actions are weakly
divergent, which brings us to a definition of a weak divergence predicate. Let
⇓ be the least predicate over P which satisfies

s1 ↓ and (for each s2, s1
τ−→ s2 then s2 ⇓) imply s1 ⇓ .

s ⇑ means that s ⇓ is not the case. In the semantic preorder to be defined we
will use versions of ⇓ which are parameterized by actions:

s1 ⇓ µ if s1 ⇓ and , for each s2, s1
µ

=⇒ s2 implies s2 ⇓

We use the standard notation µ̂ where τ̂ stands for ε and â stands for a. The
following definition is taken directly from [Wal90].

Definition 2.5 Given R ∈ Rel(P), s1Fw(R)s2 (w for “weak”) iff, for each
µ ∈ Actτ ,

1. if s1
µ−→ s′

1 then, for some s′
2, s2

µ̂
=⇒ s′

2 and s′
1Rs′

2

2. if s1 ⇓ µ then

7



(a) s2 ⇓ µ

(b) if s2
µ−→ s′

2 then, for some s′
1, s1

µ̂
=⇒ s′

1 and s′
1Rs′

2

The weak bisimulation preorder <
≈ is defined as the largest fixed-point for Fw.

The weak ω-bisimulation preorder <
≈ω is defined by

• <
≈0= P × P (the top element in the lattice (Rel(P),⊆))

• <
≈n+1= Fw(<

≈n)

and finally <
≈ω=

⋂
n≥0

<
≈n. 2

The following result is proved in [AH92].

Lemma 2.6 For all t ∈ ST(Actτ ) and s ∈ P, t <
≈ω s iff t <

≈ s.

The set Actτ is assumed to be fixed throughout the paper from now on and we
write ST instead of ST(Actτ).

As it is well know from the literature, [Mil83, Mil89, Wal90], the preorder
<
≈ is not a precongruence with respect to some of the standard operators, e.g
the choice operator + of CCS. In terms of process graphs this is also the case.
Thus the notion of observational precongruence is introduced. This will be done
in the following:

For any R ∈ Rel(P) we define the new relation Rc by:

s1Rcs2 if, for every context C[·], C[s1]RC[s2].

where a context for process graphs has the obvious meaning. Then R is said to
be closed with respect to contexts if R = Rc. The observational precongruence
is defined as <

≈
c and may be described as the least precongruence contained in

weak bisimulation preorder. In [Wal90] Walker gives an operational character-
ization of <

≈
c. In order to obtain this he defines the operator ∗ on Rel(P) as

follows:

Definition 2.7 For all R ∈ Rel(P) we let s1R∗s2 iff

1. if s1
a−→ s′

1 then, for some s′
2, s2

a=⇒ s′
2 and s′

1Rs′
2

2. if s1
τ−→ s′

1 then

(a) if s′
1 ⇓ then there exists s′

2 such that s2
τ=⇒ s′

2 and s′
1Rs′

2

(b) if s′
1 ⇑ then there exists s′

2 such that s2
ε=⇒ s′

2 and s′
1Rs′

2.

3. if s1 ⇓ µ then

(a) s2 ⇓ µ

(b) if s2
µ−→ s′

2 then, for some s′
1, s1

µ
=⇒ s′

1 and s′
1Rs′

2 2

The following lemma is proved in [Wal90].

Lemma 2.8 <
≈

c=<
≈

∗ and <
≈

c
ω=<

≈
∗
ω.
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The following definition of normal forms for synchronization trees is also bor-
rowed from [Wal90] with an obvious adaption to process graphs.

Definition 2.9 (Normal Forms) An element n = {〈µ1, n1〉, . . . , 〈µl, nl〉}[∪{⊥}] ∈
ST (where ∪{⊥} is optional) is a normal form if

1. ni is a normal form for i ≤ l,

2. if µi = τ then ni ⇓,

3. if n ⇓ and n ⇑ a then 〈a, {⊥}〉 ∈ n,

4. if n
µ

=⇒ n′ then 〈µ, n′〉 ∈ n. 2

Note that if n is a normal form then n ⇑ iff n ↑ iff ⊥ ∈ n. This property will
play an important role in our investigation of the preorder <

≈
∗ on normal forms.

Now we will give a simple characterization of the normal forms as a subset of
ST. For this purpose we introduce the following operators on ST:

Definition 2.10 We define µNST by:

τNST.t = t ∪ {〈τ, t〉|⊥ 6∈ t}
aNST.t = {〈a, t〉} ∪ {〈a, t′〉|〈τ, t′〉 ∈ t} ∪ {〈a,⊥〉|⊥ ∈ t}

2

Now we define the subset NST of ST as follows:

Definition 2.11 We define the set NST as the smallest set which satisfies:

1. {⊥}, ∅ ∈ NST.

2. n ∈ NST and µ ∈ Actτ implies µNST.n ∈ NST.

3. n1, n2 ∈ NST implies n1 ⊕ n2 ∈ NST.

2

We have the following lemma:

Lemma 2.12 1. µNST. and ⊕ preserve <
∼.

2. If n =
∑◦ i≤Nµi : ni[⊕{⊥}] ∈ NST then n =

∑◦ i≤NµiNST.ni[⊕{⊥}].

3. The set NST is exactly the subset of normal forms of ST.

Proof

1. Straight forward and is left to the reader.

9



2. We proceed as follows: Let m =
∑◦ i≤NµiNST.ni[⊕{⊥}]. We will prove

that n = m where “=” is set equality. The inclusion n ⊆ m is obvious.
To prove that m ⊆ n we proceed as follows: Assume that 〈µ, m′〉 ∈ m.
We will prove that 〈µ, m′〉 ∈ n. We know that 〈µ, m′〉 ∈ µiNST.ni for some
i. If 〈µ,m′〉 = 〈µi, ni〉 we are done so assume this is not the case. We
have the following two cases:

µi = τ : In this case 〈µ, m′〉 ∈ n.

µi = a ∈ Act: Then µiNST.ni = a : ni ∪ ⋃{a : n′
i|τ : n′

i ∈ ni} ∪
[{〈a,⊥〉|⊥ ∈ ni}]. Now either µ : m′ = a : n′

i for some n′
i where

τ : n′
i ∈ ni or µ : m′ = a : {⊥} where ⊥ ∈ ni. In both cases, by

definition of normal forms, µ : m′ ∈ n.

3. Let STN denote the subset of normal forms in ST. We will prove that
STN = NST. We proceed as follows:

NST ⊆ STN : By definition NST ⊆ ST. That the elements of NST
satisfy the defining conditions for normal forms follows from a simple
induction on the definition of NST. Therefore NST ⊆ STN

STN ⊆ NST: Let
n =

∑
i

◦ µi : ni[⊕{⊥}] ∈ STN .

By part 2. of the lemma

n =
∑

i

◦ µiNST.ni[⊕{⊥}],

which in turn implies that n ∈ NST.

2

In the following we define a finer version of a preorder originally defined in
[Wal90]. (In the set of normal forms these two definitions coincide.) It gives a
simplified characterization of the preorders <

≈ and <
≈

∗ on NST.

Definition 2.13 1. We define F g
w : Rel(P) −→ Rel(P) (where g stands for

“global convergence”) by: Given R ∈ Rel(P), s1F g
w(R)s2 iff, for each

a ∈ Act,

(a) if s1
a−→ s′

1 then, for some s′
2, s2

a−→ s′
2 and s′

1Rs′
2

(b) if s1
τ−→ s′

1 then, for some s′
2, s2

ε=⇒ s′
2 and s′

1Rs′
2

(c) if s1 ↓ then the following holds:

i. s2 ↓
ii. if s2

a−→ s′
2 then, for some s′

1, s1
a−→ s′

1 and s′
1Rs′

2

iii. if s2
τ−→ s′

2 then, for some s′
1, s1

ε=⇒ s′
1 and s′

1Rs′
2

We define <
≈g to be the largest fixed point of F g

ω.

10



2. We define the preorder <
≈

3

g by: s1
<
≈

3

g s2 iff, for each µ ∈ Actτ ,

(a) if s1
µ−→ s′

1 then, for some s′
2, s2

µ−→ s′
2 and s′

1
<
≈g s′

2,

(b) if s1 ↓ then

i. s2 ↓ and
ii. if s2

µ−→ s′
2 then, for some s′

1, s1
µ−→ s′

1 and s′
1

<
≈g s′

2. 2

In [Wal90] the author shows that in general <
≈g is strictly finer than the weak

bisimulation preorder <
≈. However it turns out that for normal forms these two

preorders and their derived preorders, <
≈

∗ and <
≈

3

g , coincide. This is the content
of the following theorem.

Theorem 2.14 For all n1, n2 ∈ NST, n1
<
≈ n2 iff n1

<
≈g n2 and n1

<
≈

∗
n2 iff

n1
<
≈

3

g n2.

Proof See Appendix A. 2

We observe that the characterization <
≈

3

s of the preorder <
≈

∗ on normal forms
looks very much like the definition for the strong prebisimulation preorder <

∼.
The only difference is that on lower levels a τ transition may be matched by
an empty transition. The following example shows that with the definition of
normal forms we have chosen the preorders <

≈
∗ and <

∼ do indeed not coincide.

Example 2.15 Let n1 = τ : (τ : a ⊕ a ⊕ a : Ω) ⊕ τ : a ⊕ a ⊕ a : Ω and
n2 = τ : a ⊕ a. Then n1

<
≈

∗
n2 but n1 6<∼ n2. The reason for this is that the left

hand side can perform a sequence of two τs to start with while the left hand side
only can perform a sequence of τ -transitions of length one. On the other hand
if we add τ : (τ : a ⊕ a) (adding only τ : τ : a would not preserve the normal
form property) to the right hand side the τ -depth is balanced and we get that
n1

<
∼ n2 ⊕ τ : (τ : a ⊕ a). Furthermore n2 ≈∗ n2 ⊕ τ : (τ : a ⊕ a) (where ≈∗ is

the kernel of <
≈

∗.

The example above illustrates that the preorders <
≈

∗ and <
∼ do not coincide on

NST. But at the same time it also suggests that if n <
≈

∗
m then by performing

a simple balancing operation on n and m, which is sound with respect to ≈∗

we may get a pair of normal forms, n′ and m′, where n′ <
∼ m′. In our attempt

to give a simple characterization of the preorder <
≈

∗ on normal forms this would
be a useful result. In the next section we will therefore formalize this informal
statement and prove that it holds.

2.1 The Characterization Theorem for Observational Precon-
gruence

In the proof for the characterization result for <
≈

∗ on NST outlined above we
suggested a transformations on normal forms which is sound with respect to <

≈
∗.

To formalize this idea we introduce a notion of equivalence on NST meaning

11



A1 x ⊕ y = y ⊕ x A3 x ⊕ x = x

A2 x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z A4 x ⊕ ∅ = x

τ µ.τ.x = µ.x

Figure 1: The Graph Equations E

that two elements are equivalent if they can be transformed into the same terms
applying the balancing operation described above. As we need to be able to
apply the transformation mentioned above recursively on the structure of the
normal form we want the equivalence to be a congruence with respect to the
graph operators. On the other hand the operator µ : does not preserve normal
forms whereas the operator µNST does. Also the operator ⊕ preserves normal
forms. Furthermore we know from Lemma 2.12 that for normal forms∑

i≤N

◦ µi : ni[⊕{⊥}] =
∑
i≤N

◦ µiNST.ni≤N [⊕{⊥}].

Keeping this in mind we only require the equivalence to be a congruence with
respect to the operators µNST. and ⊕. To define the equivalence suggested
above we introduce a set of equations, E , which may be found in Figure 1. These
equations are interpreted over NST with respect to the operators mentioned
above. Now we let =E denote the least congruence over NST with respect to
µNST. and ⊕ generated by the equations in E . It is easy to see that the
equations in E are sound with respect to ≈∗ on NST, i.e that =E⊆≈∗ on NST.

Furthermore we need the following general theorem which is a slight modi-
fication of a similar theorem proved in [AH92].

Theorem 2.16 (Hennessy’s Theorem) For all t1, t2 ∈ ST the following holds:

t1
<
≈ t2 iff t1

<
≈

∗
t2 or t1

<
≈

∗
τNST.t2 or τNST.t1

<
≈

∗
t2.

The Characterization Theorem may now be stated as follows:

Theorem 2.17 (The Characterization Theorem) Let n,m ∈ NST. Then
n <
≈

∗
m if and only if there exist some n′,m′ ∈ NST such that n′ <

∼ m′, n =E n′

and m =E m′.

Proof The “if” part follows immediately so we only have to concentrate on
the “only” part. We proceed by induction on the combined depth of n and m,
d(n,m).

d(n,m) = 0: The only possible combinations are the following:

1. n = m = ∅,

12



2. n = {⊥} and m = ∅, and

3. n = m = {⊥}.

All three cases are obvious.

d(n,m) = k + 1: Assume

n =
∑
i≤N

◦ µiNST.ni[⊕{⊥}] and m =
∑
i≤M

◦ γjNST.mj[⊕{⊥}].

Then By Lemma 2.12

n =
∑
i≤N

◦ µi : ni[⊕{⊥}] and m =
∑
i≤M

◦ γj : mj[⊕{⊥}].

First let us assume that ⊥ 6∈ n and therefore ⊥ 6∈ m. Now we recall that
if n

µ−→ n′ then m
µ−→ m′ for some m′ where n′ <

≈ m′ and vice versa.
We may therefore assume that N = M and that µi = γi and ni

<
≈ mi for

i ≤ N . (We may have to rearrange the summands and/or duplicate some
of them as well to obtain this.) By Hennessy’s Theorem 2.16, for each i
one of the following holds:

Case 1: ni
<
≈

∗
mi: By induction there are n′

i,m
′
i ∈ NST such that

ni =E n′
i, mi =E m′

i and n′
i

<
∼ m′

i. Furthermore µiNST.ni =E µiNST.n′
i

and µiNST.mi =E µiNST.m′
i.

Case 2: ni
<
≈

∗
τNST.mi:By induction there are n′

i,m
′
i ∈ NST such that

ni =E n′
i, τNST.mi =E m′

i and n′
i

<
∼ m′

i. Furthermore µiNST.ni =E
µiNST.n′

i and µiNST.mi =E µiNST.τNST.mi =E µiNST.m′
i.

Case 3: τNST.ni
<
≈

∗
mi: By induction there are n′

i,m
′
i ∈ NST such that

τNST.ni =E n′
i, mi =E m′

i and n′
i

<
∼ m′

i. Furthermore µiNSTni =E
µiNST.τNST.ni =E µiNST.n′

i and µiNST.mi =E µiNST.m′
i.

We let
n′ =

∑
i≤N

◦ µiNST.n′
i

and
m′ =

∑
i≤N

◦ µiNST.m′
i

which both are normal forms. Obviously n =E n′ and m =E m′. Further-
more by Lemma 2.12

n′ =
∑
i≤N

◦ µi : n′
i

and
m′ =

∑
i≤N

◦ µi : m′
i.

It is now easy to see that n′ <
∼ m′.

13



Next assume that ⊥ ∈ n. The case when it is the only element is obvious, so
assume this is not the case. Now we recall that if n

µ−→ n′ then there is an m′

such that m
µ−→ m′ and n′ <

≈ m′. By a similar reasoning as in the previous case
we may now assume that

n =
∑
i≤N

◦ µi : ni ⊕ {⊥} and m =
∑
i≤N

◦ µi : mi ⊕ m′

where ni
<
≈ mi for i ≤ N . We may also assume that

∑
i≤N µi : mi and m′ are

normal forms. Now the proof may proceed as in the previous case. 2

3 The Language

In this section we will give a short survey of the theory of observational pre-
congruence for a simple sublanguage of CCS extended with the divergence
operator. The language Trees is a language that denotes trees, finite and infi-
nite, and only contains the operators nil, + and µ. which all have the standard
meaning [Mil80], plus the nullary operator Ω, which stands for the inactive di-
vergent process [Hen81, Wal90]. Infinite processes are given in the standard
way by means of the construction recx. where x is a process variable.

Definition 3.1 Let Var be a countable set of process variables, ranged over
by x, y . . . and Actτ have the same meaning as in the previous section, ranged
over by µ. The syntax of the language TreeTerms is defined by

u ::= nil | Ω | µ.u | u + u | x | recx.u.

We let Trees denote the set of closed terms in TreeTerms and FinTrees the
set of recursion free elements of Trees. We let u range over TreeTerms, p, q
over Trees and d over FinTrees. 2

The operational semantics in terms of a transition relation and a convergence
(and divergence) predicate is also defined in the standard way (see e.g. [Hen81,
Wal90, AH92]).

Definition 3.2 1. Let ↓ be the least subset of Trees which satisfies

(a) nil ↓, µ.p ↓
(b) p ↓ and q ↓ implies (p + q) ↓
(c) t[recx.t/x] ↓ implies recx.t ↓

We say that p ↑ iff p ↓ is not true.

2. For each µ ∈ Actτ , let µ−→ be the least binary relation on Trees which
satisfies the following axioms and rules:

(a) µ.p
µ−→ p

14



(b) p
µ−→ p′ implies p + q

µ−→ p′ and q + p
µ−→ p′

(c) t[recx.t/x]
µ−→ p′ implies recx.t

µ−→ p′.
2

This definition generates an lts, ΛTree = (Trees,Actτ ,−→, ↑) which obviously is
sort finite, as we do not have any relabelling as a construction in the language.
The operational semantics for a p ∈ Trees is defined as the process graph
(p,ΛTree). For d ∈ FinTrees the process graph that gives its semantics may be
represented as an element of ST. Thus the operational semantics for d is given
by G(d) obtained by the following recursive definition:

1. G(nil) = ∅,

2. G(Ω) = {⊥},

3. G(µ.d) = µ : G(d),

4. G(d1 + d2) = G(d1) ⊕ G(d2).

Of course the definitions of <
∼, <
≈, <
≈

c and <
≈

∗ and their ω-versions apply for the
lts ΛTree and as before we have that <

≈
c=<
≈

∗ and <
≈

c
ω=<

≈
∗
ω.

In [Wal90] and [AH92] the preorder <
≈

∗
ω is given an equational characteri-

zations in terms of equationally based proof systems. In Figures 2 and 3 we
define such a proof system for Trees, which is a slight modification of the proof
systems in the afore mentioned references. The proof system consists of a set
of inequations, Figure 2, and a set of inference rules, Figure 3. We refer to
the full proof system as Erec but the sub-system where the rules (ω) and (rec)
are omitted we call E. We write vErec and vE for the induced preorders. The
syntactic approximations pn, that occur in the rule (ω), are also standard (see
e.g. [Hen88b]) and are defined inductively as follows:

Definition 3.3 (Finite Syntactical Approximations)

1. u0 = Ω for all u ∈ TreeTerms.

2. (a) niln+1 = nil, Ωn+1 = Ω and xn+1 = x for x ∈ Var,

(b) (u1 + u2)n+1 = un+1
1 + un+1

2 ,

(c) (µ.u)n+1 = µ.(un+1),

(d) (recx.u)n+1 = un+1[(recx.u)n/x]. 2

Here we note that if p ∈ Trees then pn ∈ FinTrees. We get the following
soundness and completeness result as a special case of the more general sound-
ness and completeness theorem in [AH92].

Theorem 3.4 The proof system Erec is sound and complete for Trees with
respect to the preorder <

≈
c
ω.

From [Wal90] we borrow the following notion of syntactic normal forms.
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A1 x + y = y + x Ω Ω v x

A2 x + (y + z) = (x + y) + z Ω τ .(x + Ω) v x + Ω

A3 x + x = x τ µ.τ.x = µ.x

A4 x + nil = x τ τ .x + x = τ.x

τ µ.(x + τ.y) = µ.(x + τ.y) + µ.y

Figure 2: The Inequations

(ref) p v p (trans)
p v q, q v r

p v r

(pre)
p v q

µ.p v µ.q
(sum)

p1 v p2, q1 v q2

p1 + q1 v p2 + q2

(rec)
recP.p = p[recP.p/P ]

(ω)
p(n) v q for all n

p v q

(inst)
p v q

p v p is a closed instantiation of the inequations inE

Figure 3: The Proof system Erec

Definition 3.5 (Syntactic Normal Forms) We say that η ∈ FinTrees is a
normal form if η =

∑
i µi.ηi[+Ω] and

1. each ηi is a normal form,

2. if µi = τ then ηi ⇓

3. if η ⇓ and η ⇑ a then a.Ω is a summand of η.

4. if η
µ

=⇒ η′ then η
µ−→ η′.

We denote the set of syntactic normal forms by NF ranged over by η. 2

The following lemma gives the relationship between the syntactic and the se-
mantic normal forms.

Lemma 3.6 η ∈ NF iff G(η) ∈ NST.
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Proof Follows from a simple induction on η. 2

The following result is proved in [Wal90].

Theorem 3.7 (Normalization Theorem) For all d ∈ FinTree there is η ∈
NF such that d =E η.

4 Preliminaries on Algebraic Semantics

In this section, we review the basic notions of algebraic semantics and domain
theory that will be needed in the remainder of this study. We assume that
the reader is familiar with the basic notions of ordered and continuous algebras
(see, e.g., [Gue81, Hen88a, AJ95]); however, in what follows we give a quick
overview of the way a denotational semantics can be given to a recursive lan-
guage like Trees following the standard lines of algebraic semantics [Gue81].
The interested reader is invited to consult [Hen88a] for an explanation of the
theory.

In what follows, we let Σ denote a signature, i.e. a set of syntactic oper-
ators provided with a function, arity: Σ −→ Nat which gives the number of
arguments the operator takes. A Σ-algebra is a pair (A,ΣA), where A is the
carrier set and ΣA is a set of semantic operators fA : Al → A, where f ∈ Σ
and l = arity(f). We call fA the interpretation of the syntactic operator f in
A.

Let (A,ΣA) and (B,ΣB) be Σ-algebras. A mapping ϕ : A → B is a Σ-
homomorphism if it preserves the Σ-structure, i.e. if for every f ∈ Σ and vector
~a of elements of A of the length arity(f):

ϕ(fA(~a)) = fB(ϕ(~a)) .

The term algebra T (Σ) is the initial Σ-algebra, i.e., if (A,ΣA) is a Σ-algebra
then there is a unique Σ-homomorphism ιA : T (Σ) → A. We refer to this
homomorphism as the interpretation of T (Σ) in A. We write T (Σ,Var) for
the term algebra that contains the set of variables Var as operators of arity
0 and T rec(Σ, Var) if it also allows the recursion construction recx.t. It is
worth pointing out that the initial Σ-algebra for a set of generators, Var, does
indeed exist. Actually, more than just that is true: We can also require a set of
equations to hold on the resulting Σ-algebra (such as x + x = x, for example).
The initial Σ-algebra for a set of generators satisfying a given set of equations is
constructed from the term-model by defining an equivalence relation on terms.
The operations are well defined with respect to the equivalence classes so that
the resulting quotient is again a Σ-algebra.

The obvious idea is to model a language like that of Trees by a Σ-algebra
where Σ is the set of finite term-forming operations (in the example mentioned,
we get Σ = {Ω, nil,+} ∪ {µ. | µ ∈ Actτ}). However, this is not sufficient to
model operations like recursion. For that, we need to consider a slightly more
sophisticated concept.
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A Σ-domain (A,vA,ΣA) is a Σ-algebra whose carrier (A,vA) is an al-
gebraic complete partial order (cpo) (see e.g. [Plo81]) and whose operators
in ΣA are continuous. The notion of Σ-poset (respectively Σ-preorder) may
be defined in a similar way by requiring that (A,vA) is a partially ordered
(resp. preordered) set and that the operators are monotonic. The notion of
Σ-homomorphism extends to the ordered Σ-structures in the obvious way by
requiring that such maps preserve the underlying order-theoretic structure as
well as the Σ-structure. Any Σ-preorder induces a unique Σ-poset which we
refer to as its kernel. For any Σ-algebra, A, ordered or not, the set (Var → A)
of A-environments will be denoted by ENVA, and ranged over by the meta-
variable ρ. The (unique) interpretation of T (Σ,Var) in A is the mapping
A[[·]] : T (Σ, Var) → (ENVA → A) defined recursively by:

A[[x]]ρ ∆= ρ(x)

A[[f(p1, . . . , pl)]]ρ
∆= fA(A[[p1]]ρ, . . . ,A[[pl]]ρ)

If A is a Σ-domain the interpretation extends to the term algebra T rec(Σ, Var)
by setting

A[[recx.u]]ρ ∆= Yλa.A[[u]]ρ[x → a]

where Y denotes the least fixed-point operator. As usual, ρ[x → a] denotes the
environment which is defined as follows:

ρ[x → a](y) ∆=

{
a if x = y
ρ(y) otherwise

.

Note that, for each closed recursive term p ∈ T rec(Σ, Var), A[[p]]ρ does not
depend on the environment ρ. The denotation of a closed term, p, will be
denoted by A[[p]]. For recursion free closed terms the mapping A[[ ]] coincides
with ιA.

To find such models, we have to say how to construct them. For posets,
the process is very much like that of constructing the initial Σ-algebra - only
this time one can actually start with a poset of generators, and the order for
the resulting Σ-poset is then defined recursively on the terms such that the
operations become monotonic. We can even do more in that case: instead
of giving a set of equations which we want to hold, we can now deal with a
set of inequalities. A typical inequality that one wants to hold in models for
languages like ours is Ω ≤ x which can thus be built in. We are, however, not
interested in the initial Σ-poset for a set of generators and inequalities but in the
initial Σ-domain. These two, however, are closely related: The initial Σ-domain
can be obtained as the ideal completion of the corresponding Σ-poset - the
operations are the unique continuous extensions of the corresponding operators
for the Σ-poset. Similarly any Σ-preorder induces a unique Σ-domain; the ideal
completion of its kernel. For more details on how this works, see Chapter 6
in [AJ95].
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5 A Fully Abstract Denotational Model for Trees

In this section we will define a Σ-domain (where Σ consists of the operators nil,
Ω, + and µ. , (µ ∈ Actτ )) in such a way that the derived denotational seman-
tics for Trees is fully abstract with respect to observational precongruence. We
show that the model is fully abstract with respect to the observational precon-
gruence by showing that it is the initial Σ-algebra with respect to the operations
in our language plus the inequations in E. We obtain this by proving that the
proof system E, interpreted in the model, is sound and complete with respect
to the preorder of the model. The full abstractness then follows from the fact
that the proof system is sound and complete with respect to the observational
precongruence as stated in Theorem 3.4.

The domain is obtained as an abstraction on the preorder (NST, <
≈

∗) as
explained in the Introduction.

Definition 5.1 We define the Σ-preorder (NST, vNST, ΣNST) as follows:

1. The preorder vNST is defined as the least binary relation over NST satis-
fying:

n vNST m if (1) 〈µ, n′〉 ∈ n ⇒ ∃〈µ,m′〉 ∈ m : n′ vNST m′ and
(2) ⊥ ∈ m ⇒ ⊥ ∈ n and
(3) 〈µ, m′〉 ∈ m ⇒

(
⊥ ∈ n or ∃〈µ, n′〉 ∈ n : n′ vNST m′)

2. The structure ΣNST is defined as follows:

(a) ΩNST = {⊥},

(b) nilNST = ∅,

(c) µNST: (compare Definition 2.10)

τNST.n =

{
n if ⊥ ∈ n
{〈τ,n〉} ∪ n if ⊥ 6∈ n

aNST.n =

{
{〈a,n〉} ∪ {〈a,n′〉|〈τ,n′〉 ∈ n} if ⊥ 6∈ n
{〈a,n〉} ∪ {〈a,n′〉|〈τ,n′〉 ∈ n} ∪ {〈a,⊥〉} if ⊥ ∈ n

(d) +NST: n1 +NST n2 = n1 ∪ n2
2

Now we have:

Lemma 5.2 1. The preorders vNST and <
∼ coincide on NST.

2. (NST, vNST,ΣNST) is a Σ-preorder.

3. For all η ∈ NF , NST[[η]] = G(η).
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Proof

1. Is proved in [Abr91].

2. Follows directly from Lemma 2.12.1.

3. Follows by Lemma 2.12.2 and a simple structural induction on η.
2

Part 3. of the lemma above says that the denotational interpretation in NST of
a normal form is exactly its operational semantics, i.e. the process graph that
is generated by the rules for the operational semantics for the language Trees.
To ease the notational complexity we use the notation µ : n to denote {〈µ, n〉}
in what follows as explained in Section 2.

Unfortunately the equation (τ) is not sound in NST as the following ex-
ample shows.

Example 5.3 Let n = ∅. Then

τNST.∅ = τ : ∅ ∪ ∅ = τ : ∅

and therefore
τNST.τNST.∅ = τ : τ : ∅ ∪ τ : ∅.

It is easy to see that
τNST.τNST.∅ 6∼ τNST.∅.

However we have the following partial soundness result and a completeness
result. Let F denote the proof system E minus the equation ( τ). Then we
have:

Lemma 5.4 The proof system F is sound and complete for (NST, vNST,ΣNST).

Proof The soundness of the inequations (A)–(A) and (Ω)–(Ω) is obvious.
The soundness of the inference rules follows from the fact that (NST, vNST
,ΣNST) is a Σ-preorder. What remains to prove is the soundness of (τ) and
(τ). We proceed as follows:

(τ): Assume that n ∈ NST. We will prove that

τNST.n +NST n =NST n.

The case when ⊥ ∈ n is obvious so we may assume that ⊥ 6∈ n. Then we
have

τNST.n +NST n = (τ : n ∪ n) ∪ n = τ : n ∪ n = τNST.n.

(τ) Assume that n1, n2 ∈ NST, we will show that

µNST.(n1 +NST τNST.n2) =NST µNST.(n1 +NST τNST.n2) + µNST.n2

We have the two possible cases: µ = τ and µ 6= τ . We proceed as follows:
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µ = τ : The case when ⊥ ∈ n1 ∪ n2 is obvious. So let us assume that
⊥ 6∈ n1 ∪ n2. Then

τNST.(n1 +NST τNST.n2)

= τ : (n1 ∪ τ : n2 ∪ n2) ∪ (n1 ∪ τ : n2 ∪ n2)

= τ : (n1 ∪ τ : n2 ∪ n2) ∪ (n1 ∪ τ : n2 ∪ n2) ∪ (τ : n2 ∪ n2)

= τNST.(n1 +NST τNST.n2) +NST τNST.n2.

µ = a ∈ Act: Again we have two possible sub-cases: ⊥ ∈ n2 and ⊥ 6∈ n2.

⊥ ∈ n2: First we note that

⊥ ∈ n2 implies n2 vNST n1 ∪ n2. (2)

Now we have the following:

aNST.(n1 +NST τNST.n2)

= a : (n1 ∪ n2) ∪
⋃

{a : n′|τ : n′ ∈ n1 ∪ n2} ∪ a : {⊥}

=NST a : (n1 ∪ n2) ∪
⋃

{a : n′|τ : n′ ∈ n1 ∪ n2} ∪ a : {⊥}∪
a : n2 ∪ ⋃{a : n′

2|τ : n′
2 ∈ n2} ∪ a : {⊥}

( as a : {⊥} vNST a : n2 vNST a : (n1 ∪ n2) by (2))

= aNST.(n1 +NST τNST.n2) +NST aNST.n2

⊥ 6∈ n2:

aNST.(n1 +NST τNST.n2)

= aNST.(n1 ∪ τ : n2 ∪ n2)

= a : (n1 ∪ τ : n2 ∪ n2) ∪⋃{a : n′|τ : n′ ∈ n1 ∪ n2}
∪a : n2 ∪ {a : {⊥}|⊥ ∈ n1}

= a : (n1 ∪ τ : n2 ∪ n2) ∪⋃{a : n′|τ : n′ ∈ n1 ∪ n2}∪
a : n2 ∪ {a : {⊥}|⊥ ∈ n1}∪
a : n2 ∪⋃{a : n′|τ : n′ ∈ n2}

= aNST.(n1 +NST τNST.n2) +NST aNST.n2.

Here we note that =NST appears only once in the sequence of the proof above.
All the other equalities are set equalities.

The completeness may be easily proved by induction on the combined depth
of n and m using Lemma 2.12. (In fact we do not need the τ,τ and Ω at
all to prove the completeness as the preorder vNST coincides with the strong
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bisimulation preorder <
∼.) 2

To obtain a Σ-preorder where the equation τ is sound, we follow the suggestion
after Example 2.15. This leads to the following definition (where =E has the
same meaning as in Section 2).

Definition 5.5 We define (K, vK , ΣK) as follows:

1. K = {[n] | [n] = {n′ ∈ NST|n′ =E n}}.

2. vK is defined by

[n1] vK [n2] iff ∃n′
1, n

′
2 ∈ NST.n′

1 =E n1, n
′
2 =E n2 and n′

1 vNST n′
2.

3. ΣK is defined by

(a) nilK = [∅] = {∅},

(b) ΩK = [{⊥}] = {{⊥}},

(c) [n1] +K [n2] = [n1 +NST n2],

(d) µK .[n] = [µNST.n].
2

We have the following lemma:

Lemma 5.6 1. For all n1, n2 ∈ NST, [n1] vK [n2] iff n1
<
≈

∗
n2.

2. (K,vK ,ΣK) is a Σ − preorder.

3. The proof system E is sound and complete on (K,vK ,ΣK).

Proof It is easy to see that vK is well defined this way, i.e. is independent of
the representants for the classes [n1] and [n2]. As vNST=<

∼ on NST the first
statement follows from the Characterization Theorem 2.17, and the fact that
=E⊆≈∗. This in turn ensures that vK is a preorder. To prove statement 2. it
only remains to prove that the operators in ΣK are well defined and monotonic.
This is an easy consequence of the way they are defined and the fact that =E
is preserved by the operators in NST. What remains to proof is therefore
statement 3., the soundness and the completeness of the proof system E on
(K,vK ,ΣK). To prove this we proceed as follows:

Soundness: The only non trivial case is the soundness of τ. So assume
n ∈ NST and we will prove that µK .τK.[n] =K µK .[n]. We recall that by
definition of =E ,

µNST.τNST.n =E µNST.n.

This implies
µK .τK .[n] =K [µNST.(τNST.n)] =K

[µNST.n] =K µK .[n].
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Completeness: It is easy to see that the equations in E are derivable from E.
So let n1, n2 ∈ NST and we have the following:

[n1] vK [n2]

implies ∃n′
1, n

′
2 ∈ NST.n1 =E n′

1 vNST n′
2 =E n2 by definition

implies ∃n′
1, n

′
2 ∈ NST.n1 =E n′

1 vE n′
2 =E n2 by Lem. 5.6

implies n1 vE n2.

2

We have the following result:

Lemma 5.7 1. For all d ∈ FinTree, K[[d]] = [NST[[d]]].

2. For each k ∈ K there is an η ∈ NF such that K[[η]] = k.

Proof

1. The mapping [NST[[ ]]] is an interpretation of FinTrees in K. The result
follows by uniqueness of such mappings.

2. By definition of K, k = [n] for some n ∈ NST. By a simple induction
on the depth of n we may show that there exists a η ∈ NF such that
NST[[η]] = n. By part 1. we get

K[[η]] = [NST[[η]]] = k.

2

5.1 Soundness, Completeness and Full Abstractness for Trees

We complete the construction of the the full domain by taking (K, v
K ,ΣK) to

be the unique Σ-domain generated by (K,vK ,ΣK) as described in Chapter 4.
The following theorem is standard and is proved in e.g. [Hen88b].

Theorem 5.8 For all p ∈ Trees, K[[p]] =
⊔

n K[[pn]].

Now we have the following equivalence result:

Theorem 5.9 For all p1, p2 ∈ Trees

K[[p1]] v
K K[[p2]] iff p1 vErec p2 iff p1

<
≈

∗
p2.

Proof That p1 =Erec p2 iff p1
<
≈

∗
p2 is the content of Theorem 3.4. Therefore

we only have to prove that K[[p1]] v
K K[[p2]] iff p1 =Erec p2, i.e that the proof

system Erec is sound and complete with respect to the denotational model.
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Soundness: The soundness of the (ω)-rule is the content of Theorem 5.8
whereas the soundness of the (rec)-rule follows from the definition of the
semantics of rec.p as the least fixed point. It remains to prove the sound-
ness of E. We do this by reducing the proof to a proof of the soundness
over FinTrees with respect to K. For this purpose we need the following
property:

p vE q ⇒ ∀n.pn vE qn (3)

which may be proved by induction on the depth of the proof for p vE q.
The soundness of E over FinTrees with respect to K follows directly from
the soundness of E in K. To prove the general result, i.e. the soundness
of E over Trees with respect to K, we may proceed as follows.

Assume p vE q. Then, by (3), pn vE qn for all n. As pn, qn ∈ FinTrees,
the soundness of E with respect to K implies

K[[pn]] vK K[[qn]] for all n,

or equivalently
K[[pn]] v

K K[[qn]] for all n.

Finally Theorem 5.8 implies

K[[p]] v K[[q]].

Completeness: Again we reduce the proof to proving that E is complete over
FinTrees with respect to K. We first note that Theorem 5.8 and the
ω-algebraicity of the model imply

K[[p]] v
K K[[q]] implies

∀n.K[[pn]] v
K K[[q]] implies

∀n∃m.K[[pn]] v
K K[[qm]] implies

∀n∃m.K[[pn]] vK K[[qm]].

(4)

If E is complete over FinTrees with respect to K then

K[[pn]] vK K[[qm]] implies pn vE qm. (5)

Now qm vErec q may easily be shown so (4), (5) and the ω-rule give

K[[p]] v
K K[[q]] implies ∀n.pn vErec q implies p vErec q.

So it only remains to prove the completeness of E over FinTrees with
respect to K. Furthermore, by the the normalization Theorem 3.7, it
is sufficient to prove the completeness over normal forms. To prove this
completeness result we proceed as follows:
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Assume η1, η2 ∈ NF . By Lemma 5.2 and Lemma 5.7

K[[ηi]] = [NST[[ηi]]] = [G(ηi)]

for i = 1, 2. Therefore we have:

K[[η1]] vK K[[η2]]

iff [G(η1)] vK [G(η2)]

iff G(η1) <
≈

∗ G(η2) by Lem. 5.6

iff η1
<
≈

∗
η2 by definition of the op. sem.

iff η1 vE η2 as E is complete wrt. <
≈

∗
.

2

6 Conclusion and Future Work

Regarding the picture being drawn in the introduction about ways of getting
fully abstract denotational models for concurrent languages with an observa-
tional preorder, we have obtained the following: By giving a set of inequations,
we have found a way of having a term model. Also, we have constructed a syn-
tax free model which is the ideal completion of a preordered set whose elements
are finite synchronization trees like the ones that appear in the representation
of Abramsky’s model for strong bisimulation preorder. These trees are a rep-
resentation of transition graphs in normal forms which in turn are derived as
the operational semantics for syntactic normal forms in the sense of [Wal90].
By defining the operators in a suitable way we obtained a Σ-preorder. Unfor-
tunately the Σ-domain obtained directly as an ideal closure of this Σ-preorder
does not satisfy the set of equation that characterize the ω-observational con-
gruence as the equation µ.τ.x = µ.x is not sound in this domain. We obtain a
fully abstract model as a further abstraction of this model; roughly speaking we
factor out the missing equation and obtain a fully abstract model with respect
to the behavioural preorder we had in mind.

What is still missing, is the last part: Finding a mathematical description
of the model which does not mention equations at all. This has proved to
be more difficult than we first expected. To illustrate the kind of difficulties
one runs into, let us consider a related successful attempt of doing something
like this. In [Abr91], Abramsky defines a fully abstract denotational model for
synchronization trees with respect to strong bisimulation precongruence. It is
given as the solution of the recursive domain equation

D ∼= P(
∑

µ∈Actτ

D)
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where P is a variant of the Plotkin (or convex) power construction (including
the empty set) and

∑
is a lifted disjoint union. His proof that this is indeed a

fully abstract model for the feature in question is quite longish, but there is a
shortcut to convince oneself that this is what one wants: Strong bisimulation
precongruence can be characterized in terms of the equations A1 to A4 which
say that + is idempotent, symmetric, associative and has a unit. There are no
(in)equations concerning prefixing and in particular no (in)equations connecting
prefixing with +. It is then not hard to see that the initial solution to the above
domain equation is exactly the free Σ-domain for the empty set of generators
where the equations A1 to A4 hold and where the set of operators Σ contains
+ as well as a unary operator for every element of Actτ . The fact that this
Σ-domain can be presented in such an appealing way crucially depends on the
simplicity of the equations describing the modelled precongruence.

Since the domain we are looking for is the free Σ-domain for the same set
of actions but with the additional inequations Ω, Ω2 and τ to τ, the
domain we are looking for is a quotient of the one given by Abramsky (the
mathematical details of this process can be found in [AJ95]). Although this is
a mathematical definition, it is not quite what we had in mind since it doesn’t
not give much insight into the semantics - forming quotients of this kind is a
somewhat obscure process. It is our aim to find another way of presenting this
Σ-domain, if possible also as the solution of a recursive domain equation.

A

In what follows we will prove Theorem 2.14. For this purpose we need the
following definition.

Definition A.1 ([Wal90]) Given R ∈ Rel(P) we define s1R�s2 by:
s1R�s2 iff

1. if s1
µ−→ s′

1 then, for some s′
2, s2

µ−→ s′
2 and s′

1Rs′
2

2. if s1 ↓ then

(a) s2 ↓
(b) if s2

µ−→ s′
2 then, for some s′

1, s1
µ−→ s′

1 and s′
1Rs′

2

2

Theorem 2.14 is a direct consequence of the following Lemma.

Lemma A.2 For all n1, n2 ∈ NST

1. n1
<
≈ n2 ⇔ n1

<
≈g n2,

2. n1
<
≈

∗
n2 ⇔ n1

<
≈

3

g n2,
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Proof

1. The “⇐=” part is proved in [Wal90, Lemma 7]. Therefore we only have
to concentrate on proving the “=⇒” part, i.e that <

≈⊆<
≈g. By definition

<
∼g=

⋃
{R|R ⊆ F g

w(R)}.

It is therefore sufficient to prove that <
≈⊆ F g

w(<
≈). First we recall that for

normal forms n, n
µ=⇒ n′ iff n

µ−→ n′ and n ⇓ iff n ↓. Now we proceed as
follows: Assume m1

<
≈ m2. As <

≈ is a fixed point to Fw then m1Fw(<
≈)m2.

We will prove that m1F g
w(<
≈)m2.

(a) Assume m1
µ−→ m′

1. Then there is a m′
2 such that m2

µ−→ m′
2 and

m′
1

<
≈ m′

2.

(b) Assume m1 ↓, then m2 ↓ as m1
<
≈ m2.

(c) Assume that m1 ↓, m2 ↓ and m2
a−→ m′

2. We have the following
cases:

m1 ⇓ a: As m1
<
≈ m2 then m2 ⇓ a and m1

a−→ m′
1 for some m′

1
such that m′

1
<
≈ m′

2.
m1 ⇑ a: As m1 ↓ this implies that 〈a, {⊥}〉 ∈ m1. Therefore

m1
a−→ {⊥} where {⊥} <

≈ m′
2.

(d) Finally assume m1 ↓, m2 ↓ and m2
τ−→ m′

2. Then there exists a m′
1

such that m1
ε=⇒ m′

1 and m′
1

<
≈ m′

2.

2. By part 1 it is sufficient to prove that

n1
<
≈

∗
g n2 ⇔ n1

<
≈

3

g n2

We only prove the “⇐=” part as the “=⇒” part may be proved in the same
way as the “=⇒” part for the previous case, part 1. Assume n1

<
≈

3

g n2.

(a) Assume n1
µ−→ n′

1. As n1
<
≈

3

g n2, there is a n′
2 such that n2

µ−→ n′
2

and n′
1

<
≈g n′

2.

(b) i. If n1 ⇓ τ then n2 ⇓ τ by definition of <
≈

3

g and as ↓ and ⇓ coincide
on NST.

ii. Next assume that n1 ⇓ τ , n2 ⇓ τ and n2
ε=⇒ n′

2. By definition
of <
≈

3

g , n1
τ=⇒ n′

2 for some n′
1 where n′

1
<
≈g n′

2.

(c) i. Assume n1 ⇓ a. We will prove that n2 ⇓ a. As n1 ⇓ then n2 ⇓.
So assume n1 ⇓, n2 ⇓ and n1 ⇓ a but that n2 ⇑ a. This implies
that 〈a,{⊥}〉 is an element in n2 but not in n1. It is easy to see
that this contradicts the fact that n1

<
≈

3

g n2 and that n1 and n2
are normal forms.

ii. Next assume that n1 ⇓ a, n2 ⇓ a and n2
a−→ n′

2. Since n1
<
≈

3

g n2,
n1 ↓ and n2 ↓ then n1

a−→ n′
1 for some n′

1 such that n1
<
≈g n′

1.

2
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