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Experiments with ZF Set Theory
in HOL and Isabelle

Sten Agerholm and Mike Gordon

University of Cambridge Computer Laboratory
New Museums Site, Pembroke Street

Cambridge CB2 3QG, UK

Abstract. Most general purpose proof assistants support versions of
typed higher order logic. Experience has shown that these logics are ca-
pable of representing most of the mathematical models needed in Com-
puter Science. However, perhaps there exist applications where ZF-style
set theory is more natural, or even necessary. Examples may include
Scott’s classical inverse-limit construction of a model of the untyped λ-
calculus (D∞) and the semantics of parts of the Z specification notation.
This paper compares the representation and use of ZF set theory within
both HOL and Isabelle. The main case study is the construction of D∞.
The advantages and disadvantages of higher-order set theory versus first-
order set theory are explored experimentally. This study also provides a
comparison of the proof infrastructure of HOL and Isabelle.

1 Introduction

Set theory is the standard foundation for mathematics and for formal notations
like Z [30], VDM [14] and TLA+ [15]. However, most general purpose mecha-
nised proof assistants support typed higher order logics (type theories). Exam-
ples include Alf [17], Coq [7], EHDM [19], HOL [12], IMPS [9], LAMBDA [10],
LEGO [16], Nuprl [5], PVS [26] and Veritas [13]. For many applications type the-
ory works well, but there are certain classical constructions, like the definition
of the natural numbers as the set {∅, {∅}, {∅,{∅}}, {∅,{∅},{∅,{∅}}}, · · · },
that are essentially untyped. Furthermore, the development of some branches
of mathematics, e.g. abstract algebra, are problematical in type theory. In the
long term it might turn out that such areas can be satisfactorily developed in
a type-theoretic setting, but research is needed to establish this. For immediate
practical applications it seems hard to justify not just taking ordinary (i.e. set-
theoretic) mathematics ‘off the shelf’.

Several proof assistants for set theory are available. In the formal methods
community1 the best known are probably Isabelle [23], a generic system that
supports various kinds of type theory as well as ZF set theory, and EVES [28].
Both of these have considerable automation and are capable of proving difficult
theorems. The Mizar system from Poland [27] is a low level proof checker based

1 In other communities (e.g. artificial intelligence) there is related work on theorem
proving for set theory (e.g. Ontic [18]).



on set theory that has been used to check enormous amounts of mathematics –
there is even a journal devoted to it [8]. Mizar has only recently become well-
known in the theorem proving community. Another active group focusses on
metatheory and decision procedures for fragments of set theory [4]. Like Mizar,
this work is not well known in the applied verification community.

Work with Isabelle provides particular insight into type theory versus set
theory because it supports both. Users of Isabelle can choose between either ZF
or various styles of type theory (including HOL-like higher order logic and Martin
Löf type theory), depending on which seems most appropriate for the application
in hand. However, the theories do not interface to each other, so one cannot move
theorems back and forth between them (except by manually porting proofs).
Anecdotal evidence from Isabelle users suggests that, for equivalent kinds of
theorems, proof in higher order logic is usually easier and shorter than in set
theory, but that certain general constructions (e.g. defining models of recursively
defined datatypes) are easier to do in set theory. One reason why set-theoretic
proofs can be more tedious is because they may involve the verification of set
membership conditions; the corresponding conditions in higher order logic being
handled automatically by type checking.2

It is hoped that the experiments reported here will clarify the strengths and
weaknesses of type theory versus set theory as frameworks for mechanising the
mathematics needed to support computer system verification. A long term goal
is to develop a way of getting the best of both worlds in a single framework.

The rest of this paper is organised as follows: Section 2 presents a version of
ZF set theory axiomatised in the HOL logic (this will be referred to as HOL-
ST). This is then explored via a case study: the construction of D∞, Scott’s
model of the λ-calculus (Section 3). In Section 4, Isabelle’s set theory and proof
infrastructure is discussed in relation to HOL-ST. The final section (Section 5)
summarises our conclusions.

2 A ZF-like Set Theory in HOL

This section is condensed from a more leisurely and detailed exposition presented
elsewhere [11].

2.1 Standard Axioms of Set Theory

HOL-ST is an axiomatic theory based on ZF, but formulated in higher order
logic. The theory, called ST, introduces a new type V and a new constant ∈ :
V×V → bool, together with higher-order versions of the ZF axioms.

Because they are formulated in higher order logic, the axioms described below
are strictly stronger than ZF. Furthermore, although the axiom of choice is not
2 Note, however, that explicit proof of membership conditions in set theory results

in more being formally proved than with type checking, which is typically done by
programs outside the logic; i.e. what is formally proved in the former case is just
calculated in the latter.
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stated explicitly, it is easily proved in HOL using the choice function (ε-operator).
An axiom asserting the existence of unordered pairs is also not needed as this
follows from Replacement (pairs are images of P ∅). The axioms of ST in the
HOL logic are as follows.

Extensionality : ∀s t. (s = t) = (∀x. x ∈ s = x ∈ t)

Empty set : ∃s. ∀x. ¬(x ∈ s)

Union : ∀s. ∃t. ∀x. x ∈ t = (∃u. x ∈ u ∧ u ∈ s)

Power sets : ∀s. ∃t. ∀x. x ∈ t = x ⊆ s

Separation : ∀p s. ∃t. ∀x. x ∈ t = x ∈ s ∧ p x

Replacement : ∀f s. ∃t. ∀y. y ∈ t = ∃x. x ∈ s ∧ (y = f x)

Foundation : ∀s. ¬(s = ∅) ⇒ ∃x. x ∈ s ∧ (x ∩ s = ∅)

Infinity : ∃s. ∅ ∈ s ∧ ∀x. x ∈ s ⇒ (x ∪ {x}) ∈ s

These axioms use the auxiliary constants ⊆, ∅, ∪, ∩ and singleton sets, which
are easily defined prior to their use.

2.2 Auxiliary Set-theoretic Notions

Familiar set-theoretic notions can be defined from the axioms of ST using the
definitional mechanisms of HOL. Some useful constants are listed below (see [11]
for more explanation):

Empty set : ∀x. ¬(x ∈ ∅)

Subset relation : s ⊆ t = ∀x. x ∈ s ⇒ x ∈ t

Union : x ∈ (s ∪ t) = x ∈ s ∨ x ∈ t

Big union : x ∈
⋃
s = (∃u. x ∈ u ∧ u ∈ s)

Power set : x ∈ P s = x ⊆ s

Set abstraction (separation) : x ∈ Spec s p = x ∈ s ∧ p x

Simple abstraction notation : {x ∈ s | p[x]} = Spec s (λx. p[x])

3



Generalized abstraction notation :
{t[x1,...,xn] ∈ s | p[x1,...,xn]} =
Spec s (λx. ∃x1...xn. (x = t[x1,...,xn]) ∧ p[x1,...,xn])

Image of a (logical) function :
y ∈ Image f s = ∃x. x ∈ s ∧ (y = f x)

Indexed union :
⋃
x∈X

f(x) =
⋃
(Image f X)

Infinite set :
∅ ∈ InfiniteSet ∧ ∀x. x ∈ InfiniteSet ⇒ (x ∪ {x}) ∈ InfiniteSet

Finite sets : {x1, x2, . . . , xn} = {x1} ∪ ({x2} ∪ . . . ({xn} ∪ ∅))

Ordered pairs : 〈x, y〉 = {{x}, {x,y}}

Maplet notation : x 7→ y = 〈x, y〉

Cartesian products :
X × Y = {〈x1,x2〉 ∈ P(P(X ∪ Y)) | x1 ∈ X ∧ x2 ∈ Y}

Relations : X ↔ Y = P(X × Y)

Partial functions :
X 7→ Y =
{f ∈ X ↔ Y | ∀x y1 y2. x 7→ y1 ∈ f ∧ x 7→ y2 ∈ f ⇒ (y1 = y2)}

Total functions :
X → Y = {f ∈ X 7→ Y | ∀x. x ∈ X ⇒ ∃y. y ∈ Y ∧ 〈x, y〉 ∈ f}

Set function application : f�x = εy. x 7→ y ∈ f

Set function abstraction :
λx∈X. f(x) = {x 7→ y ∈ X × Image f X | y = f x}

Natural numbers :
num2Num 0 = ∅
num2Num(SUC n) = num2Num n ∪ {num2Num n}

Num = {x ∈ InfiniteSet | ∃n. x = num2Num n}

(∀n. Num2num(num2Num n) = n) ∧
(∀x. x ∈ Num = (num2Num(Num2num x) = x))

4



Note that functions of higher order logic are different from functions ‘in-
side’ set theory, which are just certain kinds of set of ordered pairs. The former
will be called logical functions and the latter set functions. Logical functions
have a type in HOL of the form α → β and are denoted by terms of the form
λx . t [x ], whereas set functions have type V and are denoted by terms of the form
λx ∈ X . s[x ]. The application of a logical function f to an argument x is denoted
by f x , whereas the application of a set function s to x is denoted by s � x .

2.3 Identity and Composition

The identity and composition functions can be defined in set theory. The identity
function is defined by:

IdX = {〈x , y〉 ∈ X × X | x = y}.

Note that it would not be possible to define a set for Id without the set argument
X since, to avoid paradoxes, sets must be built from existing ones.

The composition function could be defined in the same way, but we can
exploit the presence of the (set) function arguments to avoid further arguments:

f O g = {〈x , z 〉 ∈ domain g × range f | ∃y . 〈x , y〉 ∈ g ∧ 〈y , z 〉 ∈ f }.

Here, domain and range are defined using Image by taking the first and second
components of each pair in a set function. Note that the composition function
is a logical function, it has type V → V → V .

2.4 Dependent Sum and Product

The dependent sum is a generalisation of Cartesian products X × Y , the set of
all pairs of elements in X and Y . In the dependent sum, the second component
may depend on the first:∑

x∈X

Y x =
⋃

x∈X

⋃
y∈Y x

{〈x , y〉}.

Here, Y x can be any term of type V containing x or not. In the same way, the
dependent product is a generalisation of X → Y :∏

x∈X

Y x = {f ∈ P(
∑
x∈X

Y x) | ∀x ∈ X . ∃!y . 〈x , y〉 ∈ f }.

Clearly, both × and → are special cases of the dependent sum and the dependent
product, respectively. In fact, the function abstraction introduced above yields
an element of the dependent product:

∀fXY . (∀x . x ∈ X ⇒ f x ∈ Y x) ⇒ (λx ∈ X . f x) ∈
∏
x∈X

Y x .

The following application of HOL-ST will make essential use of the dependent
product to overcome limitations in the type system of HOL’s version of higher
order logic.
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3 Case Study: the Inverse Limit Construction

This section, which is condensed from a longer report [1], presents a case study
of the application of HOL-ST to domain theory. This work was motivated by
previous work on formalising domain theory in HOL [2] where it became clear
that the inverse limit construction of solutions to recursive domain equations
cannot be formalised in HOL easily. The type system of higher order logic is not
rich enough to represent Scott’s inverse limit construction directly, though other
methods of solving recursive domain equations can be encoded [24]. However, the
construction can be formalised in HOL-ST directly, because set theory supports
general dependent products whereas higher order logic does not.

The inverse limit construction can be used to give solutions to any recursive
domain (isomorphism) equation of the form

D ∼= F(D)

where F is an operator on domains, such as sum, product or (continuous) func-
tion space, or any combination of these. Thus, it might be possible to implement
tools based on the present formalisation that support very general recursive
datatype definitions in HOL-ST.

This will be illustrated with the construction of a domain D∞ satisfying:

D∞ ∼= [D∞ → D∞],

where [D → E ] denotes the domain of all continuous function from D to E (we
shall always use [ → ] for continuous functions and → for ordinary functions).
Hence, D∞ provides a model of the untyped λ-calculus.

The version of the inverse limit construction employed here is based on cat-
egorical methods using embedding-projection pairs, see e.g. [29, 25]. This was
suggested by Plotkin as a generalisation of Scott’s original inverse limit con-
struction of a model of the λ-calculus in the late 60’s. The formalisation is based
on Paulson’s accessible presentation in the book [20] but Plotkin’s [25] was also
used in part (in fact, Paulson based his presentation on this).

3.1 Basic Concepts of Domain Theory

Domain theory is the study of complete partial orders (cpos) and continuous
functions between cpos. This section very briefly introduces the semantic defini-
tions of central concepts of domain theory in HOL-ST.

A partial order is a pair consisting of a set and a binary relation such that
the relation is reflexive, transitive and antisymmetric on all elements of the set:

poD =
∀x ∈ set D . rel D x x ∧
∀xyz ∈ set D . rel D x y ∧ rel D y z ⇒ rel D x z ∧
∀xy ∈ setD . relD x y ∧ relD y x ⇒ x = y .
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The constants set and rel equal FST and SND respectively. The constant po has
type V ×(V → V → bool) → bool.

A complete3 partial order is defined as a partial order in which all chains
have least upper bounds (lubs):

cpo D = po D ∧ ∀X . chain D X ⇒ ∃x . is lub D X x ,

where

chain D X = (∀n. X n ∈ setD) ∧ (∀n. relD(X n)(X (n + 1)))
is ubD X x = x ∈ set D ∧ ∀n. relD(X n)x
is lubD X x = is ub D X x ∧ ∀y . is ub D X y ⇒ rel D x y .

Hence, a chain of elements of a partial order is a non-decreasing sequence of type
num → V .

The set of continuous functions is the subset of the set of monotonic functions
that preserve lubs of chains:

mono(D ,E) =
{f ∈ set D → setE | ∀xy ∈ set D . rel D x y ⇒ rel E(f �x)(f �y)}

cont(D ,E) =
{f ∈ mono(D ,E) |

∀X . chain D X ⇒ f �(lub D X ) = lub E(λn. f �(X n))}.

Note that continuous (and monotonic) functions are set functions and therefore
have type V .

The continuous function space construction on cpos is defined as the pair
consisting of the set of continuous functions between two cpos and the pointwise
ordering relation on functions:

cf(D ,E) = (cont(D ,E), λfg . ∀x ∈ set D . rel E(f �x)(g�x)).

The construction always yields a cpo if its arguments are cpos.

3.2 The Inverse Limit Construction

Just as chains of elements of cpos have least upper bounds, there are “chains” of
cpos that have “least upper bounds”, called inverse limits. The ordering relation
on elements is generalised to the notion of embedding morphisms between cpos.
A certain constant Dinf, parametrised by a chain of cpos, can be proven once
and for all to yield the inverse limit of the chain. In this section, we give a brief
overview of a formalisation of the inverse limit construction.

3 Our notion of completeness is sometimes called ω-completeness. Similarly, the chains
are sometimes called ω-chains.

7



Embedding morphisms come in pairs with projections, forming the so-called
embedding-projection pairs:

projpair(D ,E)(e, p) =
e ∈ cont(D ,E) ∧ p ∈ cont(E ,D) ∧
p O e = Id(setD) ∧ rel(cf(E ,E))(e O p)(Id(setE)).

The conditions make sure that the structure of E is richer than that of D (and
can contain it). D is embedded into E by e (one-one) which in turn is projected
onto D by p.

Embeddings uniquely determine projections (and vice versa). Hence, it is
enough to consider embeddings

emb(D ,E)e = ∃p. projpair(D ,E)(e, p)

and define the associated projections, or retracts as they are often called, using
the choice operator:

R(D ,E)e = εp. projpair(D ,E)(e, p).

For readability, emb(D ,E)e will sometimes be written using the standard math-
ematical notation e : D < E . Similarly, R(D ,E)e is sometimes written as eR.

Embeddings are used to form chains of cpos in a similar way that the ordering
on elements of cpos is used to form chains. A chain of cpos is a pair (D, e)
consisting of a sequence of cpos Dn and a sequence of embeddings en where
en : Dn < Dn+1 for all n : num:

D0
e0
< D1

e1
< · · ·

en−1
< Dn

en
< · · · .

The notion of (embedding-projection) chain of cpos is formalised as follows:

emb chain De = (∀n. cpo(D n)) ∧ (∀n. emb(D n,D(SUCn))(e n)).

In HOL terms, we write D n and en instead of Dn and en .
The inverse limit Dinf can now be defined as follows:

DinfDe =
({x ∈

∏
n∈Num

set(D(Num2num n)) | · · · },

λxy . ∀n. rel(Dn)(x�(num2Num n))(y�(num2Num n))),

where the dependent product construction on sets is used. Informally, the un-
derlying set of Dinf is defined as the subset of all infinite tuples x on which
the n-th projection eR

n maps the (n + 1)-st index to the n-th index for all n:
eR

n (xn+1) = xn . The underlying relation is defined componentwise. The annoying
num2Num conversions, which also appear in the omitted part, could be avoided
by using the set of numbers Num instead of the type of numbers num to rep-
resent chains of cpos. However, the present choice makes proofs simpler. This
issue is discussed further in Section 4.
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The details of proving the property that Dinf yields the inverse limit of a given
chain of cpos will not be given here (see [1]). Informally speaking, it must satisfy
a certain commutivity condition, which says that there is a family of embeddings
from the elements of the chain to Dinf such that the resulting diagrams commute,
and it must be universal with this property in the sense that there is a unique
embedding of Dinf into any other cpo with this property.

3.3 Construction of D∞

In general, a recursive domain (isomorphism) equation can have the form

D ∼= F(D)

where F is a continuous covariant functor (a term of category theory). In par-
ticular, this means that F preserves inverse limits of chains of cpos and consists
of both a construction on cpos and a construction on embeddings. Note that a
domain equation is stated using only the cpo construction part of a functor.

The inverse limit construction provides solutions of any domain equation of
the above form. We shall sketch very roughly how to obtain a solution of the
equation

D ∼= [D → D ],

which is stated using the standard notation for the continuous function space
construction (defined as cf in HOL-ST). It can be proved once and for all that
the continuous function space construction with an appropriate embedding is a
continuous covariant functor.

First, a specific (but still parametrised) chain is constructed by iterating the
continuous function space functor, starting at any cpo D with an embedding e :
D< cf(D ,D). From this chain of cpos we obtain a partially concrete instantiation
of Dinf, called Dinf cf, which, due to the fact that the functor for the function
space preserves inverse limits, yields a parametrised model of the untyped λ-
calculus:

∀De.
cpo D ⇒ emb(D , cf(D ,D))e ⇒
Dinf cf D e ∼= cf(Dinf cf D e,Dinf cf D e).

Choosing one concrete starting point (with for instance one element), and defin-
ing D∞ to abbreviate the corresponding instantiation of Dinf cf, a concrete non-
trivial model of the untyped λ-calculus is obtained:

D∞ ∼= cf(D∞,D∞).

(See [1] for further details.)
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4 Set Theory in Isabelle

Isabelle/ZF supports set theory in first order logic [21, 22]; it is an extension of
a first order logic instantiation of the generic theorem prover Isabelle [23] with
axioms of Zermelo-Fraenkel set theory. In contrast, HOL-ST supports set theory
in higher order logic. Formalising the inverse limit construction in Isabelle/ZF
revealed various differences between the two systems. This section summarises
the conclusions of the comparison presented in [3].

4.1 First-order versus Higher-order Set Theory

The formalisation presented above exploited higher order logic as much as pos-
sible. Hence, cpos were HOL pairs, ordering relations were HOL functions and
chains were HOL functions from the HOL type of natural numbers num to V.
Alternatively, we could have chosen to do more work in set theory. For instance,
the natural number argument of chains could have been in the set Num and cpos
could have been represented by (non-reflexive) relations of set theory.

It makes a difference whether sets of ST or types of HOL are used. Using the
latter, set membership conditions are avoided and furthermore, type checking is
done automatically in ML. Using sets, type checking, i.e. ensuring terms are in
the right sets, is done by theorem proving, and it is done late.

Obviously, exploiting the additional power of set theory will require leaving
higher order logic and paying a price. It is an interesting and difficult question
which parts of the formalisation should be done in set theory and which should
be done in higher order logic. As noted in Section 3.2, the definition of the
inverse limit constructor Dinf could have been simplified if chains of cpos had
been represented using the set of natural numbers instead of the HOL type.
However, experiments showed that it was worth paying the inconvenience of the
translation functions at this stage since many theorems and proofs became quite
horrible later, with the set approach. This in turn is related to the choice of
representing ordinary chains in higher order logic; had they been represented
using set theory numbers it would have been more natural to stick to this.

In Isabelle/ZF, there is much less choice. Most of the development must be
done in set theory since the first order logic is so weak; for instance, it does
not provide natural numbers, pairs, or functions (the individuals of the logic are
sets). Therefore, chains must be represented as set functions and cpos must be
represented as set theory pairs where both the set and the relation components
are sets. In principle, the function type of Isabelle’s polymorphic higher-order
meta logic could be used to represent chains, but the definition of cpos must
quantify over chains and in first order logic it is only possible to quantify over
individuals (sets), not meta level functions. The meta logic is meant for express-
ing and reasoning in logic instantiations of Isabelle, the so-called object logics,
not for formalising concepts in object logics.

The consequence of doing more work in set theory is that terms and proofs
become more complicated, since set membership conditions appear more often.
For instance, to prove that a term is a chain it must be shown that it is a set
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function, i.e. that it is a relation on the right sets that defines a function (though,
usually the λ-abstraction is used and then it is only necessary to type check the
body of this, due to a pre-proved theorem). Similarly, constructions on cpos have
more complicated definitions and proofs: before applying the relation of a cpo
to its arguments, these must be shown to be in the right sets.

4.2 Proof Support

Whilst there are benefits from the more powerful higher order logic of HOL-ST,
Isabelle/ZF has the advantage of providing better proof support for set the-
ory. Though proofs in principle are longer in terms of number of proof steps
(of applying theorems), due to the additional type conditions, they are in fact
much shorter in terms of lines, and easier to write. Note that the disadvantage
of Isabelle/ZF mentioned above is logic dependent and could be avoided by us-
ing Isabelle/HOL, which supports a HOL-like higher order logic, rather than
Isabelle/FOL as a basis for ZF set theory (though this would introduce trans-
lation functions as in HOL-ST). The better proof support of Isabelle/ZF is not
logic dependent and thus would be preserved if we moved to Isabelle/HOL.

Isabelle provides an elegant proof infrastructure. Meta logic theorems can
express both object logic theorems, inference rules and tactics. It does not imple-
ment a separate inference rule and tactic for each operation as in HOL; instead,
the same theorem is applied either in a forward or backward fashion. Hence,
there are very few tools for forward and backward proof. In fact, the main way
to prove theorems is by the principle of resolution, which supports both styles.

The notion of resolution in Isabelle supports ‘real’ backward proofs better
than they are supported in HOL. In Isabelle/ZF, one almost always works from
the conclusion of a goal backward towards the assumptions, due to the design
of Isabelle resolution tactics. In HOL-ST, one often ends up doing a lot of some-
times ugly assumption hacking working forward from the assumptions towards
the conclusion, due to the design of HOL resolution tactics. More natural back-
ward strategies like conditional rewriting and a matching modus ponens style
strategy like MATCH_MP_TAC, which may be viewed as a simplified form of Isabelle
resolution, are not well supported in HOL. These strategies are particularly use-
ful in HOL-ST, compared to HOL, due the fact that many theorems have set
membership assumptions.

The backward proofs of the formalization were usually more than 50% shorter
in Isabelle/ZF (we used the default subgoal package of HOL). Its subgoal module
provides a kind of flat structure on proof states where all subgoals can be accessed
directly by an index specified by tactics; proving subgoal i results in all subgoals
with a higher index to be shifted such that the indexing contains no holes.
This makes it possible to access all subgoals, possibly at the same time, and to
prove several subgoals by just repeating a tactic supplied with the right list of
theorems—no matter where they would appear in a HOL proof tree.

Another reason why proofs are shorter is that usually the instantiation of
both existentially and universally quantified variables is handled automatically
in Isabelle. It provides a notion of unknown variables which can be instantiated
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in proofs. This means that witnesses and proper instantiations are constructed
behind the scenes, possibly in stages. Unification is essential for allowing this.
Existential quantifiers are often introduced by backward strategies, for instance,
when employing the transitivity of a cpo relation or the facts that function
composition preserves the function set, continuity or embeddings: such theorems
have free variables in the antecedents that do not appear in the consequent.

HOL-ST proofs could probably be simplified if there was a way of handling
existential quantifiers. At the moment, witnesses must be provided on the spot
and manually (some user-contributed tools for solving existential goals automat-
ically are available, but we have not tried them with HOL-ST). Furthermore, it
is often necessary to instantiate universally quantified variables manually.

5 Conclusions

The case study on formalising a model of the λ-calculus via the inverse limit
construction shows that combining set theory and higher order logic in the same
theorem prover provides a useful system for doing mathematics. The simplicity
and convenience of higher order logic can be exploited as well as the expressive
power of set theory. Rather than working in set theory only, it was shown that
set and type theoretic reasoning can be mixed to advantage by exploiting set
theory only when it is necessary and working in higher order logic the rest of the
time. The logic of Isabelle’s set theory, being first order, is weaker and therefore
larger parts of the formalisation had to be done in set theory.

One of the main disadvantages of set theory is the presence of explicit type
(set membership) conditions. This means that type checking is done late by
theorem proving whereas in higher order logic type checking is done early in
ML. Furthermore, type checking is automatic in HOL but cannot be fully auto-
mated in set theory. Thus, the comparison with Isabelle/ZF showed that proofs
required more theorems since certain concepts were formalised in logic in HOL
which had to be represented in set theory in Isabelle/ZF (since its first order
logic is weaker). On the other hand, the comparison also showed that Isabelle/ZF
supports proofs in set theory much better than HOL-ST, which generally speak-
ing lacks ways of handling conditional theorems conveniently, and also does not
provide any support for unknown variables for quantifier reasoning like in Is-
abelle/ZF. Since the better proof support in Isabelle/ZF is not logic dependent,
extending Isabelle/HOL with ZF set theory might be a way of combining the
benefits of HOL-ST and Isabelle/ZF. However, this would introduce the disad-
vantage of translation functions between types and sets as in HOL-ST.

In summary: it is not yet clear to us whether set theory in higher order logic
is right, or just more support for set theory in first order logic is needed. Points
requiring further consideration include the following.

1. ST in HOL yields a need for ugly translation functions (num2Num etc). Can
these be hidden by suitable parsing and printing functions together with
specialised theorem proving support?
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2. ST in FOL yields a lot of set membership conditions. Can these be better
automated, perhaps with theorem proving tools that mimic ‘type checking’ ?

3. The construction of D∞ might be possible in a type theory with dependent
types. Are there natural examples that really require set theory? Embedding
Z semantics is a candidate.
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