
B
R

IC
S

R
S

-95-34
J.P

alsberg:
Type

Inference
w

ith
S

elftype

BRICS
Basic Research in Computer Science

Type Inference with Selftype

Jens Palsberg

BRICS Report Series RS-95-34

ISSN 0909-0878 June 1995

Copyright c© 1995, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

Type Inference with Selftype

Jens Palsberg

BRICS∗

Department of Computer Science
University of Aarhus

Ny Munkegade
DK-8000 Aarhus C, Denmark

Abstract

The metavariable self is fundamental in object-oriented languages.
Typing self in the presence of inheritance has been studied by Abadi
and Cardelli, Bruce, and others. A key concept in these developments
is the notion of selftype, which enables flexible type annotations that
are impossible with recursive types and subtyping. Bruce et al. demon-
strated that, for the language TOOPLE, type checking is decidable.
Open until now is the problem of type inference with selftype.

In this paper we present a type inference algorithm for a type
system with selftype, recursive types, and subtyping. The example
language is the object calculus of Abadi and Cardelli, and the type
inference algorithm runs in nondeterministic polynomial time.

∗Basic Research in Computer Science, Centre of the Danish National Research Foun-
dation. E-mail: palsberg@daimi.aau.dk.

1

1 Introduction

1.1 Background

The metavariable self is fundamental in object-oriented languages. It may be
used in a method to refer to the object executing the method. Since methods
can be inherited, the meaning of self cannot be determined statically. For a
denotational semantics of inheritance, see for example [7].

Typing self in the presence of inheritance has been studied by Abadi
and Cardelli [3, 2, 1, 4], Bruce [5, 6], Palsberg and Schwartzbach [11, 12],
and others. These developments all identify a need to give self a special
treatment, as illustrated by the following standard example.

object Point
...
method move
...
return self

end
end

object ColorPoint extends Point
...
method setcolor
...

end
end

-- Main program:

ColorPoint.move.setcolor

The object ColorPoint is defined by inheritance from Point: it extends
Point with the method setcolor. The only significant aspect of the objects
is that the move method returns self. Consider now the main program. It
executes without errors, but is it typable? With most conventional type
systems, the answer is: no! For example, suppose we use a C++ style of
types such that we can annotate the method move with the return type

2

Point. Then the expression ColorPoint.move has the type Point, and thus
ColorPoint.move.setcolor is not type-correct, since Point does not have
a setcolor method.

One approach to giving self a special treatment is the use of selftype, “the
type of self”, which enables flexible type annotations that are impossible
with recursive types and subtyping. Selftype has been studied by Abadi and
Cardelli [4], Bruce [5, 6], and others, and used in for example Eiffel [9] (Eiffel
uses the syntax like Current for selftype). In the example with Point and
ColorPoint, we can annotate the move method with selftype as the return
type. This has the effect that the type of ColorPoint.move has the same
type as ColorPoint, and thus ColorPoint.move.setcolor is type-correct.

Although the object ColorPoint extends the object Point, this use of
inheritance is not essential for creating examples that demonstrates the use-
fulness of selftype. In Section 1.3 we present an example where an object
overrides a method in its parent object. That example is typable with self-
type, but not with recursive types and subtyping.

There is no common agreement on the “right” type system with selftype.
For example, when comparing the type rules of Abadi and Cardelli [4] with
those of Bruce et al. [5, 6], we find both striking similarities, such as in the
rules for message send, and significant differences, such as Bruce’s use of the
≤meth relation on types. Both these type systems have been proved sound,
and for Bruce’s language TOOPLE, type checking is decidable [6].

Open until now is the problem of type inference with selftype. Of course,
the complexity of such a type inference problem depends on the exact details
of the type system. In this paper, we address the following fundamental
question:

Fundamental question. Can we design a useful type system
with selftype such that type inference is decidable?

In other words: are selftype and type inference compatible?

1.2 Our Results

We present a type inference algorithm for a type system with selftype, re-
cursive types, and subtyping. The example language is the object calculus
of Abadi and Cardelli, and the type inference algorithm runs in nondeter-
ministic polynomial time. Intuitively, our algorithm works by first guessing

3

which methods should be annotated with selftype as the return type, and
then solving the remaining type inference problem in polynomial time. It
remains open if type inference is NP-complete or in polynomial time.

Type inference in the smaller type system without selftype is computable
in O(n3) time and it is P-complete [10]. In Section 1.3 we present a program
which is typable with selftype but not without. Thus, selftype makes the
type system more powerful and type inference remains decidable.

Our type system with selftype is essentially a subsystem of the one of
Abadi and Cardelli in [4]. The key restriction is that a method cannot both
have selftype as return type and also be overridable. It remains open if type
inference in the full version of Abadi and Cardelli’s type system is decidable.

1.3 Example

We now present an example program which uses overriding of methods but
not extension of objects.

object Point object Circle
... ...
method move method center
... return Point
return self end

end ...
end end

object ColorPoint object ColorCircle overrides Circle
... ...
method move method center
... return ColorPoint.move.setcolor
return self end

end end
method setcolor
... -- Main program:
return self

end ColorCircle.center.move
end

4

The only significant aspect of the Point and ColorPoint objects is that
their methods return self. The object Circle returns the Point object
when asked for its center. The object ColorCircle is defined by inheri-
tance from Circle: it overrides the center method. When asked for its
center, the ColorCircle first slightly changes the coordinates and color of
the ColorPoint, and then it returns the resulting object. This behavior
may of course seem odd, but from a typing perspective, we would prefer
that it does not make a difference if the center method returns ColorPoint
or ColorPoint.move.setcolor. In both cases, the main program executes
without errors.

The key aspects of the example can be directly represented in the object
calculus of Abadi and Cardelli [3, 2, 1, 4], as follows.

Point ≡ [move = ς(x)x]
ColorPoint ≡ [move = ς(y)y setcolor = ς(z)z]

Circle ≡ [center = ς(d)Point]
ColorCircle ≡ Circle.center ⇐ ς(e)(ColorPoint.move.setcolor)

Main ≡ ColorCircle.center.move

We may then ask: can the program be typed in Abadi and Cardelli’s first-
order type system with recursive types and subtyping? The answer is, per-
haps surprisingly: no! This answer can be obtained by running the type
inference algorithm of Palsberg [10]. The key reason for the untypability is
that the body of the ColorCircle’s center method forces ColorPoint to have
a type which is not a subtype of the type of Point, intuitively as follows.

Point : µ(X)[move : X]
ColorPoint : µ(X)[move, setcolor : X]

µ(X)[move, setcolor : X] 6≤ µ(X)[move : X]
Moreover : ColorCircle.center.move is not typable .

If we change the body of the ColorCircle’s center method to return simply
ColorPoint, then the program is typable with recursive types and subtyping
(actually with subtyping alone). This state of affairs is not satisfactory and
calls for something to supplement or replace recursive types and subtyping.

This call is answered by our type system with selftype. With that type
system the type of ColorPoint is a subtype of the type of Point, and the

5

program is typable:

Point : [move : selftype]
ColorPoint : [move, setcolor : selftype]

[move, setcolor : selftype] ≤ [move : selftype]
Moreover : ColorCircle.center.move is typable .

Note that our type system can type this program even though it is strictly
less powerful than the one suggested by Abadi and Cardelli in [4].

In the following section we briefly present Abadi and Cardelli’s calculus,
and in Section 3 we present our new type system. In Section 4 we prove that
the type inference problem is log-space reducible to a constraint problem,
and in Section 5 we prove that the constraint problem is solvable in nonde-
terministic polynomial time. Finally, in Section 6 we give an example of how
the algorithm works.

2 Abadi and Cardelli’s Calculus

Abadi and Cardelli has presented an untyped object calculus, called the ς-
calculus. The ς-terms are generated by the following grammar:

a : := x variable
[li = ς(xi)b i∈1..n

i] (li distinct) object
a.l field selection / method invocation
a.l ⇐ ς(x)b field update / method override

We use a, b, c to range over ς-terms. An object [li = ς(xi)b i∈1..n
i] has

method names li and methods ς(xi)bi. The order of the components does
not matter. In a method ς(x)b, we have that x is the self variable and b
is the body. Thus, in the body of a method we can refer to any enclosing
object, like in the Beta language [8].

6

The reduction rules for ς-terms are as follows. If o ≡ [li = ς(xi)b i∈1..n
i],

then, for j ∈ 1..n,

• o.lj ; bj[o/xj]

• o.lj ⇐ ς(y)b ; o[lj ← ς(y)b]

Here, a[o/x] denotes the ς-term a with o substituted for free occurrences
of x (after renaming bound variables if necessary); and o[lj ← ς(y)b] denotes
the ς-term o with the lj field replaced by ς(y)b. An evaluation context is
an expression with one hole. For an evaluation context a[.], if b ; b′, then
a[b] ; a[b′].

A ς-term is said to be an error if it is irreducible and it contains either
o.lj or o.lj ⇐ ς(y)b, where o ≡ [li = ς(xi)b i∈1..n

i], and o does not contain an
lj field.

For an example of a reduction, consider the object o ≡ [l = ς(x)x.l]. The
expression o.l yields the infinite computation: o.l ; x.l[o/x] ≡ o.l ; . . .

3 The Type System

The following type system for the ς-calculus catches errors statically, that is,
rejects all programs that may yield errors.

The concrete syntax of object types is presented by the following gram-
mar:

B ::= selftype | [li : B i∈1..n
i] | α | µα.B

The labels li are drawn from some possibly infinite set N of method names.
We denote by C the powerset of N .

Define Σ = {Selftype} ∪ C. Each type denotes a regular tree over Σ.
Intuitively, such a tree can be obtained from a type by infinite unfolding of
the type.

Given a type, we represent the corresponding regular tree by a term over
Σ, that is, a partial function

t : N∗ → Σ

with domain D(t) satisfying the following properties:

7

• D(t) is nonempty and prefix-closed;

• if t(α) = Selftype, then {l | αl ∈ D(t)} = ∅; and

• if t(α) = {li ∈ N | i ∈ 1..n}, then {l | αl ∈ D(t)} = {li | i ∈ 1..n} .

Intuitively, D(t) is the set of paths from the root in the tree, and t maps
each such path to the symbol at the end of the path. In the remainder of
the paper, we always work with the term representation of types.

Let t be a term and α ∈ N∗. Define the partial function t↓α : N∗ → Σ
by

t↓α(β) = t(αβ) .

If t↓α has nonempty domain, then it is a term, and is called the subterm of
t at position α.

A term t is said to be regular if it has only finitely many distinct subterms;
i.e., if {t ↓ α | α ∈ N∗} is a finite set. The terms denoted by object types
are regular terms. The set of all regular terms over Σ is denoted TΣ.

We now define operators selftypeTΣ and [li : A i∈1..n
i]TΣ on terms that

correspond to the type constructs selftype and [li : A i∈1..n
i]. For l1, . . . , ln ∈

N , A1, . . . , An ∈ TΣ, j ∈ 1..n, and α ∈ N∗, define

D(selftypeTΣ) = {ε}
selftypeTΣ(ε) = Selftype

D([li : A i∈1..n
i]TΣ) = {ε} ∪

n⋃
i=1

{liα | α ∈ D(Ai)}

[li : A i∈1..n
i]TΣ(ε) = {li | i ∈ 1..n}

[li : A i∈1..n
i]TΣ(ljα) = Aj(α) .

The set TΣ \ {selftypeTΣ} is denoted PΣ. At the risk of ambiguity, we omit
the superscript TΣ on the operators selftypeTΣ and [li : A i∈1..n

i]TΣ.
The following properties are immediate from the definitions:

(i) [li : A i∈1..n
i]↓ li = Ai

(ii) (A↓α)↓β = A↓αβ

8

The set of object types is ordered by the subtyping relation ≤ as follows.
First,

selftype ≤ selftype

and second, if A 6= selftype and B 6= selftype, then

A ≤ B if and only if ∀l ∈ N : l ∈ D(B) ⇒ (l ∈ D(A) ∧ A↓ l = B ↓ l) .

Clearly, ≤ is a partial order. Intuitively, if A ≤ B, then A may contain more
fields than B, and for common fields, A and B must have the same type. For
example, [l : A, m : B] ≤ [l : A], but [l : [m : A]] 6≤ [l : []]. Notice that if
A ≤ B, then D(B) ⊆ D(A).

If A, B are object types, define

B{A} =
{

A if B = selftype
B otherwise

We now present the typing rules. If a is a ς-term, A is an object type,
and E is a type environment, that is, a partial function assigning elements
of PΣ to variables, then the judgement E ` a : A means that a has the type
A in the environment E. This holds when the judgement is derivable using
the following five rules:

E ` x : A (provided E(x) = A) (1)

E[xi ← A] ` bi : Bi{A} ∀i ∈ 1..n
E ` [li = ς(xi)b i∈1..n

i] : A
(where A = [li : B i∈1..n

i]) (2)

E ` a : A

E ` a.l : B{A} (where A ≤ [l : B]) (3)

E ` a : A E[x ← A] ` b : B

E ` a.l ⇐ ς(x)b : A
(where A ≤ [l : B] and B 6= selftype) (4)

E ` a : A A ≤ B

E ` a : B
(5)

The first four rules express the typing of each of the four constructs in the
object calculus and the last rule is the rule of subsumption. The type rules
may be understood as a generalization of those introduced by Abadi and
Cardelli in [3] and studied further by Palsberg in [10]. Specifically, if selftype

9

is never used, then B{A} = B and the rules take the form used in [10]. The
type rules may also be understood as a simplification of those introduced by
Abadi and Cardelli in [4]. The key restriction is found in rule (4) where the
condition B 6= selftype ensures that a method cannot both have selftype as
return type and also be overridable.

If E ` a : A is derivable, we say that a is well-typed with type A.

Theorem 3.1 (Subject Reduction) If E ` a : t and a ; a′, then E `
a′ : t.

Proof. By induction on the structure of the derivation of E ` a : t. 2

For an example of a type derivation, let us consider the example term
from Section 1.3. Define

P ≡ [move : selftype]
Q ≡ [move, setcolor : selftype]
A ≡ [center : P]
E ≡ ∅[d ← A]
F ≡ ∅[e ← P] .

We can then derive ∅ ` ColorCircle.center.move : P as follows.

E[x ← P] ` x : P

E ` Point : P
∅ ` Circle : A

F [y ← Q] ` y : Q F [z ← Q] ` z : Q

F ` ColorPoint : Q
F ` ColorPoint.move : Q

F ` ColorPoint.move.setcolor : Q Q ≤ P
F ` ColorPoint.move.setcolor : P

∅ ` ColorCircle : A
∅ ` ColorCircle.center : P

∅ ` ColorCircle.center.move : P

Notice the use of subsumption with Q ≤ P which was also mentioned in
Section 1.3.

10

4 From Rules to Constraints

In this section we prove that the type inference problem is log space reducible
to solving a finite system of type constraints. The constraints isolate the
essential combinatorial structure of the type inference problem.

Definition 4.1 Given two denumerable and disjoint sets U and V of vari-
ables, an S-system (selftype-system) over U and V is a finite set of constraints
of the forms:

W ≤ W ′

if U = selftype then W ≤ W ′ else W ′′ ≤ U

if U = selftype then W ≤ W ′ else U ≤ W ′′

where W, W ′, W ′′ are of the forms V , [li : U i∈1..n
i], or [li : V i∈1..n

i], and
where U, U1, . . . , Un ∈ U and V, V1, . . . , Vn ∈ V .

A solution for an S-system is a pair of maps (L, M), where L : U → TΣ

and M : V → PΣ, such that all constraints are satisfied when elements of U
are mapped to types by L, and elements of V are mapped to types by M .

2

For an example of an S-system, see Section 6. In comparison with the
AC-systems of [10], the novel aspect of S-systems is the use of conditional
constraints.

Given a ς-term c, assume that it has been α-converted so that all bound
variables are distinct. We will now generate an S-system where the bound
variables of c are a subset of the variables used in the constraint system. This
will be convenient in the statement and proof of Theorem 4.2 below. Let X
be the set of bound variables in c, and let Y be a set of variables disjoint
from X consisting of one variable [[b]] for each occurrence of a subterm of
b of c. Define V = X ∪ Y . Moreover, let U be a set of variables disjoint
from V consisting of one variable 〈a.l〉 for each occurrence of a subterm a.l
of c, and consisting of one variable 〈bi〉 for each occurrence of a subterm
[li = ς(xi)b i∈1..n

i] of c and for each i ∈ 1..n. (The notations [[b]], 〈a.l〉, and
〈bi〉 are ambiguous because there may be more than one occurrence of the
terms b, a.l, or bi in c. However, it will always be clear from the context
which occurrence is meant.)

We generate from c the following S-system over U and V :

11

• for every occurrence in c of a bound variable x, the constraint

x ≤ [[x]] (6)

• for every occurrence in c of a subterm of the form [li = ς(xi)b i∈1..n
i],

the constraint

[li : 〈bi〉 i∈1..n] ≤ [[[li = ς(xi)b i∈1..n
i]]] (7)

and for every j ∈ 1..n, the two constraints

xj = [li : 〈bi〉 i∈1..n] (8)

if 〈bj〉 = selftype then xj = [[bj]] else 〈bj〉 = [[bj]] (9)

• for every occurrence in c of a subterm of the form a.l, the two con-
straints

[[a]] ≤ [l : 〈a.l〉] (10)

if 〈a.l〉 = selftype then [[a]] ≤ [[a.l]] else 〈a.l〉 ≤ [[a.l]] (11)

• for every occurrence in c of a subterm of the form a.l ⇐ ς(x)b, the
three constraints

[[a]] ≤ [[a.l ⇐ ς(x)b]] (12)

[[a]] = x (13)

[[a]] ≤ [l : [[b]]] . (14)

Each equality A = B denotes the two inequalities A ≤ B and B ≤ A.
Moreover, each constraint of the form

if U = selftype then V = V ′ else U = V ′′

denotes the two constraints

if U = selftype then V ≤ V ′ else U ≤ V ′′

if U = selftype then V ′ ≤ V else V ′′ ≤ U .

Denote by C(c) the S-system of constraints generated from c in this fashion.
For a ς-term of size n, the S-system C(c) is of size O(n), and it is generated

12

using O(log n) space. We show below that the solutions of C(c) correspond
to the possible type annotations of c in a sense made precise by Theorem 4.2.
For an example of an S-system generated from a ς-term, see Section 6.

Let E be a type environment assigning a type in PΣ to each variable
occurring freely in c. If M : V → PΣ, we say the M extends E if E and M
agree on the domain of E.

Theorem 4.2 The judgement E ` c : A is derivable if and only if there
exists a solution (L, M) of C(c) such that M extends E and M([[c]]) = A. In
particular, if c is closed, then c is well-typed with type A if and only if there
exists a solution (L, M) of C(c) such that M([[c]]) = A.

Proof. The proof uses the same technique as the proof of Lemma 4.2 in
[10].

We first prove that if C(c) has a solution (L, M), then M ` c : M([[c]])
is derivable. We proceed by induction on the structure of c. For the base
case, M ` x : M([[x]]) is derivable using rules (1) and (5), since M(x) ≤
M([[x]]). For the induction step, consider first [li = ς(xi)b i∈1..n

i]. Let A = [li :
L(〈bi〉) i∈1..n]. To derive M ` [li = ς(xi)b i∈1..n

i] : M([[[li = ς(xi)b i∈1..n
i]]]),

by rule (5) and the fact that A ≤ M([[[li = ς(xi)b i∈1..n
i]]]), it suffices to derive

M ` [li = ς(xi)b i∈1..n
i] : A. The side condition of (2) is clearly satisfied, so

it suffices to derive, for each i ∈ 1..n, M [xi ← A] ` bi : (L(〈bi〉)){A}. Since
M(xi) = A for each i ∈ 1..n, it suffices to derive M ` bi : (L(〈bi〉)){A}. For
each i ∈ 1..n, there are two cases. If L(〈bi〉) = selftype, then M(xi) = M([[bi]])
and (L(〈bi〉)){A} = A, so since M(xi) = A, we get (L(〈bi〉)){A} = M([[bi]]),
and hence the desired derivation is provided by the induction hypothesis. If
L(〈bi〉) 6= selftype, then L(〈bi〉) = M([[bi]]) and (L(〈bi〉)){A} = L(〈bi〉), so we
get (L(〈bi〉)){A} = M([[bi]]), and again the desired derivation is provided by
the induction hypothesis.

Now consider a.l. Let A = M([[a]]). From the induction hypothesis, we
obtain a derivation of M ` a : A. By rule (3) and the fact that A ≤ [l :
L(〈a.l〉)], we obtain a derivation of M ` a.l : (L(〈a.l〉)){A}. There are two
cases. If L(〈a.l〉) = selftype, then A ≤ M([[a.l]]) and (L(〈a.l〉)){A} = A, so
(L(〈a.l〉)){A} ≤ M([[a.l]]), and hence M ` a.l : M([[a.l]]) can be derived using
rule (5). If L(〈a.l〉 6= selftype, then L(〈a.l〉) ≤ M([[a.l]]) and (L(〈a.l〉)){A} =
L(〈a.l〉), so (L(〈a.l〉)){A} ≤ M([[a.l]]), and again M ` a.l : M([[a.l]]) can be
derived using rule (5).

13

Finally, consider a.l ⇐ ς(x)b. Let A = M([[a]]). To derive M ` a.l ⇐
ς(x)b : M([[a.l ⇐ ς(x)b]]), by rule (5) and the fact that A ≤ M([[a.l ⇐ ς(x)b]]),
it suffices to derive M ` a.l ⇐ ς(x)b : A. From the facts that A ≤ [l : M([[b]])]
and M([[b]]) ∈ PΣ, we get that the side conditions of rule (4) are satisfied and
that it suffices to derive M ` a : A and M [x ← A] ` b : M([[b]]). Since
A = M(x), the desired derivations are provided by the induction hypothesis.

We then prove that if E ` c : A is derivable, then there exists a solution
(L, M) of C(c) such that M extends E and M([[c]]) = A.

Suppose E ` c : A is derivable, and consider a derivation of minimal
length. Since the derivation is minimal, there is exactly one application of
the rule (1) involving a particular occurrence of a variable x, exactly one
application of the rule (2) involving a particular occurrence of a subterm
[li = ς(xi)b i∈1..n

i], exactly one application of the rule (3) involving a par-
ticular occurrence of a subterm a.l, and exactly one application of the rule
(4) involving a particular occurrence of a subterm a.l ⇐ ς(x)b. In the case
of a bound variable x, there is a unique type Bx such that F (x) = Bx for
any F such that a judgement F ` a : B′ appears in the derivation for some
occurrence of a subterm a of ς(x)b; this can be proved by induction on the
structure of the derivation of F ` a : B′. Finally, there can be at most one
application of the rule (5) involving a particular occurrence of any subterm;
if there were more than one, they could be combined using the transitivity
of ≤ to give a shorter derivation.

Now construct (L, M) as follows. For every free variable x of c, define
M(x) = E(x). For every bound variable x of c, define M(x) = Bx. For every
occurrence of a subterm a of c, find the last judgement in the derivation of
the form F ` a : B involving that occurrence of a, and define M([[a]]) = B.
Intuitively, the last judgement of the form F ` a : B means the judgement
after the use of subsumption. For each occurrence of a subterm a.l of c, find
the unique application of the rule (3) deriving the judgement F ` a.l : B{A′}
from the premise F ` a : A′ where A′ ≤ [l : B], and define L(〈a.l〉) = B.
For each occurrence of a subterm [li = ς(xi)b i∈1..n

i] of c, find the unique
application of the rule (2) deriving the judgement F ` [li = ς(xi)b i∈1..n

i] : A′

from the premises F [xi ← A′] ` bi : Bi{A′} for i ∈ 1..n where A′ = [li :
B i∈1..n

i], and define L(〈bi〉) = Bi for i ∈ 1..n.
Certainly M extends E and M([[c]]) = A. We now show that (L, M) is a

solution of C(c).

14

For an occurrence of a bound variable x, there are two cases. Suppose first
that the variable is bound in a method that occurs in an object declaration.
Find the unique application of the rule (2) deriving the judgement F ` [li =
ς(xi)b i∈1..n

i] : A from a family of premises where one of them is F [x ←
A] ` b : Bi. Then L(x) = A. The rule (1) must have been applied to
obtain a judgement of the form G ` x : L(x) and only rule (5) applied to
that occurrence of x thereafter, thus L(x) ≤ L([[x]]). Suppose then that the
variable is bound in a method that occurs in a method override. Find the
unique application of the rule (4) deriving the judgement F ` a.l ⇐ ς(x)b : A
from two premises where one of them is F [x ← A] ` b : B. As before, we get
that L(x) ≤ L([[x]]).

For an occurrence of a subterm of the form [li = ς(xi)b i∈1..n
i], find

the unique application of the rule (2) deriving the judgement F ` [li =
ς(xi)b i∈1..n

i] : A′ from the premises F [xi ← A′] ` bi : Bi{A′} where A′ =
[li : B i∈1..n

i]. Then Bj = L(〈bj〉) and M([[bj]]) = Bj{A′} for each j ∈ 1..n.
Hence, [li : L(〈bi〉) i∈1..n] ≤ M([[[li = ς(xi)b i∈1..n

i]]]) and M(xj) = [li :
L(〈bi〉) i∈1..n] for each j ∈ 1..n. Moreover, for each j ∈ 1..n, if L(〈bj〉) =
selftype, then Bj{A′} = A′, so M(xj) = A′ = Bj{A′} = M([[bj]]), and if
L(〈bj〉) 6= selftype, then Bj{A′} = Bj, so L(〈bj〉) = Bj = Bj{A′} = M([[bj]]).

For an occurrence of a subterm of the form a.l, find the unique application
of the rule (3) deriving the judgement F ` a.l : B{A′} from the premise
F ` a : A where A ≤ [l : B]. Then B = L(〈a.l〉) and A = M([[a]]). Hence,
M([[a]]) = A ≤ [l : B] = [l : L(〈a.l〉)]. Moreover, if L(〈a.l〉) = selftype, then
B{A′} = A′, so M([[a]]) = A′ = B{A′} ≤ M([[a.l]]), and if L(〈a.l〉) 6= selftype,
then B{A′} = B, so L(〈a.l〉) = B = B{A′} ≤ M([[a.l]]).

Finally, for an occurrence of a subterm of the form a.l ⇐ ς(x)b, find the
unique application of the rule (4) deriving the judgement F ` a.l ⇐ ς(x)b : A′

from the premise F ` a : A′ and F [x ← A′] ` b : B where A′ ≤ [l : B] and
B 6= selftype. Then M([[a]]) = A′ ≤ M([[a.l ⇐ ς(x)b]]), and A′ = M(x).
Moreover, M([[b]]) = B, so M([[a]]) = A′ ≤ [l : B] = [l : M([[b]])]. 2

5 Solving Constraints

To solve an arbitrary S-system, we will use a use a non-deterministic algo-
rithm to transform it into a so-called ACS-system which then can be solved
in polynomial time.

15

The notion of an ACS-system is a slight extension of that of an AC-
system that was studied by Palsberg [10]. The extension is the constant
selftype. Intuitively, selftype enjoys a special status in an S-system because
of the conditional constraints. In contrast, selftype is an “ordinary” constant
in an ACS-system.

Definition 5.1 Given a denumerable set of variables W, an ACS-system
over W is a finite set of constraints of the forms:

V = selftype
W ≤ W ′

where W, W ′ are of the forms V or [li : V i∈1..n
i], and where V, V1, . . . , Vn ∈

W.
A solution for an ACS-system is a map ψ : W → TΣ, such that all

constraints are satisfied when elements of W are mapped to types by ψ. 2

If we disallow the use of selftype in the constraints and in the solutions,
then we get an AC-system. Type inference with recursive types and sub-
typing is log-space equivalent to solving AC-systems. Since the constant
selftype has no special status in an ACS-system, it could be replaced by any
other constant, e.g., Integer, Real, without changing the problem of solving
constraints. If we extend the object calculus with constructs for computing
with for example integers, then we can in log-space reduce the type inference
problem to solving ACS-systems with Integer in the place of selftype.

In the journal version of [10], it is indicated how to extend the constraint
solving algorithm for AC-systems to handle functions and records. It is
equally easy to extend the algorithm to handle a constant such as selftype.
Thus, solvability of an ACS-system is decidable in O(n3) time.

We now define a family of mappings FS from S-systems to ACS-systems.
Let C be an S-system over U and V , and let S ⊆ U . Intuitively, S is a guess
on the set of variables that some solution of C would map to selftype. Define
FS(C) to be the ACS-system over U ∪ V where

• For each U ∈ S, the constraint U = selftype is in FS(C).

• For each V ∈ (U \ S) ∪ V , the constraint V ≤ [] is in FS(C).

• If a constraint of the form W ≤ W ′ is in C, then it is also in FS(C).

16

• If a constraint of the form if U = selftype then W ≤ W ′ else W ′′ ≤ W ′′′

is in C, then

(i) If U ∈ S, then W ≤ W ′ is in FS(C); and

(ii) If U 6∈ S, then W ′′ ≤ W ′′′ is in FS(C).

We can now prove our main result which relates solvability of S-systems
to solvability of ACS-systems.

Theorem 5.2 (Main Result) Suppose C is an S-system over U and V.
Then C is solvable if and only if there exist S ⊆ U such that FS(C) is
solvable.

Proof. Suppose first that C has solution (L, M). Define

S = {U ∈ U | L(U) = selftype}
ψ : U ∪ V → TΣ

ψ(W) =
{

L(W) if W ∈ U
M(W) if W ∈ V

Clearly, ψ is a solution of FS(C).
Suppose then that we have S ⊆ U such that FS(C) has solution ψ. Define

L : U → TΣ

M : V → PΣ

L(U) = ψ(U) if U ∈ U
M(V) = ψ(V) if V ∈ V

Clearly, (L, M) is a solution of C. 2

Corollary 5.3 We can decide in nondeterministic polynomial time if an S-
system has a solution.

Proof. Suppose C is an S-system over U and V . Guess S ⊆ U . Transform
C into FS(C), using log-space. Decide whether FS(C) is solvable, using O(n3)
time. The conclusion then follows from Theorem 5.2. 2

By combining Theorem 4.2 and Corollary 5.3, we obtain the following
result.

17

Corollary 5.4 The type inference problem for the type system with selftype,
recursive types, and subtyping can be decided in nondeterministic polynomial
time.

Suppose we drop either or both of recursive types and subtyping. In
each case, the type inference problem can be decided in nondeterministic
polynomial time. by small modifications of the algorithm above, as follows.
For the case of dropping recursive types, there is a slightly different algorithm
for solving the generated ACS-system in O(n3) time, see [10]. For the case of
dropping subtyping, the only change is that when generating the S-system,
the inequalities in (6), (7), (11), and (12) should be changed to equalities. For
the case of dropping both recursive types as subtyping, one should combine
the changed mentioned in the two previous cases.

We have thus completed the following table.

Selftype Recursive types Subtyping Type inference
O(n3) time, P-complete [10]√
O(n3) time, P-complete [10]√
O(n3) time, P-complete [10]√ √
O(n3) time, P-complete [10]√

NP [this paper]√ √
NP [this paper]√ √
NP [this paper]√ √ √
NP [this paper]

18

6 Example of Type Inference

We now give an example of how the type inference algorithm works. The
example program is the one from Section 1.3. The expression

ColorCircle.center.move

yields the following S-system.

Occurrence Constraints
x x ≤ [[x]]

Point [move : 〈x〉] ≤ [[Point]]

x = [move : 〈x〉]
if 〈x〉 = selftype then x = [[x]] else 〈x〉 = [[x]]

y y ≤ [[y]]

z z ≤ [[z]]

ColorPoint [move : 〈y〉 setcolor : 〈z〉] ≤ [[ColorPoint]]

y = [move : 〈y〉 setcolor : 〈z〉]
z = [move : 〈y〉 setcolor : 〈z〉]
if 〈y〉 = selftype then y = [[y]] else 〈y〉 = [[y]]

if 〈z〉 = selftype then z = [[z]] else 〈z〉 = [[z]]

Circle [center : 〈Point〉] ≤ [[Circle]]

d = [center : 〈Point〉]
if 〈Point〉 = selftype then d = [[Point]] else 〈Point〉 = [[Point]]

ColorCircle [[Circle]] ≤ [[ColorCircle]]

[[Circle]] = e

[[Circle]] ≤ [center : [[ColorPoint.move.setcolor]]]

ColorPoint.move [[ColorPoint]] ≤ [move : 〈ColorPoint.move〉]
if 〈ColorPoint.move〉 = selftype

then [[ColorPoint]] ≤ [[ColorPoint.move]]

else 〈ColorPoint.move〉 ≤ [[ColorPoint.move]]

ColorPoint.move.setcolor [[ColorPoint.move]] ≤ [setcolor : 〈ColorPoint.move.setcolor〉]
if 〈ColorPoint.move.setcolor〉 = selftype

then [[ColorPoint.move]] ≤ [[ColorPoint.move.setcolor]]

else 〈ColorPoint.move.setcolor〉 ≤ [[ColorPoint.move.setcolor]]

ColorCircle.center [[ColorCircle]] ≤ [center : 〈ColorCircle.center〉]
if 〈ColorCircle.center〉 = selftype

then [[ColorCircle]] ≤ [[ColorCircle.center]]

else 〈ColorCircle.center〉 ≤ [[ColorCircle.center]]

ColorCircle.center.move [[ColorCircle.center]] ≤ [move : 〈ColorCircle.center.move〉]
if 〈ColorCircle.center.move〉 = selftype

then [[ColorCircle.center]] ≤ [[ColorCircle.center.move]]

else 〈ColorCircle.center.move〉 ≤ [[ColorCircle.center.move]]

19

We denote this S-system by C. Choose

S = { 〈x〉, 〈y〉, 〈z〉,
〈ColorPoint.move〉, 〈ColorPoint.move.setcolor〉,
〈ColorCircle.center.move〉 } .

Notice that
U \ S = { 〈Point〉, 〈ColorCircle.center〉 } .

The ACS-system FS(C) looks as follows.
〈x〉 = selftype x ≤ [[x]]
〈y〉 = selftype [move : 〈x〉] ≤ [[Point]]
〈z〉 = selftype x = [move : 〈x〉]
〈ColorPoint.move〉 = selftype x = [[x]]
〈ColorPoint.move.setcolor〉 = selftype y ≤ [[y]]
〈ColorCircle.center.move〉 = selftype z ≤ [[z]]
〈Point〉 ≤ [] [move : 〈y〉 setcolor : 〈z〉] ≤ [[ColorPoint]]
〈ColorCircle.center〉 ≤ [] y = [move : 〈y〉 setcolor : 〈z〉]
x ≤ [] z = [move : 〈y〉 setcolor : 〈z〉]
y ≤ [] y = [[y]]
z ≤ [] z = [[z]]
d ≤ [] [center : 〈Point〉] ≤ [[Circle]]
e ≤ [] d = [center : 〈Point〉]
[[x]] ≤ [] 〈Point〉 = [[Point]]
[[y]] ≤ [] [[Circle]] ≤ [[ColorCircle]]
[[z]] ≤ [] [[Circle]] = e
[[Point]] ≤ [] [[Circle]] ≤ [center : [[ColorPoint.move.setcolor]]]
[[ColorPoint.move.setcolor]] ≤ [] [[ColorPoint]] ≤ [move : 〈ColorPoint.move〉]
[[ColorCircle.center]] ≤ [] [[ColorPoint]] ≤ [[ColorPoint.move]]
[[ColorCircle.center.move]] ≤ [] [[ColorPoint.move]] ≤ [setcolor : 〈ColorPoint.move.setcolor〉]
[[ColorPoint]] ≤ [] [[ColorPoint.move]] ≤ [[ColorPoint.move.setcolor]]
[[ColorPoint.move]] ≤ [] [[ColorCircle]] ≤ [center : 〈ColorCircle.center〉]
[[Circle]] ≤ [] 〈ColorCircle.center〉 ≤ [[ColorCircle.center]]
[[ColorCircle]] ≤ [] [[ColorCircle.center]] ≤ [move : 〈ColorCircle.center.move〉]

[[ColorCircle.center]] ≤ [[ColorCircle.center.move]]

The constraint system FS(C) has the solution ψ where:

ψ(W) =



selftype if W ∈ S
[move : selftype] if W ∈ { x, [[x]], [[Point]], 〈Point〉,

[[ColorPoint.move.setcolor]],
[[ColorCircle.center]],
〈ColorCircle.center〉,
[[ColorCircle.center.move]] }

[move : selftype setcolor : selftype] if W ∈ { y, [[y]], z, [[z]], [[ColorPoint]],
[[ColorPoint.move]] }

[center : [move : selftype]] if W ∈ { d, e, [[Circle]], [[ColorCircle]] }

In conclusion, if we annotate the two move methods and the setcolor method
with selftype as the return type, then the program is typable.

20

References

[1] Mart́ın Abadi and Luca Cardelli. A semantics of object types. In Proc.
LICS’94, Ninth Annual IEEE Symposium on Logic in Computer Sci-
ence, pages 332–341, 1994.

[2] Mart́ın Abadi and Luca Cardelli. A theory of primitive objects: Second-
order systems. In Proc. ESOP’94, European Symposium on Program-
ming, pages 1–25. Springer-Verlag (LNCS 788), 1994.

[3] Mart́ın Abadi and Luca Cardelli. A theory of primitive objects: Un-
typed and first-order systems. In Proc. TACS’94, Theoretical Aspects of
Computing Sofware, pages 296–320. Springer-Verlag (LNCS 789), 1994.

[4] Mart́ın Abadi and Luca Cardelli. An imperative object calculus. In Proc.
TAPSOFT’95, Theory and Practice of Software Development, pages
471–485. Springer-Verlag (LNCS 915), Aarhus, Denmark, May 1995.

[5] Kim B. Bruce. Safe type cheching in a statically typed object-
oriented programming language. In Proc. POPL’93, Twentieth Annu-
al SIGPLAN–SIGACT Symposium on Principles of Programming Lan-
guages, pages 285–298, 1993.

[6] Kim B. Bruce, Jon Crabtree, Thomas P. Murtagh, Robert van Gent,
Allyn Dimock, and Robert Muller. Safe and decidable type checking
in an object-oriented language. In Proc. OOPSLA’93, ACM SIGPLAN
Eighth Annual Conference on Object-Oriented Programming Systems,
Languages and Applications, pages 29–46, 1993.

[7] William Cook and Jens Palsberg. A denotational semantics of inher-
itance and its correctness. Information and Computation, 114(2):329–
350, 1994. Also in Proc. OOPSLA’89, ACM SIGPLAN Fourth Annual
Conference on Object-Oriented Programming Systems, Languages and
Applications, pages 433–443, New Orleans, Louisiana, October 1989.

[8] Bent B. Kristensen, Ole Lehrmann Madsen, Birger Møller-Pedersen, and
Kristen Nygaard. The BETA programming language. In Bruce Shriv-
er and Peter Wegner, editors, Research Directions in Object-Oriented
Programming, pages 7–48. MIT Press, 1987.

21

[9] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
Englewood Cliffs, NJ, 1988.

[10] Jens Palsberg. Efficient inference of object types. Information and
Computation. To appear. Also in Proc. LICS’94, Ninth Annual IEEE
Symposium on Logic in Computer Science, pages 186–195, Paris, France,
July 1994.

[11] Jens Palsberg and Michael I. Schwartzbach. Object-Oriented Type Sys-
tems. John Wiley & Sons, 1994.

[12] Jens Palsberg and Michael I. Schwartzbach. Static typing for object-
oriented programming. Science of Computer Programming, 23(1):19–53,
1994.

22

Recent Publications in the BRICS Report Series

RS-95-34 Jens Palsberg.Type Inference with Selftype. June 1995.
22 pp.

RS-95-33 Jens Palsberg, Mitchell Wand, and Patrick O'Keefe.Type
Inference with Non-structural Subtyping. June 1995. 22
pp.

RS-95-32 Jens Palsberg.Efficient Inference of Object Types. June
1995. 32 pp. To appear inInformation and Computa-
tion. Preliminary version appears inNinth Annual IEEE
Symposium on Logic in Computer Science, LICS '94 Pro-
ceedings, pages 186–195.

RS-95-31 Jens Palsberg and Peter Ørbæk.Trust in theλ-calculus.
June 1995. 32 pp. To appear inStatic Analysis: 2nd
International Symposium, SAS '95 Proceedings, 1995.

RS-95-30 Franck van Breugel. From Branching to Linear Met-
ric Domains (and back). June 1995. 30 pp. Abstract
appeared in Engberg, Larsen, and Mosses, editors,6th
Nordic Workshop on Programming Theory, NWPT '6 Pro-
ceedings, 1994, pages 444-447.

RS-95-29 Nils Klarlund. An n logn Algorithm for Online BDD
Refinement. May 1995. 20 pp.

RS-95-28 Luca Aceto and Jan Friso Groote.A Complete Equational
Axiomatization for MPA with String Iteration. May 1995.
39 pp.

RS-95-27 David Janin and Igor Walukiewicz.Automata for theµ-
calculus and Related Results. May 1995. 11 pp. To appear
in Mathematical Foundations of Computer Science: 20th
Int. Symposium, MFCS '95 Proceedings, LNCS, 1995.

RS-95-26 Faith Fich and Peter Bro Miltersen. Tables should be
sorted (on random access machines). May 1995. 11 pp. To
appear in Algorithms and Data Structures: 4th Workshop,
WADS '95 Proceedings, LNCS, 1995.

RS-95-25 Søren B. Lassen.Basic Action Theory. May 1995. 47 pp.

