
B
R

IC
S

R
S

-95-33
P

alsberg
etal.:

Type
Inference

w
ith

N
on-structuralS

ubtyping

BRICS
Basic Research in Computer Science

Type Inference with Non-structural
Subtyping

Jens Palsberg
Mitchell Wand
Patrick O'Keefe

BRICS Report Series RS-95-33

ISSN 0909-0878 June 1995

Copyright c© 1995, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

Type Inference with Non-structural Subtyping

Jens Palsberg∗ Mitchell Wand†‡ Patrick O’Keefe§

Abstract

We present an O(n3) time type inference algorithm for a type
system with a largest type >, a smallest type ⊥, and the usual ordering
between function types. The algorithm infers type annotations of
minimal size, and it works equally well for recursive types. For the
problem of typability, our algorithm is simpler than the one of Kozen,
Palsberg, and Schwartzbach for type inference without ⊥. This may
be surprising, especially because the system with ⊥ is strictly more
powerful.

∗BRICS (Basic Research in Computer Science, Centre of the Danish National Research
Foundation), Department of Computer Science, University of Aarhus, Ny Munkegade,
DK–8000 Aarhus C, Denmark. E-mail: palsberg@daimi.aau.dk.
†Work supported by the National Science Foundation under grants CCR-9304144 and

CCR-9404646.
‡College of Computer Science, Northeastern University, 360 Huntington Avenue,

161CN, Boston, MA 02115, USA. E-mail: wand@ccs.neu.edu.
§151 Coolidge Avenue #211, Watertown, MA 02172, USA. E-mail:

pmo@world.std.com.

1

1 Introduction

This paper concerns types for the λ-calculus that can be generated from the
grammar:

t ::= ⊥ | > | t1 → t2 .

Intuitively, ⊥ is a least type containing only the divergent computation; >
is a maximal or universal type containing all values; and t1 → t2 is the usual
function space.

Types are partially ordered by ≤ which is the smallest binary relation on
types such that

1. ⊥ ≤ t ≤ > for all types t; and

2. s → t ≤ s′ → t′ if and only if s′ ≤ s and t ≤ t′.

Following [9], we denote this type system by PTB (PTB indicates Partial
Types with Bottom). Thatte’s system of partial types [7] did not include ⊥;
the fragment of PTB without ⊥ will be denoted PT [9].

The type system PTB can be extended with recursive types, yielding
Amadio and Cardelli’s system [1], here denoted PTBµ. The further extension
of PTBµ with the type Int of integers will be denoted PTBµ ∪ {Int}.

We have earlier shown that PTB is strictly more powerful than PT [9],
and recursive types add further power.

It is known that type inference for PT is computable in O(n3) time [3].
It is also known that type inference for PTBµ∪ {Int} is computable in O(n3)
time, by reduction to a flow analysis problem [5].

In this paper we show that type inference for PTB and PTBµ is also
computable in O(n3) time, by an algorithm similar to that in [3]. The algo-
rithm infers type annotations of minimal size. A type is a tree, so its size
is can be measured by the size of the set of paths from the root. In gen-
eral, there can be several types of minimal size. For example, the λ-term
λx.λy.(λf.f(fx))(λv.vy) can be typed such that

x : ⊥
y : ⊥
f : ⊥ → ⊥
v : ⊥ .

2

These type annotations are of minimal size. If we replace the type of y by
>, then we obtain another type annotation of minimal size.

In the type system PT, every typable λ-term has exactly one type anno-
tation of minimal size. The algorithm by Kozen, Palsberg, and Schwartzbach
[3] infers this minimal-size type annotation.

The type inference algorithm by Palsberg and O’Keefe [5] for PTBµ∪{Int}
does in general not infer type annotations of minimal size. It remains open
if our result can be extended to PTBµ ∪ {Int}.

For the problem of typability, our algorithm is simpler than the one of
Kozen, Palsberg, and Schwartzbach for type inference without ⊥. This may
be surprising, especially because the system with ⊥ is strictly more powerful.
In our view, the simpler algorithm motivates having > and ⊥ together in a
type system.

In the following Section we define the type inference problem and summa-
rize some known results that will be helpful in the later sections. In Section
3 we define an automaton that will be used when defining possible solutions
to the type inference problem, and in Section 4 we define a useful notion of
upper bound. In Section 5 we prove our main theorem that characterizes a
minimal-size solution, and in Section 6 we present our type inference algo-
rithm. Finally, in Section 7 we give an example of how our type inference
algorithm works.

2 The type system

2.1 Types

Let Σ = {→, ⊥, >} be the ranked alphabet where → is binary and ⊥, > are
nullary. A type is a finite tree over Σ. A path from the root of such a tree
is a string over {0, 1}, where 0 indicates “left subtree” and 1 indicates “right
subtree”. This set of types is the same as the one defined by the grammar
in Section 1. We represent a type by a term, which is a function mapping
each path from the root of the type to the symbol at the end of the path, as
follows.

Definition 1 A term is a partial function

t : {0, 1}? → Σ

3

with domain D(t) such that D(t) is non-empty and prefix-closed, and such
that if t(α) =→, then {i | αi ∈ D(t)} = {0, 1}; and if t(α) ∈ {⊥, >}, then
{i | αi ∈ D(t)} = ∅. The set of all such terms is denoted TΣ. The set
of terms with finite domain is denoted FΣ. They represent finite trees, by
König’s Lemma. In our application, FΣ is the set of types.

For s, t ∈ TΣ, define →TΣ: TΣ × TΣ → TΣ and ⊥TΣ, >TΣ ∈ TΣ by

(s →TΣ t)(0α) = s(α)
(s →TΣ t)(1α) = t(α)

(s →TΣ t)(ε) = →
⊥TΣ(ε) = ⊥
>TΣ(ε) = > .

Then

D(s →TΣ t) = {ε} ∪ {0α | α ∈ D(s)} ∪ {1α | α ∈ D(t)}
D(⊥TΣ) = {ε}
D(>TΣ) = {ε} .

For t ∈ TΣ and α ∈ {0, 1}?, define the partial function t↓α : {0, 1}? → Σ by

t↓α(β) = t(αβ) .

If t ↓α has non-empty domain, then it is a term, and is called the subterm
of t at position α.

For x ⊆ {0, 1}? and α ∈ {0, 1}?, define x↓α = {β | αβ ∈ x}. 2

The following properties are immediate from the definitions:

(i) (s →TΣ t)↓0 = s

(ii) (s →TΣ t)↓1 = t

(iii) (t↓α)↓β = t↓αβ

Following [2], we omit the superscript TΣ on the operators →TΣ, ⊥TΣ,
>TΣ.

We will say that a term s has smaller size than a term t if D(s) ⊆ D(t).
Our type inference algorithm will infer types that are of minimal size.

Terms are ordered by the subtype relation ≤, as follows.

4

Definition 2 The parity of α ∈ {0, 1}? is the number mod 2 of 0’s in α.
The parity of α is denoted πα. A string α is said to be even if πα = 0 and
odd if πα = 1. Let ≤0 be the partial order on Σ given by

⊥ ≤0 → and → ≤0 >

and let ≤1 be its reverse

> ≤1 → and → ≤1 ⊥ .

For s, t ∈ TΣ, define s ≤ t if s(α) ≤πα t(α) for all α ∈ D(s) ∩ D(t). 2

Kozen, Palsberg, and Schwartzbach [2] showed that the relation ≤ is
equivalent to the order defined by Amadio and Cardelli [1]. The relation ≤
is a partial order with ⊥ ≤ t ≤ > for all t ∈ TΣ, and s → t ≤ s′ → t′ if and
only if s′ ≤ s and t ≤ t′ [1, 2]. Moreover, on FΣ, ≤ coincides with the type
ordering defined in Section 1 [2].

2.2 Type rules

If E is a λ-term, t is a type, and A is a type environment, i.e. a partial
function assigning types to variables, then the judgement

A ` E : t

means that E has the type t in the environment A. Formally, this holds
when the judgement is derivable using the following four rules:

A ` x : t (provided A(x) = t) (1)

A[x ← s] ` E : t

A ` λx.E : s → t
(2)

A ` E : s → t A ` F : s

A ` EF : t
(3)

A ` E : s s ≤ t

A ` E : t
(4)

The first three rules are the usual rules for simple types and the last rule is
the rule of subsumption.

5

The type system has the subject reduction property, that is, if A ` E : t is
derivable and E β-reduces to E′, then A ` E′ : t is derivable. This is proved
by straightforward induction on the structure of the derivation of A ` E : t
[4].

This system types terms which are not typable in the simply-typed λ-
calculus. For example, consider λf.(fK(fI)), where K and I are the usual
combinators. This is not typable in the ordinary calculus, since K and I
have different types, but it is typable under partial typing: assign f the type
> → > → >. Both the K and I can be coerced to type >, and the result
(fI), of type > → >, can be coerced to > to form the second argument of
the first f . Therefore the entire term has type (> → > → >) → >.

Similarly, some self-application is possible: (λx.xx) has type (> → t) → t
for all t, since the final x can be coerced to >.

However, not all terms are typable in this system. Any λ-term typable
in PTB is strongly normalizing [9]. To indicate the flavor of those strongly
normalizing λ-terms which are not typable in this system, we have earlier
[9] showed that (λx.xxx)(λy.y) is not typable in PTB. We also showed that
(λf.f(fx))(λv.vy) is typable in PTB but not in PT. This demonstrates that
⊥ adds power to a type system.

2.3 Constraints

Given a λ-term E, the type inference problem can be rephrased in terms of
solving a system of type constraints. Assume that E has been α-converted
so that all bound variables are distinct. Let XE be the set of λ-variables x
occurring in E, and let YE be a set of variables disjoint from XE consisting
of one variable [[F]] for each occurrence of a subterm F of E. (The notation
[[F]] is ambiguous because there may be more than one occurrence of F in
E. However, it will always be clear from context which occurrence is meant.)
We generate the following system of inequalities over XE ∪ YE :

• for every occurrence in E of a subterm of the form λx.F , the inequality

x → [[F]] ≤ [[λx.F]] ;

• for every occurrence in E of a subterm of the form GH, the inequality

[[G]] ≤ [[H]] → [[GH]] ;

6

• for every occurrence in E of a λ-variable x, the inequality

x ≤ [[x]] .

Denote by T (E) the system of constraints generated from E in this fashion.
For every λ-term E, let Tmap(E) be the set of total functions from XE ∪ YE
to TΣ. The function ψ ∈ Tmap(E) is a solution of T (E) if and only if it is a
solution of each constraint in T (E). Specifically, for V, V ′, V ′′ ∈ XE ∪ YE :

The constraint: has solution ψ if:
V → V ′ ≤ V ′′ ψ(V) → ψ(V ′) ≤ ψ(V ′′)
V ≤ V ′ → V ′′ ψ(V) ≤ ψ(V ′) → ψ(V ′′)

V ≤ V ′ ψ(V) ≤ ψ(V ′)

The solutions of T (E) correspond to the possible type annotations of E
in a sense made precise by Theorem 3.

Let A be a type environment assigning a type to each λ-variable occurring
freely in E. If ψ is a function assigning a type to each variable in XE ∪ YE ,
we say that ψ extends A if A and ψ agree on the domain of A.

Theorem 3 The judgement A ` E : t is derivable if and only if there exists
a solution ψ of T (E) extending A such that ψ([[E]]) = t. In particular, if E
is closed, then E is typable with type t if and only if there exists a solution
ψ of T (E) such that ψ([[E]]) = t.

Proof. Similar to the proof of Theorem 2.1 in the journal version of
[3], in outline as follows. Given a solution of the constraint system, it is
straightforward to construct a derivation of A ` E: t. Conversely, observe
that if A ` E: t is derivable, then there exists a derivation of A ` E: t such
that each use of one of the ordinary rules is followed by exactly one use of
the subsumption rule. The approach in for example [8, 6] then gives a set of
inequalities of the desired form. 2

2.4 Graphs

In this section we reduce the problem of solving constraint systems to a
problem of solving a certain kind of constraint graphs. The graphs yield a
convenient setting for applying algorithms like transitive closure.

7

Definition 4 A constraint graph is a directed graph G = (S, L, R, ≤) con-
sisting of a set of nodes S and three sets of directed edges L, R, ≤. We write
s

0→ t to indicate that the pair (s, t) is in the edge set L, we write s
1→ t

to indicate that the pair (s, t) is in the edge set R, and we write s
≤→ t to

indicate that the pair (s, t) is in the edge set ≤. A constraint graph must
satisfy the properties:

• any node has at most one outgoing L edge and at most one outgoing
R edge;

• a node has an outgoing L edge if and only if it has an outgoing R edge.

A solution for G is any map h : S → TΣ such that

(i) if u
0→ v and u

1→ w, then h(u) = h(v) → h(w);

(ii) if u
≤→ v, then h(u) ≤ h(v).

Notice that we consider solutions in S → TΣ, not just in S → FΣ. The
solution h is finite if h(s) is a finite set for all s.

Define finally

N = {u ∈ S | u has outgoing L and R edges in G}

2

A system of type constraints as described above gives rise to a constraint
graph by associating a unique node with every subexpression occurring in
the system of constraints, defining L and R edges from an occurrence of an
expression to its left and right subexpressions, and defining ≤ edges for the
inequalities.

Definition 5 A constraint graph is closed if the edge relation ≤ is reflexive,
transitive, and closed under the following rule which says that the dashed
edges exist whenever the solid ones do:

�
-

-
B
B
B
BBN

�
�
�
�
���

B
B
B
BBN

�
�
�
�
���

≥

≤

≤

1010

8

The closure of a constraint graph G is the smallest closed graph containing
G as a subgraph. 2

Lemma 6 A constraint graph and its closure have the same set of solutions.

Proof. Any solution of the closure of G is also a solution of G, since G
has fewer constraints. Conversely, the closure of G can be constructed from
G by iterating the closure rules, and it follows inductively that any solution
of G satisfies the additional constraints added by this process. 2

3 An automaton

In this section we define an automaton M. It will be used to characterize a
minimal-size assignment of types to nodes of a given constraint graph. An
intuitive account follows the formal definition.

Definition 7 Let a constraint graph G = (S, L, R, ≤) be given. The au-
tomaton M is defined as follows. The input alphabet of M is {0, 1}. The
set of states of M is S × S. A state is written (s, t). The transitions are
defined as follows.

(u, v) ε→ (u, v′) if v
≤→ v′ in G

(u, v) ε→ (u′, v) if u′
≤→ u in G

(u, v) 1→ (u′, v′) if u
1→ u′ and v

1→ v′ in G

(u, v) 0→ (v′, u′) if u
0→ u′ and v

0→ v′ in G

If p and q are states of M and α ∈ {0, 1}?, we write p
α→ q if the au-

tomaton can move from state p to state q under input α, including possible
ε-transitions.

The automaton Ms is the automaton M with start state (s, s). All states
are accept states; thus the language accepted by Ms is the set of strings α
for which there exists a state (u, v) such that (s, s) α→ (u, v). We denote this
language by L(s). 2

Informally, we can think of the automaton Ms as follows. We start with
two pebbles, one green and one red, on the node s of the constraint graph
G. We can move the green pebble forward along a ≤ edge at any time, and

9

we can move the red pebble backward along a ≤ edge at any time. We can
move both pebbles simultaneously along R edges leading out of the nodes
they occupy. We can also move them simultaneously along outgoing L edges,
but in the latter case we switch their colors. The sequence of 0’s and 1’s that
were seen gives a string in L(s), and all strings in L(s) are obtained in this
way.

For comparison, the automaton that was defined in [3] for doing type in-
ference without ⊥ had eight rather than four rules for generating transitions.

The intuition motivating the definition of M is that we want to identify
the conditions that require a path to exist in the domain of any solution.
Thus L(s) is the set of α that must be there; this intuition is made manifest
in Lemma 8. It turns out that once we identify this set, we can construct a
solution with domain L(s).

Lemma 8 If h : S → TΣ is any solution and (s, s) α→ (u, v), then α ∈
D(h(s)). Moreover, h(u) ≤ h(s)↓α ≤ h(v).

Proof. We proceed by induction on the number of transitions. If this is
zero, then (u, v) = (s, s) and α = ε, and the result is immediate. Otherwise,
assume that (s, s) α→ (u, v) and the lemma holds for this sequence of transi-
tions. We argue by cases, depending on the form of the next transition out
of (u, v).

If (u, v) ε→ (u′, v′), then u′
≤→ u and v

≤→ v′, so αε = α ∈ D(h(s)) and

h(u′) ≤ h(u) ≤ h(s)↓α ≤ h(v) ≤ h(v′) .

If (u, v) 1→ (u′, v′), then u
1→ u′ and v

1→ v′, so h(u′) = h(u) ↓ 1 and
h(v′) = h(v)↓1. Then 1 ∈ D(h(u)) and 1 ∈ D(h(v)), so 1 ∈ D(h(s)↓α) and
α1 ∈ D(h(s)), and

h(u′) = h(u)↓1 ≤ h(s)↓α1 ≤ h(v)↓1 = h(v′) .

If (u, v) 0→ (v′, u′), then u
0→ u′ and v

0→ v′, so h(u′) = h(u) ↓ 0 and
h(v′) = h(v)↓0. Then 0 ∈ D(h(u)) and 0 ∈ D(h(v)), so 0 ∈ D(h(s)↓α) and
α0 ∈ D(h(s)), and

h(u′) = h(u)↓0 ≥ h(s)↓α0 ≥ h(v)↓0 = h(v′) .

2

10

When certain paths in M exist, others must exist too, as expressed in
Lemmas 9 and 10.

Lemma 9 If (u, v) ε→ (u′, v′), then for any w ∈ S, (w, v) ε→ (w, v′) and
(u, w) ε→ (u′, w).

Proof. We proceed by induction on the number of transitions in (u, v) ε→
(u′, v′). If it is zero, then (u, v) = (u′, v′) and the result is immediate. Other-
wise, assume that (u, v) ε→ (u′, v′) and that the lemma holds for this sequence
of transitions. We argue by cases, depending on the form of the next transi-
tion out of (u′, v′). Clearly, the next transition need be an ε-transition.

If (u′, v′) ε→ (u′, v′′) and v′
≤→ v′′ in G, then, by the induction hypothesis,

(w, v) ε→ (w, v′) ε→ (w, v′′) .

If (u′, v′) ε→ (u′′, v′) and u′′
≤→ u′ in G, then, by the induction hypothesis,

(u, w) ε→ (u′, w) ε→ (u′′, w) .

2

Lemma 10 If (u1, v1)
α→ (u′1, v

′
1) and (u2, v2)

α→ (u′2, v
′
2), then (u1, v2)

α→
(u′1, v′2).

Proof. We proceed by induction on the length of α. In the base case,
consider |α| = 0. We then have α = ε, so by Lemma 9,

(u1, v2)
ε→ (u′1, v2)

ε→ (u′1, v
′
2) .

In the induction step, consider first

(u1, v1)
α1→ (u′1, v

′
1)

(u2, v2)
α1→ (u′2, v

′
2) .

Choose x1, y1, x2, y2 ∈ N and x′1, y
′
1, x
′
2, y
′
2 ∈ S such that

(u1, v1)
α→ (x1, y1)

1→ (x′1, y
′
1)

ε→ (u′1, v
′
1)

(u2, v2)
α→ (x2, y2)

1→ (x′2, y
′
2)

ε→ (u′2, v
′
2)

11

and x1
1→ x′1, y1

1→ y′1, x2
1→ x′2, y2

1→ y′2. From the induction hypothesis
and Lemma 9 we get

(u1, v2)
α→ (x1, y2)

1→ (x′1, y
′
2)

ε→ (u′1, y
′
2)

ε→ (u′1, v
′
2) .

Consider then

(u1, v1)
α0→ (u′1, v

′
1)

(u2, v2)
α0→ (u′2, v

′
2) .

Choose x1, y1, x2, y2 ∈ N and x′1, y
′
1, x
′
2, y
′
2 ∈ S such that

(u1, v1)
α→ (x1, y1)

0→ (y′1, x
′
1)

ε→ (u′1, v
′
1)

(u2, v2)
α→ (x2, y2)

0→ (y′2, x
′
2)

ε→ (u′2, v
′
2)

and x1
0→ x′1, y1

0→ y′1, x2
0→ x′2, y2

0→ y′2. From the induction hypothesis
and Lemma 9 we get

(u1, v2)
α→ (x2, y1)

0→ (y′1, x
′
2)

ε→ (u′1, x
′
2)

ε→ (u′1, v
′
2) .

2

The fundamental relation between a closed constraint graph G and the
automaton M is expressed by Lemma 11.

Lemma 11 Suppose G is a closed constraint graph. If u
≤→ v and (u, v) α→

(u′, v′), then u′
≤→ v′.

Proof. We proceed by induction on the number of transitions in (u, v) ε→
(u′, v′). If it is zero, then (u, v) = (u′, v′) and the result is immediate. Other-
wise, assume that (u, v) α→ (u′, v′) and that the lemma holds for this sequence
of transitions. We argue by cases, depending on the form of the next transi-
tion out of (u′, v′).

If (u′, v′) ε→ (u′, v′′) and v′
≤→ v′′ in G, then, by the induction hypothesis,

u′
≤→ v′, so since ≤ is transitive we have u′

≤→ v′′.
If (u′, v′) ε→ (u′′, v′) and u′′

≤→ u′ in G, then, by the induction hypothesis,
u′
≤→ v′, so since ≤ is transitive we have u′′

≤→ v′.
If (u′, v′) 1→ (u′′, v′′) and both u′

1→ u′′ and v′
1→ v′′, then, by the induction

hypothesis, u′
≤→ v′, so since G is closed we have u′′

≤→ v′′.
If (u′, v′) 0→ (v′′, u′′) and both u′

0→ u′′ and v′
0→ v′′, then, by the induction

hypothesis, u′
≤→ v′, so since G is closed we have v′′

≤→ u′′. 2

12

4 Upper bounds

We want to construct a solution ψ : S → TΣ such that D(ψ(s)) = L(s)
for all s ∈ S. Suppose L(u) ↓ α = {ε} for some u ∈ S. Then we want
(ψ(u))(α) ∈ {⊥, >}. The question is: should we pick ⊥ or >? To answer
this question, we consider Up(u, α), which intuitively is the set of upper
bounds of u at level α, and is defined as follows.

Definition 12 Define Up : S × {0, 1}∗ → 2N as follows:

Up(s, α) = {w ∈ N | (s, s) α→ (u, w) for some u ∈ S}

2

Lemma 13 Suppose u
≤→ v and α ∈ L(u) ∩ L(v).

1. If Up(u, α) = ∅, then Up(v, α) = ∅.

2. If Up(v, α) = ∅ and πα = 1, then Up(u, α) = ∅.

3. If L(u)↓α 6= {ε}, L(v)↓α = {ε}, then Up(v, α) = ∅.

4. If L(v)↓α 6= {ε}, L(u)↓α = {ε}, and πα = 1, then Up(u, α) = ∅.

Proof. To prove (1), suppose Up(v, α) 6= ∅. Choose w ∈ N and u′ ∈ S
such that (v, v) α→ (u′, w). Choose also u1, v1 ∈ S such that (u, u) α→ (u1, v1).
From u

≤→ v and Lemma 10 we then get

(u, u) ε→ (u, v) α→ (u1, w) ,

contradicting Up(u, α) = ∅.
To prove (2), suppose Up(u, α) 6= ∅. Since πα = 1, we can write α = β0γ

where β ∈ {0, 1}? and γ ∈ {1}?. Choose x1, y1, w ∈ N and x2, y2, u′ ∈ S
such that

(u, u) β→ (x1, y1)
0→ (y2, x2)

γ→ (u′, w)

and x1
0→ x2 and y1

0→ y2. Choose p1, q1 ∈ N and p2, q2, u′′, v′′ ∈ S such that

(v, v) β→ (p1, q1)
0→ (q2, p2)

γ→ (u′′, v′′)

13

and p1
0→ p2 and q1

0→ q2. From u
≤→ v and Lemma 10 we then get

(v, v) ε→ (u, v) β→ (x1, q1)
0→ (q2, x2)

γ→ (u′′, w) ,

contradicting Up(v, α) = ∅.
To prove (3), suppose Up(v, α) 6= ∅. Choose w ∈ N and u′ ∈ S such that

(v, v) α→ (u′, w). Choose also x, y ∈ N such that (u, u) α→ (x, y). From u
≤→ v

and Lemma 10 we get

(v, v) ε→ (u, v) α→ (x, w) ,

contradicting L(v)↓α = {ε}.
To prove (4), suppose Up(u, α) 6= ∅. Since πα = 1, we can write α = β0γ

where β ∈ {0, 1}? and γ ∈ {1}?. Choose x1, y1, w ∈ N and x2, y2, u′ ∈ S
such that

(u, u) β→ (x1, y1)
0→ (y2, x2)

γ→ (u′, w)

and x1
0→ x2 and y1

0→ y2. Since L(v) ↓ α 6= {ε}, choose p1, q1, u′′, v′′ ∈ N
and p2, q2 ∈ S such that

(v, v) β→ (p1, q1)
0→ (q2, p2)

γ→ (u′′, v′′)

and p1
0→ p2 and q1

0→ q2. From u
≤→ v and Lemma 10 we then get

(u, u) ε→ (u, v) β→ (x1, q1)
0→ (q2, x2)

γ→ (u′′, w) ,

contradicting L(u)↓α = ∅. 2

Lemma 14 Suppose i ∈ {0, 1}, u
i→ v, and α ∈ L(v).

1. If Up(u, iα) = ∅, then Up(v, α) = ∅.

2. Suppose G is closed. If Up(v, α) = ∅, then Up(u, iα) = ∅.

Proof. To prove (1), suppose Up(v, α) 6= ∅. Choose w ∈ N and u′ ∈ S
such that

(u, u) i→ (v, v) α→ (u′, w) ,

14

contradicting Up(u, iα) = ∅.
To prove (2), suppose Up(u, iα) 6= ∅. Choose w ∈ N and u′, u1, v1 ∈ S

such that

(u, u) i→ (u1, v1)
α→ (u′, w) .

From (u, u) i→ (v, v) and Lemma 10 we get

(u, u) i→ (u1, v)

(u, u) i→ (v, v1) .

From u
≤→ u and Lemma 11 we get u1

≤→ v
≤→ v1, hence

(v, v) ε→ (u1, v1)
α→ (u′, w) ,

contradicting Up(v, α) = ∅. 2

Lemma 15 Suppose i ∈ {0, 1}, u
i→ v, and α ∈ L(v). If G is closed and

L(v)↓α = {ε}, then L(u)↓ iα = {ε}.

Proof. Suppose L(u) ↓ iα 6= {ε}. Choose x, y ∈ N and u1, v1 ∈ S such
that

(u, u) i→ (u1, v1)
α→ (x, y) .

From (u, u) i→ (v, v) and Lemma 10 we get

(u, u) i→ (u1, v)

(u, u) i→ (v, v1) .

From u
≤→ u and Lemma 11 we get u1

≤→ v
≤→ v1, hence

(v, v) ε→ (u1, v1)
α→ (x, y) ,

contradicting L(v)↓α = {ε}. 2

15

5 Main result

Definition 16 Let a closed constraint graph G = (S, L, R, ≤) be given.
Define ψ : S → TΣ as follows:

ψ(s) = λα.


> if α ∈ L(s) ∧ L(s)↓α = {ε} ∧ Up(s, α) = ∅
⊥ if α ∈ L(s) ∧ L(s)↓α = {ε} ∧ Up(s, α) 6= ∅
→ if α ∈ L(s) ∧ L(s)↓α 6= {ε}
undefined if α 6∈ L(s)

2

Theorem 17 If G is a closed constraint graph, then the function ψ is a
solution of G. Moreover, if h : S → TΣ is any other solution of G, then
D(ψ(s)) ⊆ D(h(s)) for any s.

Proof. For any s ∈ S, notice that ψ(s) is nonempty since (s, s) ε→
(s, s), that it is prefix-closed since all states of Ms are accept states, that if
(ψ(s))(α) =→ then {i | αi ∈ D(ψ(s))} = {0, 1}, and that if (ψ(s))(α) ∈
{⊥, >} then {i | αi ∈ D(ψ(s))} = ∅, so ψ(s) ∈ TΣ. Notice also that
D(ψ(s)) = L(s) for all s ∈ S.

We first prove that

If u
0→ v0 and u

1→ v1, then ψ(u) = ψ(v0) → ψ(v1).

Notice that ψ(u) = ψ(v0) → ψ(v1) is equivalent to

(ψ(u))(α) = (ψ(v0) → ψ(v1))(α) for all α ∈ D(ψ(u)) ∩ D(ψ(v0) → ψ(v1)).
(5)

To see this equivalence, notice that (5) implies both ψ(u) ≤ ψ(v0) → ψ(v1)
and ψ(u) ≥ ψ(v0) → ψ(v1).

To prove (5), notice first that (ψ(u))(ε) = (ψ(v0) → ψ(v1))(ε) =→. Then,
let i ∈ {0, 1} and iα ∈ D(ψ(u)) ∩ D(ψ(v0) → ψ(v1)). It is sufficient to prove

(ψ(u))(iα) = (ψ(vi))(α) .

There are three cases. Suppose (ψ(vi))(α) =→. Then L(vi) ↓ α 6= {ε}.
From (u, u) i→ (vi, vi) we get L(u) ↓ iα 6= {ε}, so (ψ(u))(iα) =→. Suppose
then (ψ(vi))(α) = ⊥. Then L(vi) ↓ α = {ε} and Up(vi, α) 6= ∅. From

16

Lemma 14.1 we get Up(u, iα) 6= ∅. From Lemma 15 we get L(u)↓ iα = {ε},
so (ψ(u))(iα) = ⊥. Suppose finally (ψ(vi))(α) = >. Then L(vi) ↓ α = {ε}
and Up(vi, α) = ∅. From Lemma 14.2 we get Up(u, iα) = ∅. From Lemma 15
we get L(u)↓ iα = {ε}, so (ψ(u))(iα) = >.

We then prove that

If u
≤→ v, then ψ(u) ≤ ψ(v).

Suppose α ∈ D(ψ(u)) ∩ D(ψ(v)) = L(u) ∩ L(v). We then need to prove
(ψ(u))(α) ≤πα (ψ(v))(α). There are two cases.

Suppose first πα = 0. If (ψ(u))(α) = ⊥, then the result is immediate.
If (ψ(u))(α) = >, then L(u) ↓ α = {ε} and Up(u, α) = ∅. By Lemma 13.1,
Up(v, α) = ∅. Hence, L(v) ↓ α = {ε}, so (ψ(v))(α) = >, from which the
result follows. If (ψ(u))(α) =→, then there are two cases. If L(v)↓α 6= {ε},
then (ψ(v))(α) =→, from which the result follows. If L(v) ↓ α = {ε}, then
it follows from Lemma 13.3 that Up(v, α) = ∅. Hence, (ψ(v))(α) = >, from
which the result follows.

Suppose then πα = 1. If (ψ(v))(α) = ⊥, then the result is immediate.
If (ψ(v))(α) = >, then L(v) ↓ α = {ε} and Up(v, α) = ∅. By Lemma 13.2,
Up(u, α) = ∅. Hence, L(u) ↓ α = {ε}, so (ψ(u))(α) = >, from which the
result follows. If (ψ(v))(α) =→, then there are two cases. If L(u)↓α 6= {ε},
then (ψ(u))(α) =→, from which the result follows. If L(u) ↓ α = {ε}, then
it follows from Lemma 13.4 that Up(u, α) = ∅. Hence, (ψ(u))(α) = >, from
which the result follows.

To show that ψ is a solution of minimal size, we need to show that for
any other solution h : S → TΣ of G, D(ψ(s)) ⊆ D(h(s)) for any s. This
follows directly from Lemma 8. 2

6 An Algorithm

We have shown that the type inference problem for PTB can be reduced to
solving constraint graphs. Using the characterization of Theorem 17, we get
a straightforward type inference algorithm.

Theorem 18 One can decide in time O(n3) whether a constraint graph of
size n has a finite solution.

17

Proof. By Theorem 17, there exists a finite solution if and only if the
domain of the constructed solution ψ is finite. To determine this, we need
only check whether any L(s) contains an infinite path. We first form the
constraint graph, then close it; this gives a graph with n vertices and O(n2)
edges. This can be done in time O(n3). We then form the automaton M,
which has n2 states but only O(n3) transitions, at most O(n) from each state.
We then check for a cycle with at least one non-ε transition reachable from
some (s, s). This can be done in linear time in the size of the graph using
depth-first search. The entire algorithm requires time O(n3). 2

A λ-term of size n yields a constraint graph with O(n) nodes and O(n)
edges. Allowing types to be represented succinctly by the automata Ms, we
get our main result.

Corollary 19 The type inference problem for PTB is solvable in O(n3) time.

Recursive types are just regular trees [1]. The minimal-size solution we
have constructed, although possibly infinite, is a regular tree for every node
in the constraint graph. Thus, we get the following result.

Corollary 20 For PTBµ, we can infer a minimal-size type annotation in
O(n3) time.

It remains to be seen how to extend this result to PTBµ ∪ {Int}.

7 Example

We now give an example of how our type inference algorithm works. Consider
the λ-term E = (λx.xx)(λy.y) which was also treated in [5]. We give each
of the two occurrences of x a label so that the λ-term reads (λx.x1x2)(λy.y).
The constraint system T (E) looks as follows:

From λx.x1x2 x → [[x1x2]] ≤ [[λx.x1x2]]
From λy.y y → [[y]] ≤ [[λy.y]]
From E [[λx.x1x2]] ≤ [[λy.y]] → [[E]]
From x1x2 [[x1]] ≤ [[x2]] → [[x1x2]]
From x1 x ≤ [[x1]]
From x2 x ≤ [[x2]]
From y y ≤ [[y]]

18

To the left of the constraints, we have indicated from where they arise.
We will use the following abbreviations:

The symbol: abbreviates:
→1 x → [[x1x2]]
→2 y → [[y]]
→3 [[λy.y]] → [[E]]
→4 [[x2]] → [[x1x2]]

The constraint graph derived from T (E) looks as follows:

- -

�
�

�
�

���

A
A
A
A
AAU

�
�

�
�

��

A
A
A
A
AU

�
�

�
�

��

A
A
A
A
AU

6 A
A
A
A
AU

�
�

�
�

��

Q
Q

Q
Q

Q
Q

Q
QQs

J
J

J
JJ]

-

-

→1

→2

→3

→4

[[λx.x1x2]]

[[x1x2]] [[λy.y]] [[E]]

[[x1]] [[y]][[x2]]

x

y

≤

≤ ≤

≤ ≤

≤

≤

00

0

0

1 1

1

1

To close the constraint graph, it is sufficient to first fill in the edges

[[x1x2]]
≤→ [[E]]

[[λy.y]] ≤→ x

[[y]] ≤→ [[x1x2]]

[[x2]]
≤→ y ,

and then make ≤ transitive.
The constraint graph has 13 nodes, so the automaton M has 132 = 169

states. The following picture shows some of the states reachable from the
state (x, x).

19

- -

- -

- - -

?

?

? ?

? ?

?

(x, x) (x, [[x1]]) (x, →4)

([[λy.y]], x) ([[λy.y]], [[x1]]) ([[λy.y]], →4)

(→2, x) (→2, [[x1]]) (→2, →4) ([[y]], [[x1x2]])

([[x2]], y)

ε

ε ε

ε ε

ε ε ε

ε ε

ε ε 1

0

It turns out that

L(x) = {ε, 0, 1}
L(y) = {ε}

Up(x, 0) = ∅
Up(x, 1) = ∅
Up(y, ε) = ∅ .

We then get

ψ(x) = > → >
ψ(y) = > ,

and it turns out that E is typable.

20

For comparison, we can apply the algorithm for type inference for PTB
extended with recursive types [5] to E. The result is that both x and y get
annotated by the infinite type µα.α → α [5].

References

[1] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM
Transactions on Programming Languages and Systems, 15(4):575–631,
1993. Also in Proc. POPL’91.

[2] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient
recursive subtyping. Mathematical Structures in Computer Science. To
appear. Also in Proc. POPL’93, Twentieth Annual SIGPLAN–SIGACT
Symposium on Principles of Programming Languages, pages 419–428,
Charleston, South Carolina, January 1993.

[3] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient
inference of partial types. Journal of Computer and System Sciences,
49(2):306–324, 1994. Also in Proc. FOCS’92, 33rd IEEE Symposium on
Foundations of Computer Science, pages 363–371, Pittsburgh, Pennsyl-
vania, October 1992.

[4] John C. Mitchell. Type inference with simple subtypes. Journal of Func-
tional Programming, 1:245–285, 1991.

[5] Jens Palsberg and Patrick M. O’Keefe. A type system equivalent to flow
analysis. In Proc. POPL’95, 22nd Annual SIGPLAN–SIGACT Sym-
posium on Principles of Programming Languages, pages 367–378, San
Francisco, California, January 1995.

[6] Jens Palsberg and Michael I. Schwartzbach. Safety analysis versus type
inference for partial types. Information Processing Letters, 43:175–180,
1992.

[7] Satish Thatte. Type inference with partial types. In Proc. International
Colloquium on Automata, Languages, and Programming 1988, pages 615–
629. Springer-Verlag (LNCS 317), 1988.

21

[8] Mitchell Wand. Type inference for record concatenation and multiple
inheritance. Information and Computation, 93(1):1–15, 1991.

[9] Mitchell Wand, Patrick M. O’Keefe, and Jens Palsberg. Strong nor-
malization with non-structural subtyping. Mathematical Structures in
Computer Science. To appear.

22

Recent Publications in the BRICS Report Series

RS-95-33 Jens Palsberg, Mitchell Wand, and Patrick O'Keefe.Type
Inference with Non-structural Subtyping. June 1995. 22
pp.

RS-95-32 Jens Palsberg.Efficient Inference of Object Types. June
1995. 32 pp. To appear inInformation and Computa-
tion. Preliminary version appears inNinth Annual IEEE
Symposium on Logic in Computer Science, LICS '94 Pro-
ceedings, pages 186–195.

RS-95-31 Jens Palsberg and Peter Ørbæk.Trust in theλ-calculus.
June 1995. 32 pp. To appear inStatic Analysis: 2nd
International Symposium, SAS '95 Proceedings, 1995.

RS-95-30 Franck van Breugel. From Branching to Linear Met-
ric Domains (and back). June 1995. 30 pp. Abstract
appeared in Engberg, Larsen, and Mosses, editors,6th
Nordic Workshop on Programming Theory, NWPT '6 Pro-
ceedings, 1994, pages 444-447.

RS-95-29 Nils Klarlund. An n logn Algorithm for Online BDD
Refinement. May 1995. 20 pp.

RS-95-28 Luca Aceto and Jan Friso Groote.A Complete Equational
Axiomatization for MPA with String Iteration. May 1995.
39 pp.

RS-95-27 David Janin and Igor Walukiewicz.Automata for theµ-
calculus and Related Results. May 1995. 11 pp. To appear
in Mathematical Foundations of Computer Science: 20th
Int. Symposium, MFCS '95 Proceedings, LNCS, 1995.

RS-95-26 Faith Fich and Peter Bro Miltersen. Tables should be
sorted (on random access machines). May 1995. 11 pp. To
appear in Algorithms and Data Structures: 4th Workshop,
WADS '95 Proceedings, LNCS, 1995.

RS-95-25 Søren B. Lassen.Basic Action Theory. May 1995. 47 pp.

RS-95-24 Peter Ørbæk.Can you Trust your Data?April 1995. 15
pp. Appears in Mosses, Nielsen, and Schwartzbach, edi-
tors, Theory and Practice of Software Development.6th In-
ternational Joint Conference CAAP/FASE, TAPSOFT '95
Proceedings, LNCS 915, 1995, pages 575–590.

