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E�cient Inference of Object Types

Jens Palsberg

BRICS∗

Department of Computer Science

University of Aarhus

Ny Munkegade
DK-8000 Aarhus C, Denmark

Abstract

Abadi and Cardelli have recently investigated a calculus of objects

[2]. The calculus supports a key feature of object-oriented languages:

an object can be emulated by another object that has more re�ned

methods. Abadi and Cardelli presented four �rst-order type systems

for the calculus. The simplest one is based on �nite types and no

subtyping, and the most powerful one has both recursive types and

subtyping. Open until now is the question of type inference, and

in the presence of subtyping �the absence of minimum typings poses

practical problems for type inference� [2].

In this paper we give an O(n3) algorithm for each of the four type

inference problems and we prove that all the problems are P-complete.

We also indicate how to modify the algorithms to handle functions and

records.

1 Introduction

Abadi and Cardelli have recently investigated a calculus of objects [2]. The

calculus supports a key feature of object-oriented languages: an object can

∗Basic Research in Computer Science, Centre of the Danish National Research Foun-

dation. E-mail: palsberg@daimi.aau.dk.
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be emulated by another object that has more re�ned methods. For example,

if the method invocation a.l is meaningful for an object a, then it will also

be meaningful for objects with more methods than a, and for objects with

more re�ned methods. This phenomenon is called subsumption.

The calculus contains four constructions: variables, objects, method invo-

cation, and method override. It is similar to the calculus of Mitchell, Honsell,

and Fisher [20] in allowing method override, but it di�ers signi�cantly in al-

so allowing subsumption but not allowing objects to be extended with more

methods.

Abadi, Cardelli [2] Mitchell, Honsell, Fisher [20]

Objects
√ √

Method override
√ √

Subsumption
√

Object extension
√

Abadi and Cardelli presented four �rst-order type systems for their calcu-

lus. The simplest one is based on �nite types and no subtyping, and the most

powerful one has both recursive types and subtyping. The latter can type

many intriguing object-oriented programs, including objects whose methods

return an updated self [2], see also [4, 3, 1].

Open until now is the question of type inference:

Given an untyped program a, is a typable? If so, annotate it.

In the presence of subtyping �the absence of minimumtypings poses practical

problems for type inference� [2].

In this paper we give an O(n3) algorithm for each of the four type inference

problems and we prove that all the problems are P-complete.

Choose: �nite types or recursive types.

Choose: subtyping or no subtyping.

In any case: type inference is

P-complete and computable in O(n3).

Our results have practical signi�cance:

1. For object-oriented languages based on method override and subsump-

tion, we provide the core of e�cient type inference algorithms.
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2. The P-completeness indicates that there are no fast NC-class parallel

algorithms for the type inference problems, unless NC = P.

In Section 2 we present Abadi and Cardelli's calculus. For readability, Sec-

tion 3�6 concentrate on the most powerful of the type systems, the one with

recursive types and subtyping. The other type systems requires similar de-

velopments that will be summarized in Section 7. We �rst present the type

system (Section 3), and we then prove that the type inference problem is log
space equivalent to a constraint problem (Section 4) and a graph problem

(Section 5), and we prove that a program is typable if and only if the cor-

responding graph problem involves a well-formed graph (Section 6). If the

graph is well-formed, then a certain �nite automaton represents a canonical

typing of the program. In Section 7 we give algorithms for all four type infer-

ence problems and in Section 8 we prove that all the problems are P-complete

under log space reductions. In Section 9 we give three examples of how the

most powerful of our type inference algorithms works. Finally, in Section 10

we discuss related work and possible extensions. The reader is encouraged

to refer to the examples while reading the other sections.

Our approach to type inference is related to that of Kozen, Schwartzbach,

and the present author in [17]. Although the problems that we solve here are

much di�erent from that solved in [17], the two approaches have the same

ingredients: constraints, graphs, and automata.

We have produced a prototype implementation in Scheme of the most

powerful of our type inference algorithms. Experiments have been carried

out on a SPARCserver 1000 (with four SuperSPARC processors) running

Scm version 4e1. For example, the implementation used 24 seconds to pro-

cess a 58 lines program. This is encouraging because we used a rather slow

implementation language and because we did not �ne-tune the implementa-

tion.

A potential obstacle for practical use of our algorithms is the property

that the canonical typing of a program may have a representation of a size

which is quadratic in the size of the program. Another potential obstacle

may be the use of adjacency matrices to represent certain graphs. If those

graphs are sparse in practice, then it may be worthwhile using less space-

demanding data structures at the cost of slower worst-case performance.

Further experiments are needed to evaluate the speed and space-usage of the

algorithms on programs of realistic size.
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2 Abadi and Cardelli's Calculus

Abadi and Cardelli �rst present an untyped object calculus, called the ς-
calculus. The ς-terms are generated by the following grammar:

a ::= x variable

[li = ς(xi)b i∈1..n
i ] (li distinct) object

a.l �eld selection / method invocation

a.l ⇐ ς(x)b �eld update / method override

We use a, b, c to range over ς-terms. An object [li = ς(xi)b i∈1..n
i ] has

method names li and methods ς(xi)bi. The order of the components does

not matter. In a method ς(x)b, we have that x is the self variable and b
is the body. Thus, in the body of a method we can refer to any enclosing

object, like in the Beta language [18].

The reduction rules for ς-terms are as follows. If o ≡ [li = ς(xi)b i∈1..n
i ],

then, for j ∈ 1..n,

• o.lj ; bj[o/xj]

• o.lj ⇐ ς(y)b ; o[lj ← ς(y)b]

Here, a[o/x] denotes the ς-term a with o substituted for free occurrences

of x (after renaming bound variables if necessary); and o[lj ← ς(y)b] denotes
the ς-term o with the lj �eld replaced by ς(y)b. An evaluation context is

an expression with one hole. For an evaluation context a[.], if b ; b′, then
a[b] ; a[b′].

A ς-term is said to be an error if it is irreducible and it contains either

o.lj or o.lj ⇐ ς(y)b, where o ≡ [li = ς(xi)b i∈1..n
i ], and o does not contain an

lj �eld.
For examples of reductions, consider �rst the object o ≡ [l = ς(x)x.l].

The expression o.l yields the in�nite computation:

o.l ; x.l[o/x] ≡ o.l ; . . .

As another example, consider the object o′ ≡ [l = ς(x)x]. The method l
returns self:

o′.l ; x[o′/x] ≡ o′
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As a �nal example, consider the object o′′ ≡ [l = ς(y)(y.l ⇐ ς(x)x)]. The

method l returns a modi�ed self:

o′′.l ; (o′′.l ⇐ ς(x)x) ; o′

These three examples are taken from Abadi and Cardelli's paper [2].

Abadi and Cardelli demonstrate how to encode the pure λ-calculus in the

ς-calculus. Note the following di�erence between these two calculi. In pure

λ-calculus no term yields an error; in the ς-calculus for example [ ].l yields
an error. The reason is that objects are structured values. In a λ-calculus
with pairs, some terms yield errors, like in the ς-calculus.

3 Type Rules

The following type system for the ς-calculus catches errors statically, that is,
rejects all programs that may yield errors [2].

An object type is an edge-labeled regular tree. A tree is regular if it has

�nitely many distinct subtrees. Labels are drawn from some possibly in�nite

set N of method names. We represent a type as a non-empty, pre�x-closed

set of strings over N . One such string represents a path from the root. We

use A, B, . . . to denote types. The set of all types is denoted T . A type is

�nite if it is �nite as a set of strings.

For l1, . . . , ln ∈ N , A1, . . . , An ⊆ N∗ and α ∈ N∗, de�ne

[li : A i∈1..n
i ] = {ε} ∪ {l1α | α ∈ A1} ∪ . . . ∪ {lnα | α ∈ An}

A↓α = {β | αβ ∈ A} .

Here, [li : A i∈1..n
i ] is an object type with components li : Ai, and A↓α is the

subtree of A at α if α ∈ A, ∅ if not. The following properties are immediate

from the de�nitions:

(i) [li : A i∈1..n
i ]↓ li = Ai

(ii) (A↓α)↓β = A↓αβ

The set of object types is ordered by the subtyping relation ≤ as follows:

A ≤ B if and only if ∀l ∈ N : l ∈ B ⇒ (l ∈ A ∧ A↓ l = B ↓ l)
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Clearly, ≤ is a partial order. Intuitively, if A ≤ B, then A may contain more

�elds than B, and for common �elds, A and B must have the same type. For

example, [l : A, m : B] ≤ [l : A], but [l : [m : A]] 6≤ [l : [ ]]. Notice that if

A ≤ B, then B ⊆ A.
To state typing rules, Abadi and Cardelli use an explicitly typed version

of the ς-calculus where each bound variable is annotated with a type.

If a is an explicitly typed ς-term, A is an object type, and E is a type

environment, that is, a partial function assigning types to variables, then the

judgement E ` a : A means that a has the type A in the environment E.

This holds when the judgement is derivable using the following �ve rules:

E ` x : A (provided E(x) = A) (1)

E[xi ← A] ` bi : Bi ∀i ∈ 1..n
E ` [li = ς(xi : A)b i∈1..n

i ] : A
(where A = [li : B i∈1..n

i ]) (2)

∀j ∈ 1..n :
E ` a : [li : B i∈1..n

i ]
E ` a.lj : Bj

(3)

∀j ∈ 1..n :
E ` a : A E[x ← A] ` b : Bj

E ` a.lj ⇐ ς(x : A)b : A
(where A = [li : B i∈1..n

i ]) (4)

E ` a : A A ≤ B

E ` a : B
(5)

The �rst four rules express the typing of each of the four constructs in the

object calculus and the last rule is the rule of subsumption.

Notice that rule (3) can be replaced by the equivalent rule

E ` a : [lj : Bj]
E ` a.lj : Bj

(6)

Notice also that rule (4) can be replaced by the equivalent rule

E ` a : A E[x ← A] ` b : Bj

E ` a.lj ⇐ ς(x : A)b : A
(where A ≤ [lj : Bj ]) (7)

If E ` a : A is derivable, we say that a is well-typed with type A. An

untyped ς-term a is said to be typable if there exists an annotated version of

a which is well-typed.

For comparison with the typing rules for simply typed λ-calculus, notice
that:
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• Rule (1) is identical to the rule for variables in λ-calculus;

• Rule (2) can be understood as the rule for object type introduction, just

like the rule for λ-abstraction is the rule for function type introduction;

and

• Rule (3) can be understood as the rule for object type elimination, just

like the rule for application is the rule for function type elimination in

λ-calculus.

Rule (4) has no obvious counterpart among the typing rules for simply typed

λ-calculus.
For examples of type derivations, let us consider the three example terms

from Section 2. First consider the object o ≡ [l = ς(x)x.l]. The expression

o.l can be typed as follows, with x implicitly typed with [l : [ ]]:

∅[x ← [l : [ ]]] ` x : [l : [ ]]
∅[x ← [l : [ ]]] ` x.l : [ ]

∅ ` o : [l : [ ]]
∅ ` o.l : [ ] .

Consider then the object o′ ≡ [l = ς(x)x]. The expression o′.l can be typed

as follows, with x implicitly typed with [l : [ ]]:
∅[x ← [l : [ ]]] ` x : [l : [ ]] [l : [ ]] ≤ [ ]

∅[x ← [l : [ ]]] ` x : [ ]
∅ ` o′ : [l : [ ]]
∅ ` o′.l : [ ] .

Consider then the object o′′ ≡ [l = ς(y)b], where b ≡ y.l ⇐ ς(x)x. The

expression o′′.l can be typed as follows, with both x and y implicitly typed

with [l : [ ]]:

∅[y ← [l : [ ]]] ` y : [l : [ ]] ∅[y ← [l : [ ]], x ← [l : [ ]]] ` x : [ ]
∅[y ← [l : [ ]]] ` b : [l : [ ]] [l : [ ]] ≤ [ ]

∅[y ← [l : [ ]]] ` b : [ ]
∅ ` o′′ : [l : [ ]]
∅ ` o′′.l : [ ] .

Consider �nally the object [ ]. Trying to type the expression [ ].l will fail
because rule (2) can only give [ ] the type [ ], so rule (3) cannot be applied

afterwards.
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4 From Rules to Constraints

In this section we prove that the type inference problem is log space equivalent

to solving a �nite system of type constraints. The constraints isolate the

essential combinatorial structure of the type inference problem.

De�nition 4.1 Given a denumerable set of variables, an AC-system

(Abadi/Cardelli-system) is a �nite set of inequalities W ≤ W ′, where W and

W ′ are of the forms V or [li : V i∈1..n
i ], and where V, V1, . . . , Vn are variables.

If L maps variables to types, then de�ne L̃ as follows:

L̃(W ) =
{

[l1 : L(V1), . . . , ln : L(Vn)] if W is of the form [li : V i∈1..n
i ]

L(V ) if W is a variable V

A solution for an AC-system is a map L from variables to types such that

for all W ≤ W ′ in the AC-system, L̃(W ) ≤ L̃(W ′). 2

For examples of AC-systems, see Section 9.

We �rst prove that the type inference problem is log space reducible to

solving AC-systems.

Given an untyped ς-term c, assume that it has been α-converted so that

all bound variables are distinct. We will now generate an AC-system from c
where the bound variables of c are a subset of the variables in the constraint

system. This will be convenient in the statement and proof of Lemma 4.2

below. Let X be the set of bound variables in c; let Y be a set of variables

disjoint from X consisting of one variable [[b]] for each occurrence of a subterm
b of c; and let Z be a set of variables disjoint from X and Y constisting of

one variable 〈a.lj〉 for each occurrence of a subterm a.lj of c. (The notations
[[b]] and 〈a.lj〉 are ambiguous because there may be more than one occurrence

of the term b or a.lj in c. However, it will always be clear from context which

occurrence is meant.) Notice that there are two variables 〈a.lj〉 and [[a.lj]] for
each occurrences of a subterm a.lj of c. Intuitively, 〈a.lj〉 denotes the type

of a.lj before subtyping, and [[a.lj]] denotes the type of a.lj after subtyping.

We generate the following AC-system of inequalities over X ∪ Y ∪ Z:

• for every occurrence in c of a bound variable x, the inequality

x ≤ [[x]] (8)
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• for every occurrence in c of a subterm of the form [li = ς(xi)b i∈1..n
i ],

the inequality

[li : [[bi]]
i∈1..n] ≤ [[[li = ς(xi)b i∈1..n

i ]]] (9)

and for every i ∈ 1..n, the equalities

xi = [li : [[bi]]
i∈1..n] (10)

• for every occurrence in c of a subterm of the form a.lj, the inequalities

[[a]] ≤ [lj : 〈a.lj〉] (11)

〈a.lj〉 ≤ [[a.lj]] (12)

• for every occurrence in c of a subterm of the form a.lj ⇐ ς(x)b, the
constraints

[[a]] ≤ [[a.lj ⇐ ς(x)b]] (13)

[[a]] = x (14)

[[a]] ≤ [lj : [[b]]] (15)

In (8) to (15), each equality A = B denotes the two inequalities A ≤ B and

B ≤ A.
Denote by C(c) the AC-system of constraints generated from c in this

fashion. For a ς-term c of size n, the AC-system C(c) is of size O(n), and
it is generated using O(log n) space. We show below that the solutions of

C(c) over T correspond to the possible type annotations of c in a sense made

precise by Lemma 4.2. For examples of AC-systems generated from ς-terms,

see Section 9.

The constraints are motivated by the forms of the corresponding type

rules. The reason for the use of ≤ in four of the constraint rules can be

summarized as follows:

• Given a type derivation, we can �nd a particular type derivation where

the subsumption rule (5) is used exactly once for each occurrence of a

subterm.
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This explains the use of ≤ in the constraints (8), (9), (12), (13). For example,

consider an occurrence in c of a variable x. If the constraint x ≤ [[x]] has
solution L, then we can construct the type derivation

L ` x : L(x) L(x) ≤ L([[x]])
L ` x : L([[x]]) .

The use of ≤ in the constraints (11) and (15) is motivated by the rules (6)

and (7).

Notice that we cannot replace the constraints (11) and (12) by the single

constraint

[[a]] ≤ [lj : [[a.lj]]] (16)

To see this, let a.lj occur in c and suppose C(a.lj) has solution L (so in

particular, (11) and (12) has solution L). Consider the type derivation

L ` a : L([[a]]) L([[a]]) ≤ [lj : L(〈a.lj〉)]
L ` a : [lj : L(〈a.lj〉)]

L ` a.lj : L(〈a.lj〉) L(〈a.lj〉) ≤ L([[a.lj]])
L ` a.lj : L([[a.lj]])

Clearly, L([[a]])↓ lj need not be equal to L([[a.lj]]). With the constraint (16),

however, they are forced to be equal.

Let E be a type environment assigning a type to each variable occurring

freely in c. If L is a function assigning a type to each variable in X ∪ Y ∪ Z,
we say that L extends E if E and L agree on the domain of E.

If b is an annotated ς-term, then we let b denote the corresponding un-

typed term. Moreover, we let b̂ be the partial function that maps each bound

variable in b to its type annotation.

Lemma 4.2 The judgement E ` c : A is derivable if and only if there exists

a solution L of C(c) extending both E and ĉ, such that L([[c]]) = A. In

particular, if c is closed, then c is well-typed with type A if and only if there

exists a solution L of C(c) extending ĉ such that L([[c]]) = A.

Proof. We �rst prove that if C(c) has a solution L extending both E and

ĉ, then L ` c : L([[c]]) is derivable. We proceed by induction on the structure

of c.
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For the base case, L ` x : L([[x]]) is derivable using rules (1) and (5), since

L(x) ≤ L([[x]]).
For the induction step, consider �rst [li = ς(xi)bi

i∈1..n]. Let A =
[li : L([[bi]]) i∈1..n]. To derive L ` [li = ς(xi : L(xi))b i∈1..n

i ] : L([[[li =
ς(xi)bi

i∈1..n]]]), by rule (5) and the fact that A ≤ L([[[li = ς(xi)bi
i∈1..n]]]),

it su�ces to derive L ` [li = ς(xi : L(xi))b i∈1..n
i ] : A. From the fact that

L(xi) = A for every i ∈ 1..n, it su�ces to derive L ` [li = ς(xi : A)b i∈1..n
i ] :

A. The side condition of rule (2) is clearly satis�ed, so it su�ces to derive,

for each i ∈ 1..n, L[xi ← A] ` bi : L([[bi]]), or in other words, L ` bi : L([[bi]]).
But since L is a solution of C([li = ς(xi)bi

i∈1..n]), it is also a solution of C(bi)
for each i ∈ 1..n, thus the desired derivations are provided by the induction

hypothesis.

Now consider a.lj. Since L is a solution of C(a.lj), it is also a solution

of C(a). From the induction hypothesis, we obtain a derivation of L ` a :
L([[a]]). By rule (3) and the fact that L([[a]]) ≤ [lj : L(〈a.lj〉)], we obtain a

derivation of L ` a.lj : L(〈a.lj〉). Using rule (5) and the fact that L(〈a.lj〉) ≤
L([[a.lj]]), we then obtain a derivation of L ` a.lj : L([[a.lj]]).

Finally consider a.lj ⇐ ς(x : L(x))b. Let A = L([[a]]). To derive L `
a.lj ⇐ ς(x : L(x))b : L([[a.lj ⇐ ς(x)b]]), by rule (5) and the fact that A ≤
L([[a.lj ⇐ ς(x)b]]), it su�ces to derive L ` a.lj ⇐ ς(x : L(x))b : A. From the

fact that A = L(x), it su�ces to derive L ` a.lj ⇐ ς(x : A)b : A. The side

condition of rule (7) is satis�ed because A ≤ [lj : L([[b]])], so it su�ces to

derive L ` a : A and L[x ← A] ` b : L([[b]]), or in other words L ` a : L([[a]])
and L ` b : L([[b]]). But since L is a solution of C(a.lj ⇐ ς(x)b), it is also a

solution of C(a) and C(b), thus the desired derivations are provided by the

induction hypothesis.

We then prove that if E ` c : A is derivable, then there exists a solution

L of C(c) extending both E and ĉ.
Suppose E ` c : A is derivable, and consider a derivation of minimal

length. Since the derivation is minimal, there is exactly one application of

the rule (1) involving a particular occurrence of a variable x, exactly one

application of the rule (2) involving a particular occurrence of a subterm

[li = ς(xi : A)b i∈1..n
i ], exactly one application of the rule (3) involving a

particular occurrence of a subterm a.lj, and exactly one application of the

rule (4) involving a particular occurrence of a subterm a.lj ⇐ ς(x : A)b. In
the case of a variable x, there is a unique type B such that F (x) = B for
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any F such that a judgement F ` a : B′ appears in the derivation for some

occurrence of a subterm a of ς(x : A)b; this can be proved by induction on the

structure of the derivation of F ` a : B′. Finally, there can be at most one

application of the rule (5) involving a particular occurrence of any subterm;

if there were more than one, they could be combined using the transitivity

of ≤ to give a shorter derivation.

Now construct L as follows. For every free variable x of c de�ne L(x) =
E(x). For every bound variable x, let ς(x : A)b be the method in which it is

bound, and de�ne L(x) = A. For every occurrence of a subterm a of c, �nd
the last judgement in the derivation of the form F ` a : B involving that

occurrence of a, and de�ne L([[a]]) = B. Intuitively, the last judgement of the

form F ` a : B means the judgement after the use of subsumption. Finally,

for every occurrence of a subterm a.lj of c, �nd the unique application of the

rule (3) deriving F ` a.lj : Bj, and de�ne L(〈a.lj〉) = Bj.

Certainly L extends E and ĉ and L([[c]]) = A. We now show that L is a

solution of C(c).
For an occurrence of a bound variable x, there are two cases. Suppose �rst

that the variable is bound in a method that occurs in an object declaration.

Find the unique application of the rule (2) deriving the judgement F `
[li = ς(xi : A)b i∈1..n

i ] : A from a family of premises where one of them is

F [x ← A] ` b : Bi. Then L(x) = A. The rule (1) must have been applied

to obtain a judgement of the form G ` x : L(x) and only rule (5) applied to

that occurrence of x thereafter, thus L(x) ≤ L([[x]]). Suppose then that the

variable is bound in a method that occurs in a method override. Find the

unique application of the rule (4) deriving the judgement F ` a.lj ⇐ ς(x :
A)b : A from two premises where one of them is F [x ← A] ` b : Bj. As

before, we get that L(x) ≤ L([[x]]).
For an occurrence of a subterm of the form [li = ς(xi : A)b i∈1..n

i ], �nd
the unique application of the rule (2) deriving the judgement F ` [li = ς(xi :
A)b i∈1..n

i ] : A from the premises F [xi ← A] ` bi : Bi, where A = [li :
L([[bi]]) i∈1..n]. Then L(xi) = A, and A ≤ L([[[li = ς(xi)bi

i∈1..n]]]).
For an occurrence of a subterm of the form a.lj, �nd the unique applica-

tion of the rule (3) deriving the judgement F ` a.lj : Bj from the premise

F ` a : [li : B i∈1..n
i ]. Then L([[a]]) = [li : B i∈1..n

i ] and Bj = L(〈a.lj〉) ≤
L([[a.lj]]). Thus, L([[a]]) ≤ [lj : L(〈a.lj〉)], by the de�nition of ≤.
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Finally for an occurrence of a subterm of the form a.lj ⇐ ς(x : A)b, �nd
the unique application of the rule (4) deriving the judgement F ` a.lj ⇐
ς(x : A)b : A from the premises F ` a : A and F [x ← A] ` b : Bj , where

A = [li : B i∈1..n
i ]. Then L([[a]]) = A ≤ L([[a.lj ⇐ ς(x)b]]), and A = L(x).

Moreover, L([[b]]) = Bj, so L([[a]]) ≤ [lj : L([[b]])], by the de�nition of ≤. 2

We then prove that solving AC-systems is log space reducible to the type

inference problem.

Let C be an AC-system. Suppose L assigns a type to each variable in C.

Recall that for an inequality W ≤ W ′ in C, both W and W ′ are of the forms

V or [li : V i∈1..n
i ], where V, V1, . . . , Vn are variables. De�ne

AC
L = [ lV : L(V ) for each variable V in C

lR : AR for each R in C of the form [li : V i∈1..n
i ]

and where AR = [li : L(Vi) i∈1..n]
lI : L̃(W ′) for each inequality I in C of the form W ≤ W ′

]
De�ne also
cC
L = [ lV = ς(xV : AC

L)(xV .lV )
for each variable V in C

lR = ς(xR : AC
L)[li = ς(xi : AR)(xR.lVi) i∈1..n]
for each R in C of the form [li : V i∈1..n

i ]
and where AR = [li : L(Vi) i∈1..n]

lI = ς(xI : AC
L)((xI .lW ′ ⇐ ς(y : AC

L)(xI .lW)).lW ′)
for each inequality I in C of the form W ≤ W ′

]
Notice that AC

L and cC
L can be generated in log space.

Lemma 4.3 C has solution L if and only if ∅ ` cC
L : AC

L is derivable.

Proof. We �rst prove that if C has solution L then ∅ ` cC
L : AC

L is

derivable. Using rule (2), we get that we need to derive judgements of the

form E[xi ← AC
L ] ` bi : Bi, where each bi is the body of a method in cC

L and

Bi is the type in the corresponding entry of AC
L .

Consider �rst an entry in cC
L corresponding to a variable V in C. The

method body is xV .lV and it is clearly derivable that E[xV ← AC
L ] ` xV .lV :

L(V ).
Consider then an entry in cC

L corresponding to R in C of the form [li :
V i∈1..n

i ]. The method body is [li = ς(xi : AR)(xR.lVi) i∈1..n] and it is

13



clearly derivable that E[xR ← AC
L ] ` [li = ς(xi : AR)(xR.lVi) i∈1..n] : [li :

L(Vi) i∈1..n].
Consider �nally an entry in cC

L corresponding to an inequality I of the

form W ≤ W ′. Using that L̃(W ) ≤ L̃(W ′), it is straightforward to derive

E[xI ← AC
L ] ` ((xI.lW ′ ⇐ ς(y : AC

L)(xI.lW )).lW ′) : L(W ′).
We then prove that if ∅ ` cC

L : AC
L is derivable then C has solution L.

Consider any inequality I in C of the form W ≤ W ′. Let (xI .lW ′ ⇐ ς(y :
AC

L)(xI .lW)).lW ′ be the body of the corresponding method in cC
L . Clearly,

any derivation involving this ς-term must contain the judgement E ` xI .lW :
L̃(W ′), where E maps both of the variables xI and y to AC

L . Consider

a derivation where rule (5) is used exactly once for each occurrence of a

subterm. The judgement E ` xI .lW : L̃(W ′) has been derived using rule (5),

so the hypothesis must have had the form E ` xI.lW : B, where B ≤ L̃(W ′).
That judgement must have been derived using rule (3), so the hypothesis

must have had the form E ` xI : R, where R ≤ [lW : B]. That judgement

has been derived using rule (5), so the hypothesis must have had the form

E ` xI : AC
L , where AC

L ≤ R. By combining AC
L ≤ R and R ≤ [lW : B],

we get that B = AC
L ↓ lW . Notice that AC

L ↓ lW = L̃(W ), so L̃(W ) = B.

Combining that with B ≤ L̃(W ′) gives L̃(W ) ≤ L̃(W ′). 2

For example, let C be the AC-system consisting of the single constraint

V ≤ [l : W ]

Moreover, let L be such that

L(V ) = [l : B]
L(W ) = B

for some type B. We then get:

AC
L = [ lV : [l : B]

lW : B
l[l:W ] : [l : B]
lV≤[l:W ] : [l : B]

]

cC
L = [ lV = ς(xV : AC

L)(xV .lV )

14



lW = ς(xW : AC
L)(xW .lW)

l[l:W ] = ς(x[l:W ] : AC
L)[l = ς(x : [l : B])(x[l:W ].lW)]

lV≤[l:W ] = ς(xV≤[l:W ] : AC
L)b

]
where

b = (xV≤[l:W ].l[l:W ] ⇐ ς(y : AC
L)(xV≤[l:W ].lV )).l[l:W ]

By combining Lemmas 4.2 and 4.3 we get the following result.

Theorem 4.4 The type inference problem is log space equivalent to solving

AC-systems.

5 From Constraints to Graphs

In this section we prove that solving AC-systems is log space equivalent to

solving a certain kind of constraint graphs. The graphs yield a convenient

setting for applying algorithms like transitive closure.

De�nition 5.1 A AC-graph is a directed graph G = (N, S, L, ≤) consisting
of two disjoint sets of nodes N and S, and two disjoint sets of directed edges

L and ≤. Each edge in L is labeled with some l ∈ N , and each edge in ≤ is

labeled with ≤. An AC-graph satis�es the properties:

• any N node has �nitely many outgoing L edges, all to S nodes, and

those edges have distinct labels;

• any S node has no outgoing L edges;

For each h : S → T , de�ne h̃ : (N ∪ S) → T as

h̃(u) =
{

[l1 : h(v1), . . . , ln : h(vn)] if u
li→ vi are the L edges from u ∈ N

h(u) if u ∈ S

A solution for G is any map h : S → T such that if u
≤→ v, then h̃(u) ≤ h̃(v).

The solution h is �nite if h(s) is a �nite set for all s. 2
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For examples of AC-graphs, see Section 9.

Recall that we represent a type as a set of strings. Note that a solvable

AC-graph has a pointwise ⊆-least solution. To see this, observe that the

intersection of any non-empty family of solutions is itself a solution. Thus,

provided that solutions exist, the intersection of all solutions is the pointwise

⊆-least solution.

Theorem 5.2 Solving AC-systems is log space equivalent to solving AC-

graphs.

Proof. Given an AC-system, we construct an AC-graph as follows. As-

sociate a unique N node with every subexpression of the form [li : V i∈1..n
i ],

and associate a unique S node with every variable. From the node for

[li : V i∈1..n
i ], de�ne for each i ∈ 1..n an L edge labeled li to the node

for Vi. Finally, de�ne ≤ edges for the inequalities. Notice that the AC-graph

can be generated in log space. Clearly, the resulting AC-graph is solvable if

and only if the AC-system is solvable.

Conversely, given an AC-graph, we construct an AC-system as follows.

For every≤ edge, generate the obvious inequality. Notice that the AC-system

can be generated in log space. Clearly, the resulting AC-system is solvable if

and only if the AC-graph is solvable. 2

For examples of AC-graphs generated from AC-systems, see Section 9.

The following two de�nitions provide the basis for the algorithms for

solving AC-graphs that will be presented in Section 7. First we de�ne the

closure of an AC-graph, which makes the solutions (or lack thereof) explicit.

Then we de�ne a condition for solvability: well-formedness of the graph. The

concepts of closure and well-formedness are brought together in Theorem 6.5

which says that a closed graph is solvable if and only if it is well-formed.

De�nition 5.3 An AC-graph is closed if the edge relation ≤ is re�exive,

transitive, and closed under the following rule which say that the dashed

edge exists whenever the solid ones do:

�����
HHHHj

? ?

≤ ≤

l l

=
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The = edge denotes two ≤ edges, one in each direction.

The closure of an AC-graph G is the smallest closed AC-graph containing

G as a subgraph. 2

Note that an AC-graph and its closure have the same set of solutions. To

see this, observe that any solution of the closure of G is also a solution of G,

since G has fewer constraints. Conversely, observe that the closure of G can

be constructed from G by iterating the closure rules, and it follows induc-

tively by the de�nition of ≤ that any solution of G satis�es the additional

constraints added by this process.

De�nition 5.4 An AC-graph is well-formed if for any nodes u, v ∈ N with

u
≤→ v, if v has an outgoing edge labeled l, then so does u. 2

6 From Graphs to Automata

In this section we de�ne an automaton M and prove our main result. This

automaton will be used to characterize the canonical assignment of types to

nodes of a given AC-graph.

De�nition 6.1 Let an AC-graph G = (N, S, L, ≤) be given. The automaton

M is de�ned as follows. The input alphabet of M is N (the set of method

names). The states of M are N ∪ S. We use p, q, s, u, v, w to range over

states. The transitions are de�ned as follows.

v
ε→ v′ if v

≤→ v′ in G

v
l→ v′ if v

l→ v′ in G

If p and q are states of M and α ∈ N∗, we write p
α→ q if the automaton can

move from state p to state q under input α, including possible ε-transitions.
The automaton Ms is the automaton M with start state s. All states

are accept states; thus the language accepted by Ms is the set of strings α
for which there exists a state p such that s

α→ p. We denote this language by

L(s).
The set L(s) is clearly nonempty, since s

ε→ s is in M, and it is pre�x-

closed since all states in M are accept states. Moreover, L(s) is regular: each
of the �nitely many states in M corresponds to a subtree in L(s). Hence,

L(s) ∈ T . 2
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The intuition motivating the de�nition of M is that we want to identify

the conditions that require a path to exist in any solution. Thus L(s) is the
set of α that must be there; this intuition is made manifest in the following

lemma.

Recall from Section 3 that A ↓ α is the subtree of A at α if α ∈ A, ∅ if

not.

Lemma 6.2 Let G be an AC-graph. If h : S → T is any solution and s
α→ p

in M, then α ∈ h̃(s) and h̃(s)↓α ≤ h̃(p).

Proof. We proceed by induction on the number of transitions. If this is

zero, then p = s and α = ε, and the result is immediate. Otherwise, assume

that s
α→ p in M and the lemma holds for this sequence of transitions. We

argue by cases, depending on the form of the next transition out of p.

Consider �rst a transition p
ε→ q. Then p

≤→ q in G, so h̃(p) ≤ h̃(q). By
the induction hypothesis, we get αε = α ∈ h̃(s) and

h̃(s)↓αε = h̃(s)↓α ≤ h̃(p) ≤ h̃(q).

Consider then a transition p
l→ q. Then p

l→ q in G, so h̃(p) ↓ l = h̃(q).
Thus, l ∈ h̃(p). By the induction hypothesis we get h̃(p) ⊆ h̃(s) ↓ α, so
l ∈ h̃(s)↓α, hence αl ∈ h̃(s). We also get

h̃(s)↓αl = (h̃(s)↓α)↓ l = h̃(p)↓ l = h̃(q)

using the de�nition of ≤. 2

Lemma 6.3 Let G be a closed AC-graph. Suppose that G contains the edges

u
≤→ v

l→ w. Then L̃(u)↓ l = L̃(w).

Proof. Follows from G being closed. 2

Lemma 6.4 Let G be a closed AC-graph. Suppose that G contains the edge

u1
≤→ u2. If l ∈ L̃(u1) and l ∈ L̃(u2), then L̃(u1)↓ l = L̃(u2)↓ l.

Proof. For each i ∈ 1..2 we observe that for any node wi and edges

ui
≤→ vi

l→ wi, we get from Lemma 6.3 that L̃(ui) ↓ l = L̃(wi). Thus, it is

su�cient to choose two such nodes w1 and w2, and prove that L̃(w1) = L̃(w2).
This choice is possible since l ∈ L̃(u1) and l ∈ L̃(u2). From G being closed

we get that there are edges w1
≤→ w2 and w2

≤→ w1. Thus, L̃(w1) = L̃(w2)
indeed holds. 2
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Theorem 6.5 A closed AC-graph is solvable if and only if it is well-formed.

If it is solvable, then L is the pointwise ⊆-least solution.

Proof. Let G be a closed AC-graph. Clearly, if G is solvable, then it is

well-formed.

Assume now that G is well-formed. To show that L is a solution for G, we

need to prove that if u
≤→ v in G, then L̃(u) ≤ L̃(v). Suppose l ∈ L̃(v). We

must prove that l ∈ L̃(u) and L̃(u) ↓ l = L̃(v) ↓ l. If we can prove l ∈ L̃(u),
then L̃(u)↓ l = L̃(v)↓ l follows from Lemma 6.4.

First, if u ∈ N , then from G being well-formed, we get u
l→ w in G for

some w. Thus, l ∈ L̃(u). Second, if u ∈ S, then from u
≤→ v, we get from

Lemma 6.3 that l ∈ L̃(u).
To show that L is the pointwise ⊆-least solution, we need to show that

for any solution h : S → T , L(s) ⊆ h(s) for all s. This follows directly from

Lemma 6.2. 2

Intuitively, the pointwise ⊆-least solution is the one where the types con-

tain only those �elds that are absolutely required by the type rules.

7 Algorithms

We �rst demonstrate how to close an AC-graph and how to check if an

AC-graph is well-formed. Then we proceed to presenting the type inference

algorithms.

7.1 Closure

To compute the closure of an AC-graph (N, S, L, ≤), we use four data struc-

tures:

1. ITC: a data structure for incremental transitive closure. It maintains

the transitive closure of a graph of ≤ edges during edge insertions.

Speci�cally, it maintains an adjacency matrix TC such that after each

edge insertion, TC [x, y] = 1 if and only if there is a path from x to

y in the graph, and TC [x, y] = 0 otherwise. An edge insertion may

result in the addition of more edges, and so on, recursively. The insert
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operation returns a list of all edges that have been added, represented

as node pairs. Initialization and maintenance of ITC can be done in

O(n3) time, where n is the number of nodes [15, 21].

2. PE: a data structure with potential ≤ edges. This data structure is

computed in a preprocessing phase. It is a matrix of the same form

as the adjacency matrix, but with each entry being a list of pairs of

nodes. It is computed by, for each pair of L edges x1
l1→ y1 and x2

l2→ y2,

checking if l1 = l2, and if so, appending [(y1, y2), (y2, y1)] to PE[x1, x2].
This takes O(|L|2) time. The idea is that, for l1 = l2, if we later �nd

edges x
≤→ x1 and x

≤→ x2 for some x, then we must insert x1
l1→ y1 and

x2
l2→ y2 into ITC.

3. M: a matrix of the same form as the adjacency matrix. It is used to

keep track of the accesses to PE. Speci�cally, M[x, y] = 1 if and only

if we have accessed PE[x, y], and M[x, y] = 0 otherwise.

4. Q: the worklist. Speci�cally, Q is a list of pairs of nodes. Each pair

(x, y) indicates that x
≤→ y must be inserted into ITC.

The algorithm works as follows. First compute PE, initialize ITC to be the

empty graph, initialize M to be the 0-matrix, and initialize Q to be the list

of ≤ edges of the input graph. Then repeat the following step until Q is

empty:

• Let (x, y) be a pair in Q. Remove it and insert it into ITC. Let R be

the list which is returned by the insert operation. For each (x, y) in R,
�nd the immediate successors z of x in ITC, and if M[y, z] = 0, then
set M[y, z] = 1 and set M[z, y] = 1, and append PE[y, z] to Q.

Suppose (N, S, L, ≤) is the input graph, and let n be the number of nodes

in the graph, that is, n = |N | + |S|. There can be O(n2) new edges in ITC,

and for each one, we consider O(n) immediate successors of a given node.

For the graphs of our application, |L| ∈ O(n), so for those the total running

time of the algorithm is O(n3).
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7.2 Well-formedness

To check that an AC-graph is well-formed, do a depth-�rst search of the

graph, maintaining for each node in N both a set of labels of outgoing L
edges and a list of outgoing ≤ edges. Each time a node u ∈ N is to be

exited, check for each edge u
≤→ v that the label set for v is a subset of the

label set for u. The time spent is:

• The search itself takes time proportional to the number of edges, which

is O(|L| + | ≤ |) time.

• The maintenance of label sets takes time proportional to inserting |L|
elements, which is O(|L| log |L|) time.

• The maintenance of lists of ≤ edges takes O(| ≤ |) time.

• The checks take O(|L|2) time. (There is either zero or one comparison

of labels for each pair of L edges.)

Suppose (N, S, L, ≤) is the input graph, and let n be the number of nodes

in the graph, that is, n = |N | + |S|. For the graphs of our application,

|L| ∈ O(n), so for those the total running time of the algorithm is O(n2).

7.3 Type inference

We have shown that the type inference problem with recursive types and

subtyping is log space equivalent to solving AC-graphs. Using the character-

ization of Theorem 6.5, we get a straightforward type inference algorithm:
Input: A ς-term of size n.

1: Construct the corresponding AC-graph (in log space).

2: Close the graph (in O(n3) time).

3: Check if the resulting graph is well-formed (in O(n2) time).

4: If the graph is well-formed,

then output �typable� together with the automaton M
else output �not typable�.

The entire algorithm requires O(n3) time. Every subterm of the input

corresponds to a state (s) in the automaton M, and a suggestion for its type

is represented by the language L(s).
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Consider then the type inference problem with �nite types and subtyping.

Clearly, this problem is log space equivalent to �nding �nite solutions to AC-

graphs. By Theorem 6.5, there exists a �nite solution if and only if L is

a �nite solution. Thus, we obtain a type inference algorithm by modifying

step 4 of the above algorithm so that it checks that L is �nite. To do that,

we check for a cycle in M with at least one non-ε transition reachable from

some (s). This can be done in linear time in the size of the closed AC-graph

using depth-�rst search. Thus, the entire algorithm requires O(n3) time.

Consider then the type inference problems without subsumption. This

causes us to change the inequalities (8), (9), (12), and (13) to the corre-

sponding equalities. Note that we leave the inequalities (11) and (15) un-

changed. We can then repeat the development of Sections 4�6, but this

time with a subclass of AC-systems, which we call SAC-systems (simple AC-

systems). In SAC-systems, the allowed constraints are of the forms W = W ′

or V ≤ [li : V i∈1..n
i ], where V, V1, . . . , Vn are variables, and W, W ′ are of the

forms V or [li : V i∈1..n
i ]. Similarly, there is a subclass of AC-graphs, which

we call SAC-graphs. In SAC-graphs, most ≤ edges come in pairs, yielding

�equality� edges. Speci�cally, consider an edge u
≤→ v. Unless, u is an S

node and v is an N node, then there is also an edge v
≤→ u. An SAC-graph is

well-formed if it is well-formed as an AC-graph. Moreover, the closure of an

SAC-graph G is the smallest closed SAC-graph containing G as a subgraph.

Clearly, the �AC-closure� and the �SAC-closure� of an SAC-graph are the

same. SAC-graphs can be solved using the above algorithms, in time O(n3),
both with recursive and �nite types.

In summary:

Theorem 7.1 All four type inference problems are solvable in O(n3) time.

8 Completeness

We now prove that all four type inference problems are P-hard under log
space reductions. Clearly, it is su�cient to show that the two problems of

solving SAC-systems with �nite or recursive types are P-hard. These two

results are obtained by reductions of simple type inference for λ-calculus,
and of the monotone circuit value problem, respectively, as explained in the

following.
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We �rst consider �nding �nite solutions to SAC-systems. Simple type

inference for λ-calculus is P-complete under log space reductions [12]. It is

log space equivalent to �nding �nite solutions to a �nite set of equations of

the forms V = V ′ → V ′′ or V = C, where V, V ′, V ′′ are variables, and C is a

constant. Variables range over the set of �nite binary trees over the binary

constructor → and some set of nullary constants. A solution is a map L from

variables to such trees such that all equations are satis�ed. We can in log
space transform such a set of equations into an equivalent SAC-system by

translating V = V ′ → V ′′ into V = [l : V ′ r : V ′′], and translating V = C
into V = [ ]. Thus, �nding �nite solutions to a SAC-system is P-hard.

We then consider �nding arbitrary solutions to SAC-systems. A mono-

tone circuit [7] is a directed acyclic graph G whose nodes, called gates, are

of �ve di�erent kinds:

1. input gates with no in-edge and one out-edge;

2. and-gates with two in-edges and one out-edge;

3. or-gates with two in-edges and one out-edge;

4. fan-out gates with one in-edge and two out-edges; and

5. a single output gate with one in-edge and no out-edges.

Furthermore, all gates are reachable from the input gate, and the output gate

is reachable from all gates.

Every assignment a of truth values to the input gates of G can be extended

uniquely to a truth value assignment a to all gates of G by de�ning:

1. if n is an input gate, then a(n) = a(n);

2. if n is an and-gate with predecessors n′ and n′′, then a(n) = a(n′) ∧
a(n′′);

3. if n is an or-gate with predecessors n′ and n′′, then a(n) = a(n′)∨a(n′′);

4. if n is a fan-out gate with predecessor n′ and out-edges n1, n2, then

a(n1) = a(n′) and a(n2) = a(n′); and

5. if n is the output gate with predecessor n′, then a(n) = a(n′).
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The monotone circuit value problem [16] is the problem of deciding, given a

monotone circuit G and an assignment a to the input gates of G, whether

a(n) = true for the output gate n. It is P-complete under log-space reduc-

tions [16].

We will now give a log space reduction of the monotone circuit value

problem to the problem of �nding arbitrary solutions to SAC-graphs. The

construction is adapted from Henglein's proof of P-hardness of left-linear

semi-uni�cation [13]. That proof, in turn, is adapted fromDwork, Kanellakis,

and Mitchell's proof of P-hardness of uni�cation [8].

Given a monotone circuit and an assignment to input gates, we construct

an SAC-graph as follows. Each gate in the circuit yields a small �gadget�

consisting of a few nodes and edges. Each gadget has a pair of designated

nodes for every in- and outedge of the encoded gate:

1. Each input gate is represented by two S nodes n, n′. The output node
pair is (n, n′).

2. Each and-gate is represented by three S nodes n, n′, n′′. The two input
node pairs are (n, n′) and (n′, n′′). The output node pair is (n, n′′).

3. Each or-gate is represented by two S nodes n, n′. The two input node

pairs are (n, n′) and (n, n′). The output node pair is also (n, n′).

4. Each fan-out gate is represented by two N nodes n, n′ and four S nodes

n1, n2, n′1, n
′
2, and four edges n

0→ n1, n
1→ n2, n′

0→ n′1, and n′
1→ n′2,

where 0 indicates �left� and 1 indicates �right�. The input node pair

is (n, n′). The output node pairs are (n1, n
′
1) and (n2, n

′
2).

5. The output gate is represented by two N nodes n1, n2 and one S node

n′2, and one edge n2
l→ n′2. The input node pair is (n1, n2).

Each edge in the circuit yields one or more edges in the SAC-graph, as

follows. Suppose there is an edge from gate g to gate g′ in the circuit. We

connect the corresponding output pair (n, n′) in the representation of g to

the corresponding input pair (m, m′) in the representation of g′ by adding

the edges m
≤→ n and n′

≤→ m′.
Finally, consider an input gate which is assigned true by a. Suppose the

gate is represented by n, n′. We add the edge n
≤→ n′.
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Having now constructed the SAC-graph G, consider the two N nodes

n1, n2 in the representation of the output gate g. Clearly, the closure of G

contains an edge n1
≤→ n2 if and only if a(g) = true. By Theorem 6.5 it

follows, that a(g) = true if and only if G is not solvable. Thus, �nding

arbitrary solutions to a SAC-system is P-hard.

In summary:

Theorem 8.1 All four type inference problems are P-complete.

9 Examples

We now give three examples of how the type inference algorithms work. We

use the algorithm for the system with recursive types and subtyping.

The �rst example is taken from Section 2. Consider the object o ≡ [l =
ς(x)x.l]. The expression o.l yields the following constraints and in turn the

following graph:

o.l

[
[[o]] ≤ [l : 〈o.l〉]
〈o.l〉 ≤ [[o.l]]

o

[
[l : [[x.l]]] ≤ [[o]]
x = [l : [[x.l]]]

x.l

[
[[x]] ≤ [l : 〈x.l〉]
〈x.l〉 ≤ [[x.l]]

x x ≤ [[x]]

- -

?
- �

?
- -

?

x [[x]] ⊙

⊙ [[x.l]] 〈x.l〉

[[o]] ⊙ 〈o.l〉

[[o.l]]

≤ ≤

l=

l ≤

≤

≤ l

≤

To the left of the constraints we have written from which expressions they

are generated. In the graph we indicate N nodes with the symbol
⊙
. To

close the graph we only need to add three equality edges between the nodes

[[x.l]], 〈x.l〉, and 〈o.l〉, and of course edges to make ≤ transitive. Clearly, the

resulting graph is well-formed, hence solvable. By transforming the graph

into an automaton, we get that the variable x has the ⊆-least annotation

[l : [ ]].
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The second example is also taken from Section 2. Consider the object

o′ ≡ [l = ς(x)x]. The expression o′.l yields the following constraints and in

turn the following graph:

o′.l

[
[[o′]] ≤ [l : 〈o′.l〉]
〈o′.l〉 ≤ [[o′.l]]

o′
[

[l : [[x]]] ≤ [[o′]]
x = [l : [[x]]]

x x ≤ [[x]]

-

�
�

���

?
- -

?

x [[x]]

⊙

⊙[[o′]] 〈o′.l〉

[[o′.l]]

≤

= l

l

≤

≤

≤

To close the graph we only need to add an equality edge between the

nodes [[x]] and 〈o′.l〉, and of course edges to make ≤ transitive. Clearly, the

resulting graph is well-formed, hence solvable. By transforming the graph

into an automaton, we get that the variable x has the ⊆-least annotation

[l : [ ]].
The third example is also taken from Section 2. Consider the object

o′′ ≡ [l = ς(y)b], where b ≡ y.l ⇐ ς(x)x. The expression o′′.l yields the
following constraints and in turn the following graph:

26



o′′.l

[
[[o′′]] ≤ [l : 〈o′′.l〉]
〈o′′.l〉 ≤ [[o′′.l]]

o′′
[

[l : [[b]]] ≤ [[o′′]]
y = [l : [[b]]]

b

 [[y]] ≤ [[b]]
[[y]] = x
[[y]] ≤ [l : [[x]]]

x x ≤ [[x]]
y y ≤ [[y]]

A
A
A
A
A
A
A
AAU

- -

? ?

6

?

? ?
-

y
⊙ [[o′′]] ⊙

[[b]] 〈o′′.l〉

[[y]] x [[o′′.l]]

⊙
[[x]]

= ≤ ≤

≤ l l

≤ ≤

=

≤ ≤
l

To close the graph we only need to add an equality edge between the

nodes [[b]] and 〈o′′.l〉, and of course edges to make ≤ transitive. Clearly, the

resulting graph is well-formed, hence solvable. By transforming the graph

into an automaton, we get that the variables x, y both have the ⊆-least

annotation [l : [ ]].
The fourth example illustrates what happens if the program is not ty-

pable. Consider the object a ≡ [ ]. The expression a.l yields the following

constraints and in turn the following graph:

a [ ] ≤ [[a]]

a.l

[
[[a]] ≤ [l : 〈a.l〉]
〈a.l〉 ≤ [[a.l]]

-

?

-

�

⊙ [[a]] ⊙

[[a.l]] 〈a.l〉≤

≤≤

l

To close the graph we only need to add a single edge to make≤ transitive.

The resulting graph is not well-formed, however, because the leftmost node

does not have an outgoing l edge. Thus, the graph is not solvable.
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10 Related work

Type inference with subtyping has been studied for λ-calculi. In that setting,
the problem of type inference with atomic subtyping can be presented as fol-

lows. Suppose types are �nite trees over the binary function type constructor

→ and a partially ordered set (Σ, ≤) of constants, that is, base types. The

ordering on types is the smallest extension of ≤ such that s → t ≤ s′ → t′

if and only if s′ ≤ s and t ≤ t′. The type rules are those of simply typed

λ-calculus with typed constants together with the subsumption rule. The

type inference problem is to decide if a given λ-term is typable. This prob-

lem was introduced by Mitchell in 1984 [19] who showed that type inference

is computable in NEXPTIME in the size of the program. If (Σ, ≤) is a dis-

joint union of lattices, then type inference is computable in polynomial time

[23]. Moreover, if (Σ, ≤) is �tree-like�, then type inference is computable

in polynomial time [6]. In general, the type inference problem is PSPACE -

hard [14, 23]. Type inference with atomic subtyping has also been studied

in combination with ML polymorphism [10, 11].

Objects do not have base types, so type inference with atomic subtyping

does not apply to Abadi and Cardelli's calculus. The object types considered

in this paper are rather like record types. Type inference for λ-calculi with
records but no subtyping has been studied by Wand [24] and Remy [22].

In the presence of subtyping, uni�cation-based approaches to type inference

seem not to apply.

Type inference for λ-calculi with records and subtyping has been studied

by Eifrig, Smith, and Trifonov [9], using the approach to type inference of

Aiken and Wimmers [5]. Their algorithm does not immediately apply to

Abadi and Cardelli's calculus because of the following di�erence between

the subtyping relations. For records, the conventional subtyping relations

makes every record type constructor covariant in all arguments. For example,

[l : A, m : C] is a subtype of [l : B] provided that A is a subtype of B. In

Abadi and Cardelli's type system, [l : A, m : C] can only be a subtype of

[l : B] if A = B. The conventional subtyping relation for records is unsound

in the case of Abadi and Cardelli's calculus [2]. Even though the subtyping

relation in Abadi and Cardelli's type system is smaller than the conventional

one for record types, it yields a more complicated de�nition of closed AC-

graphs, as illustrated in the following.

Our algorithms can easily be extended to handle also λ-terms and a con-
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travariant function space constructor, in outline as follows. The constraints

for λ-terms are as usual (see for example [17]). The de�nition of AC-graph

needs to be extended with a set N→ of nodes and a set E→ of edges. Each

edge in E→ is labeled by either L or R, where L 6∈ N and R 6∈ N , where N
is the set of method names. Each node in N→ corresponds to a function type

constructor, and it has exactly two outgoing E→ edges, both to S nodes:

one edge labeled L (indicating the left argument of →) and one edge labeled

R (indicating the right argument of →). The de�nition of closed AC-graph

needs to be extended so that it is closed under the rule which says that the

dashed edges exists whenever the solid ones do:

�
-

-
B
B
B
BBN

�
�

�
�

���

B
B
B
BBN

�
�

�
�

���
≥

≤

≤

RLRL

Clearly, closing such graphs can be done in O(n3) time. Finally, the

notion of well-formed AC-graph needs to be restricted so that:

1. No well-formed AC-graph can contain edges of the forms u
≤→ v or

v
≤→ u where u ∈ N and v ∈ N→,

2. No well-formedAC-graph can contain a pair of edges of the forms u
≤→ v

and u
≤→ w where u ∈ S, v ∈ N , and w ∈ N→, and

3. No well-formedAC-graph can contain a pair of edges of the forms v
≤→ u

and w
≤→ u where u ∈ S, v ∈ N , and w ∈ N→.

The extra checks can be done in O(n2) time where n is the number of nodes.

Given proper de�nitions of the new set of types and the new ≤ relation (along

the lines of [17]), it should be possible to prove that Theorem 6.5 holds. For

the program λ(x)((x.a)x), the most powerful of the type inference algorithms

infers that x has the ⊆-least annotation [a : [ ] → [ ]].
For a λ-calculus with records, our algorithm can be modi�ed to handle

the conventional subtyping relation for record types, simply by changing the

de�nition of closed AC-graph such that if u, v ∈ N , s, t ∈ S, and the edges
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u
≤→ v, u

l→ s, v
l→ t exist, then also s

≤→ t exists. Clearly, closing a graph

can be done in O(n3) time. The proof that Theorem 6.5 holds is left as an

exercise for the reader.

In remains to be seen how to extend our algorithm to deal with ML

polymorphism.

11 Conclusion

The type inference problems we have addressed are related to those treated by

Eifrig, Smith, and Trifonov [9]. Speci�cally, our algorithm can be modi�ed to

handle functions and records, and it seems possible to modify their algorithm

to handle the object calculus. The results of the two approaches appear to

be complimentary. We have completeness results and e�cient algorithms,

while they have incremental algorithms that can handle ML polymorphism.

Future work may attempt to combine the two approaches.
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